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Abstract. We show that a generic ring algorithm for breaking RSA in
ZN can be converted into an algorithm for factoring the corresponding
RSA-modulus N . Our results imply that any attempt at breaking RSA
without factoring N will be non-generic and hence will have to manipu-
late the particular bit-representation of the input in ZN . This provides
new evidence that breaking RSA may be equivalent to factoring the
modulus.

1 Introduction

Probably the two most fundamental reduction problems in number-theoretic
cryptography are to prove or disprove that breaking the RSA system [22] is as
hard as factoring integers and that breaking the Diffie-Hellman protocol [9] is
as hard as computing discrete logarithms. While the second problem has been
solved to a large extent [15, 18, 2], not much is known about the first for general
models of computation. In this paper, we show the equivalence of RSA and
factoring for the most general generic model of computation.

1.1 Breaking RSA vs. Factoring

The security of the well-known RSA public-key encryption and signature scheme
[22] relies on the assumption that computing eth roots modulo n, which is a
product of two primes, is hard. In order to formally state this assumption, we
define a pair of random variables, N and E, that are chosen according to a
certain joint probability distribution as follows: N is a product of two primes,
for example an element chosen uniformly at random from the set of products
of two k-bit primes satisfying certain conditions (e.g. [16]), and E is a positive
integer1 such that gcd(E, φ(N)) = 1. Note that the marginal distribution of
N over products of two primes is defined by the joint distribution of (N,E).
Throughout this paper, we will assume that the sum of the lengths of N and E
is bounded by the security parameter κ and the terms negligible, non-negligible,
and polynomial-time are with respect to κ. We state three assumptions below:
1 In principle E can be much larger than N .



Factoring Assumption: There exists no probabilistic polynomial-time algo-
rithm that, given N , finds a non-trivial factor of N with non-negligible2

probability.
RSA Assumption: There exists no probabilistic polynomial-time algorithm

that, given the pair (N,E) and an element a chosen uniformly at random
from Z∗N , computes x ∈ Z∗N such that xE ≡ a modulo N with non-negligible
probability.

Generic RSA Assumption: There exists no probabilistic polynomial-time generic
ring algorithm (a class of algorithms that we will introduce later) that, given
the pair (N,E) and an element a chosen uniformly at random from Z∗N , com-
putes x ∈ Z∗N such that xE ≡ a modulo N with non-negligible probability.

It is easy to see that if the RSA assumption holds then the factoring assump-
tion holds. However it is a long-standing open problem whether the converse
is true. Since no progress has been made for general models of computation,
it is interesting to investigate reasonable restricted models of computation and
prove that in such a model factoring is equivalent to the RSA problem. In a
restricted model one assumes that only certain kinds of operations are allowed.
Shoup [23], based on the work of Nechaev [20], introduced the concept of generic
algorithms which are algorithms that do not exploit any property of the rep-
resentation of the elements. They proved lower bounds on the complexity of
computing discrete logarithms in cyclic groups in the context of generic algo-
rithms. Maurer [17] provided a simpler and more general model for analyzing
representation-independent algorithms.

1.2 The Generic Model of Computation

We give a brief description of the model of [17]. The model is characterized
by a black-box B which can store values from a certain set T in internal state
variables V0, V1, V2, · · · . The initial state (the input of the problem to be solved)
consists of the values of [V0, . . ., V`] for some positive integer `, which are set
according to some probability distribution (e.g. the uniform distribution).

The black box B allows two types of operations:
– Computation operations. For a set Π of operations of some arities on T , a

computation operation consists of selecting f ∈ Π (say t-ary) as well as the
indices i1, . . . , it+1 of t+1 state variables. B computes f(Vi1 , . . . , Vit

) and
stores the result in Vit+1 .

– Relation Queries. For a set Σ of relations (of some arities) on T , a query
consists of selecting a relation ρ ∈ Σ (say t-ary) as well as the indices i1, . . . , it
of t state variables. The query is replied by the binary output ρ(Vi1 , . . . , Vit)
that takes the value 1 if the relation is satisfied, and 0 otherwise.

For this paper, we only consider the case t = 2 and the only relation queries we
consider are equality queries.
2 A function f(κ) is considered a non-negligible function in κ if there exists c > 0 and

k0 ∈ N such that for all κ > k0, |f(κ)| > 1
κc .



An algorithm in this model is characterized by its interactions with the black
box B. The algorithm inputs operations (computation operations and relation
queries) to the black box, and the replies to the relation queries are input to
the algorithm. The complexity of an algorithm for solving any problem can be
measured by the number of operations it performs on B.

For this paper, the set T is ZN . Also ` = 1 and V0 is always set to be the unit
element 1 of ZN and V1 is the value a whose Eth root is to be computed. A generic
ring algorithm (GRA) is an algorithm that is just allowed to perform the ring
operations, i.e., addition and multiplication as well as the inverse ring operations
(subtraction and division), and to test for equality (i.e., make an equality query).
In this model, for example, GRAs on ZN correspond to Π = {+,−, ·, /} and Σ =
{=}. A straight-line program (SLP) on ZN , which is a deterministic algorithm
that is just allowed to perform ring operations, corresponds to the case where Σ
is the empty set, i.e., no equality tests are possible.

Many results in the literature are restricted in that they exclude the inverse
operations, but since these operations are easy3 to perform in ZN , they should
be included as otherwise the results are of relatively limited interest. Note that
division by non-invertible elements of ZN is not defined. This can be modeled in
the above generic model by having the black-box B send an “exception” bit b to
the algorithm and leaving the corresponding state variable undefined whenever
there is a division by a non-invertible element. In order to avoid having to handle
these exceptions, we instead describe a black-box B̃ that (we will show) is almost
as powerful as B, but easier to work with.

