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Abstract. We provide attacks and analysis that capture a tradeoff, in
the ideal-permutation model, between the speed of a permutation-based
hash function and its potential security. We show that any 2n-bit to n-bit
compression function will have unacceptable collision resistance it makes
fewer than three n-bit permutation invocations, and any 3n-bit to 2n-bit
compression function will have unacceptable security if it makes fewer
than five n-bit permutation invocations. Any rate-α hash function built
from n-bit permutations can be broken, in the sense of finding preimages
as well as collisions, in about N1−α queries, where N = 2n. Our results
provide guidance when trying to design or analyze a permutation-based
hash function about the limits of what can possibly be done.

1 Introduction

Overview. Consider the problem of constructing a cryptographic hash function
where, for reasons of speed, assurance, or minimalism, you’ve decided to base
your design on an off-the-shelf blockcipher, say AES, with an n = 128 bit block-
size and a small, fixed set of keys. To keep things modular, you’ve decided to
first build a 3n-bit to 2n-bit compression function from your n-bit permutations
π1, . . . , πk. You plan to prove your construction sound in the ideal-permutation
model, where the adversary has black-box access to the forward and backwards
direction for each πi.

Perhaps surprisingly, the design problem just described is extremely chal-
lenging. If you write a construction down, chances are good that, after a while,
you’ll find an efficient attack. It’s quite unlikely you’ll find an easy proof. At
least this was our experience, and over a period of many months.

In this paper we partially explain where the design difficulty is coming from.
Basically, the problem is that it costs a surprisingly large number of permuta-
tion invocations to buy a reasonable level of security. In particular, compressing
3n bits to 2n bits needs at least five permutation invocations just to break the
birthday bound of N0.5 queries (where N = 2n) that motivates having a double-
length construction in the first place. And even with five permutations there is
still going to be a collision-finding attack that uses about N0.6 queries, which
isn’t all that great.

In prior work, Black, Cochran, and Shrimpton [1] showed that any rate-1
iterated hash function whose compression function uses a single permutation



call must be insecure in the ideal-permutation model.3 In the present work, the
Black et al. result is seen as a point on a continuum: while one permutation
call is not enough, more and more calls buys you, potentially, better and better
security. Concretely, we exhibit a quantifiable tradeoff between the number of
permutation calls and the effectiveness of a corresponding attack. The attack’s
effectiveness diminishes rather slowly with the number of permutation calls.

The problem of constructing a cryptographic hash function from a fixed-key
blockcipher dates to Preneel, Govaerts, and Vandewalle [8]. They explain the
utility of this problem and specify a family of solutions with inverse rates of 4–8.
For the concrete parameters they suggest, a compression function mapping 310
bits to 256 bits using four calls to 64-bit permutations, our own pigeonhole-
birthday attack (Theorem 2) implies that an adversary will probably have the
information it needs to construct a collision after making just two million queries.
While this doesn’t mean that there’s a computationally efficient way to find the
desired collision, it does mean that, for the stated parameters, one can’t possibly
prove a decent security bound in the random-permutation model.

We want to emphasize at the outset that this paper is about attacks, not
constructions or their security proofs. It remains an intriguing open question if,
for every choice of parameters, there is a construction whose provable security
matches that given by our attacks. Our guess is that the answer is yes, which
would mean that the results of this paper are tight.

Our results and their interpretation. Let us now summarize our re-
sults one-by-one. First we look at the collision resistance of a permutation-based
compression function. We show that if a compression function maps mn bits
to rn bits using k calls to n-bit permutations—a signature we abbreviate as
m k→ r, eliding n—then an adversary will be able to find a collision using some4

N1−(m−0.5r)/k queries, where, again and throughout, N = 2n. In particular, a
2 2→ 1 compression function can be broken with about N1−(2−0.5)/2 = N1/4

queries, which is unacceptably few, while a 3 4→ 2 compression function can be
broken in about about N1−(3−1)/4 = N1/2 queries, which, for a double-length
construction, is again too few.

Our bounds suggest a qualitative difference in behavior between the m k→ 1
(single-length) and the m k→ 2 (double-length) settings: in the first case k = 3
permutations is enough to potentially achieve the optimal security of N1/2

queries, while in the second case no number of permutation calls can ever achieve
the optimal security of N queries. It has recently been shown that one can asymp-
totically achieve the optimal security of N1/2 queries with a 2 3→ 1 compression
function [9], one of the rare choices of parameters for which a m k→ r construction
is known to have a security bound matching that of our attacks.

3 The rate of a permutation-based hash function is α if it processes αn bits worth of
data with each n-bit permutation invocation. The inverse rate β = 1/α is therefore
the number of permutation calls used per n bits of input.

4 In summarizing our results we omit distracting multiplicands or addends that have
a second-order effect.



Next we put compression functions aside and look at collision resistance for
a full-fledged permutation-based hash function H: {0, 1}∗ → {0, 1}rn. We show
that if the rate of the hash function is α then an adversary can find collisions
with about N1−α queries. In particular, rate-1 hash functions are completely
insecure, as already discovered by Black et al. for the special case of iterated hash
functions using a single permutation call per iteration. In addition, a rate-1/2
double-length hash function (r = 2) will admit an N1/2-query attack. As this
is what one expects from a single-length construction, the conclusion is that a
double-length construction must have a rate of less than 1/2.

