
Efficient Two Party and Multi Party
Computation against Covert Adversaries

Vipul Goyal1, Payman Mohassel2, and Adam Smith3

1 Department of Computer Science, UCLA
vipul@cs.ucla.edu

2 Department of Computer Science, UC Davis
pmohassel@ucdavis.edu

3 Department of Computer Science, PSU
asmith@cse.psu.edu

Abstract. Recently, Aumann and Lindell introduced a new realistic se-
curity model for secure computation, namely, security against covert ad-
versaries. The main motivation was to obtain secure computation proto-
cols which are efficient enough to be usable in practice. Aumann and Lin-
dell presented an efficient two party computation protocol secure against
covert adversaries. They were able to utilize cut and choose techniques
rather than relying on expensive zero knowledge proofs.
In this paper, we design an efficient multi-party computation protocol in
the covert adversary model which remains secure even if a majority of the
parties are dishonest. We also substantially improve the two-party pro-
tocol of Aumann and Lindell. Our protocols avoid general NP-reductions
and only make a black box use of efficiently implementable cryptographic
primitives. Our two-party protocol is constant-round while the multi-
party one requires a logarithmic (in number of parties) number of rounds
of interaction between the parties. Our protocols are secure as per the
standard simulation-based definitions of security.
Although our main focus is on designing efficient protocols in the covert
adversary model, the techniques used in our two party case directly gen-
eralize to improve the efficiency of two party computation protocols se-
cure against standard malicious adversaries.

1 Introduction

Secure multi-party computation (MPC) allows a set of n parties to compute a
joint function of their inputs while keeping their inputs private. General secure
MPC has been an early success of modern cryptography through works such as
[Yao86,GMW87,BOGW88,CCD88]. The early MPC protocols used very generic
techniques and were inefficient. Hence, now that most of the questions regarding
the feasibility of secure computation have been addressed (at least in the stand
alone setting), many of the recent works have focused on improving the efficiency
of these protocols.

The most hostile situation where one could hope to do secure computation
is when we have a dishonest majority. That is, where up to (n− 1) parties could

be corrupted and could deviate arbitrarily from the protocol. The feasibility of
secure computation in this setting was shown by [GMW87]. Several later results
focused on improving its efficiency (often quantified as round complexity).

Most of these constructions use general zero-knowledge proofs to compile
honest-but-curious MPC protocols into fully malicious MPC protocols. These
zero-knowledge compilers are of great theoretical importance but lead to rather
inefficient constructions. These compilers make a non-black-box use of the un-
derlying cryptographic primitives. To illustrate this inefficiency, consider the
following example taken from [IKLP06]. Suppose that due to major advances in
cryptanalytic techniques, all basic cryptographic primitives require a full second
of computation on a fast CPU. Non-black-box constructions require parties to
prove in zero-knowledge, statements that involve the computation of the under-
lying primitives, say a trapdoor permutation. These zero-knowledge protocols,
in turn, invoke cryptographic primitives for every gate of a circuit computing a
trapdoor permutation. Since (by our assumption) a trapdoor permutation takes
one second to compute, its circuit implementation contains trillions of gates,
thereby requiring the protocol trillions of second to run. A black box construc-
tion, on the other hand, would make the number of invocations of the primitive
independent of the complexity of implementing the primitive.

Due to lack of efficient and practical constructions for the case of dishonest
majority, a natural question that arises is “Can we relax the model (while still
keeping it meaningful) in a way which allows us to obtain efficient protocols likely
to be useful in practice?”.

One such model is the well known honest majority model. The model addi-
tionally allows for the construction of protocols with guaranteed output delivery.
Positive steps to achieve efficient protocols in this model were taken by Damgard
and Ishai [DI05]. They presented an efficient protocol which makes a black box
use of only a pseudorandom generator.

Another such model is the model of covert adversaries (incomparable to the
model of honest majority) recently introduced by Aumann and Lindell[AL07]
(see also [CO99]). A covert adversary may deviate from steps of the protocol in
an attempt to cheat, but such deviations are detected by honest parties with good
probability (although not with negligibly close to 1). As Aumann and Lindell
argue, covert adversaries model many real-world settings where adversaries are
willing to actively cheat (and therefore are not semi-honest) but only if they
are not caught doing so. This is the case for many business, financial, political
and diplomatic settings where honest behavior cannot be assumed but where
companies, institutions, or individuals cannot afford the embarrassment, loss
of reputation and negative press associated with being caught cheating. They
further proceed to design an efficient two-party computation protocol secure
against covert adversaries with only blackbox access to the underlying primitives.
Their construction applies cut-and-choose techniques to Yao’s garbled circuit,
and takes advantage of an efficient oblivious transfer protocol secure against
covert adversaries. Currently, there is no such counterpart for the case of ≥ 3
parties with dishonest majority.

Our Results:

Multi-party Computation against Covert Adversaries. We construct a protocol
for multi-party computation in the covert adversary model. Our protocol pro-
vides standard simulation based security guarantee if any number of the parties
collude maliciously. Our techniques rely on efficient cut and choose techniques
and avoid expensive zero-knowledge proofs to move from honest-but-curious to
malicious security. We only make a black-box use of efficiently implementable
cryptographic primitives.

The protocol requires O(n3ts|C|) bits of communication (and similar com-
putation time) to securely evaluate a circuit C with deterrence 1− 1

t . Here 1
t is

the noticeable, but small probability with which the cheating parties may escape
detection, and s is a cryptographic security parameter. In contrast, the most ef-
ficient previously known protocols, due to Katz, Ostrovsky and Smith [KOS03]
and Pass [Pas04], require zero-knowledge proofs about circuits of size O(n3s|C|).

The protocol in this paper requires O(log n) rounds of interaction, due to
an initial coin-flipping phase that follows the Chor-Rabin scheduling paradigm
[CR87]. The round complexity can be reduced to a constant using non-black-box
simulation techniques [Bar02,KOS03,Pas04], but the corresponding increase in
computational complexity makes it unlikely that the resulting protocol would
be practical.