B̃ stores values from ZN × ZN . V0 and V1 are set to be (1, 1) and (x, 1)
respectively. The operations in {+,−, ·, /} are defined on ZN × ZN as follows
(for α, β, γ, δ ∈ ZN ):

(α, β) ◦ (γ, δ) =


(αδ + βγ, βδ) if ◦ is +
(αδ − βγ, βδ) if ◦ is −
(αγ, βδ) if ◦ is ·
(αδ, βγ) if ◦ is /

If (α, β) and (γ, δ) are queried for equality, 1 is returned if αδ = βγ, and 0
otherwise.

The interpretation of B̃ is that if an internal state variable in B̃ takes a value
(α, β) then, on inputting the same sequence of operations to B, the corresponding
internal state variable in B takes the value α/β if there was no “exception”.
We will show in Section 2.2 that any GRA (for solving a certain computation
problem) interacting with B can be converted into a GRA interacting with B̃
such that both have essentially the same success probability and complexity of
the same order.

3 Division of an element a by b for a, b ∈ ZN can be performed easily by first computing
b−1 using Euclid’s algorithm and then computing a · b−1 in ZN .



1.3 Related Work and Contributions of this Paper

Research on the relation between RSA and factoring comes in two flavours. There
have been results giving evidence against (e.g. [3, 12]) and in favour of (e.g. [4,
13]) the assumption that breaking RSA is equivalent to factoring.

Boneh and Venkatesan [3] showed that any SLP that factors N by making at
most a logarithmic number of queries to an oracle solving the Low-Exponent
RSA (LE-RSA) problem (the RSA problem when the public exponent E is
small) can be converted into a real polynomial-time algorithm for factoring N .
This means that if factoring is hard, then there exists no straight-line reduction
from factoring to LE-RSA that makes a small number of queries to the LE-RSA
oracle. Joux et al [12] showed that computing e-th roots modulo N is easier than
factoring N with currently known methods, given sub-exponential access to an
oracle outputting the roots of numbers of the form xi + c.

Brown [4] showed that if factoring is hard then the LE-RSA problem is
intractable for SLPs with Π = {+,−, ·}. More precisely, he proved that an
efficient SLP for breaking LE-RSA can be transformed into an efficient factoring
algorithm. Leander and Rupp [13] generalized the result of [4] to GRAs which,
as explained above, can test the equality of elements. Again, division is excluded
(Π = {+,−, ·}).

Another theoretical result about the hardness of the RSA problem is due
to Damg̊ard and Koprowski [8]. They studied the problem of root extraction in
finite groups of unknown order and proved that the RSA problem is intractable
with respect to generic group algorithms. This corresponds to excluding addition,
subtraction and division from the set of operations (Π = {·}).

Our results generalize the previous results in several ways. (Actually, Theo-
rem 1 appears to be the most general statement about the equivalence of fac-
toring and breaking RSA in a generic model.)

– First, compared to [4, 13] we consider the full-fledged RSA problem (not only
LE-RSA) with exponent E of arbitrary size, even with bit-size much larger
than that of N .

– Second, we allow for randomized GRAs, an extension less trivial than it
might appear.

– Third, compared to [8, 4, 13] we consider the unrestricted set of ring oper-
ations, including division. This generalization is important since there are
problems that are easy to solve in our generic ring model but are provably
hard to solve using the model without division4.
Actually, as has been pointed out in [4], computing the multiplicative inverse
of a random element in ZN generically is hard if Π = {+,−, ·}.

– Fourth, compared to [13] we give an explicit algorithm that factors N given
a GRA computing Eth roots. In [13], the reduction from GRAs to SLPs is
only non-uniform.

4 In [4], the author has mentioned and given justification for the fact that most results
of his paper will extend to SLPs with division.



The problem we solve has been stated as an open problem in [8] and [4].
The rest of the paper is structured as follows: In Section 2, we introduce basic

definitions and notations and show a few preliminary results. In Section 3, we
prove our main result. Section 4 provides some conclusions and lists some open
problems.

2 Preliminaries

2.1 Straight-Line Programs

Straight-line programs for a ring are deterministic algorithms that perform a
sequence of ring operations. Thus an SLP corresponds to Π = {+,−, ·, /} and
Σ = {} in the model of [17]. More concretely:

Definition 1. An L-step straight-line program (SLP) S is a sequence of triples
(i2, j2, ◦2), . . . , (iL, jL, ◦L) such that 0 ≤ ik, jk < k and ◦k ∈ {+,−, ·, /}.

The interpretation for this is that if x is considered a variable, then the SLP
S computes a sequence of rational functions f2, . . . , fL(= fS), where, f0 = 1,
f1 = x and fk = fik

◦k fjk
for 2 ≤ k ≤ L. Thus, an SLP can be interpreted

as the evaluation of a rational function fS in x given by a pair of polynomials
(PS , QS) representing the numerator and the denominator of fS , respectively,
as follows.

1. Let PS
0 = 1, QS

0 = 1, PS
1 = x,QS

1 = 1.
2. For 2 ≤ k ≤ L, (PS

k , QS
k ) = (PS

ik
, QS

ik
) ◦k (PS

jk
, QS

jk
) is given by:

(PS
k , QS

k ) =


(PS

ik
·QS

jk
+ PS

jk
·QS

ik
, QS

ik
·QS

jk
) if ◦k is +

(PS
ik
·QS

jk
− PS

jk
·QS

ik
, QS

ik
·QS

jk
) if ◦k is −

(PS
ik
· PS

jk
, QS

ik
·QS

jk
) if ◦k is ·

(PS
ik
·QS

jk
, QS

ik
· PS

jk
) if ◦k is /

3. Output (PS , QS) = (PS
L , QS

L).