We also look at the preimage resistance of permutation-based compression
functions and hash functions. In the former case, a preimage for an m k→ r con-
struction can be found in about N1−(m−r)/k queries. In particular, preimages
can be found in any 2 3→ 1 design with about N2/3 queries. (Happily, the 2 3→ 1
construction we mentioned asymptotically matches this bound [9].) So while
collision-resistance can be “as good as a random function” with a 2 3→ 1 design,
no such design can be comparably good with respect to preimage resistance.
For a full-fledged rate-α hash function, a preimage can be found in about N1−α

queries, which is, rather oddly, the same as for collision resistance.
In a somewhat different spirit, Section 8 of this paper considers the number

of bits that a permutation-based compression function must keep in memory in
order to be collision resistant. We show that an m → r compression function
must, at some point during its computation, keep strictly more than mn bits in
memory, or else it will suffer from devastating attacks. If we imagine that the
compression function is built from n-bit wires connecting the permutations, then
the compression function must, at some point, maintain at least m + 1 active
wires to have any hope for collision resistance.

Appendix A sketches a generalization of the attack of Black et al. Theirs is a
collision attack on permutation-based iterated hash functions that use a single
permutation call per iteration; here we adapt it to the case where k permuta-
tion calls are made per iteration. The attack is only applicable to iterated hash
functions, and our version of it uses a heuristic assumption, but the bound is
slightly better than that of our attack for an arbitrary hash function.

2 The Model

Consider a compression function H: {0, 1}mn → {0, 1}rn built from black-box
n-bit permutations, where m > r ≥ 1 and n ≥ 1. Let us assume that for H
to process its mn-bit input requires making k calls, in order, to permutations
π1, . . . , πk: {0, 1}n → {0, 1}n. Then H necessarily takes the form illustrated in
Fig. 1, for some sequence of functions f1, . . . , fk, g. Along with permutations
π1, . . . , πk: {0, 1}n → {0, 1}n, functions fi: {0, 1}imn → {0, 1}n (i ∈ [1..k]) and
g: {0, 1}(i+1)mn → {0, 1}rn define H. In general, we do not require anything
of f1, . . . , fk, g beyond their having the specified domain and range.

Because π1, . . . , πk are always called in the order π1 and then π2 and so forth,
up to πk, we call the model just described the fixed-order model. It includes de-



signs where the permutations π1, . . . , πk are unrelated—the distinct-permutation
setting—and designs where a single permutation π (= π1 = · · · = πk) is always
called—the single-permutation setting. It does not include the case where the
identity of the permutation (ie, which πi is used at each step) is data dependent.
This restriction turns out not to be so significant—more on that in just a bit.

Let H be a fixed-order compression function, notation as above, and let A be
an adversary with access to oracles π1, . . . , πk (and, in principle, their inverses—
only that this isn’t needed in any of our attacks). The advantage of A in finding
collisions in H is the probability that A asks a sequence of queries such that
there exist distinct inputs v, v′ ∈ {0, 1}mn for which the adversary has asked all
necessary queries to compute H(v) and H(v′). This probability is over the ad-
versary’s coins and over uniform permutation oracles π1, . . . , πk. (This sentence
assumes the distinct-permutation setting. More generally, select a single ran-
dom permutation to model each distinct πi.) Note that we do not insist that the
adversary actually output a collision: we assert that it wins if a computationally-
unbounded adversary could compute a collision from what it knows. It is true
that this makes the attacks less “realistic” than if we had paid attention to the
attacker’s time and required it to print out its collision. But since our main goal
is to understand the limits of what is provably secure in the random-permutation
model, we can ignore time and adopt a liberal notion of adversarial success.

As mentioned already, one can generalize the fixed-order model by letting
the compression function choose which permutation to invoke at each step: in
Fig. 1, add in a line 3.5 saying j ← ei(v, y1, . . . , yi−1), and use j, not i, as the
subscript for π at line 4. This no-fixed-order model was employed by Black,
Cochran, and Shrimpton [1]. We ourselves prefer the fixed-order model, and as-
sume it for quantitative results. Philosophically, letting permutation selection
vary according to the data being hashed would make permutation-based hash-
ing conceptually coincide with blockcipher-based hashing, contrary to the point
of our investigation. More pragmatically, good lower bounds in the (simpler)
fixed-order setting are already enough to imply good lower bounds in the (more
complex) no-fixed-order setting. To see this, note that if H is a no-fixed-order
compression function that makes k permutation calls, then there’s a functionally
identical fixed-order compression function H ′ that makes k2 calls: H ′ just queries
its k permutations in a round-robin fashion. Because of this, lower-bounds ap-
plicable to (the fixed-order) H ′ are inherited by (the no-fixed-order) H if one
simply replaces each k by k2. Since we are always thinking of k as a small con-
stant, the quantitative change in bounds is not so significant. In particular, every
qualitative conclusion that we draw in this paper is an accurate interpretation
of our results for the fixed-order model and the no-fixed-order model, too.

3 The Trivial Attacks

We begin by acknowledging two trivial but nonetheless significant attacks on any
permutation-based compression function, the exhaustion attack and the birthday
attack. The former attack asks all kN possible queries, where N = 2n. At that
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1 algorithm H(v)
2 for i← 1 to k do
3 xi ← fi(v, y1, . . . , yi−1)
4 yi ← πi(xi)
5 w ← g(v, y1, . . . , yk)
6 return w

Fig. 1. Illustration and definition for a permutation-based compression function. Re-
garding π1, . . . , πk as oracles, functions f1, . . . , fk and g define the scheme, which maps
an mn-bit input v to an rn-bit output w.

point the hash of every message will be known and so, by the pigeonhole princi-
ple (remember that m > r), there will be messages known to collide. This implies
that it is, in some sense, futile to select an output length exceeding 2n bits, as
2n bits are already enough to accommodate the maximum feasible security5.
With an output length of 3n bits, for example, you’ll never get a construction
withstanding anything near the optimal value of q = N3/2 queries, as no con-
struction can withstand more than q = N1+(lg k)/n � N3/2 queries (the “�” is
because we assume that k is a small number).

