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Abstra
t. We develop a new generi
 long-message se
ond preimage at-
ta
k, based on 
ombining the te
hniques in the se
ond preimage atta
ks
of Dean [8℄ and Kelsey and S
hneier [16℄ with the herding atta
k of Kelsey
and Kohno [15℄. We show that these generi
 atta
ks apply to hash fun
-
tions using the Merkle-Damgård 
onstru
tion with only slightly more
work than the previously known atta
k, but allow enormously more 
on-
trol of the 
ontents of the se
ond preimage found. Additionally, we show
that our new atta
k applies to several hash fun
tion 
onstru
tions whi
h
are not vulnerable to the previously known atta
k, in
luding the dithered
hash proposal of Rivest [25℄, Shoup's UOWHF[26℄ and the ROX hash

onstru
tion [2℄. We analyze the properties of the dithering sequen
e used
in [25℄, and develop a time-memory tradeo� whi
h allows us to apply our
se
ond preimage atta
k to a wide range of dithering sequen
es, in
luding
sequen
es whi
h are mu
h stronger than those in Rivest's proposals. Fi-
nally, we show that both the existing se
ond preimage atta
ks [8, 16℄ and
our new atta
k 
an be applied even more e�
iently to multiple target
messages; in general, given a set of many target messages with a total
of 2R message blo
ks, these se
ond preimage atta
ks 
an �nd a se
ond
preimage for one of those target messages with no more work than would
be ne
essary to �nd a se
ond preimage for a single target message of 2R

message blo
ks.
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1 Introdu
tion

A number of re
ent atta
ks on hash fun
tions have highlighted weaknesses of

both spe
i�
 hash fun
tions, and the general Merkle-Damgård 
onstru
tion.

Wang et al. [28�31℄, Biham et al. [3℄, Klima [19℄ and Joux et al. [14℄ all show that

di�erential atta
ks 
an be used to e�
iently �nd 
ollisions in spe
i�
 hash fun
-

tions based on the MD4 design, su
h as MD5, RIPEMD, SHA-0 and SHA-1. This



type of result is important for at least two reasons. First, 
ollision resistan
e is a

required property for a hash fun
tion, and many appli
ations of hash fun
tions

fail when 
ollisions 
an be found. Se
ond, e�
iently found 
ollisions permit ad-

ditional atta
ks on hash fun
tions using the Merkle-Damgård 
onstru
tion, as in

Joux's [13℄ multi
ollision atta
k on 
as
ade hashes, and the long-message se
ond

preimage atta
ks of Dean [8℄ and Kelsey and S
hneier [16℄.

After Kelsey and S
hneier published their atta
k, several resear
hers pro-

posed a variant of the Merkle-Damgård 
onstru
tion, in whi
h a third input to

the 
ompression fun
tion, 
alled a �dithering sequen
e� in [25℄ and this paper,

is used to blo
k the atta
k. Spe
i�
ally, using a dithering sequen
e prevents the


onstru
tion of �expandable messages,� required for both Dean and Kelsey and

S
hneier's atta
ks. In this paper, we develop a new kind of se
ond preimage

atta
k, whi
h applies to some dithered variants of the Merkle-Damgård 
on-

stru
tion.

1.1 Related Work

The PhD thesis of Dean [8℄ presented a se
ond preimage atta
k that works

against a subset of hash fun
tions using the Merkle-Damgård 
onstru
tion.

Kelsey and S
hneier [16℄ extended this result to work for all Merkle-Damgård

hashes. For an n-bit hash fun
tion, their result allows an atta
ker to �nd a se
-

ond preimage of a 2k blo
k1 target message with k · 2n = 2+1 + 2n−k evaluations

of the 
ompression fun
tion. The atta
k relies on the ability to 
onstru
t an

expandable message, a set of in
omplete messages of widely varying length, all

of whi
h yield the same intermediate hash result. This atta
k 
an be seen as a

variant of the long message atta
k [20℄, in whi
h the expandable message is used

to 
arry out the atta
k despite the Merkle-Damgård strengthening.

Variants of the Merkle-Damgård 
onstru
tion that attempt to pre
lude the

aforementioned se
ond preimage atta
ks are the Haifa 2 [23℄ 
onstru
tion pro-

posed by Biham and Dunkelman and the �dithered� Merkle-Damgård hash by

Rivest [25℄. Haifa in
ludes the number of message bits hashed so far in the

message blo
k. The simplest way to implement Haifa is to shorten ea
h data

blo
k by 64 bits, �lling those 64 bits with the 64 bit 
ounter used internally to

tra
k the length of the hash input so far. Rivest, on the other hand, introdu
ed a


lever way to de
rease the number of bits used for this extra input to either 2 or

16, thus in
reasing the bandwidth available for a
tual data, by using a spe
i�


sequen
e of values to �dither� the a
tual inputs. The properties of this sequen
e

were 
laimed by Rivest to be su�
ient to avoid the se
ond preimage atta
k on

the hash fun
tion.

The herding atta
k of Kelsey and Kohno [15℄ 
an be seen as another variant

of the long-message atta
k. In their atta
k, the atta
ker �rst does a large pre
om-

putation, and then 
ommits to a hash value h. Later, upon being 
hallenged with

1 In this paper, we des
ribe message lengths in terms of message blo
ks, rather than
bits. Most 
ommon hash fun
tions use blo
ks of length 512 or 1024 bits.

2 We do not have any atta
ks more e�
ient than exhaustive sear
h on Haifa.



a pre�x P , the atta
ker 
onstru
ts a su�x S su
h that hash(P ||S) = h. Their
paper introdu
ed the �diamond stru
ture�, whi
h is reminis
ent of a 
omplete

binary tree. It is a 2`-multi
ollision in whi
h ea
h message in the multi
ollision

has a di�erent initial 
haining value, and whi
h is 
onstru
ted in the pre
ompu-

tation step of the atta
k. The herding atta
k on an n-bit hash fun
tion requires

approximately 22n = 3+1 work.

1.2 Our Results

In this paper, we develop a new generi
 se
ond preimage atta
k on Merkle-

Damgård hash fun
tions and dithered Merkle-Damgård variants, treating the


ompression fun
tions as bla
k boxes. Our basi
 te
hnique relies on the diamond

from the herding atta
k of [15℄. If the diamond is a 2`-multi
ollision, we obtain a

se
ond preimage of a message of length 2k blo
ks with 2n = 2+` = 2+2 +2n−`+2n−k


ompression fun
tion 
omputations. The atta
k is optimized when ℓ ≈ n/3,
yielding an atta
k of 
omplexity 5 · 22n = 3+ 2n−k .