Therefore, from now on, we identify the SLP S with the pair of polynomials
(PS , QS).

Lemma 1. PS
k and QS

k are polynomials of degree at most 2k.

Proof. The proof is by induction on k. The claim is trivially true for k = 0. We
assume that PS

r and QS
r are polynomials of degree at most 2r for all r < k. So,

since ik, jk ≤ k − 1, deg(PS
ik

), deg(QS
ik

), deg(PS
jk

) and deg(QS
jk

) are all at most
2k−1. This implies, by the definition of (PS

k , QS
k ), that the degree of PS

k and QS
k

is at most 2k−1 + 2k−1 = 2k. ut

Next, we show that any SLP can be “converted” into an SLP that does not
require the division operation, i.e., for which Π = {+,−, ·}, without increasing
the complexity by more than a constant factor. A result similar to the following
but with a factor of 6 instead of 4 has been proven independently in [11].



Lemma 2. For any L-step SLP S with Π = {+,−, ·, /} that computes the ratio-
nal function fS given by (PS , QS), there exists a 4L-step SLP with Π = {+,−, ·}
that computes PS and QS.

Proof. We prove this by induction on L. The result is trivial for L = 0. We
suppose it is true for L = L′. Therefore there exists an SLP S′ of length ` ≤ 4L′

that uses only the operations {+,−, ·} and computes PS
k and QS

k for 1 ≤ k ≤ L′.
Let this program compute the polynomials Ri for 1 ≤ i ≤ `. Let L = L′ + 1.
Now consider the following cases:

– Case (i): ◦L is +.
Let R`+1 = PS

iL
· QS

jL
, R`+2 = PS

jL
· QS

iL
, R`+3 = R`+1 + R`+2 = PS

L and
R`+4 = QS

iL
·QS

jL
= QS

L.
– Case (ii): ◦L is −.

Let R`+1 = PS
iL
· QS

jL
, R`+2 = PS

jL
· QS

iL
, R`+3 = R`+1 − R`+2 = PS

L and
R`+4 = QS

iL
·QS

jL
= QS

L.
– Case (iii): ◦L is ·.

Let R` = PS
iL
· PS

jL
= PS

L and R`+2 = QS
iL
·QS

jL
= QS

L.
– Case (iv): ◦L is /.

Let R`+1 = PS
iL
·QS

jL
= PS

L and R`+2 = QS
iL
· PS

jL
= QS

L.

By induction hypothesis, SLP S′ computes PS
k and QS

k for 1 ≤ k ≤ L′. We can
extract from S′, the indices corresponding to each of PS

k and QS
k for 1 ≤ k ≤ L′.

Therefore, in each of the cases mentioned above, we get an SLP of length at
most ` + 4 ≤ 4(L′ + 1) = 4L that computes PS

k and QS
k for 1 ≤ k ≤ L′ + 1. ut

Note that the SLP described in the above lemma does not compute the
rational function fS but only computes the two polynomials PS and QS . This,
however, is sufficient for our purpose.

2.2 Generic Ring Algorithms

A deterministic generic ring algorithm can be seen as a generalized SLP that
also allows equality queries. More concretely:

Definition 2. An L-step deterministic generic ring algorithm (deterministic
GRA) G is an algorithm that, in the kth step, for 2 ≤ k ≤ L, outputs an
operation of the form (ik, jk, ◦k), where 0 ≤ ik, jk < k are some positive integers
and ◦k ∈ {+,−, ·, /, eq}. It takes as input an “exception” bit b which is 1 if the
operation is not defined, and 0 otherwise. If b is 0 and ◦k is eq, it takes another
input bit (as the result of the equality query).

The interpretation for this definition is that if x is considered a variable, then
G computes a sequence of rational functions f2, . . . , fL, where f0 = 1, f1 = x,
and fk = fik

◦k fjk
if ◦k ∈ {+,−, ·, /} and fk = fk−1 if ◦k is eq for 2 ≤ k ≤ L.

Also, fk = ⊥ if fjk
is not invertible and ◦k is / or one of fik

and fjk
is ⊥.

If G is to be executed on an input a ∈ ZN , this is modeled, as mentioned in
Section 1.2, by G interacting with the black-box B where an operation of the



form (i, j, eq) is an equality query on the ith and jth elements in B. We now
show that if a GRA G is successful in solving a certain computation problem
for B with probability γ, then the sum of the probabilities that there is a non-
trivial non-invertible element computed by G in B (in which case this element
can be used to factorize N) and that there is a GRA (of double the length of G)
that is successful in solving the same computational problem for B̃, where B̃ is
as defined in Section 1.2, is at least γ. Since our aim is to reduce the problem
of factoring N to computing the E-th roots modulo N in the generic model
of Section 1.2, it is therefore sufficient to prove the result in the generic model
replacing B by B̃.

Consider a black box B′ that behaves exactly like B except that it does not
output an exception bit. Any GRA G interacting with B can be converted into
a GRA G′ interacting with B′ as follows, such that B and B′ have identical be-
haviour internally. For each new value computed inside B′, G′ makes an equality
query of the computed value and 0 and stores the result internally. Also, it main-
tains internally a list of indices of state variables which are undefined. Then, G′

can internally simulate the exception bit that G receives from B by setting the
exception bit as 1 if and only if there is a division by 0 in B′ or an operation is
performed on two values, one of which is undefined. Thus G′ performs at most
twice the number of steps as G and gets the same input as G if there is no
division by a non-trivial non-invertible element in B.