The birthday attack is to compute the permutations necessary to hash p =
q/k random messages. By the birthday phenomenon, one expects to see a col-
lision when p ≈ √2 ln 2Nr/2 ≈ 1.18Nr/2. For a proper upperbound, note that
when N ≥ 216, which we will henceforth implicitly assume, the probability of
a collision is at least 1/2 if p ≥ 1.18N1/2 balls are randomly and uniformly
thrown into N bins. We record the efficacy of our two attacks in the following
proposition.

Proposition 1. Let H: {0, 1}mn → {0, 1}rn be a k-call permutation-based com-
pression function, and let N = 2n. Then with

q=kN queries an adversary can find a collision with probability 1, and with

q=1.18kNr/2 queries an adversary can find a collision with probability ≥1/2.

5 This is assuming an information-theoretic adversary, whose only cost is the number
of queries made; a “real adversary” may well be hindered by a longer output.



In all theorem statements where, like above, q is an integer but the quantity
on the right may be fractional, it is implicit that q is obtained by rounding up
the expression on the right. Also, here and subsequently, it is not necessary to
restrict m and r to natural number; it is fine to select any rational values m
and r such mn and rn are positive integers.

4 The Pigeonhole Attack

We now give a more interesting collision attack on compression functions. It
succeeds, always, in about kN1−(m−r)/k queries.

Theorem 1. Let H: {0, 1}mn → {0, 1}rn be a k-call permutation-based com-
pression function, and let N = 2n. Then with

q = k (N1−(m−r)/k + 1) ≈ k N1−(m−r)/k

queries an adversary can find a collision in H with probability 1. �

The concrete consequences of this are interesting. Suppose H is a 2 1→ 1 compres-
sion function. Then it can be broken in just q = 2 queries. So k = 1 permutation
calls certainly won’t do, as shown by Black, Cochran, and Shrimpton [1] in the
iterated hash-function setting. In addition, we see that a 2 2→ 1 compression
function can be broken in about N1/2 queries, which is optimal for a hash func-
tion of output length n, except that Theorem 1 states the collision can be found
with probability 1, whereas an ideal construction would require 2N queries for
the same result. Quantitative results are tabulated in the top half of Fig. 2.

Proof. Let p = 	q/k
. In brief, the adversary chooses p queries to make to π1 that
enable him to “start” hashing the largest possible number of inputs (each input
requires a π1 query); then the adversary chooses p queries to make to π2 that
will enable him to continue hashing the largest possible number of inputs up to
and including the π2 step; and so on for π3, . . ., πk. If, at the end, the adversary
is still able to hash more than Nr inputs, then the adversary wins because some
two inputs necessarily collide. The proof simply consists of computing how large
p must be for the latter event to happen.

Note first the observation that if B balls are thrown into N bins the p ≤ N
most occupied bins must contain at least pB/N balls. We will repeatedly use
this observation below. Now with the hash function H specified by f1, . . . , fk, g,
choose a p-element set X1 ⊆ {0, 1}n that has a maximum number of preimages
under f1. By the observation just made, this maximum number of preimages is
at least pNm/N = pNm−1 points. The adversary will ask for π1 at each point
x1 ∈ X1. The adversary has so far made p queries and there are at least pNm−1

points v ∈ {0, 1}mn for which the adversary knows how to compute the first
permutation in the hash chain. Call this set of points V1. So |V1| ≥ pNm−1 and
for each point v ∈ V1 the adversary knows the corresponding x1, y1, and x2.
Next choose p points X2 ⊆ {0, 1}n with a maximum number of v ∈ V1 that
give rise to an x2 ∈ X2. Again by the observation that began this paragraph,
this set of points V2 has cardinality |V2| ≥ p|V1|/N ≥ p2Nm−2. Continue in



this way, selecting a set V3 where |V3| ≥ p3Nm−3 and making p more queries
so that the adversary will know how to compute the beginning computations of
a hash value for everything in V3, knowing everything up to and including the
third permutation π3. Continue until the adversary constructs a set Vk where
|Vk| ≥ pkNm−k and the adversary knows how to hash everything in Vk all the
way until the end.

If |Vk| ≥ pkNm−k exceeds Nr then, by the pigeonhole principle, there must
be two values in Vk that have the same hash, and this hash is known by the
adversary we have constructed. Thus the adversary will succeed in finding a
collision if pk > Nr−m+k, which is to say that it necessarily succeeds if p >
N (r−m+k)/k = N1−(m−r)/k. So the adversary will find a collision if 	q/k
 exceeds
N1−(m−r)/k (hence the chosen value of q). This completes the proof.

5 The Pigeonhole-Birthday Attack

In the proof above we used the fact that a collision is guaranteed as soon as
|Vk| ≥ pkNm−k > Nr. But it seems unlikely that one would really have to wait
so long as that; if the H-outputs computed by the adversary had been random
then, by the birthday phenomenon, one would expect to see a collision around the
time that |Vk| = Nr/2, or to be quite exact around the time that |Vk| = 1.18Nr/2.
Let us assume that the hash function outputs computed by the adversary in the
proof of Theorem 1 behave no worse than random outputs with respect to the
appearance of collisions. Call this the uniformity assumption. Then solving for
the integer p in pkNm−k ≥ 1.18Nr/2 reveals that we expect to see a collision
after q = kp = k(1.18)1/kN1−(m−0.5r)/k� ≤ k(1 + (1.18)1/kN1−(m−0.5r)/k) ≤
k(1 + 1.18N1−(m−0.5r)/k) ≈ kN1−(m−0.5r)/k queries, an improvement from the
earlier q ≈ kN1−(m−r)/k by a multiplicative factor of Nr/2k. To summarize:

Theorem 2. Let H: {0, 1}mn → {0, 1}rn be a k-call permutation-based com-
pression function. Let N = 2n. Then, under the uniformity assumption, with

q = k(1 + (1.18)1/kN1−(m−0.5r)/k) ≈ k N1−(m−0.5r)/k

queries an adversary can find a collision with probability ≥ 1/2. �

The stated bound suffers from a peculiar behavior in the 2 k→ 1 case when k ≥ 4,
whence the theorem states that q ≈ kN1−3/2k ≥ kN5/8 queries are sufficient for
the attack described, but Proposition 1 ensures that q = 1.18 kN1/2 queries
was already enough. The gap may seem more puzzling considering that the
pigeonhole-birthday attack is a type of birthday attack and, under the uniformity
assumption, it cannot do worse than what Proposition 1 guarantees. The problem
can be traced to the pkNm−k lower bound for the number of outputs obtained
by the pigeonhole attack, which, in turn, stems from the observation made at the
beginning of Theorem 1 that when B balls are thrown into N bins, the p ≤ N
most occupied bins must contain at least pB/N balls. In fact one can strengthen
this observation by noting that the p ≤ N most occupied bins must contain at
least μp,N (B) balls, where μp,N (B) is pB/N� if p ≤ B mod n or B ≡ 0 mod n,



atk adv asmp m→ r ≈ bound 1 2 3 4 5 6 8

ph 1 no 2→ 1 kN1−1/k 2 265.0 286.9 298.0 2104.7 2109.3 2115

ph 1 no 3→ 2 kN1−1/k 2 265.0 286.9 298.0 2104.7 2109.3 2115

pb 0.5 yes 2→ 1 1.18kN1−3/2k 2 233.1 265.7 266.2 266.6 266.8 267.2

pb 0.5 yes 3→ 2 1.18 kN1−2/k 1 3 244.3 266.1 279.2 288.0 299.0

Fig. 2. Attacks on an m k→ r compression function. Columns are the attack (ph for
pigeonhole, pd for pigeonhole-birthday), the adversary’s advantage, whether a heuristic
assumption is used in the analysis, the compression parameters, the approximate value
of q to get this advantage, and numerical values for various values of k, all with n = 128.

and p	B/N
 + B mod N otherwise. One thus gets at least μ
(k)
p,N (Nm) outputs

from the pigeonhole attack (the k-th iterate of the function), better than the
approximation pkNm−k. To find the “real” p needed by the attack one can solve
for the least integer p such that μ

(k)
p,N (Nm) ≥ 1.18Nr/2. As this is somewhat

hard to compute, an alternative is to note that, at the end of the pigeonhole-
birthday attack, there are at least p = 	q/k
 strings that the adversary knows
how to hash, and so p = 1.18Nr/2 queries are enough (still under the uniformity
assumption). We can therefore sharpen the statement of Theorem 2 to select q
as the minimum of the current value of q and 1.18 kNr/2 + k ≈ 1.18 kNr/2,
since p = 	q/k
 > q/k − k. In Fig. 2 we use this tighter bound to compute the
third-row entries.

Interpretation. The bound of the pigeonhole-birthday attack is illustrated
numerically in Fig. 2 for n = 128 bits. For 2→ 1 hashing the analysis indicates
that, with k = 2 permutations, a collision will be found in around N1/4 queries.
This is excessively low, making k = 3 permutations the best one can hope for in
this case. With k = 3 permutations the bound jumps to around N1/2 queries,
which is of course optimal for a hash function producing an n-bit output. This
suddenly-optimal behavior is qualitatively different from what happens when
the output length is 2n bits or more, in which case more permutation calls
(potentially) buys more security, but where optimal collision resistance can never
reached. For 3→ 2 hashing the adversary can break the construction in around
q = N1−2/k queries. Since a double-length construction ought to withstand
significantly more than N1/2 queries (otherwise, it makes more sense to use a
single-length construction), the conclusion is that k = 5 permutations is the
minimum number of calls that makes sense for 3→ 2 hashing.

It should be noted that, because of the uniformity assumption, the analysis of
Theorem 2 is essentially heuristic. But assumptions analogous to the uniformity
assumption are routinely made when analyzing cryptographic attacks, sometimes
without even mention that an assumption is being made. And of course one
expects that a good hash function will have outputs that look uniform on any
natural set of inputs produced by an attack.



6 Attacks on Rate-α Constructions

Theorems 1 and 2 can be recast in terms of what they say about a permutation-
based hash function with a given rate (as opposed to what they say about a com-
pression function with a given number of blockcipher calls). Let H : {0, 1}∗ →
{0, 1}rn be a fixed-order hash function based on an n-bit permutation. This
means that the algorithm is of the form specified in Fig. 1, except that the
input message v may now have any length, and sequences π1, π2, π3, . . . and
f1, f2, f3, . . . are thought of as infinite, and the number k of permutation invoca-
tions is a function k = k(v) of the input v. Then we say that H has rate α if α is
the largest real number such that hashing a message M requires at most |M |/αn
permutation calls. (One could also add in an additive constant δ to account for
padding or other extra work done at the end of processing the message.) The
inverse-rate, β = 1/α, is the number of permutation calls per n-bits of message
processed; hashing M requires at most β|M |/n permutation invocations. We
now show that the pigeonhole and pigeonhole-birthday attacks imply a tradeoff
between the (potential) security of a permutation-based hash function and its
rate.

Theorem 3. Let H: {0, 1}∗ → {0, 1}rn be a permutation-based hash function
with rate α = 1/β and let N = 2n. Then with

q = 	βln(2)αnr + α�
(eN1−α + 1) ≈ 1.89nrN1−α

queries an adversary can find a collision with probability 1. �

Proof. For any m ≥ 1 we can restrict H to inputs of length mn, whence H
becomes a compression function H ′: {0, 1}mn → {0, 1}rn that makes at most
k = 	βm
 permutation calls. By Theorem 1, a collision for this compression
function can be found with probability 1 in k(N1−(m−r)/k+1) ≤ k(N1−α+r/k+1)
queries, where again k = 	βm
 (the inequality holds because α ≤ m/k). We set
m = ln(2)αnr + α� so k = 	βln(2)αnr + α�
 (chosen by calculus to minimize
kN1−α+r/k). Then k ≥ βln(2)αnr+α�−1 ≥ β(ln(2)αnr+α)−1 = ln(2)nr and
Nr/k ≤ N1/ ln(2)n = e, so k(N1−α+r/k + 1) ≤ 	βln(2)αnr + α�
(eN1−α + 1), as
desired.