Our atta
k is slightly more expensive than the k · 2n = 2+1 + 2n−k 
omplexity

from [16℄ (for SHA-1, in whi
h n = 160 and k = 55, the Kelsey-S
hneier atta
k

omplexity is about 2105 work whereas ours is approximately 2109). However, the
new atta
k 
an be applied to Merkle-Damgård variants for whi
h the atta
k of

[16℄ is impossible. Our result also permits the atta
ker to leave most of the target

message inta
t in the se
ond preimage, or to arbitrarily 
hoose the 
ontents

of roughly the �rst half of the se
ond preimage, while leaving the remainder

identi
al to the target message.

We 
an also apply our new se
ond preimage atta
k to the dithered Merkle-

Damgård hash variant of [25℄, exploiting the fa
t that the dithering sequen
es

have many repetitions of some subsequen
es. For Rivest's proposed 16-bit dither-

ing sequen
e, the atta
k requires 2n = 2+` = 2+2 + (8ℓ+ 32768) · 2n−k + 2n−` work,

whi
h for SHA-1 is approximately 2120 . This is slightly worse than the atta
ks

against the basi
 Merkle-Damgård 
onstru
tion but it is still mu
h smaller than

the 2160 se
urity whi
h was expe
ted for the dithered 
onstru
tion. We show

that the se
urity of a dithered Merkle-Damgård hash is dependent on the num-

ber of distin
t ℓ-letter subwords in the dithering sequen
e, and that the sequen
e


hosen by Rivest is very sus
eptible to our atta
k.

We also show that the atta
k on dithered hashes is subje
t to a time-memory

tradeo� that enables the 
onstru
tion of se
ond preimages for any dithering input

de�ned over a small alphabet with only a small amount of online 
omputation

after an expensive pre
omputation stage.

We further apply our atta
k to a one way hash fun
tion designed by Shoup [26℄,

whi
h has some similarities with dithered hashing. The atta
k applies as well to


onstru
tions that derive from this design, su
h as ROX [2℄. Our te
hnique yields

the �rst published atta
k against these parti
ular hash fun
tions. This addition-

ally proves that Shoup's se
urity bound is tight, sin
e there is asymptoti
ally

only a fa
tor of O (k) between his bound and our atta
k's 
omplexity.

Finally, we show that both the original se
ond-preimage atta
k of [8, 16℄

and our atta
k 
an be extended to the 
ase in whi
h there are multiple target



messages. In general, �nding a se
ond preimage for any one of 2t target messages

of length 2k blo
ks ea
h requires approximately the same work as �nding a single

se
ond preimage for a message of 2k+t blo
ks.

1.3 Organization of the Paper

We des
ribe our atta
k against the Merkle-Damgård 
onstru
tion in se
tion 2.

We introdu
e some terminology and des
ribe the dithered Merkle-Damgård 
on-

stru
tion in se
tion 3, and then we extend our atta
k to ta
kle dithered Merkle-

Damgård in se
tion 4. We apply it to Rivest's 
on
rete proposal, as well as to

some of the variations that he suggested. In se
tion 5, we show that our atta
k

works also against Shoup's UOWHF 
onstru
tion. We 
on
lude with se
tion 6,

where we show how the se
ond preimage atta
k may be applied to �nding a

se
ond preimage for one of a large set of target messages.

2 A New Generi
 Se
ond Preimage Atta
k

2.1 The Merkle-Damgård 
onstru
tion

We �rst des
ribe brie�y the 
lassi
al Merkle-Damgård 
onstru
tion. An iterated

hash fun
tion H F :f0; 1g� ! f0; 1g n is built by iterating a basi
 
ompression

fun
tion F :f0; 1gm � f0; 1gn ! f0; 1g n . The hash pro
ess works as follows:

� Pad and split a message M into r blo
ks x 1; : : : ; xr
of m bits ea
h.

� Set h0 to the initialization value I V .

� For ea
h message blo
k i 
ompute h
i
= F (h

i−1; xi).
� Output H F (M ) = h

r
.

The padding is usually done by appending a single '1' bit followed by as

many '0' bits as needed to 
omplete an m-bit blo
k. Merkle [21℄ and Damgård

[7℄ independently proved in 1989 that making the binary en
oding of the message

length part of the padding improves the se
urity of the 
onstru
tion: with this so-


alled strengthening, the s
heme is proven to be Collision-Resistan
e Preserving,

in the sense that a 
ollision in the hash fun
tion H F would imply a 
ollision in

the 
ompression fun
tion F . As a side e�e
t, the strengthening de�nes a limit

over the maximal size of the messages that 
an be pro
essed. In most deployed

hash fun
tions, this limit is 264 bits, or equivalently 255 512-bit blo
ks. In the

sequel, we denote the maximal number of admissible blo
ks by 2k .

2.2 Se
ond Preimage Atta
k on Merkle-Damgård hash

We now des
ribe a new te
hnique to �nd se
ond preimages on a Merkle-Damgård

hash. It relies heavily on the �diamond stru
ture� introdu
ed by Kelsey and

Kohno [15℄.

A diamond of size ℓ is a multi
ollision that has the shape of a 
omplete


onverging binary tree of depth ℓ, with 2` leaves (hen
e we often refer to it



as a 
ollision tree). Its nodes are labelled by 
haining values over n bits, and

its edges are labelled by message blo
ks over m bits, whi
h map between the


haining values at the two ends of the edge by the 
ompression fun
tion. Thus,

from any one of the 2` leaves, there is a path labelled by ℓ message blo
ks that

leads to the same target value h
T
labelling the root of the tree.

Let M be a target message of length 2k blo
ks. The main idea of our atta
k

is that 
onne
ting a message to a 
ollision tree 
an be done in less than 2n

work. Moreover, 
onne
ting the root of the tree to one of the 2k 
haining values

en
ountered during the 
omputation of H F (M ) takes only 2n−k 
ompression

fun
tion 
alls. The atta
k works in 4 steps as des
ribed in �gure 1.

1. Prepro
essing step: 
ompute a 
ollision tree of depth ℓ with an arbitrary target
value hT . Note that this has to be done only on
e, and 
an be reused when 
om-
puting se
ond preimages of multiple messages.