By definition of the operations {+,−, ·, /, eq} in B̃, if a GRA performing
a sequence of operations computes a value α in B′ and the same sequence of
operations computes a pair (α1, α2) in B̃, then α = α1

α2
if α is not undefined.

Thus any GRA G that computes a certain value in B (without any division
by a non-trivial non-invertible element of ZN ) can be converted into a GRA G′

that computes a pair of values such that if the first element of this pair is divided
by the second, we get the value computed in B (unless, this value is undefined).
Hence, from now on, we will consider only the black-box B̃ and therefore assume
that the corresponding GRA is never returned 1 as the “exception” bit. As a
result, we can ignore the “exception” bit.

Note that for a given sequence of bits input to it, a deterministic GRA G
behaves like an SLP (that performs a trivial operation of copying the previous
value whenever ◦k is eq). A deterministic GRA can be interpreted as a binary tree
TG with each vertex corresponding to an operation from the set {+,−, ·, /, eq}.
The vertices corresponding to an eq operation have two children and all other
vertices have one child. The edges between a vertex corresponding to an eq
operation and its left and right child are labeled 0 and 1, respectively, while
all the other edges do not have a label. An execution of G corresponds to a
path from the root to a leaf of TG. The choice of the subsequent vertex at each
vertex corresponding to an operation eq is made by choosing the edge that has as
label the bit input to G at the corresponding step. The sequence of operations
corresponding to vertices along each path from the root to a vertex of TG is
an SLP, and so we can associate a pair of polynomials (using the definition of



SLP) with each vertex of TG. The pair of polynomials associated with vertex v
is denoted by (P v, Qv).

Definition 3. A randomized generic ring algorithm G is a GRA where the choice
of the operation at each step is randomized. A randomized GRA can be under-
stood as a random variable whose values are deterministic GRAs.

2.3 Mathematical Preliminaries

In this section we introduce some notations and prove some results about the
mathematical structures used in this paper.

For integers a, b, c, we denote by a ≡c b, that a is congruent to b modulo c.
For any event E, we denote the probability of E by P(E).

For the rest of the paper, we assume that the random variable N takes values
from some setN . Furthermore, (n, e), where n = pq, denotes a value taken by the
pair (N,E). By Zn[x], we denote the ring of polynomials in x with coefficients in
Zn and for h(x) ∈ Zn[x] by Zn[x]/h(x) quotient of the ring Zn[x] by a principal
ideal generated by an irreducible polynomial h(x). For P (x) ∈ Zn[x], we define
the following.

– Let νn(P ) be the fraction of roots of P in Zn, i.e.,

νn(P ) =
|{x ∈ Zn|P (x) ≡n 0}|

n
.

Similarly we define νp(P ) and νq(P ).
– The fraction of elements a in Zn such that P (a) has a non-trivial greatest

common divisor with n is defined as ηn(P ),

ηn(P ) =
|{x ∈ Zn|gcd(P (a), n) /∈ {1, n}}|

n
.

We prove three lemmas that we will need later. The reader may skip to
Section 3 and return to the following lemmas when they are referenced.

Lemma 3. For any P (x) ∈ Zn[x], if νn(P ) ∈ [δ, 1− δ], then ηn(P ) ≥ δ
3
2 .

Proof. We denote νp(P ) and νq(P ) by νp and νq, respectively. By the Chinese
remainder theorem, νn(P ) = νp · νq and ηn(P ) = νp(1− νq) + νq(1− νp). Using
δ ≤ νp · νq ≤ 1− δ, we obtain

ηn(P ) = νp(1− νq) + νq(1− νp) = νp + νq − 2νp · νq

= (
√

νp −
√

νq)2 + 2
√

νp · νq − 2νp · νq

≥ 2
√

νp · νq − 2νp · νq = 2
√

νp · νq(1−
√

νp · νq)

≥ 2
√

δ(1−
√

1− δ)

≥ 2
√

δ(1− (1− δ
2 )) = δ

3
2 .

ut



Lemma 4. Let p be a prime. A random monic polynomial f(x) ∈ Zp[x] of degree
d is irreducible in Zp[x] with probability at least 1

2d and has a root in Zp with
probability at least 1/2.

Proof. From the distribution theorem of monic polynomials (see, e.g., [14]) it
follows that the number of monic irreducible polynomials of degree d over Fp is
at least pd

2d . Therefore f(x) is an irreducible polynomial over Zp with probability
at least 1

2d .
The number of monic polynomials over Zp with at least one root is:

d∑
l=1

(−1)l−1

(
p

l

)
pd−l .

This can be seen by applying the principle of inclusion and exclusion. The terms
in this summation are in decreasing order of their absolute value. So, taking the
first two terms, this sum is greater than

(
p
1

)
pd−1−

(
p
2

)
pd−2 which is greater than

pd

2 . Hence the probability that f(x) has a root in Zp is at least 1/2.5 ut

Lemma 5. For any discrete random variable X that takes values in [0,1] and
for any τ > 0, P(X ≥ τ) ≥ E[X]− τ .

Proof.