One can improve the constant of 1.89 in Theorem 3 by employing the bound of
Theorem 2 instead of Theorem 1. Then choosing m = ((ln 2)/2)αnr+α� yields
a final (approximate) bound of 0.94nrN1−α queries (for generating a collision
with probability at least 1/2). Besides halving the probability of success, the price
of this change is that one would now need to make the uniformity assumption
on the hash function, inherited from Theorem 2, for mn-bit strings.

Ignoring the leading multiplicative and additive factors in Theorem 3 we can
summarize the result as saying that any rate-α permutation-based hash function
will fail when the number of queries gets to around q = N1−α. In Fig. 3 we
tabulate this more precisely, indicating the sufficient number of queries to break
permutation-based hash functions of various rates.

We comment that, in our result, the number of distinct permutations used by
the hash function does not matter, as long as they are consulted in a fixed order.



atk adv asmp bound restrictions 2 3 4 5 6 8

ph 1 no 1.89 nr N1−α none N0.57 N0.74 N0.82 N0.87 N0.90 N0.95

pb 0.5 yes 0.94 nr N1−α none N0.56 N0.73 N0.81 N0.86 N0.90 N0.95

tree 0.5 yes 2 β N1−α iterated N0.52 N0.69 N0.77 N0.83 N0.86 N0.91

Fig. 3. Collision-finding attacks on a permutation-based hash function H: {0, 1}∗ →
{0, 1}rn with rate α. The rows are: the attack (pigeonhole, pigeonhole-birthday, tree);
the adversary’s advantage; whether a heuristic assumption is used in the analysis; the
approximate bound; restrictions on the result; and threshold values q when n = 128,
r = 2, and inverse rates β = 1/α ∈ {2, 3, 4, 5, 6, 8}.

Potentially, the hash function might never reuse the same permutation twice,
but it would still suffer from the same vulnerabilities as long as it consulted its
permutations in a prescribed order.

7 Attacking Preimage Resistance

We adopt as a notion of preimage resistance that the adversary is presented a
random range point w ∈ {0, 1}rn and succeeds if it finds (or simply knows from
its query history) a preimage to this point. We first observe that our earlier
pigeonhole-attack can be adapted so as to become a preimage-finding attack.
We then extend this to give an attack on an arbitrary hash function. As we have
chosen our range point at random, neither case requires a heuristic assumption.

Theorem 4. Let H: {0, 1}mn → {0, 1}rn be a k-call permutation-based com-
pression function and let N = 2n. Then with

q = k (N1−(m−r)/k + 1) ≈ k N1−(m−r)/k

queries an adversary can invert a random point with probability ≥ 1/2. �

Proof. The attack proceeds as with the pigeonhole attack, Theorem 1, by greed-
ily constructing a set Vk ⊆ {0, 1}mn of cardinality at least pkNm−k for which
the adversary knows how to hash everything in Vk. When this set grows to
half the size of {0, 1}rn the adversary will have a 50% chance of inverting a
randomly selected point w. So the needed number of queries is the smallest q
such that pkNm−k ≥ 0.5Nr, where p = 	q/k
. Solving, we must ensure that
	q/k
 ≥ (q − k)/k ≥ 0.51/k N1−(m−r)/k. But 0.51/k N1−(m−r)/k ≤ N1−(m−r)/k

so it suffices that (q − k)/k ≥ N1−(m−r)/k, and the bound follows.

For arbitrary hash functions, as opposed to compression functions, we get the
following result to relate preimage resistance to rate.

Theorem 5. Let H: {0, 1}∗ → {0, 1}rn be a permutation-based hash function
with rate α = 1/β and let N = 2n. Then with

q = 	βln(2)αnr + α�
(eN1−α + 1) ≈ 1.89nrN1−α

queries an adversary can invert a random point with probability 1/2. �



Proof. The proof is exactly the same as for Theorem 3 since the bounds of
Theorem 1 and Theorem 4 are the same.

It is interesting that breaking the preimage resistance of a permutation-based
hash function is essentially no harder than breaking its collision resistance; our
attacks differ in effectiveness only by a factor of 4. In addition, while one may
hope to get near-optimal collision resistance with a 2 3→ 1 compression func-
tion, the preimage resistance will be nowhere near optimal: preimage-resistance
will fail by around N2/3 queries, whereas one might hope for something that
works up to around N queries. But, as with the collision-resistance of double-
length constructions, one can hope to push up the preimage resistance to close
to N queries by using more and more permutation calls.

8 The Too-Few-Wires Attack

In this section we switch from considering the number of permutations used
by a compression function to considering the amount of memory it requires.
Mainly we show that a compression function that maps mn bits to rn bits must
keep more than mn bits of information in memory at some point during its
computation—otherwise it will offer essentially no collision resistance.

Instead of thinking about memory it is useful to think in terms of wires. If
we imagine that the compression function is built from n-bit wires connecting
the permutations and processed at different points by arbitrary functions, our
result implies that at least m + 1 wires must be used at some point during the
computation—one one more wire than there are input wires.

Naturally one needs to define what it means for a compression function to
“keep mn bits in memory” during a computation. The model is as follows: we
imagine the mn bits to be kept in m “buckets” of n bits each. At any stage,
the buckets may either be processed by an arbitrary function fi : {0, 1}mn →
{0, 1}mn; or else one of the buckets may be hit with a permutation πi, replacing
the contents of that bucket with the output of the permutation. The buckets are
initialized with the input to the compression function, and the computation is
terminated by an arbitrary function mapping {0, 1}mn to {0, 1}rn.