2. Conne
t the target hT to some 
haining value in the message M . This 
an be
done by generating random message blo
ks B, until F( hT , B) = hi0 for some i0 ,
ℓ + 1 ≤ i0 <

∣

∣M
∣

∣. Let B0 be a message blo
k satisfying this 
ondition.
3. Generate an arbitrary pre�x P of size i0 − ℓ − 1 blo
ks whose hash is one of the


haining values labelling a leaf. Let h = HF
( P) be this value, and let T be the


hain of ℓ blo
ks traversing the tree from h to hT .
4. Form a message M ′

= P ||T ||B0 ||xi0+1
. . . x

2k
.

Fig. 1: Summary of the atta
k on 
lassi
 Merkle-Damgård.

Messages M 0 and M are of equal length and hash to the same value, before

strengthening, so they produ
e the same hash value despite the Merkle-Damgård

strengthening.

A 
ollision tree of depth ℓ 
an be 
onstru
ted with time and spa
e 
omplexity

2
n

2
+

ℓ

2
+2 (see [15℄ for details). The se
ond step of the atta
k 
an be 
arried out

with 2n−k work, and the third one with 2n−` work. The total time 
omplexity

of the atta
k is then: 2
n

2
+

ℓ

2
+2 + 2n−k + 2n−`. This quantity be
omes minimal

when ℓ = (n � 2)/3, and in this setting, the total 
ost of our atta
k is about

5 · 22n = 3+ 2n−k .

2.3 Comparison With Kelsey and S
hneier

On the original Merkle-Damgård 
onstru
tion, the atta
k of [16℄ is more e�
ient

than ours (on SHA-1, they 
an �nd a se
ond preimage of a message of size 255

with 2105 work, whereas we need 2109 
alls to the 
ompression fun
tion to obtain

the same result).

However, our te
hnique gives the adversary more 
ontrol on the se
ond preim-

age, sin
e she 
an typi
ally 
hoose about the �rst half of the message in an arbi-

trary way. For example, she 
ould 
hoose to repli
ate most of the target message,

leading to a se
ond preimage that di�ers from the original by only k+2 blo
ks.



The main apparent di�eren
e between the two te
hniques is that the atta
k

of Kelsey and S
hneier relies on expandable messages. An expandable message

M is a family of messages with di�erent number of blo
ks but with the same

hash when the �nal length blo
k is not in
luded in the 
omputation. Their atta
k


onstru
ts su
h an expandable message in time k · 2n = 2+ 1. Our atta
k 
an also

be viewed as a new, more �exible te
hnique to build expandable messages, by


hoosing a pre�x of the appropriate length and 
onne
ting it to the 
ollision

tree. This 
an be done in time 2n = 2+ k = 2+ 2+2n−k . Altough it is more expensive,

this new te
hnique 
an be adapted to work even when an additional dithering

input is given, as we will demonstrate in the sequel.

3 Dithered Hashing

The general idea of dithered hashing is to perturb the hashing pro
ess by using an

additional input to the 
ompression fun
tion, formed by the 
onse
utive elements

of a �xed dithering sequen
e. This gives the atta
ker less 
ontrol over the input

of the 
ompression fun
tion, and makes the hash of a message blo
k dependent

on its position in the whole message. In parti
ular, the goal of dithering is to

prevent atta
ks based on expandable messages.

Sin
e the dithering sequen
e z has to be at least as long as the maximal

number of blo
ks in any message that 
an be pro
essed by the hash fun
tion,

it is reasonable to 
onsider in�nite sequen
es as 
andidates for z. Let A be a

�nite alphabet, and let the dithering sequen
e z be an eventually in�nite word

over A . Let z[i] denote the i-th element of z. The dithered Merkle-Damgård


onstru
tion is obtained by setting h
i
= F (h

i−1;xi;z [i]) in the de�nition of the

Merkle-Damgård s
heme.

3.1 Words and Sequen
es

Notations and Terminology. Let ! be a word over the �nite alphabet A . The

dot operator denotes 
on
atenation. If ! 
an be written as ! = x:y:z (where

x,y or z 
an be empty), we say that x is a pre�x of ! and that y is a fa
tor

(or subword) of !. A �nite word ! is a square if it 
an be written as ! = x:x,
where x is not empty. A �nite word ! is an abelian square if it 
an be written as

! = x:x 0 where x0 is a permutation of x (i.e., a reordering of the letters of x). A
word is said to be square-free (resp. abelian square-free) if none of its fa
tors is

a square (resp. an abelian square). Note that abelian square-free words are also

square-free.

An In�nite Abelian Square-Free Sequen
e. In 1992, Keränen [17℄ exhib-

ited an in�nite abelian square-free word k over a four-letter alphabet (there are

no in�nite abelian square-free words over a ternary alphabet). In this paper, we


all this in�nite abelian square-free word the Keränen sequen
e. Details about

this 
onstru
tion 
an be found in [17, 18, 25℄.



Sequen
e Complexity. The number of fa
tors of a given size of an in�nite

word gives an intuitive notion of its 
omplexity : a sequen
e is more 
omplex (or

ri
her) if it possesses a large number of di�erent fa
tors. We denote by Fact z(ℓ)
the number of fa
tors of size ℓ of the sequen
e z.

3.2 Rivest's Proposals.

Keränen-DMD. Rivest suggested to dire
tly use the Keränen sequen
e as a

sour
e of dithering inputs. The dithering inputs are taken from the alphabet

A = fa;b;c;dg, and 
an be en
oded by two bits. The number of data bits in

the input of the 
ompression fun
tion is thus redu
ed by only two bits, whi
h

improves the hashing e�
ien
y (
ompared to longer en
odings of dither inputs).

It is possible to generate the Keränen sequen
e online, one symbol at a time, in

logarithmi
 spa
e and 
onstant amortized time.