E[X] =
∑
x≥τ

x · P(X = x) +
∑
x<τ

x · P(X = x)

≤
∑
x≥τ

P(X = x) +
∑
x<τ

τ · P(X = x)

≤ P(X ≥ τ) + τ ,

which implies the result. ut

3 The Main Theorem

3.1 Statement of the Theorem

As mentioned earlier, in this paper we restrict our attention to the case where the
adversary is only allowed to use a GRA to solve the RSA problem. We refer to
the RSA assumption in this case as the generic RSA assumption for the random
variables (N,E) that was introduced in Section 1.1.

We state the main result of the paper.

5 Note that, by a careful analysis, it is possible to prove a better lower bound on the
probability that f(x) has a root in Zp but a lower bound of 1/2 is sufficient for our
purpose.



Theorem 1. For any pair (N,E), the factoring assumption holds for N implies
that the generic RSA assumption holds for (N,E).

Remark: In the proof of this theorem, we give an algorithm that, for every
n ∈ N for which there is a GRA that computes the eth root of a uniformly
random element chosen from Zn, factors n with overwhelming probability. The
factoring assumption and the generic RSA assumption are, however, stated for
the random variable N and not for a fixed n, as the factoring problem would
otherwise not be defined reasonably, and also the terms polynomial-time and
non-negligible would not make sense for a fixed n. Hence, our proof actually
proves a stronger statement than Theorem 1.

3.2 Proof of the Theorem

3.2.1 Overview of the Proof

In Section 3.2.2, we show that an SLP that computes eth roots can be used to
factor n. Then, in Section 3.2.3, we show that from a deterministic GRA that
computes eth roots we can either obtain an SLP that computes eth roots or
a factor of n. In Section 3.2.4, we generalize the results of Section 3.2.3 from
deterministic GRAs to randomized GRAs. In Section 3.2.5, we combine the
results of Section 3.2.2 and 3.2.4 to show that a randomized GRA that computes
eth roots can be used to give an algorithm for factoring n.

3.2.2 The Proof for Straight-Line Programs

In this section we give an algorithm that, with non-negligible probability, factors
n given access to an SLP that, with non-negligible probability, computes the eth

root of an element chosen uniformly at random from Zn.
For polynomials b(x), c(x) ∈ Zn[x], let gcdp(b(x), c(x)) and gcdq(b(x), c(x))

be the greatest common divisor of the polynomials modulo p and q, respectively.
The following proposition is easy to see.

Proposition 1. Let b(x), c(x) ∈ Zn[x]. Then:

– If Euclid’s algorithm, when run on b(x) and c(x), fails6, some step of the
algorithm yields a non-trivial non-invertible element of Zn. We denote this
element as H(b(x), c(x)).

– If deg(gcdp(b(x), c(x))) 6= deg(gcdq(b(x), c(x))), then Euclid’s algorithm, when
run on b(x) and c(x), fails.

Lemma 6. For all ε > 0, µ > 0, and L ∈ N, there exists an algorithm of time
complexity O(L3+log3(e)) that, for every SLP S such that νn((PS)e−x(QS)e) ≥
µ and QS(x) is not the zero polynomial, returns a factor of n with probability

µ
8(L+log(e)) .

6 Euclid’s Algorithm could fail since Zn[x] is not a Euclidean domain.



Proof. Let f(x) = PS(x)e−x ·QS(x)e. Then νn(f) ≥ µ. By Lemma 1, deg(f) ≤
2Le + 1. By Lemma 2, there is a 4L-step SLP that uses only the operations
{+,−, ·} and generates the polynomials PS(x) and QS(x). Given PS(x) and
QS(x), PS(x)e and QS(x)e can be computed in 2dlog(e)e steps each. Therefore
there is an SLP S1 with at most 4L+4dlog(e)e+2 steps that computes fS1(x) =
f(x). For the factoring algorithm, we use this SLP. Let d = L + dlog(e)e. The
factoring algorithm proceeds as follows:

Algorithm 1: Factoring Algorithm
Input: n, SLP S1

Output: A factor of n
Choose a monic polynomial h(x) uniformly at random from all monic1

polynomials of degree d in Zn[x];
Compute h′(x), the derivative of h(x) in Zn[x];2

Choose a random element r(x) ∈ Zn[x]/h(x);3

Compute z(x) = f(r(x)) in Zn[x]/h(x) using SLP S1;4

Run Euclid’s algorithm in Zn[x] on h(x) and z(x). If this fails return5

gcd(n, H(h(x), z(x)));
Run Euclid’s algorithm in Zn[x] on h(x) and h′(x). If this fails return6

gcd(n, H(h(x), h′(x)));

By Proposition 1, if Euclid’s algorithm fails in step 5 or step 6, then we get
a factor of n.

Now we compute the success probability of the algorithm. By Lemma 4, the
probability that h(x) is irreducible modulo q and has a root modulo p is at least
1
2d ·

1
2 = 1

4d . We assume that this is the case for the rest of the proof.
Let this root of h(x) modulo p be s. Therefore (x − s) | h(x) in Zp[x]. We

analyze two cases.

– CASE 1: (x− s)2 | h(x) in Zp[x].
This implies (x − s) | gcdp(h(x), h′(x)). However, since h(x) is irreducible
in Zq[x], gcdq(h(x), h′(x)) has degree 0. Therefore gcdp(h(x), h′(x)) and
gcdq(h(x), h′(x)) have different degree, which implies, by Proposition 1, that
Euclid’s algorithm on h(x) and h′(x) fails and hence step 6 yields a factor
of n.