One may assume that no two functions fi and fj are ever applied one right
after the other (else one could replace them with their composition), and one
can assume that permutations are always applied to the first bucket (as the
fi functions can be used to switch bucket contents). Thus if the compression
function uses k permutations (π1, . . . , πk) and we denote by π̄i the map from
{0, 1}mn to {0, 1}mn that is πi on the the first bucket and the identity on all
others, then the hash of v ∈ {0, 1}mn is fk(π̄k(fk−1(π̄k−1(. . . f0(v) . . . )))) where
fk: {0, 1}mn → {0, 1}rn and fi : {0, 1}mn → {0, 1}mn for i < k. Figure 4 shows
the basic structure, with buckets drawn as wires. The sequence of permutations
(π1, . . . , πk) may be distinct or include repetitions, but we assume that the per-
mutations are applied in a fixed order, namely that which permutation is applied
at a given point does not depend on the contents of the buckets at that point



f0
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f1
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Fig. 4. The structure of a compression function that maps mn bits to rn bits using mn
bits of memory where m = 3, r = 2, and k = 4. Each wire represents n bits. Functions
f0, f1, f2, f3, and f4 are all arbitrary.

(this restriction can in fact be removed with only a slight increase in the com-
plexity of the attack, so this assumption is mainly made for simplicity). We then
have the following:

Theorem 6. Let H: {0, 1}mn → {0, 1}rn be a permutation-based compression
function using k permutation calls and mn bits of memory. Then a collision can
be found in 2k queries. �

Proof. With notation as in the paragraph before Theorem 6, let j be the least
number such that fj is not a permutation. Note that j is well-defined since fk

is not a permutation. Fix any two distinct inputs u and v in {0, 1}mn such
that fj(u) = fj(v). Because f0, . . ., fj−1 are permutations we can compute
u′ = f−1

0 (π̄−1
1 (f−1

1 (. . . π̄−1
j (u) . . . ))) and v′ = f−1

0 (π̄−1
1 (f−1

1 (. . . π̄−1
j (v) . . . )))

with 2j ≤ 2k permutation calls. Observe that fk(π̄k(fk−1(π̄k−1(. . . f0(u′) . . . ))))
= fk(π̄k(fk−1(π̄k−1(. . . f0(v′) . . . )))) since fj(u) = fj(v) and we are done.

One can generalize this result. Assume that we have at our disposal k ideal
primitives ρ1, . . . , ρk, which are functions from {0, 1}mn to {0, 1}mn and such
that (i) finding a collision for ρi costs qi expected queries to ρi, unless ρi is a
permutation, in which case (ii) finding a preimage for ρi costs one query. (An
n-bit permutation can be seen as such a primitive, acting only on the first n
bits.) A compression function using (ordered) calls ρ1, . . . , ρk and mn bits of
memory can be modeled as above, with mn-bit to mn-bit functions f0, . . . , fk

interwoven with ρ1, . . . , ρk. Then one can easily adapt the proof of Theorem 6 to
show that the cost of finding a collision for the compression function is at most
max(qi)+2k, where the max is taken over all i such that ρi is not a permutation,
and is defined as 0 if all the ρi’s are permutations. (Proof: take the least j such
that either fj or ρj is not a permutation; in the former case let u, v be colliding
inputs of fj , in the latter case let u, v be colliding inputs of ρj paid for with qj

queries; then push back u, v to inputs u′, v′ for the original function using the
fact that all ρi’s and fi’s for i < j are permutations.)

This observation has some interesting consequences. For example, say that
ρ1, . . . , ρk are random functions from n bits to n bits, so that it costs 2n/2 queries



to find a collision for given ρi. Then a compression function from mn bits to rn
bits using mn bits of memory, m > r, will have collision resistance of at most
2k + 2n/2, where k is the number of times the random function is called. This
is unsatisfactory if r ≥ 2. It does not matter whether the random functions are
distinct or not, nor how many of them are used.

One can also apply the argument to a blockcipher-based construction, say one
with n-bit keys and blocks. First define what it means for a blockcipher to “act”
on mn bits: one could assume, say, that the first bucket of n bits is used for the
blockcipher’s key, that the second bucket of n bits is used for the blockcipher’s
input, and that the blockcipher’s output replaces either the first or second bucket.
If the blockcipher’s output replaces the key, then the blockcipher application is
not a permutation and has collision resistance of 2n/2 (a collision can be obtained
by keeping the word constant and tweaking the key); otherwise the blockcipher
application constitutes a permutation. Thus, any mn-bit to rn-bit blockcipher-
based compression function using only mn-bits of memory in the sense described
has collision resistance of ∼ 2n/2, which is once again unsatisfactory if r ≥ 2.

As an example of the findings in this section in action, suppose that someone
proposes a 3n-bit to 2n-bit compression function as shown in Fig. 4, but where we
have 10 rounds and each fi has some combinatorially strong mixing properties.
It will not matter that there are a large number of rounds or that the mixing is
strong; the scheme will be breakable in a handful of queries. The issue is that the
first collision in any of the fi’s can be “pushed back” through the permutations
to make two colliding inputs. Then suppose that, to prevent the pushing back,
the designer replaces each x �→ πi(x) by the feed-forward gadget x �→ x⊕πi(x).
Then the number of required wires has gone up by 1, and the attack is blocked.
However if we treat the gadget x⊕πi(x) as a primitive, the number of wires is
back down to 3 and the generalized attack shows that a collision can be found in
2n/2 queries, or the number of queries necessary to find a collision for the gadget
x⊕πi(x). This is insufficient in a scheme that outputs 2n bits.