Rivest's Con
rete Proposal. Rivest's 
on
rete proposal is referred to as

DMD-CP (Dithered Merkle-Damgård � Con
rete Proposal). To speed up the

generation of the dithering sequen
e, Rivest proposed a slightly modi�ed s
heme,

in whi
h the dithering symbols are 16-bit wide. If the message M is rblo
ks long,
then for 1 � i<r the i-th dithering symbol has the form:

(

0;k
[⌊

i/213
⌋]

;i mod 2 13
)

2 f0;1g � A � f0;1g 13

The idea is to in
rement the 
ounter for ea
h dithering symbol, and to shift

to the next letter in the Keränen sequen
e, only when the 
ounter over�ows. This

�diluted� dithering sequen
e 
an essentially be generated 213 times faster than

the Keränen sequen
e. The last dithering symbol has a di�erent form (re
all that

m is the number of bits in a message blo
k):

(1;|M| mod m) 2 f0;1g � f0;1g 15

4 Se
ond Preimage Atta
ks on Dithered Merkle-Damgård

In this se
tion, we present the �rst known se
ond preimage atta
k on Rivest's

dithered Merkle-Damgård 
onstru
tion. In se
tion 4.1, we adapt the atta
k of

se
tion 2 to Keränen-DMD, obtaining se
ond preimages in time (k + 40:5) ·
2n−k +3 . We then apply the extended atta
k to DMD-CP, obtaining se
ond

preimages with about 2n−k +15 evaluations of the 
ompression fun
tion. We show

some examples of sequen
es whi
h make the 
orresponding dithered 
onstru
-

tions immune to our atta
k. This notably 
overs the 
ase of Haifa [23℄. Lastly,

in se
tion 4.2 we present a variation of the atta
k, whi
h in
ludes an expensive

prepro
essing, but whi
h is able to 
ope with sequen
es of high 
omplexity over

a small alphabet with a very small online 
ost.



4.1 Adapting the Atta
k to Dithered Merkle-Damgård

Let us now assume that the hashing algorithm uses a dithering sequen
e z. When

building the 
ollision tree, we must 
hoose whi
h dithering symbols to use. A

simple solution is to use the same dithering symbol for all the edges at the same

depth in the tree. A tuple of ℓ letters is then required to build the 
ollision tree.

We will also need an additional letter to 
onne
t the tree to the message M.
This way, in order to build a 
ollision tree of depth ℓ, we have to �x a word !
of size ℓ+ 1, use ![i]as the dithering symbol of depth i, and use the last letter

of ! to realize the 
onne
tion.

The dithering sequen
e makes the hash of a blo
k dependent on its position

in the whole message. Therefore, the 
ollision tree 
an be 
onne
ted to its target

only at 
ertain positions, namely, at the positions where ! and z mat
h. The

set of positions in the message where this is possible is then given by:

Range=
n

i2 N

�

�

�

(

ℓ+ 1 � i
)

^
(

z[i� ℓ]:::z[i]= !
)

o

:

Note that �nding a 
onne
ting blo
k B 0 in the se
ond step de�nes the length

of the pre�x that is required. If i0 2 Range, it will be possible to build the

se
ond preimage. Otherwise, another blo
k B 0 has to be found.

To make sure that Range is not empty, ! has to be a fa
tor of z. Ideally, !
should be the fa
tor of length ℓ+1 whi
h o

urs most frequently in z, as the 
ost

of the atta
k ultimately depends on the number of 
onne
ting blo
ks tried before

�nding a useful one (with i0 2 Range). What is the probability that a fa
tor !
appears at a random position in z? Although this is highly sequen
e-dependent,

it is possible to give a generi
 lower bound: in the worst 
ase, all fa
tors of size

ℓ + 1 appear in z with the same frequen
y. In this setting, the probability that

a randomly 
hosen fa
tor of size ℓ+ 1 in z is the word ! is 1/Fact z(ℓ+ 1).
The main property of z in�uen
ing the 
ost of our atta
k is its 
omplexity

(whi
h is related to its min-entropy), whereas its repetition-freeness in�uen
es

the 
ost of Kelsey and S
hneier type atta
ks.

1. Choose the most frequent fa
tor ! of z, with |! | =ℓ +1.
2. Build a 
ollision tree of depth ℓ using ! as the dithering symbols in all the leaf-to-

root paths. Let hT be the target value of the tree.
3. Find a 
onne
ting blo
k B0 mapping hT to anyone of the hi (say hi0

), by using
! [ℓ]as the dithering letter. Repeat until io 2 Rang e .

4. Carry the remaining steps of the atta
k as des
ribed in Fig. 1.

Fig. 2: Summary of the atta
k when a dithering sequen
e z is used.

The 
ost of �nding this se
ond preimage for a given sequen
e z, in the worst-


ase situation where all fa
tors appear with the same frequen
y, is given by:

2
n

2
+

ℓ

2
+2 + Fact z(ℓ+ 1) · 2n−k + 2n−`:



Cryptanalysis of Keränen-DMD. The 
ost of the extended atta
k against

Keränen-DMD depends on the 
omplexity of the sequen
e k. Sin
e it has a very

regular stru
ture, k has an unusually low 
omplexity.

Lemma 1. For ℓ � 85, we have:

Fact k (ℓ) � 8 · ℓ+ 332:

Despite being strongly repetition-free, the sequen
e k o�ers an extremely

weak se
urity level against our atta
k. We illustrate this by evaluating the 
ost

of our atta
k on Keranen-DMD:

2
n

2
+

ℓ

2
+2 + (8 · ℓ+ 340) · 2n−k + 2n−`:

If n is of the same order than about 3k, then the �rst term of this sum is

of the same order than the other two, and if n � 3k then it 
an simply be

negle
ted. We will use this approximation several times in the sequel. By setting

ℓ = k � 3, the total 
ost of the atta
k is about: (k+40:5) · 2n−k +3 whi
h is mu
h

smaller than 2n in spite of the dithering.

Cryptanalysis of DMD-CP. We now apply the atta
k to Rivest's 
on
rete

proposal. We �rst need to evaluate the 
omplexity of its dithering sequen
e.

Re
all from se
tion 3.2 that it is based on the Keränen sequen
e, but that we

move on to the next symbol of the sequen
e only when a 13 bit 
ounter over�ows.

The original motivation was to redu
e the 
ost of the dithering, but it has the

unintentional e�e
t of in
reasing the resulting sequen
e 
omplexity. However, it

is possible to prove that this e�e
t is quite small:

Lemma 2. Let c denote the sequen
e obtained by diluting k with a 13-bit 
ounter.

Then for every 0 � ℓ <2 13, we have:

Fact c(ℓ) = 8 · ℓ+ 32760:

The dilution does not generate a sequen
e of a higher asymptoti
 
omplexity:

it is still linear in ℓ, even though the 
onstant term is bigger due to the 
ounter.