– CASE 2: (x− s)2 - h(x) in Zp[x].
Let h(x) = h1(x) · (x− s) in Zp[x]. Then:

Zn[x]/h(x) ∼= Zp[x]/h(x)×Zq[x]/h(x) ∼= Zp[x]/(x−s)×Zp[x]/h1(x)×Fqd ,

because Zq[x]/h(x) ∼= Fqd (the finite field containing qd elements) as h(x) is
irreducible in Zq[x] by our assumption.
Under this isomorphism, let r(x) maps to the triple

(r(s) mod p, u(x), rq(x)) ,



and z(x) to the triple

(z(s) mod p, v(x), zq(x)) ,

where rq(x) and zq(x) are the reductions of r(x) and z(x) modulo q. Since
r(x) is uniformly random in Zn[x]/h(x), r(s) is uniformly random in Zp[x]/(x−
s) ∼= Zp. This implies

P
(
z(s) ≡p 0

)
= P

(
f(r(s)) ≡p 0

)
≥ P

(
f(r(s)) ≡n 0

)
≥ µ .

Therefore, with probability at least µ, (x − s) divides z(x) in Zp[x], which
implies P((x− s) | gcdp(z(x), h(x))) ≥ µ. Since r(x) is uniformly random in
Zn[x]/h(x), rq(x) is uniformly random in Zq[x]/h(x) ∼= Fqd . A polynomial
over a finite field can have at most as many roots as the degree of the
polynomial. Therefore, for random x,

P
(
zq(x) = 0

)
= P

(
f(rq(x)) = 0

)
≤ deg(f)

qd
≤ 2Le + 1

qd
≤ 1

2
,

using the fact that d = L+ dlog(e)e and deg(f) ≤ 2Le+1. Hence, P(zq(x) 6=
0) ≥ 1

2 . The condition zq(x) 6= 0 implies that gcdq(z(x), h(x)) has degree 0
because h(x) is irreducible modulo q.

Therefore the probability that Euclid’s algorithm run on h(x) and z(x) fails
is at least 1

4d · µ ·
1
2 = µ

8d .
Now we compute the time complexity of one run of the loop. Generating

random h(x) and r(x) and computing the derivative requires O(d) operations in
Zn. Each operation in Zn[x]/h(x) can be implemented by at most d2 operations
in Zn. The function f is computed in Zn using an at most (4L + 4dlog(e)e+ 2)-
step SLP S1. Therefore, f(r(x)) = z(x) can be computed in time O(d2 ·L + d2 ·
log(e)) = O(d3). Euclid’s algorithm on z(x) and h(x) and on h(x) and h′(x) can
be performed by O(d2) operations. Thus, the running time of the algorithm is
O(d3). ut

3.2.3 From Deterministic GRAs to SLPs

In this section we give an algorithm that, given access to a deterministic GRA
that computes eth roots in Zn, outputs either a factor of n or an SLP that
computes eth roots in Zn.

Definition 4. For a deterministic GRA G, let λn(G) denote the probability that
G, when run on an input a chosen uniformly at random from Zn, is successful
in computing the eth root of a.

Lemma 7. For all ε > 0 and L ∈ N, there exists an algorithm (Algorithm 2) of
time complexity O((L

ε )5/2 that, given access to an L-step deterministic GRA G,
with probability 1− ε, either outputs a factor of n or an L-step SLP S such that
νn((PS)e − x(QS)e) ≥ λn(G)− ε

2 .



Proof. Consider the tree TG(see Section 2.2). With each vertex v of TG, we
can associate an SLP, and hence a sequence (P v

1 , Qv
1), . . . , (P

v
k , Qv

k) given by the
sequence of operations along the path from the root of TG to that vertex.

Let δ = ε
2L . We classify the vertices corresponding to equality queries in

TG into two kinds of vertices-extreme and non-extreme vertices. For a vertex v
corresponding to an equality query (ik, jk, eq), if

νn(P v
ik
·Qv

jk
− P v

jk
·Qv

ik
) ∈ [δ, 1− δ] ,

then we call v a non-extreme vertex and otherwise we call v an extreme vertex.
Let TG

ex be the tree obtained from TG by truncating the sub-tree rooted at v
for all non-extreme vertices v. Therefore all non-extreme vertices present in TG

ex

are at the leaves. Also, we can assume, without loss of generality, that the last
step of G is not an equality query since that would be of no use. Hence there
cannot be an extreme vertex at a leaf vertex of TG

ex.
Let v?(TG

ex) be the unique leaf vertex of TG
ex reached by starting from the root

and inputting, for all extreme vertices v, the bit 1 to G if νn(P v
ik
·Qv

jk
−P v

jk
·Qv

ik
) ∈

[0, δ) and the bit 0 if νn(P v
ik
·Qv

jk
− P v

jk
·Qv

ik
) ∈ (1 − δ, 1]. Note that v?(TG

ex) is
either a non-extreme vertex or corresponds to a computation operation. We call
the path in TG

ex from the root to the vertex v?(TG
ex) the dominating path because

this is the path that is most likely to be taken if G is run on a random input
from Zn as we make the most likely choice at each equality test (assuming δ to
be small).

Let M = d L3/2

(ε/2)5/2 e. Consider algorithm 2, as given on the next page.

The intuition is that when executing the GRA for a random element a,
either all the equality test one encounters are irrelevant in the sense that the
probability that the outcome depends on a is very small, and hence the execution
corresponds to an SLP, or the relevant equality test encountered during the
execution can be used to factor.