Finally, we comment that it was not important for the attacks of this section
that the input length and output length of the compression be multiples of n;
all that matters is that the input has at least one more bit than the output.

Acknowledgments

Most of the work on this paper was carried out while the second author was in the
Department of Mathematics at UC Davis. Both authors received funding from
NSF grant CCR-0208842 and a gift from Intel; many thanks to Intel, particularly
Jesse Walker, and to the NSF, for their kind support.

References

1. J. Black, M. Cochran, and T. Shrimpton. On the impossibility of highly-efficient
blockcipher-based hash functions. Advances in Cryptology – EUROCRYPT ’05.
LNCS vol. 3494, Springer, pp. 526–541, 2005.



2. J. Black, P. Rogaway, and T. Shrimpton. Black-box analysis of the block-
cipher-based hash-function constructions from PGV. Advances in Cryptology –
CRYPTO ’02. LNCS vol. 2442, Springer, pp. 320–335, 2002.

3. S. Even and Y. Mansour. A construction of a cipher from a single pseudoran-
dom permutation. Advances in Cryptology – ASIACRYPT ’91, LNCS vol. 739,
Springer, pp. 210–224, 1992.

4. S. Hirose. How to construct double-block-length hash functions. The second cryp-
tographic hash workshop (sponsored by NIST), 2006.

5. L. Knudsen, X. Lai, and B. Preneel. Attacks on fast double block length hash
functions. Journal of Cryptology, 11(1), pp. 59–72, 1998.

6. S. Lucks. A failure-friendly design principle for hash functions. Advances in Cryp-
tology – ASIACRYPT ’05, LNCS vol. 3788, Springer, pp. 474–494, 2005.

7. M. Nandi. Towards optimal double-length hash functions. Progress in Cryptology –
INDOCRYPT 2005. LNCS vol. 3797, Springer, pp. 77–89, 2005.

8. B. Preneel, R. Govaerts, and J. Vandewalle. On the power of memory in the design
of collision resistant hash functions. Advances in Cryptology – ASIACRYPT ’02,
LNCS vol. 718, Springer, pp. 105–121, 1993.

9. P. Rogaway and J. Steinberger. How to build a permutation-based hash function.
Manuscript, 2008. Available from either author’s homepage.

10. T. Satoh, M. Haga, and K. Kurosawa. Towards secure and fast hash functions.
IEICE TRANSACTIONS on Fundamentals of Electronics, Communications and
Computer Sciences, vol. E82-A No. 1, pp. 55–62, 1999.

11. C. Shannon. A mathematical theory of communication. Bell System Technical
Journal, vol. 27, pp. 379–423 and pp. 623–656, 1948.

A The Tree Attack

This collision-finding attack is applicable only to an iterated hash function. For
that setting and with typical parameters, it does a bit better than the pigeonhole-
birthday attack. We describe the attack both for that reason and because it
generalizes the interesting attack of Black, Cochran, and Shrimpton [1].

When we say that H is an iterated permutation-based hash function we mean
that it processes one sn = (m−r)n-bit word of message with each iteration, using
a compression function H ′: {0, 1}mn → {0, 1}rn. Hash function H is defined by
H(w1 · · ·w�) = h� where hi = H ′(hi−1 ‖wi) and h0 ∈ {0, 1}rn, the initial chain-
ing value, is a constant. The compression function H ′(h,w) is g(h,w, y1, . . . , yk)
where xi = fi(h,w, y1, y2, . . . , yi−1) and yi = πi(xi). The construction uses k
calls to process sn bits, so its rate is α = s/k = (m−r)/k. Natural variants
to this model, like letting the compression function H ′ depend on the position
index i, are immaterial in the sequel.

As the name suggests, the tree attack is associated to a certain tree, which
we will call the known-hash tree. The known-hash tree is constructed determin-
istically from a set of queries. Before describing anything else, we show how to
construct the known-hash tree from a set of queries

The known-hash tree is a subtree of an infinite rooted tree called the full
tree. The full tree has k + 1 types of nodes, which we denote type 0, type 1, . . .,
type k. A node of type i has children only of type i + 1, except for a node of



type k, which has children of type 0. The root of the full tree has type 0. Nodes
of type 1, . . . , k have outdegree N and nodes of type 0 have outdegree Ns. (As
usual, N = 2n.) The outgoing edges from nodes of type 1, . . . , k are labeled
with all the values from 0 to N − 1, whereas the outgoing edges from nodes of
type 0 are labeled with all the values from 0 to Ns − 1. Every node of type 0
has an associated value in {0, 1}rn defined inductively as follows: the root has
value h0 and a non-root node v of type 0 has value g(h,w, y1, . . . , yk) where h is
the value of the first node u of type 0 on the path from v to the root, and where
w, y1, . . . , yk are the values on the edges of the path from u to v. Nodes of type
1, . . . , k also have values, defined as follows: the value of a node v of type i ≥ 1
is xi = fi(h,w, y1, y2, . . . , yi−1) where h is the value of the first node u of type 0
on the path from v to the root, and where w, y1, . . . , yi−1 are the values of the
edges on the path from u to v.

This completes the description of the full tree. The known-hash tree is a
subtree of the full tree. It is defined from a set of queries Q = {(i1, xi1 , yi1), . . .,
(iq, xiq

, yiq
)} made by the adversary, where πij

(xij
) = yij

for all 1 ≤ j ≤ q. A
node v of the full tree is in the known-hash tree if and only if for every node
vi �= v of type i ≥ 1 on the path from v to the root the query (i, xi, yi) is in Q
where xi is the value of vi and where yi is the value of the outgoing edge of vi

on the path to v. It follows that if v is in the known-hash tree then so are all of
its ancestors, so this is defines a valid (but possibly infinite) tree.