The 
ost of the atta
k is therefore:

2
n

2
+

ℓ

2
+2 + (8 · ℓ+ 32768) · 2n−k + 2n−`:

Again, if n is greater than about 3k, the best value of ℓ is k � 3, and the


omplexity of the atta
k is then approximately: (k + 4094) · 2n−k +3 ' 2n−k +15 :
For settings 
orresponding to SHA-1, a se
ond preimage 
an be 
omputed in

time 2120 .

Countermeasures. Even though the dilution does not in
rease the asymptoti



omplexity of a sequen
e, the presen
e of a 
ounter in
reases the 
omplexity of

the atta
k. If we simply used a 
ounter over i bits as the dithering sequen
e,



the number of fa
tors of size ℓ would be Fact(ℓ) = 2 i (as long as i � ℓ). The


omplexity of the atta
k would then be
ome: 2
n

2
+

ℓ

2
+2 + 2n−k +i + 2n−`:

In pra
ti
e, the dominating term is 2n−k +i . By taking i= k, we would obtain

a s
heme whi
h is resistant to our atta
k. This is essentially the 
hoi
e made by

the designers of Haifa [23℄, but su
h a dithering sequen
e 
onsumes k bits of

bandwidth. Note that as long as the 
ounter does not over�ow, no variation of

the atta
k of Kelsey and S
hneier 
an be applied to the dithered 
onstru
tion.

Using a 
ounter (i.e., a big alphabet) is a simple way to obtain a dither-

ing sequen
e of high 
omplexity. An other, somewhat orthogonal, possibility to

improve the resistan
e of Rivest's dithered hashing to our atta
k is to use a

dithering sequen
e of high 
omplexity over a small alphabet (to preserve band-

width). In appendix A we show that there is an abelian square-free sequen
e

over 6 letters with 
omplexity greater than 2` = 2. Then, with ℓ = 2k/3, the total

ost of the online atta
k is about 2n−2k = 3.

Another possible way to improve the resistan
e of Rivets's 
onstru
tion against

our atta
k is to use a pseudo random sequen
e over a small alphabet. Even

though it may not be repetition-free, its 
omplexity is almost maximal. Suppose

the alphabet has size
�

�A
�

�= 2i. Then the expe
ted number of ℓ-letter fa
tors in a

pseudo random word of size 2k is lower-bounded by: 2i �̀ ·
(

1� exp � 2k−i �̀

)

(refer

to [12℄, theorem 2, for a proof of this 
laim)). The total optimal 
ost of the online

atta
k is then at least 2n−k = (i +1)+2 and is obtained with ℓ = k/(i+ 1). With

8-bit dithering symbols and if k = 55, as in the SHA family, the 
omplexity of

the atta
k is 2n−5 .

4.2 A Generi
 Atta
k on any Dithering S
heme With a Small

Alphabet

The atta
ks des
ribed so far exploited the low 
omplexity of Rivest's spe
i�


dithering sequen
es. In this se
tion we show that the weakness is more general,

and that after an O (2n ) prepro
essing, se
ond preimages 
an be found for mes-

sages of length 2k � 2n = 4 in O
(

22�(n−k )= 3
)

time and spa
e for any dithering

sequen
e (even of maximal 
omplexity) if the dithering alphabet is small. Se
-

ond preimages for longer messages 
an be found in max
(

O
(

2k
)

;O
(

2n = 2
))

time

and min
(

O
(

2n−k

)

;O
(

2n = 2
))

memory.

Outline of the Atta
k. The new atta
k 
an be viewed as a type of time-

memory tradeo�. For any given 
ompression fun
tion, we pre
ompute a �xed

data stru
ture whi
h 
an then be used to �nd additional preimages for any

dithering sequen
e and any given message of su�
ient length. In the atta
k

we will need to �nd 
onne
ting blo
ks leading from the message to our data

stru
ture and from our data stru
ture to the message. The data stru
ture will

allow us to generate a sequen
e of blo
ks of the required length, leading from

the entry point to the exit point, using the given dithering sequen
e.



A simple stru
ture of this type is the kite generator3 whi
h will allow us to

�nd a se
ond preimage for a message made of O
(

2k
)

message blo
ks in time

max
(

O
(

2k
)

;O
(

2(n−k)=2
))

and O
(�

�A
�

�· 2n−k

)

spa
e. Note that for the SHA-1

parameters of n = 160 and k = 55, the time 
omplexity of the new atta
k

is 255 , whi
h is just the time needed to hash the original message. However,

the size of the kite generator for the above parameters ex
eeds 2110 . The kite

generator is a labelled dire
ted graph whose 2n−k verti
es are labelled by some

easily re
ognized subset of the 
haining values that in
ludes the IV (e.g., the

tiny fra
tion of hash values whi
h are extremely 
lose to IV ). Ea
h dire
ted

edge (whi
h 
an be traversed in both dire
tions) is labelled by one letter �
from the dithering alphabet and one message blo
k x, and it leads from vertex

h1 to vertex h2 if F (h 1; x; �) = h2. Ea
h vertex in the generator should have

exa
tly two outgoing edges labelled by ea
h dithering letter, and thus the expe
ted

number of ingoing edges labelled by ea
h letter is also 2. The generator is highly


onne
ted in the sense that there is an exponentially large diverging binary tree

with any desired dithering sequen
e starting at any vertex, and an exponentially

large 
onverging tree 4 with any desired dithering sequen
e (whose degrees are

not always 2) ending at most verti
es. It 
an be viewed as a generalization of

the 
ollision tree of Kelsey and Kohno [15℄, whi
h is a single tree with a single

root in only the 
onverging dire
tion and with no dithering labels.

On
e 
omputed (during an unbounded pre
omputation stage), we 
an use

the generator to �nd a se
ond preimage for any given message M with 2 k blo
ks

and any dithering sequen
e. We �rst hash the long input M to �nd (with high

probability) some intermediate hash value h
i
whi
h appears in the generator.