At each equality query, it tries to find a factor of n using the two pairs of
polynomials that are compared. If it fails, it outputs the SLP S as the sequence
of computation operations along one of the paths from the root to a leaf of TG.
This path corresponds to a unique path in TG

ex. This path is chosen by generating,
for each equality query, a uniformly random element in Zn and then testing the
equality of the two polynomials on this element, and choosing the subsequent
vertex based on the result of this equality test. Algorithm 2 is successful with
high probability (as shown below) if this path is the dominating path, i.e., if it
reaches the vertex v?(TG

ex).
Line 7 of the algorithm is a trivial operation and could be avoided but is there

so that we do not have to manipulate the indices of the straight line program
output by the algorithm.

The SLP S output by Algorithm 2 corresponds to one of the paths from the
root to a leaf of TG which defines a unique path from the root to a leaf of TG

ex.



Let the leaf vertex of TG
ex in which this path terminates be vS . Note that vS

might not be a leaf vertex of TG.

Algorithm 2:
Input: GRA G, n
Output: A factor of n or an SLP S
Initialize S to be the empty sequence;1

for k ← 2 to L do2

Get the operation {ik, jk, ◦k} from G;3

if ◦k ∈ {+,−, ·, /} then4

Append {ik, jk, ◦k} to S;5

else /* Here, ◦k is eq */6

Append {k − 1, 0, ·} to S;7

for i← 1 to M do8

Generate a random element x ∈R Zn;9

Compute g = gcd
(
PS

ik
(x) ·QS

jk
(x)− PS

jk
(x) ·QS

ik
(x), n

)
;10

if g /∈ {1, n} then return g;11

end12

Generate a random element x′ ∈R Zn;13

if PS
ik

(x′) ·QS
jk

(x′)− PS
jk

(x′) ·QS
ik

(x′) = 0 then return the bit 0 to14

G else return the bit 1 to G;
end15

end16

Return S;17

If Algorithm 2 outputs S, then let (PS , QS) denote the pair of polynomials
corresponding to S.

Let E be the event that vS = v?(TG
ex), i.e., that the dominating path is found

by Algorithm 2. The event E does not occur if there exists an extreme vertex
v in the path from the root of TG

ex to vS corresponding to (ik, jk, eq) such that
Algorithm 2 inputs 0 to G and νn(P v

ik
·Qv

jk
− P v

jk
·Qv

ik
) ∈ [0, δ) or Algorithm 2

inputs 1 to G and νn(P v
ik
·Qv

jk
−P v

jk
·Qv

ik
) ∈ (1− δ, 1]. Note that this can happen

with probability at most δ at each extreme vertex v and there can be at most L
such extreme vertices in the path from the root of TG

ex to vS . Therefore,

P(E) = 1− P(E) ≥ 1− δ · L = 1− ε
2 .

Now we compute the success probability of the algorithm. There are two pos-
sible cases depending on whether v?(TG

ex) is a non-extreme vertex or corresponds
to a computation operation.

– CASE 1: v?(TG
ex) is a non-extreme vertex.

In this case we show that the factoring algorithm is successful with proba-
bility at least 1− ε.
Let F be the event that Algorithm 2 returns a factor of n. We compute P(F|E).
If E holds, then vS is a non-extreme vertex. Therefore, by Lemma 3, a factor



of n is returned in one test in Step 11 at the equality query corresponding
to vS with probability at least δ3/2. The total number of times step 11 is
repeated for this equality query is M . Therefore7,

P(F|E) ≥ 1− (1− δ3/2)M ≥ 1− exp(−(δ3/2)M) = 1− exp(− 2
ε ) ≥ 1− ε

2 .

This implies
P(F) ≥ P(F|E) · P(E) ≥ (1− ε

2 )2 ≥ 1− ε .

– CASE 2: v?(TG
ex) corresponds to a computation operation.

In this case, we show that if the factoring algorithm is not successful, then,
with probability 1− ε

2 , we have νn((PS)e − x(QS)e) ≥ λn(G)− ε
2 .

The fraction of inputs a ∈ Zn such that when G is run on a, the correspond-
ing path taken on TG

ex does not terminate in v?(TG
ex) is at most δ · L = ε

2
(because the number of extreme vertices in any path from root to a leaf is
at most L). This implies,

Pa∈RZn

(
P v?(T G

ex)(a)e − a ·Qv?(T G
ex)(a)e ≡n 0

)
≥ λn(G)− ε

2 .

Therefore, if E occurs, then

νn((PS)e − x(QS)e) = Pa∈RZn

(
P v?(T G

ex)(a)e − a ·Qv?(T G
ex)(a)e ≡n 0

)
≥ λn(G)− ε

2 .

Hence,

P
(
νn((PS)e − x(QS)e) ≥ λn(G)− ε

2

)
≥ P(E) ≥ 1− ε

2 .

Now, we compute the time complexity of Algorithm 2. The loop in steps 8-12
of the algorithm and steps 5,13 and 14, which are the steps in which computa-
tion is being performed, are each executed at most L times. Therefore the time
complexity of the algorithm is O(L ·M) = O((L

ε )5/2). ut

3.2.4 Handling Randomized GRAs

Here we state a lemma that shows that a result similar to Lemma 7 also
holds for randomized GRAs. Recall that a randomized GRA G is understood
as a random variable whose values are deterministic GRAs. Let PG denote the
probability distribution of G. λn(G) is a random variable. Hence, E[λn(G)] is
the probability of success of G in computing the eth root of an element chosen
uniformly from Zn. The proof of Lemma 8 is omitted due to space constraints and
can be found in the full version of the paper in the Cryptology ePrint Archive.