We remark that there have been a number of two-parties protocols designed
using cut and choose techniques [MNPS04,MF06,Woo07,LP07], where one party
prepares several garbled circuits while the other party randomly checks a subset
of them. However, this paper is the first work to employ such techniques for the
design of efficient protocols in the multi-party setting.

Two-party Computation against Covert Adversaries. In a protocol secure against
covert adversaries, any attempts to cheat by an adversary is detected by hon-
est parties with probability at least ε, where ε is the deterrence probability.
Therefore, a high deterrence probability is crucial in making the model of covert
adversaries a practical/realistic model for real-world applications. In this paper
we design a two-party protocol secure against covert adversaries in which the
deterrence probability ε = 1− 1/t, for any value of t polynomial in the security
parameter, comes almost for free in terms of the communication complexity of
the protocol. The following table compares our result against that of previous
work, where |C| is the circuit size, m is the input size, and s is the statistical
security parameter.

Protocol Communication Complexity
[AL07] O(t|C|+ tsm)

This paper (section 3.1) O(|C|+ sm + t)

Two-party Computation against Fully Malicious Adversaries. Although we mainly
focus on covert adversaries, we also show how our techniques lead to secure
two-party computation schemes against fully malicious adversaries. Particu-
larly, by applying our techniques to the existing cut-and-choose protocols, i.e.

[LP07,Woo07,MF06], we improve the communication cost of these protocols
without affecting their security guarantees. In this case, our improvement in the
communication cost of these protocols is not asymptotic but rather in concrete
terms.

Related Work. Katz et al. [KOS03] and Pass [Pas04] give the most round-efficient
secure MPC protocols with dishonest majority. Ishai et al. [IKLP06], give the
first construction for dishonest majority with only black-box access to a trapdoor
permutation. Although theoretically very interesting, these approaches are not
attractive in terms of efficiency due to the usage of very generic complexity
theoretic techniques.

The compiler of Lindell [Lin01] may be applied to achieve constant-round
protocols for secure two-party computation. More recent works on secure two-
party computation avoid the zero-knowledge machinery (using cut-and-choose
techniques), and design efficient protocols with only black-box access to the un-
derlying primitives. Application of cut-and-choose techniques to Yao’s garbled
circuit was first suggested by Pinkas [Pin03], and further refined and extended
in [MNPS04,MF06,Woo07,LP07]. The protocols of [MF06] and [LP07] lead to
O(s|C|+s2m) communication between the parties, while the protocol of [Woo07]
only requires O(s|C|) communication where s is the security parameter. Our im-
provement in the communication cost of these protocols is not asymptotic but
rather in concrete terms. Lindell and Pinkas [LP07] also showed how the cut-
and-choose techniques could be modified to also yield simulation-based proofs
of security. Their ideas can also be applied to [MF06,Woo07]. A different ap-
proach for defending against malicious adversaries in two party computation
is taken by Jarecki and Shmatikov [JS07]. The basic idea in their work is to
have the first party generate a garbled circuit and prove its correctness by giv-
ing an efficient number-theoretic zero-knowledge proof of correctness for every
gate in the circuit. This protocol is more communication efficient than the cut-
and-choose schemes, but increases the computational burden of the parties. In
particular, the protocol of [JS07] requires O(|C|) public-key operations while
the cut-and-choose schemes only require O(m) public-key operations. As shown
in experiments (e.g. see [MNPS04]) the public-key operations tend to be the
computational bottle-neck in practice.

The idea of allowing the adversary to cheat as long as it will be detected
with a reasonable probability was first considered in [FY92] under the term t-
detectability. Work of [FY92] only considers honest majority and the definition
is not simulation based. Canetti and Ostrovsky [CO99] consider honest-looking
adversaries who may deviate arbitrarily form the protocol specification as long
as the deviation cannot be detected. [AL07] introduce the notion of covert adver-
saries which is similar in nature to the previous works but strengthens them in
several ways. The most notable are that it quantifies over all possible adversaries
(as opposed to adversaries that behave in a certain way), and puts the burden
of detection of cheating on the protocol, and not on the honest parties analyzing
the transcript distribution later on.

2 Preliminaries

2.1 Definition of Security Against Covert Adversaries

Aumann and Lindell, [AL07], give a formal definition of security against covert
adversaries in the ideal/real simulation paradigm. This notion of adversary lies
somewhere between those of semi-honest and malicious adversaries. Loosely
speaking, the definition provides the following guarantee: Let 0 ≤ ε ≤ 1 be
a value (called the deterrence factor). Then any attempts to cheat by an adver-
sary is detected by the honest parties with probability at least ε. Thus provided
that ε is sufficiently large, an adversary that wishes not to get caught cheating
will refrain from attempting to cheat, lest it be caught doing so. Furthermore, in
the strongest version of security against covert adversaries introduced in [AL07],
the adversary will not learn any information about the honest parties’ inputs
if he gets caught. What follows next is the strongest version of their definition
(which is what we use as the security definition for all of our protocols) and is
directly taken from [AL07]. The executions in the real and ideal model are as
follows:

Execution in the real model. Let the set of parties be P1, . . . , Pn and let
I ⊂ [n] denote the indices of corrupted parties, controlled by an adversary A. We
consider the real model in which a real n-party protocol π is executed (and there
exist no trusted third party). In this case, the adversary A sends all messages in
place of corrupted parties, and may follow an arbitrary polynomial-time strategy.
In contrast, the honest parties follow the instructions of π.

Let f : ({0, 1}∗)n → ({0, 1}∗)n be an n-party functionality where f =
(f1, . . . , fn), and let π be an n-party protocol for computing f . Furthermore,
let A be a non-uniform probabilist polynomial-time machine and let I be the
set of corrupted parties. Then the real execution of π on inputs x̄, auxiliary input
z to A and security parameter s, denoted REALπ,A(z),I(x̄, s), is defined as the
output vector of the honest parties and the adversary A from the real execution
of π.