We then use the generator to repla
e the �rst i blo
ks in the message by a

di�erent set of i blo
ks. We start from the generator vertex labelled by IV , and
follow some path in the generator of length i � (n � k) whi
h has the desired

dithering sequen
e (there are exponentially many paths we 
an 
hoose from). It

leads to some hash value h
t
in the generator. We then evaluate the full diverging

tree of depth (n � k)/2 and the desired dithering sequen
e starting at h
t
, and

the full 
onverging tree of depth (n � k)/2 and the desired dithering sequen
e

ending at h
i
. Sin
e the number of leaves in ea
h tree is O

(

2(n−k)=2
)

and they

3 We 
all it a kite generator sin
e we use it to generate kites of the form

Message

h1 h2kh2IV hi(· · ·) (· · ·)

hiIV ht

= =

Fig. 3: A Kite

4 See [10℄ for a formal justi�
ation of this 
laim.



are labelled by only 2n−k possible values, we expe
t by the birthday paradox to

�nd a 
ommon 
haining value among the two sets of leaves. We 
an now 
ombine

the long random 
hain of length i � (n � k) with the two short tree 
hains of

length (n � k)/2 to �nd a kite-shaped stru
ture of the same length i and with

the same dithering sequen
e as the original message between the two 
haining

values IV and h
i
. Note that the 
ommon leaf of the two trees 
an be found with

no additional spa
e by using a variant of Pollard's rho method whi
h traverses

pseudo-randomly 
hosen paths in the two trees until it 
y
les.

This atta
k 
an be applied with essentially the same 
omplexity even when

the IV is not known during the pre
omputation stage (e.g., when it is time

dependent). When we hash the original long message, we have to �nd two in-

termediate hash values h
i
and h

j
(instead of IV and h

i
) whi
h are 
ontained in

the generator and 
onne
t them by a properly dithered kite-shaped stru
ture of

the same length.

The main problem of this te
hnique is that for the typi
al 
ase in whi
h

k < n/2, it uses more spa
e than time, and if we try to equalize them by

redu
ing the size of the kite generator, we are unlikely to �nd any 
ommon


haining values between the given message and the generator. Finding a way

to 
onne
t the generator ba
k into the message will require 2n−k+1 additional

steps, whi
h will make the time 
omplexity too high. To bypass this di�
ulty,

we will use the 
lassi
 time-memory tradeo� of Hellman tables.

Hellman's TMTO atta
k. Time/memory Tradeo�s (TMTO) were �rst in-

trodu
ed in 1980 by Hellman [11℄. The idea is to improve brute for
e atta
ks

by trading time for memory when inverting a fun
tion f : f0; 1gn ! f0; 1g n .

Suppose we have an image element y and wish to �nd a pre-image x 2 f −1(y).
One extreme would be to go over all possible elements x until we �nd one su
h

that f(x) = y, while the other extreme would be to pre-
ompute a huge table


ontaining pairs (x; f(x)) sorted by the se
ond element. Hellman's idea was to


onsider what happens when applying f iteratively. We start at a random el-

ement x0 and 
ompute x
i+1 = f(x

i
) for t steps saving only the start and end

points of the generated 
hain (x0; xt). We repeat this pro
ess with di�erent ini-

tial points and generate a total of c 
hains. Now on input y we start generating

a 
hain starting from y and 
he
k if we rea
h one of the saved endpoints. If we

have, we generate the 
orresponding 
hain, starting from the original starting

point and hope to �nd a preimage of y. Noti
e that as the number of 
hains c
in
reases beyond 2n /t2, the 
ontribution from additional 
hains de
reases with

the number of 
hains. To 
ounter this birthday paradox e�e
t, Hellman sug-

gested to 
onstru
t a number of tables, ea
h using a slightly di�erent fun
tion

f
i
, su
h that knowing a preimage of y under f

i
implies knowing su
h a preimage

under f . Hellman's original suggestion, whi
h works well in pra
ti
e, was to use

f
i
(x) = f(x � i). Thus if we 
reate d = 2 n=3 tables ea
h with a di�erent f

i
,

su
h that ea
h table 
ontains c = 2n=3 
hains of length t = 2n=3 , about 88%

of the 2n points will be 
overed by at least one table. Noti
e that the running



time of Hellman's algorithm is t · d = 22n=3 while the memory requirement is

d · c = 22n=3 .

The Atta
k. As mentioned above, we need to �nd a linking blo
k from the kite-

generator to the message when its size is too small to have a 
ommon point. To

solve this problem, we denote one of the verti
es in the kite-generator by N and


onstru
t for ea
h � 2 A a set of d Hellman tables with c 
hains, ea
h of length

t, su
h that t · c · d = 2n−k by iterating the basi
 fun
tion f
�
(x) = F (N; x; �).

During the online phase, for ea
h intermediate hash value h
i
in the message, we

use the set of tables 
orresponding to the dithering 
hara
ter � used to rea
h h
i

and try to �nd a blo
k leading from the spe
i�ed vertex N to h
i
using �. Sin
e

the tables 
over approximately 2n−k elements, the probability of �nding su
h a

blo
k for h
i
is 2−k . As the message is of length 2k , we expe
t to �nd on average

one 
onne
ting h
i
. Noti
e that although we 
reate 
hains for the Hellman tables,

they do not 
orrespond to the 
hain of hash values of a message, and thus we

do not have to use the 
orre
t dithering sequen
e along these paths. The only

purpose of the 
hains is to invert the fun
tion f
�
and thereby �nd a single blo
k

linking N to one of the intermediate hash values along the given message.

Now that we have a method for 
onne
ting a predetermined hash value N to

a message, we 
an repla
e the role of the kite-generator of �nding a pre�x whi
h

ends at N with a simpler 
onstru
tion. Sin
e we were not 
onstrained in our


hoi
e of N we 
an simplify the kite generator to the single point IV with a self

loop for ea
h dithering symbol � 2 A. During the prepro
essing, we exhaustively
sear
h for ea
h � 2 A a blo
k x

�
su
h that F (IV; x

�
; �) = IV . Given su
h self

loops, we use in ea
h step the blo
k x
�

orresponding to the 
urrent dithering

symbol � and thus we 
an generate a message of any length starting and ending

with IV . This IV serves as the point N in Hellman's algorithm. Note that this


onstru
tion does not have the advantage of the original kite generator that IV

an be unknown during the prepro
essing stage.

Combining the two steps, we �rst �nd a linking blo
k from IV to one of

the intermediate hash values of the message using the 
orre
t dithering symbol.