Lemma 8. For all ε′ > 0, µ > 0, and for every L-step randomized GRA G such
that E[λn(G)] ≥ µ, with probability µ

2 − ε′, Algorithm 2 from Lemma 7 either
outputs a factor of n or an L-step SLP S such that νn((PS)e − x(QS)e) ≥ µ

2 .
7 We use the notation exp(·) to denote exponentiation to the natural base in order to

avoid confusion with the public exponent e.



3.2.5 Putting Things Together

In this section, we complete the proof of Theorem 1.

Proof. Suppose there exists a randomized GRA G that succeeds in breaking RSA
with probability µn on Zn for some e > 1. Then, by Lemma 8, with probability
µn − ε′, Algorithm 2 either returns a factor of n or an SLP S that succeeds
in breaking RSA with probability at least µn

2 , which can be converted into an
algorithm that factors n (Algorithm 1) with probability µn

16(L+log(e)) .
Since the result is true for all ε′ > 0, let ε′ = µn

2 . Thus, one execution of
Algorithm 2 followed by Algorithm 1 (if needed, i.e., if Algorithm 2 does not
return a factor of n) runs in time O(L3 + log3(e)+ ( L

µn
)5/2) and returns a factor

of n with probability at least µ2
n

32(L+log(e)) . Therefore, the expected number of
times the two algorithms need to be repeated in order to get a factor of n is
32(L+log(e))

µ2
n

. Hence the expected time complexity of the factoring algorithm is

O((L3 + log3(e)+ ( L
µn

)5/2) · (L+log(e)
µ2

n
)) which is polynomial in L, log(e) and 1

µn
.

If, for a random N , G succeeds in breaking RSA with probability µ on ZN

(i.e., if E[µN ] = µ), then by Lemma 5, P(µn ≥ µ
2 ) ≥ µ− µ

2 = µ
2 . For all n such

that µn ≥ µ
2 , our factoring algorithm runs in time polynomial in L, log(e) and

1
µ , which is polynomial if µ is non-negligible. Therefore the factoring algorithm
is a probabilistic polynomial time algorithm that succeeds in factoring N with
non-negligible probability. ut

4 Conclusions and Open Problems

In this paper we showed that if factoring is hard, then no generic ring algorithm
can solve the RSA problem efficiently. Also, if there exists an efficient algorithm
that can factor N , then we can compute d such that e·d ≡φ(N) 1, and then the eth

root can be computed by computing the dth power, i.e., generically in O(log(d))
steps. Thus, this proves, in the generic model, the equivalence of factoring and
breaking RSA.

It is interesting to note that all arguments in the paper work not just for
the RSA equation xe = a but for any non-trivial polynomial equation in x and
a. More concretely, this means the following. We say that a polynomial M(x, a)
is trivial if there exists a rational function g such that M(g(a), a) ≡ 0 in Z[a].
Then, if there exists a GRA that, given any non-trivial polynomial M(x, a),
computes, with non-negligible probability, an x such that M(x, a) ≡N 0 for a
chosen uniformly at random from ZN , then there exists an algorithm for factoring
N .

There are other problems that can be looked at in this model. For instance,
the Cramer-Shoup cryptosystem and signature scheme relies on the “Strong RSA
Assumption” [10, 1], which allows the adversary to himself choose an exponent
e > 1. A natural question would be whether factoring is equivalent to solving
strong RSA using a GRA. It is not clear whether this statement is true. The proof



of Lemma 6, however, does not work for this case because here e will depend on
the input a. As a result, in the proof of Lemma 6, f(a) is not a polynomial in a
(because the exponent is not independent of a).
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12. A. Joux, D. Naccache and E. Thomé. When e-th roots become easier than factoring.
In ASIACRYPT 2007, volume 4833 of Lecture Notes in Computer Science, pages
13-28.

13. G. Leander and A. Rupp. On the equivalence of RSA and factoring regarding
generic ring algorithms. In ASIACRYPT 2006, volume 4284 of Lecture Notes in
Computer Science, pages 241-251.

14. R. Lidl and H. Niederreiter. In Introduction to finite fields and their applications.
Cambridge University Press, 1994.

15. U. Maurer. Towards proving the equivalence of breaking the Diffie-Hellman proto-
col and computing discrete logarithms. In CRYPTO 1994, volume 839 of Lecture
Notes in Computer Science, pages 271-281.

16. U. Maurer. Fast generation of prime numbers and secure public-key cryptographic
parameters. In Journal of Cryptology, volume 8, no. 3, pages 123-155, 1995.

17. U. Maurer. Abstract models of computation in cryptography. In Cryptography and
Coding 2005, volume 3796 of Lecture Notes in Computer Science, pages 1-12.



18. U. Maurer and S. Wolf. The relationship between breaking the Diffie-Hellman pro-
tocol and computing discrete logarithms. In SIAM Journal of Computing, volume
28, no. 5, pages 1689-1721, 1999.

19. D. Micciancio. The RSA group is pseudo-free. In EUROCRYPT 2005, volume 3494
of Lecture Notes in Computer Science, pages 387-403.

20. V. I. Nechaev. Complexity of a deterministic algorithm for the discrete logarithm.
In Mathematical Notes, volume 55, no. 2, pages 91-101, 1994.

21. R.L. Rivest. On the notion of pseudo-free groups. In TCC 2004, volume 2951 of
Lecture Notes in Computer Science, pages 505-521.

22. R. Rivest, A. Shamir, and L. Adleman. A method for obtaining digital signatures
and public key cryptosystems. In Communications of the ACM, volume 21, pages
120-126, 1978.

23. V. Shoup. Lower bounds for discrete logarithms and related problems. In EURO-
CRYPT 1997 volume 1233 of Lecture Notes in Computer Science, pages 256-266.