Execution in the Ideal Model. Let ε : N → [0, 1] be a function. Then the
ideal execution with ε proceeds as follows.
Inputs: Each party obtains an input; the ith party’s input is denoted by xi;
we assume that all inputs are of the same length m. The adversary receives an
auxiliary-input z.
Send inputs to trusted party: Any honest party Pj sends its received input
xj to the trusted party. The corrupted parties, controlled by A, may either send
their received input or send some other input of the same length to the trusted
party. This decision is made by A and may depend on xi for i ∈ I and the
auxiliary input z. Denote the vector of inputs sent to the trusted party by w̄.
Abort Options: If a corrupted party sends wi = aborti to the trusted party
as its input, then the trusted party sends aborti to all of the honest parties and

halts. If a corrupted party sends wi = corruptedi as its input to the trusted party,
then the trusted party sends corruptedi to all of the honest parties and halts.
Attempted cheat option: If a corrupted party sends wi = cheati to the trusted
party as its input, then:

1. With probability 1− ε, the trusted party sends corruptedi to the adversary
and all of the honest parties.

2. With probability ε, the trusted party sends undetected and all of the honest
parties inputs {xj}j /∈I to the adversary. The trusted party asks the adversary
for outputs {yj}j /∈I , and sends them to the honest parties.

The ideal execution then ends at this point. If no wi equals aborti, corruptedi

or cheati the ideal execution continues below.
Trusted party answers adversary: The trusted party computes (f1(w̄), . . . , fm(w̄))
and sends fi(w̄) to A, for all i ∈ I.
Trusted party answers honest parties: After receiving its outputs, the ad-
versary sends either aborti for some i ∈ I or continue to the trusted party. If
the trusted party receives the continue then it sends fi(w̄) to all honest parties
Pj(j /∈ I). Otherwise, if it receives aborti for some i ∈ I, it sends aborti to all
honest parties.
Outputs: An honest party always outputs the messages it obtained from the
trusted party. The corrupted parties output nothing. The adversary A outputs
any arbitrary (probabilistic polynomial-time computable) function of the initial
inputs {xi}i∈I and messages obtained from the trusted party.

The output of honest parties and the adversary in an execution of the above
model is denoted by IDEALε

f,S(z),I(x̄, s) where s is the statistical security pa-
rameter.

Definition 1 Let f, π, ε be as described above. Protocol π is said to securely
compute f in the presence of covert adversaries with ε−deterrence if for every non-
uniform probabilistic polynomial-time adversary A for the real model, there exist
a non-uniform probabilistic polynomial-time adversary S for the ideal model such
that for every I ⊆ [n], every balanced vector x̄ ∈ ({0, 1}∗)n, and every auxiliary
input z ∈ {0, 1}∗:

IDEALε
f,S(z),I(x̄, s)

c≡ REALπ,A(z),I(x̄, s)

3 The Two Party Case

3.1 Efficient Two Party Computation for Covert Adversaries

Aumann and Lindell [AL07] design an efficient two-party computation protocol
secure against covert adversaries. In their protocol, two parties P1 and P2 wish
to securely compute a circuit C that computes a function f on parties private
inputs. The high level idea of their protocol is that party P1 computes t garbled

circuits4, and sends them to party P2. P2 then randomly chooses one circuit to
compute and asks P1 to reveal the secrets of the remaining (t− 1) circuits. This
ensures that a cheating P1 gets caught with probability at least equal to 1−1/t.
There are other subtleties in order to deal with parties’ inputs and to achieve
simulation-based security. We will go into more detail regarding these subtleties
later in this section. Aumann and Lindell also design a special and highly efficient
oblivious transfer protocol secure against covert adversaries which makes their
solution even more practical. The efficiency of their protocol can be summarized
in the following statement (|C| is the circuit size, m is the input size and s is
the security parameter):

Theorem 1 ([AL07]) There exist a two-party computation protocol secure against
covert adversaries with deterrence value 1− 1/t such that the protocol runs in a
constant number of rounds, and requires O(t|C|+ tsm) communication between
the two players.

Our Protocol We now design a secure two-party computation protocol in
presence of covert adversaries for which the deterrence probability 1 − 1/t, for
any value of t polynomial in the security parameter, comes almost for free in
terms of the communication complexity of the protocol (assuming the circuit
being evaluated is large enough). In the remiander of the paper, we assume
familiarity with the Yao’s garbled circuit protocol.

We first observe that for the simulation-based proof of the protocol to go
through and for the simulator to be able to extract corrupted P2’s inputs, it is
not necessary to run the complete oblivious transfers early in the protocol for all
the garbled circuits. Instead, it is enough to go as far in the steps of the OTs as
is necessary for party P2 to be committed to his input bits while party P1 is still
free to choose his inputs to the OT. Parties then postpone the remaining steps of
the OTs until later in the protocol when one circuit among the t garbled circuits
is chosen to be evaluated. With some care, this leads to asymptotic improvement
in communication complexity of our protocol.

To achieve further improvement in communication complexity, we take a
different approach to constructing the garbled circuit. In order to compute a
garbled circuit (and the commitments for input keys), party P1 generates a short
random seed and feeds it to a pseudorandom generator in order to generate the
necessary randomness. He then uses the randomness to construct the garbled
circuit and the necessary commitments. When the protocol starts, party P1

sends to P2 only a hash of each garbled circuit using a collision-resistant hash
function. Later in the protocol, in order to expose the secrets of each circuit,
party P1 can simply send the seeds corresponding to that circuit to P2, and not
the whole opened circuit. In the full version of this paper, we describe in more
detail, how to generate the garbled circuit in this way.

4 The garbled circuits are constructed according to Yao’s garbled circuit protocol(see
[LP04] for a detailed explanation).