If a node v of type 0 is in the known-hash tree then the adversary knows the
hash of the word w1w2 · · ·wm where w1, . . . , wm are the values of the outgoing
edges of the nodes of type 0 on the path from the root to v. This hash is in fact
equal to the value of node v. One can also see that every node of type i ≥ 1
has outdegree ≤ 1 in the known-hash tree, since for every value xi there is only
one yi such that πi(xi) = yi. However the outdegree of every node of type 0
is always Ns, since if a node of type 0 is in the known-hash tree then so, by
definition, are all of its children. We will call the reduced outdegree of a node v
of type 0 the number of outgoing edges from v that lie on a path to a node of
type 0 further down the tree from v. The reduced known-hash tree, or simply
reduced tree, is the restriction of the known-hash tree to nodes of type 0, where
there is an edge from u to v in the reduced tree if and only if u is the first node
of type 0 on the path from v to the root in the known-hash tree. Note that the
outdegree of a node v in the reduced tree is equal to the reduced outdegree of v
in the known-hash tree. One can define a natural bijection from the outgoing
edges of v in the reduced tree to those outgoing edges of v in the known-hash
tree that lie on a path to some node of type 0 further down. Using this bijection
we can label in the natural way the edges of the reduced tree with values from
{0, 1}sn. Then every path in the reduced tree corresponds to a word whose hash
can be computed by the adversary, with the value of that hash being the value
of the terminal node for that path. Thus the reduced tree gives a sort of digest
of which hashes the adversary can compute6 from the queries Q.

6 The adversary may even know how to compute more hashes than those given from
the reduced tree, for example if the function g(h, w, y1, . . . , yk) ignores some of the



For the attack, the adversary will make queries so as to grow the known-hash
tree in a greedy fashion. It will make queries to π1, . . . , πk in cyclical order. When
the adversary makes a query to πi it will choose a value xi that maximizes the
number of terminal nodes of type i in the known-hash tree that have value xi;
that is, the adversary simply chooses the value such that there are a largest
possible number of terminal nodes of type i with that value in the known-hash
tree (here a terminal node is a leaf of the known-hash tree). If there are no
terminal nodes of type i, the adversary can make an arbitrary query to πi.
We assume the adversary makes kp queries in all, namely p queries to every
permutation. Note that at any given query the known-hash tree could “blow
up” and go to infinity; the number of added edges may be much larger than the
number of terminal nodes.

This completes the description of the attack. We will now argue that, for q
sufficiently large, the adversary has a good chance of obtaining a collision. First
note that with kp greedy queries (not the ones we have described above), the
pigeonhole argument shows that we can compute the value of the compression
function on at least

Nr+s
( p

N

)k

(1)

points in the domain D = {0, 1}r+s of the compression function. This means that
the average over the values h ∈ {0, 1}rn of the number of points w ∈ {0, 1}sn for
which we can compute the value of the compression function on input h ‖ w is

Nr+s
( p

N

)k

/Nr = Ns
( p

N

)k

. (2)

On the other hand, the same average is approximated by the average outdegree
of a node in the reduced tree after the adversary has carried out the above
tree attack: every node corresponds to a value of h, and every outgoing edge
corresponds to a value of w for which the output of the compression function on
input h ‖ w is known. The (heuristic) assumption underlying the tree attack is
that for moderately large values of p, this outdegree average should approximate
the average (2); after all, both the pigeonhole attack and the tree attack choose
queries greedily. Then if (2) is moderately large, say equal to 2, we expect the
reduced tree to have average outdegree close to 2. But any tree with average
outdegree exceeding 1 must be infinite, and must also have unbounded width;
thus the reduced tree has blown up to infinity and we can find a collision by the
pigeonhole principle (and even find a collision at the same level of the tree—
meaning a collision of equal-length strings—because the width is unbounded).

To be more concrete, say that we choose p = q/k large enough that

Ns
( p

N

)k

≥ 2 (3)

yi’s, making it not necessary to know their values. However since we are describing
an attack and not a proof of security, this is irrelevant.



Then one would expect that with some constant probability close to 1, but say
with at least probability 1/2, the tree attack yields a reduced tree of average
outdegree exceeding 1. Then the reduced tree has blown up to infinity and we
hold a collision. This would give us an attack with probability of success 1/2.
The cost of the attack would be q = kp where

p =
⌈
21/kN1−s/k

⌉
≈ 21/kN1−s/k , (4)

which is to say q ≈ k 21/k N1−α ≤ 2k N1−α, because α = s/k. This is an
improvement on the bound for the pigeonhole-birthday attack since we expect k
to be significantly smaller than n.

Theorem 7. Let H: {0, 1}∗ → {0, 1}rn be an iterated permutation-based hash
function with rate α, its underlying compression function employing k permu-
tation calls, and let N = 2n. Then, under the heuristic assumptions described
above, with

q ≈ 2k N1−α

queries an adversary can find a collision with probability ≥ 1/2. �

Most iterated hash functions have s = 1, in which case k = k/s = 1/α = β
and the bound of Theorem 7 can be rewritten as 2β N1−α; this is the version of
the bound used for the numerical examples of Fig. 3. Note that for α = k = 1,
the case considered by Black et al. [1], the tree attack gives a bound of q = 2
queries. This may seem seem small, but as Black et al. note, any construction in
which for any h, x1 ∈ {0, 1}n there is some w ∈ {0, 1}n such that x1 = f1(h,w)
can indeed be broken in two queries, using the same argument as for the tree
attack (in such a construction, the tree trivially blows up to infinity after just two
queries, with uniform reduced outdegree of 2). Moreover, natural constructions
will have this feature since it seems undesirable for the function f1(h, ·) to contain
collisions (as a function from {0, 1}n to {0, 1}n). However, for constructions that
are artificially designed to hold off the attack, the bound 2kN1−α may be overly
optimistic when it is very small (but in this case one does not much mind being
off).
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