Then, using the IV self loops, we 
onstru
t a pre�x of the required length linking

ba
k to IV . During the prepro
essing, the 
ost of 
onstru
ting the Hellman tables

is
�

�A
�

�· t · c · d = O
(�

�A
�

�· 2n−k

)

time and
�

�A
�

�· c · d spa
e, while 
onstru
ting the

IV self loops takes O
(�

�A
�

�· 2n
)

time and
�

�A
�

� spa
e. As the 
ost of �nding the

self loops is the dominating fa
tor, the total time used in the prepro
essing

phase is O
(�

�A
�

�· 2n
)

and the total spa
e used is
�

�A
�

�· c · d. In the online phase,

generating the pre�x takes time O
(

2k
)

and �nding a linking blo
k to one of the

2k intermediate hash values takes time O
(

2k · t · d
)

, so the total time spent in

the online phase is O
(

2k · t · d
)

. For 
onstant sized alphabets this leads to the

following 
omplexities: for k � n/4, a tradeo� balan
ing the time and memory


osts is t = 2(n−k)=3 ; c = 2(n+2k)=3 ; d = 2(n−4k)=3 giving total time and memory


omplexities of O
(

22�(n−k)=3
)

. For n/4 < k � n/2 the balan
ed time/memory

tradeo� is a
hieved by using for ea
h � a single table with parameters c = 2n=2

and t = 2n=2−k giving a �at time and memory 
omplexities of O
(

2n=2
)

. For



a non-
onstant sized alphabet A, the general time-memory tradeo� 
urve is

T · M 2 · 22k = 22n ·
�

�A
�

�

2
for k � n/4and T � 2 2k .

5 An Atta
k on Shoup's UOWHF

In this se
tion, we show that our atta
k is generi
 enough to be applied against

hash fun
tions enjoying a di�erent se
urity property, namely Universal One-

Way Hash Fun
tions (UOWHF). A UOWHF is a family of hash fun
tions H
for whi
h any 
omputationally bounded adversary A wins the following game

with negligible probability. First A 
hooses a message M , then a key K is 
hosen

at random and given to A. The adversary wins if she violates the Target Collision
Resistan
e (TCR) of H , that is if she generates a message M 0 di�erent from M
that 
ollides with M for the key K (i.e., su
h that H

K
(M ) = H

K
(M 0) with

M 6= M 0).

Shoup [26℄ proposed a simple 
onstru
tion for a UOWHF that hashes mes-

sages of arbitrary size, given a UOWHF that hashes messages of �xed size. It

is a Merkle-Damgård-like mode of operation, but before every iteration, one of

several possible masks is XORed to the 
haining value. The number of masks is

logarithmi
 in the length of the hashed message, and the order in whi
h they

are used is 
arefully 
hosen to maximize the se
urity of the s
heme. This is

reminis
ent of dithered hashing, ex
ept that here the dithering pro
ess does not

de
rease the bandwidth available to a
tual data.

We �rst des
ribe brie�y Shoup's 
onstru
tion, and then show how our atta
k


an be applied against it. The 
omplexity of the atta
k demonstrates that for

this parti
ular 
onstru
tion, Shoup's se
urity bound is nearly tight.

5.1 Des
ription

This 
onstru
tion has some similarities with Rivest's dithered hashing. It starts

from a universal one way 
ompression fun
tion F that is keyed by a key K ,
F
K
: f0; 1g

m

� f0; 1g
n

! f0; 1g
n

. This 
ompression fun
tion is then iterated, as

des
ribed below, to obtain a variable input length UOWHF H F

K

.

The s
heme uses a set of masks �0; : : : ; �k−1 (where 2k � 1 is the length of

the longest possible message), ea
h one of whi
h is a random n-bit string. The
key of the whole iterated fun
tion 
onsists of K and of these masks. After ea
h

appli
ation of the 
ompression fun
tion, a mask is XORed to the 
haining value.

The order in whi
h the masks are applied is de�ned by a spe
i�ed sequen
e over

the alphabet A = f0; : : : ; k � 1g. The s
heduling sequen
e is z[i] = �2(i), for
1 � i � 2 k , where �2(i) denotes the largest integer � su
h that 2� divides i.
Let M be a message that 
an be split into r blo
ks x 1; : : : ; xr

and let h0 be an

arbitrary n-bit string. We de�ne h
i
= F

K

(

h
i−1 � � �2(i)

; x
i

)

, and H F

K

(M ) = h
r
.

5.2 An Atta
k Mat
hing the Se
urity Bound

In [26℄, Shoup proves the following se
urity result:



Theorem 1 (Main result of [26℄). If an adversary is able to break the target


ollision resistan
e of H F with probability � in time T , then one 
an 
onstru
t

an adversary that breaks the target 
ollision resistan
e of F in time T , with

probability �/2k .

In this se
tion we show that this bound is almost tight. First, we give an

alternate de�nition of the dithering sequen
e z. We de�ne:

u
i
=

(

0 if i = 1,

u
i−1:(i � 1):u

i−1 otherwise.

As an example, we have u4 = 010201030102010. It is 
lear that |u
i
| = 2i �1,

and it is easy to show that for all i, u
i
is a pre�x of z. The dithering sequen
e is

thus simply u
k
.

The most frequently-o

urring fa
tor of size ℓ < 2 k in z is the pre�x of size ℓ
of z. It is a pre�x of u

j
with j = dlog

2
(ℓ+ 1)e, and u

j
itself o

urs about 2k−j

times in z = u
k
. The probability for a random fa
tor of z of size ℓ to be exa
tly

this 
andidate is equal to the number of o

urren
es of this 
andidate divided by

the number of ℓ-bit strings in z. Thus this probability is 2
k−j

2k−`

. This 
an in turn

be lower-bounded by: 2−j � 1

2( ` + 1)
. Our atta
k 
an be applied against the TCR

property of H F as des
ribed above. Choose at random a (long) target message

M . On
e the key is 
hosen at random, build a 
ollision tree using a pre�x of z of

size ℓ for the dithering, and 
ontinue as des
ribed in se
tion 4. The 
ost of the

atta
k is then:

T = 2
n

2
+

ℓ

2
+ 2 + 2(ℓ+ 1) · 2n−k + 2n−`:

This atta
k breaks the target 
ollision resistan
e with probability nearly 1.
Therefore, with Shoup's result, one 
an 
onstru
t an adversary A against F
with running time T and probability of su

ess 1/2k . If F is a bla
k box, the

best atta
k against F 's TCR property is the exhaustive sear
h. Thus, the best

atta
ker in time T against F has su

ess probability T /2n . When n � 3k, T '
(2k + 3) · 2n−k (with ℓ = k � 1), and thus the best adversary running in time

T has su

ess probability O
(

k/2k
)

when su

ess probability of A is 1/2 k . This

implies that there is no atta
k better than ours by a fa
tor greater than O (k)
or, in other words, there is only a fa
tor O (k) between Shoup's se
urity proof

and our atta
k.