Before describing the details of our protocol, it is helpful to review a trick
introduced by [LP07] for preventing a subtle malicious behavior by a corrupted
P1. For instance, during an oblivious transfer protocol, a corrupted P1 can use
an invalid string for the key associated with value 0 for P2’s input bit but a
valid string for the key associated with 1. An honest P2 is bound to abort if
any of the keys he receives are invalid. But the action P2 takes reveals his input
bit to P1. To avoid this problem, we use a circuit that computes the function
g(x1, x

1
2, . . . , x

s
2) = f(x1,⊕s

i=1x
i
2) instead of a circuit that directly computes f .

For his actual input x2, party P2 chooses s random inputs x1
2, . . . , x

s
2 such that

x2 = x1
2⊕ . . .⊕xs

2. This solves the problem since for P1 to learn any information
about P2’s input he has to send invalid keys for all s shares. But, if P1 attempts
to give invalid key for all s shares of P2’s input, he will get caught with expo-
nentially high probability in s. We are now ready to describe our protocol. We
borrow some of our notations from [LP04] and [AL07].

The Protocol

Party P1’s input: x1

Party P2’s input: x2

Common input: Both parties have security parameter m; for simplicity let
|x1| = |x2| = m. Parties agree on the description of a circuit C for inputs of
length m that computes function f . P2 chooses a collision-resistant hash function
h. Parties agree on a pseudorandom generator G, a garbling algorithm Garble,
a perfectly binding commitment scheme Comb, and a deterrence probability
1− 1/t.

1. Parties P1 and P2 define a new circuit C ′ that receives s+1 inputs x1, x
1
2, . . . , x

s
2

each of length m, and computes the function f(x1,⊕s
i=1x

i
2). Note that C ′

has m(s + 1) input wires. Denote the input wires associated with x1 by
w1, . . . , wm and the input wires associated with xi

2 by wim+1, . . . , wim+m for
i = 1, . . . , s.

2. Party P2 chooses (s−1) random strings x1
2, . . . , x

s−1
2 ∈R {0, 1}m and defines

xs
2 = (⊕s−1

i=1 xi
2)⊕ x2. The value z2 = (x1

2, . . . , x
s
2) serves as P2’s new input of

length sm to C ′.
3. Parties perform the first four steps of the OT protocol of [AL07] for P2’s sm

input bits (see the full version for more detail). 5

4. Party P1 generates t random seeds s1, . . . , st of appropriate length and com-
putes GCi = Garble(G, si, C

′) for 1 ≤ i ≤ t (see the full version of this paper
for Garble() algorithm). He then sends h(GC1)), . . . , h(GCt) to P2.

5. P1 generates t random seeds s′1, . . . , s
′
t of appropriate length and computes

G(s′i) from which he extracts the randomness rb,i
j (later used to construct

5 Any other constant-round oblivious transfer protocol secure against covert adver-
saries with the property that– there exists an step in the protocol where P2 is com-
mitted to his input while P1 is still free to choose his input– can be used here as
well.

a commitment) for every 1 ≤ i ≤ t, every j ∈ {1, . . . , sm + m}, and ev-
ery b ∈ {0, 1}, and the random order for the commitments to keys for
his own input wires (see next step). He then computes the commitments
cb,i
j = Comb(k

b,i
j , rb,i

j) for every i ∈ {1, . . . , t}, every j ∈ {1, . . . , sm + m},
and every b ∈ {0, 1}.

6. For every 1 ≤ i ≤ t, P1 computes two sets Ai and Bi, consisting of pairs
of commitments. The order of each pair in Bi is chosen at random (using
the randomness generated by G(s′i)), but the order of each pair in Ai is
deterministic, i.e., commitment to the key corresponding to 0 comes before
the one corresponding to 1.

Ai = {(c0,i
m+1, c

1,i
m+1), . . . , (c

0,i
m+sm, c1,i

m+sm)}
Bi = {(c0,i

1 , c1,i
1), . . . , (c1,i

m , c0,i
m)}

P1 then sends h(A1), . . . , h(At) and h(B1), . . . , h(Bt) to P2.
7. P2 chooses a random index e ∈R {0, 1}log(t) and sends it to P1.6

8. Let O = {1 . . . e− 1, e+1 . . . t}. P1 sends to P2, si and s′i for every i ∈ O. P2

Computes h(GCi) = h(Garble(G, si, C
′)) for every i ∈ O and verifies that

they are equal to what he received from P1. He also computes G(s′i) to get
the decommitment values for commitments in Ai and Bi for every i ∈ O. P2

then uses the keys and decommitments to recompute h(Ai) and h(Bi) on his
own for every i ∈ O, and to verify that they are equal to what he received
from P1. If not, it outputs corrupted1 and halts.

9. P1 sends to P2 the actual garbled circuit GCe, and the sets of commitment
pairs Ae and Be (note that P2 only held h(GCe), h(Ae), and h(Be)). P1 also
sends decommitments to the input keys associated with his input for the
circuit.

10. P2 checks that the values received are valid decommitments to the com-
mitments in Be (he can open one commitment in every pair) and outputs
corrupted1 if this is not the case.

11. Parties perform steps 5 and 6 of the OT protocols (see the full version of
this paper for details regarding how this is done). P1’s input to the OTs are
random strings corresponding to the eth circuit. As a result, P2 learns one
of the two strings (k0,e

i+m||r1,e
i+m, k1,e

i+m||r1,e
i+m) for the ith OT (1 ≤ i ≤ sm).

12. P2 learns the decommitments and key values for his input bits from the OTs’
outputs. He checks that the decommitments are valid for the commitments
in Ae and that he received keys corresponding to his correct inputs. He
outputs corrupted1 if this is not the case. He then proceeds with computing
the garbled circuit C ′(x1, z2) = C(x1, x2), and outputs the result. If the
keys are not correct and therefore he cannot compute the circuit, he outputs
corrupted1.

13. If at anytime during the protocol one of the parties aborts unexpectedly, the
other party will output abort and halt.

6 For simplicity we assume that t is a power of 2.

The general structure of our proof of security is the same as the proof in
[AL07]. Due to lack of space details of the simulation are given in the full version
of this paper. The following claim summarizes our result.

Claim. Assuming that h is a collision-resistant hash function, Comb is a perfectly
binding commitment scheme, and G is a pseudorandom generator, then the above
protocol is secure against covert adversaries with deterrence value 1− 1/t. The
protocol runs in a constant number of rounds, and requires O(|C| + sm + t)
communication between the two players.

3.2 Extension to General Secure Two Party Computation

Our technique of only sending a hash (using a collision resistant hash function)
of circuits and commitments directly generalizes to to the case of secure two
party computation in the standard malicious adversary model.

Almost all the existing works for defending Yao’s garbled circuit protocol
against malicious adversaries in an efficient way [MF06,LP07,Woo07] use the
cut-and-choose techniques. More specifically, party P1 sends t garbled circuits
to P2; half of the circuits are chosen at random and their secrets are revealed
by P1; the remaining circuits are evaluated and the majority value is the final
output of the protocol. Additional mechanisms are used to verify input consis-
tency and to force the parties to use the same input values for majority of the
circuits. Using our new garbling method and sending hash of circuits instead of
the circuits themselves (as discussed previously) we automatically improve effi-
ciency of these protocols. By carefully choosing the number of hashed garbled
circuits and the fraction of circuits that are opened, we can make the efficiency
gain quite substantial. Please see the full version of this paper for more detail
on good choices of parameters. Next we outline some of these efficiency gains
through some concrete examples.

Efficiency in Practice For simplicity we demonstrate our improvements via
comparison with the equality-checker scheme of [MF06] since a detailed analysis
for it is available in [Woo07]. But, it is important to note that our techniques lead
to similar improvements to all of the most-efficient protocols in the literature such
as the expander-checker scheme of [Woo07] and the scheme proposed in [LP07]
which also provides simulation-based security. Details of the modifications to the
original equality-checker scheme are given in the full version of this paper.

By setting the parameters of the protocol (as we show in the full version
of this paper), we can make the modified equality-checker (equality-checker-2)
superior to the original one (equality-checker-1) in practice. The optimal choice
of parameters depends on several factors such as the circuit size, the input size,
and the size of the output of hash function. We work out some of these numbers
in the full version to highlight the efficiency gained by using our techniques.
Consider the following examples where the circuit are taken from [MNPS04].
Using those numbers, for a circuit that compares two 32-bit integers using 256

gates, our protocols roughly lead to factor of 12 improvement in communication
complexity for the same probability of undetected cheating, and for a circuit
that computes the median of two sorted arrays of ten 16-bit integers, with 4383
gates, we gain at least a factor of 30 improvement.

4 The Multi Party Case

We construct a multi party computation protocol secure against covert adver-
saries for a given deterrence parameter 1− 1

t . Let there be n parties denoted by
P1, . . . , Pn. The basic idea of the protocol is as follows. The parties run t par-
allel sessions, each session leading to the distributed generation of one garbled
circuit. These sessions in the protocol are called the “garbled circuit generation
sessions” (or GCG sessions in short). The protocol employed to generate these
garbled circuits in the GCG sessions is a protocol secure only against semi hon-
est adversaries and is based on the constant round BMR construction [BMR90].
Instead of employing zero knowledge proofs to go from semi-honest security to
malicious security, we employ cut and choose techniques where the parties en-
sure the honesty of each other in t − 1 random GCG sessions. This is done
by generating a shared challenge string which is used to select the one GCG
session whose garbled circuit will be used for actual computation. The parties
are required to reveal the (already committed) randomness used for every other
GCG session. For a party, given the randomness and the incoming messages, the
outgoing messages become deterministic. Hence the whole transcript of a GCG
session can be checked (given randomness used by all the parties in this session)
and any deviations can be detected.

The main problem which we face to turn this basic idea into a construction is
that the secret inputs of the honest parties might be leaked since an adversarial
party might deviate arbitrarily from the protocol in any GCG session (and this
deviation is not detected until all the sessions have finished). This is because the
distributed garbled circuit generation ideas in the BMR construction [BMR90]
make use of the actual inputs of the honest parties (so that for each input
wire, parties have the appropriate key required to evaluate the resulting garbled
circuit). To solve this problem, we modify the BMR construction “from the
inside” to enable these GCG sessions execute without using the inputs of the
parties. Our modifications also allow the parties to check honesty of each other
in these sessions without revealing their individual inputs (while still allowing
the simulator to be able to extract these inputs during the proof of security).

4.1 Building Blocks

One of the building blocks of our protocol is a secure function evaluation protocol
which is secure against honest-but-curious adversaries, and whose round com-
plexity is proportional to the multiplicative depth of the circuit being evaluated
(over Z2 = GF (2)). A textbook protocol such as that given by Goldreich [Gol04]
(which is a variant of the semi-honest GMW protocol [GMW87]) suffices. We

remark that this protocol will be used only to evaluate very short and simple
circuits (such as computing XOR of a few strings).

We also need several subprotocols which are secure against standard (not
only covert) malicious adversaries. We summarize these here:

– Simulatable Coin Flipping From Scratch (CoinFlipPublic):
This protocol emulates the usual coin-flipping functionality [Lin01] in the
presence of arbitrary malicious adversaries. In particular, a simulator who
controls a single player can control the outcome of the coin flip.

The remaining primitives assume the availability of a common random string
σ. We assume that these primitives implement the corresponding ideal function-
ality in the CRS model.

– Simultaneous commitment (Commitσ(x1, ..., xn)): Every player chooses
a value xi and commits to it. At the end of the protocol, the vector of
commitments is known to all parties. The commitments are such that a
simulator having trapdoor information about the CRS σ can extract the
committed values.

– Open commitments (OpenComσ): Players simultaneously open their
commitments over the broadcast channel.
For the simulation to work, this protocol needs to be simulation-sound, in
the following sense: if the simulator is controlling a subset of cheating players
Pi, i ∈ Isim, then he should be able to output a valid simulation in which
all honest players lie about their committed values yet all cheating players
are constrained to tell the truth or be caught.