The ROX 
onstru
tion by [2℄, whi
h also uses the Shoup's mask sequen
e to

XOR with the 
haining values is sus
eptible to the same type of atta
k, whi
h

is also provably near-optimal.

5.3 Comparing the Shoup and Rivest Dithering Te
hniques

An intriguing 
onne
tion between Shoup's and Rivest's ideas shows up as soon

as we noti
e that the s
heduling sequen
e z 
hosen by Shoup is abelian square-

free. In fa
t, one year after Shoup's 
onstru
tion was published, Mironov [22℄

proved that an even stronger notion of repetition-freeness was ne
essary: z is,



and has to be, even-free. A word is even-free if all of its non-empty fa
tors 
ontain

at least one letter an odd number of times. Note that all even-free words are

abelian square-free. We believe that the role these non-trivial sequen
es play in

iterated 
onstru
tions in 
ryptography (su
h as hashing) has yet to be 
ompletely

understood.

6 Se
ond Preimage Atta
k with Multiple Targets

Both the older generi
 se
ond preimage results of [8, 16℄ and our results 
an be

applied e�
iently to multiple target messages. The work needed for these atta
ks

depends on the number of intermediate hash values of the target message, as this

determines the work needed to �nd a linking message from the 
ollision tree (our

atta
k) or expandable message ([8, 16℄). A set of 2R messages, ea
h of 2K blo
ks,

has the same number of intermediate hash values as a single message of 2R +K

blo
ks, and so the di�
ulty of �nding a se
ond preimage for one of a set of 2R

su
h messages is no greater than that of �nding a se
ond preimage for a single

2R +K blo
k target message. In general, for the older se
ond preimage atta
ks,

the total work to �nd one se
ond preimage falls linearly in the number of target

messages; for our atta
k, it falls linearly so long as the total number of blo
ks

2R satis�es R < (n � 4)/3.
Consider for example an appli
ation whi
h has used SHA-1 to hash 230 dif-

ferent messages, ea
h of 220 message blo
ks. Finding a se
ond preimage for a

given one of these messages using the atta
k of [16℄ requires about 2141 work.

However, �nding a se
ond preimage for any one of these of these 230 target

messages requires 2111 work. (Naturally, the atta
ker 
annot 
ontrol for whi
h

target message he �nds a se
ond preimage.)

This works be
ause we 
an 
onsider ea
h intermediate hash value in ea
h

message as a potential target to whi
h the root of the 
ollision tree (or an

expandable message) 
an be 
onne
ted, regardless of the message it belongs

to, and regardless of its length. On
e we 
onne
t to an intermediate value, we

have to determine to whi
h parti
uliar target message it belongs. Then we 
an


ompute the se
ond preimage of that message. Using similar logi
, we 
an extend

our atta
k on Rivest's dithered hashes, Shoup's UOWHF, and the ROX hash


onstru
tion to apply to multiple target messages.

This observation is important for two reasons: First, simply restri
ting the

length of messages pro
essed by a hash fun
tion is not su�
ient to blo
k the long

message atta
k; this is relevant for determining the ne
essary se
urity parameters

of future hash fun
tions. Se
ond, this observation allows long-message se
ond

preimage atta
ks to be applied to target messages of pra
ti
al length. A se
ond

preimage atta
k whi
h is feasible only for a message of 250 blo
ks has no pra
ti
al
relevan
e, as there are probably no appli
ations whi
h use messages of that

length. A se
ond preimage atta
k whi
h 
an be applied to a large set of messages

of, say, 224 blo
ks, might have some pra
ti
al impa
t. While the 
omputational

requirements of these atta
ks are still infeasible, this observation shows that the

atta
ks 
an apply to messages of pra
ti
al length.
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1�16

A Some Sequen
e-Complexity Related Results

Sequen
es Generated by Morphisms. We say that a fun
tion � :A � ! A �

is a morphism if for all words x and y, �(x:y) = �(x):�(y). A morphism is then

entirely determined by the images of the individuals letters. A morphism is said

to be r-uniform (with r 2 N) if for all word x, |�(x)| = r · |x|. If, for a given

letter � 2 A , we have �(�) = �:x for some word x, then � is non-erasing for

�. Given a morphism � and an initialization letter �, let u
n
denote the n-th

iterate of � over �: u
n
= �n (�). If � is r-uniform (with r � 2) and non-erasing

for �, then u
n
is a stri
t pre�x of u

n + 1, for all n 2 N. Let �1 (�) denote the



limit of this sequen
e: it is the only �xed point of � that begins with the letter

�. Su
h in�nite sequen
es are 
alled uniform tag sequen
es [5℄ or r-automati


sequen
es [1℄. Be
ause they have a very regular stru
ture, there is a spe
ta
ular

result [5℄ regarding the 
omplexity of in�nite sequen
es generated by uniform

morphisms:

Theorem 2 (Cobham, 1972). Let z be an in�nite sequen
e generated by an

r-uniform morphism, and assume that the alphabet size
�

�A
�

� is 
onstant. Then z

has linear 
omplexity:

Fact z(ℓ) � r · |A| 2 · ℓ:

It is worth mentioning that similar results exist in the 
ase of sequen
es

generated by non-uniform morphisms [24, 9℄, although the upper bound 
an be

quadrati
 in ℓ. Sin
e the Kera�nen sequen
e is 85-uniform [17, 18, 25℄, the result of

theorem 2 gives: Fact k (ℓ) � 1360 · ℓ. This upper-bound is relatively rough, and

for parti
ular values of ℓ, it is possible to obtain a mu
h better approximation,

su
h as the one given in lemma 1 (whi
h is tight). The interested reader should


onsult the full version of this paper.

There are Abelian Square-Free Sequen
es of Exponential Complexity

It is indeed possible to 
onstru
t an in�nite abelian square-free sequen
e of

exponential 
omplexity, although we do not know how to do it without slightly

enlarging the alphabet.

We start with the abelian square-free Kera�nen sequen
e k over fa;b;c;dg,
and with another sequen
e u over f0;1g that has an exponential 
omplexity.

Su
h a sequen
e 
an be built for example by 
on
atenating the binary en
oding

of all the 
onse
utive integers. Then we 
an 
reate a sequen
e ~z over the union

alphabet A = fa;b;c;d;0;1g by interleaving k and u : ~z = k[1]:u[1]:k[2]:u[2]::::.
The resulting shu�ed sequen
e inherits both properties: it is still abelian square-

free, and has a 
omplexity of order 

(

2`=2
)

.