– Committed Coin Flipping (CommitedCoinFlipPublicσ and
CommittedCoinFlipσToPi):
Generates a commitment to a random string such that all players are com-
mitted to shares of the coin. In the second variant, Pi learns the random
string and is committed to it.

– Open coin:
Opens a committed coin to all players over the broadcast channel. The sim-
ulator should be able to control the coin flip.

These primitives can be implemented very efficiently under several number-
theoretic assumptions. For concreteness, we have described efficient instantia-
tions based on the DDH assumption in the full version of this paper. These are
summarized here.

Lemma 1. Suppose the Decisional Diffie-Hellman problem is hard in group G.
There exist secure implementations of the protocols above. The CRS protocols
(Commitσ, OpenComσ, CommitedCoinFlipPublicσ, CommittedCoinFlipσToPi) re-
quire O(n`+n2k) bits of communication each, and a shared CRS of length 2n+1
group elements. Here k is the bit length of the elements of the group G, and `
is the bit length of the strings being generated, committed, or opened. Generat-
ing a CRS of length ` bits via CoinFlipPublic requires O(n2 log(n)k + n`) bits of
communication and O(log n) rounds.

4.2 Main Multiparty Protocol

We now turn to the protocol itself. Let C be a circuit corresponding to the
function f(x1, x2, . . . , xn) which the parties wish to jointly compute. We denote
the total number of wires (including the input and output wires) in C by W , each
having index in the range 1 to W . Let F and G be pseudorandom generators with
seed length s (here s is the security parameter). The parties run the following
protocol.

Stage 0 Collectively flip a single string σ having length poly(s). The string σ is
used as a CRS for the commitment and coin-flipping in the remaining stages
of the protocol.

σ ← CoinFlipPublic

Stage 1 The parties generate the commitment to a shared challenge random
string e ∈ [t]

e ← CommitedCoinFlipPublicσ

The challenge e will later be used to select which of the GCG sessions (out
of the t sessions) will be used for actual computation. The parties will be re-
quired to show that they were honest in all other GCG sessions (by revealing
their randomness).

Stage 2 For each i ∈ [n] and S ∈ [t], collectively flip coins ri[S] of length s and
open the commitment (and decommitment strings) to Pi only:

ri[S] ← CommittedCoinFlipσToPi

Thus, a party Pi obtains a random string ri[S] for every session S ∈ [t]. All
other parties have obtained commitment to ri[S]. The random string ri[S]
can be expanded using the pseudorandom generator F . It will be used by Pi

for the following:
– To generate the share λw

i [S] ∈ {0, 1} of the wire mask λw[S] (in Stage
3 of our protocol) for every wire w in the garbled circuit GC[S] to be
generated in session S. Recall that in a garbled circuit GC[S], for every
wire w, we have two wire keys (denoted by kw,0[S] and kw,1[S]): one
corresponding to the bit on wire w being 0 and the other to bit being 1
(during the actual evaluation of the garbled circuit, a party would only
be able to find one of these keys for every wire). The wire mask determine
the correspondence between the two wire keys and the bit value, i.e., the
key kw,b[S] corresponds to the bit b⊕ λw[S].

– To run the GCG session S (i.e., Stage 4 of our protocol). Note that we
generate the wire masks for the garbled circuits in stage 3 (instead of 4)
to enable the parties to run stage 4 without using their inputs.

Stage 3 Every player Pi is responsible for a subset of the input wires Ji, and
holds an input bit xw for each w ∈ Ji. For every w ∈ Ji, and session S, Pi

computes Iw[S] = xw ⊕ λw
i [S]. For each S, players simultaneously commit

to the value Iw for each of their input wires (each input wire is committed
to by exactly one player):

{
COM(Iw[S]) : input wires w

} ← Commitσ
(
{Iw[S] : S ∈ {1, ..., t}, w ∈

input wires }
)

Recall that exactly one of the sessions will be used for actual secure function
evaluation. In that session, the above commitment will be opened and xw ⊕
λw

i [S] will be revealed (however λw
i [S] will remain hidden). In rest of sessions

where the garbled circuit generated will be opened and checked completely
by all the parties, the wire mask share λw

i [S] will be revealed (since its
a part of the garbled circuit description and generated using randomness
ri[S]). However the above commitment to xw⊕λw

i [S] will not be opened for
those sessions. This ensures the secrecy of the input xw (while still allowing
to simulator to extract it in our proof of security).

Stage 4 This is the stage in which the parties run t parallel garbled circuit
generation session. This stage is based on the BMR construction but does
not make use of the inputs of the parties. Each session in this stage can be
seen as an independent efficient protocol (secure against honest but curious
adversaries) where:

– In the beginning, the parties already hold shares of the wire masks λw
i [S]

to be used for the garbled circuit generation (as opposed to generating
these wire masks in this protocol itself).

– In the end, the parties hold a garbled circuit GC[S] for evaluating the
function f . Furthermore, each party also holds parts of the wire keys
for input wires (such that when for all input wires, all the parts of the
appropriate wire key are broadcast, the parties can evaluate the gar-
bled circuit; which key is broadcast is decided by the openings of the
commitments of stage 3).

We now describe this stage in more detail.

1. Pi broadcasts the wire mask shares λw
i [S] for all input wires belonging

to other players (i.e., for w not in Ji), and for all output wires. Thus only
the masks for Pi’s inputs, and for internal wires, remain secret from the
outside world . Note that λw[S] =

⊕n
i=1 λw

i [S] is the wire mask for wire
w. Each player holds shares of the wire masks.

2. For every wire w of the circuit C, Pi generates two random key parts
kw,0

i [S] and kw,1
i [S]. The full wire keys are defined as the concatenation

of the individual key parts. That is, kw,0[S] = kw,0
1 [S]◦ . . . ◦kw,0

n [S] and
kw,1[S] = kw,1

1 [S]◦ . . . ◦kw,1
n [S].

3. Recall that for every gate in the circuit, the wire keys of incoming wires
will be used to encrypt the wire keys for outgoing wires (to construct
what is called a gate table). However it is not desirable to use a regu-
lar symmetric key encryption algorithm for this purpose. The reason is
that the gate tables will be generated by using a (honest but curious)
secure function evaluation protocol (see next step) and the complexity
of the circuit to be evaluated will depend upon the complexity of the
encryption algorithm. To avoid this problem, the parties locally expand
their key parts into large strings (and then later simply use a one time

pad to encrypt). More precisely, Pi expands the key parts kw,0
i [S] and

kw,1
i [S] using the pseudorandom generator G to obtain two new keys,

i.e.,(pw,`
i [S], qw,`

i [S]) = G(kw,`
i [S]), for ` ∈ {0, 1}. Each of the new keys

has length n|kw,`
i [S]| (enough to encrypt a full wire key).

4. The players then run a Secure Function Evaluation protocol secure against
honest-but-curious adversaries to evaluate a simple circuit to generate
the gate tables. This stage is inspired by a similar stage of the Beaver et
al. protocol [BMR90]. This is the step that dominates the computation
and communication complexity of our construction. However as opposed
to BMR, the underlying multi-party computation protocol used here only
needs to be secure against semi-honest adversaries. More details follow.
For every gate g in the circuit C, define a gate table as follows. Let a, b
be the two input wires and c be the output wire for the gate g, and
denote the operation performed by the gate g by ⊗ (e.g. AND, OR,
NAND, etc). Before the protocol starts, Pi holds the following inputs:
pa,`

i [S], qa,`
i [S], pb,`

i [S], qb,`
i [S], kc,`

i [S] where ` ∈ {0, 1} along with shares
λa

i [S], λb
i [S], λc

i [S] of wire masks λa[S], λb[S], λc[S]. Pi runs the protocol
along with other parties to compute the following gate table:

Ag = pa,0
1 [S]⊕ . . .⊕pa,0

n [S]⊕pb,0
1 [S]⊕ . . .⊕pb,0

n [S]

⊕
{

kc,0
1 [S]◦ . . . ◦kc,0

n [S] if λa[S]⊗ λb[S] = λc[S]
kc,1
1 [S]◦ . . . ◦kc,1

n [S] otherwise

Bg = qa,0
1 [S]⊕ . . .⊕qa,0

n [S]⊕pb,1
1 [S]⊕ . . .⊕pb,1

n [S]

⊕
{

kc,0
1 [S]◦ . . . ◦kc,0

n [S] if λa[S]⊗ λb[S] = λc[S]
kc,1
1 [S]◦ . . . ◦kc,1

n [S] otherwise

Cg = pa,1
1 [S]⊕ . . .⊕pa,1

n [S]⊕qb,0
1 [S]⊕ . . .⊕qb,0

n [S]

⊕
{

kc,0
1 [S]◦ . . . ◦kc,0

n [S] if λa[S]⊗ λb[S] = λc[S]
kc,1
1 [S]◦ . . . ◦kc,1

n [S] otherwise

Dg = qa,1
1 [S]⊕ . . .⊕qa,1

n [S]⊕qb,1
1 [S]⊕ . . .⊕qb,1

n [S]

⊕
{

kc,0
1 [S]◦ . . . ◦kc,0

n [S] if λa[S]⊗ λb[S] = λc[S]
kc,1
1 [S]◦ . . . ◦kc,1

n [S] otherwise

This circuit has multiplicative depth 2. If we use the honest-but-curious SFE
protocol from [Gol04], this stage requires a constant number of rounds.
At the end of this phase, for each session S, the parties hold a garbled circuit
GC[S] (which consists of the gate tables as generated above, along with the
wire masks λw[S] for each output wire w).

Stage 5 The parties now open the challenge e generated in Step 3, using OpenComσ.
Stage 6 For each session S 6= e, each party Pi opens the commitment to ri[S]

generated in Step 1. Given r1[S], . . . , rn[S], all the wire mask shares and the
protocol of Stage 4.2 become completely deterministic. More precisely, each

player can regenerate the transcript of Stage 4.2, and can thus verify that
all parties played honestly for all sessions S 6= e. If Pi detects a deviation
from the honest behavior, it aborts identifying the malicious party Pj who
deviated.
Note that the only point so far where the parties were required to use their
inputs is Stage 3 (where Pi committed to xw⊕λw

i [S] for all w ∈ Ji). However
these commitments were not used in any other stage. Hence, since these
commitments have not yet been opened nor used anywhere else, if the players
abort at this stage then no information is learned by the adversary.
Once the parties successfully get past this stage without aborting, we have
a guarantee that the garbled circuit GC[e] was correctly generated except
with probability 1

t . Thus, 1
t bounds the probability with which an adversary

can cheat successfully in our protocol.
Stage 7 For all input wires w ∈ Ji, Pi now opens the commitments COMw[e]

(see Stage 3) using OpenComσ, thus revealing Iw = λw
i [e] ⊕ xw. Set Lw =

Iw ⊕⊕i−1
j=1 λw

j [e]⊕⊕n
j=i+1 λw

j [e] (where λw
j [e] was broadcast in stage 4(a)),

i.e., Lw = λw[e] ⊕ xw. Every party P`, 1 ≤ ` ≤ n broadcasts the key parts
kw,Lw

` [e].
Stage 8 Pi now has the garbled circuit GC[e] as well the wire keys kw,Lw

[e] =
kw,Lw

1 [e]◦ . . . ◦kw,Lw

n [e] for all input wires w of the circuit. Hence Pi can now
evaluate the garbled circuit on its own in a standard manner to compute
the desired function output C(x1, x2, . . . , xn). For more details on how the
garbled circuit GC[e] is evaluated, see [BMR90].

The following theorem summarizes our result. See the full version of this
paper for the analysis of our construction.

Theorem 2 If the coin-flipping and commitment primitives are secure against
malicious adversaries and the SFE scheme is secure against honest-but-curious
adversaries, then the above construction is secure in the presence of covert ad-
versaries with 1− 1

t deterrence.
If we instantiate the coin-flippping and commitment primitives as in Lemma 1,

and use the SFE scheme of [Gol04], then the protocol above requires O(log n)
rounds and a total of O(n3ts|C|) bits of communication to evaluate a boolean
circuit of size |C|, where s is the security parameter (the input size of a pseu-
dorandom generator). The computational complexity is the same up to polyloga-
rithmic factors.

If we use the constant-round coin-flipping protocols of Katz et al. [KOS03]
or Pass [Pas04], then the protocol above runs in constant rounds, but requires
substantially slower (though still polynomial) computations.

The protocol above is the first multiparty protocol we know of which is
tailored to covert adversaries. As a point of comparison, to our knowledge the
most efficient protocol secure against malicious adversaries that tolerates up to
n − 1 cheaters is that of Katz et al. [KOS03]. The running time of the KOS
protocol is dominated by the complexity of proving statements about circuits of

size O(n3s|C|) (this is the cost incurred by compiling an honest-but-curious SFE
protocol). In contrast, our protocol runns in time Õ(n3st). Thus, the contribution
of this protocol can be seen as relating the complexity of security against covert
adversaries to security against honest-but-curious adversaries:

Cost of deterrence 1− 1
t

against covert adversaries

. t ·
(
Cost of honest-but-curious garbled circuit generation

)

References

[AL07] Yonatan Aumann and Yehuda Lindell. Security against covert adversaries:
Efficient protocols for realistic adversaries. In Theory of Cryptography Con-
ference, TCC, 2007.

[Bar02] Boaz Barak. Constant-round coin-tossing with a man in the middle or
realizing the shared random string model. In FOCS, pages 345–355. IEEE
Computer Society, 2002.

[BMR90] Donald Beaver, Silvio Micali, and Phillip Rogaway. The round complexity
of secure protocols (extended abstract). In STOC, pages 503–513. ACM,
1990.

[BOGW88] M. Ben-Or, S. Goldwasser, and A. Widgerson. Completeness theorems for
non-cryptographic fault-tolerant distributed computation. In Proceedings
of ACM STOC, pages 1-10, 1988.

[CCD88] D. Chaum, C. Crepeau, and I. Damgard. Multi-party unconditionally se-
cure protocols. In Proceedings of ACM STOC, pages 11-19, 1988.

[CO99] Ran Canetti and Rafail Ostrovsky. Secure computation with honest-looking
parties: What if nobody is truly honest? (extended abstract). In STOC,
pages 255–264, 1999.

[CR87] Benny Chor and Michael O. Rabin. Achieving independence in logarithmic
number of rounds. In PODC, pages 260–268, 1987.

[DI05] Ivan Damg̊ard and Yuval Ishai. Constant-round multiparty computa-
tion using a black-box pseudorandom generator. In Victor Shoup, editor,
CRYPTO, volume 3621 of Lecture Notes in Computer Science, pages 378–
394. Springer, 2005.

[FY92] Matthew Franklin and Moti Yung. Communication complexity of secure
computation (extended abstract). pages 699–710, 1992.

[GMW87] O. Goldreich, S. Micali, and A. Wigderson. How to play any mental game or
a completeness theorem for protocols with honest majority. In proceedings
of 19th Annual ACM Symposium on Theory of Computing, pages 218-229,
1987.

[Gol04] Oded Goldreich. Foundation of Cryptography, Volume II: Basic Applica-
tions. Cambridge University Press, 2004.

[IKLP06] Yuval Ishai, Eyal Kushilevitz, Yehuda Lindell, and Erez Petrank. Black-
box constructions for secure computation. In Jon M. Kleinberg, editor,
STOC, pages 99–108. ACM, 2006.

[JS07] Stanislaw Jarecki and Vitaly Shmatikov. Efficient two-party secure com-
putation on committed inputs. In EUROCRYPT, 2007.

[KOS03] Jonathan Katz, Rafail Ostrovsky, and Adam Smith. Round efficiency of
multi-party computation with a dishonest majority. In Eli Biham, editor,
EUROCRYPT, volume 2656 of Lecture Notes in Computer Science, pages
578–595. Springer, 2003.

[Lin01] Yehuda Lindell. Parallel coin-tossing and constant-round secure two-party
computation. In CRYPTO ’01: Proceedings of the 21st Annual Interna-
tional Cryptology Conference on Advances in Cryptology, pages 171–189,
London, UK, 2001. Springer-Verlag.

[LP04] Yehuda Lindell and Benny Pinkas. A proof of yao’s protocol for secure two-
party computation. Cryptology ePrint Archive, Report 2004/175, 2004.

[LP07] Yehuda Lindell and Benny Pinkas. An efficient protocol for secure two-party
computation in the presence of malicious adversaries. In EUROCRYPT,
2007.

[MF06] Payman Mohassel and Matthew Franklin. Efficiency tradeoffs for malicious
two-party computation. In Public Key Cryptography Conference, PKC,
2006.

[MNPS04] D. Malkhi, N. Nisan, B. Pinkas, and Y. Sella. Fairplay — a secure two-party
computation system, 2004.

[Pas04] Rafael Pass. Bounded-concurrent secure multi-party computation with a
dishonest majority. In László Babai, editor, STOC, pages 232–241. ACM,
2004.

[Pin03] Benny Pinkas. Fair secure two-party computation. In Eurocrypt ’2003
Proceedings, pages 87–105. Springer-Verlag, 2003.

[Woo07] David P. Woodruff. Revisiting the efficiency of malicious two-party com-
putation. In EUROCRYPT, 2007.

[Yao86] A. C. Yao. How to generate and exchange secrets. In Proceedings of the
27th IEEE symposioum on Foundations of Computer science,pages 162-
167, 1986.

