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Abstract. We describe the use of explicit isogenies to translate in-
stances of the Discrete Logarithm Problem from Jacobians of hyper-
elliptic genus 3 curves to Jacobians of non-hyperelliptic genus 3 curves,
where they are vulnerable to faster index calculus attacks. We provide
explicit formulae for isogenies with kernel isomorphic to (Z/2Z)3 (over
an algebraic closure of the base field) for any hyperelliptic genus 3 curve
over a field of characteristic not 2 or 3. These isogenies are rational for a
positive fraction of all hyperelliptic genus 3 curves defined over a finite
field of characteristic p > 3. Subject to reasonable assumptions, our con-
structions give an explicit and efficient reduction of instances of the DLP
from hyperelliptic to non-hyperelliptic Jacobians for around 18.57% of
all hyperelliptic genus 3 curves over a given finite field.

1 Introduction

After the great success of elliptic curves in cryptography, researchers have natu-
rally been drawn to their higher-dimensional generalizations: Jacobians of higher-
genus curves. Curves of genus 1 (elliptic curves), 2, and 3 are widely believed to
offer the best balance of security and efficiency. This article is concerned with
the security of curves of genus 3.

There are two classes of curves of genus 3: hyperelliptic and non-hyperelliptic.
Each class has a distinct geometry: the canonical morphism of a hyperelliptic
curve is a double cover of a curve of genus 0, while the canonical morphism of a
non-hyperelliptic curve of genus 3 is an isomorphism to a nonsingular plane quar-
tic curve. A hyperelliptic curve cannot be isomorphic (or birational) to a non-
hyperelliptic curve. From a cryptological point of view, the Discrete Logarithm
Problem (DLP) in Jacobians of hyperelliptic curves of genus 3 over Fq may be

solved in Õ(q4/3) group operations, using the index calculus algorithm of Gaudry,
Thomé, Thériault, and Diem [6]. Jacobians of non-hyperelliptic curves of genus 3
over Fq are amenable to Diem’s index calculus algorithm [3], which requires

only Õ(q) group operations to solve the DLP (for comparison, Pollard/baby-

step-giant-step methods require Õ(q3/2) group operations to solve the DLP in
Jacobians of genus 3 curves over Fq). The security of non-hyperelliptic genus 3
curves is therefore widely held to be lower than that of their hyperelliptic cousins.



Our aim is to provide a means of efficiently translating DLPs from Jacobians
of hyperelliptic genus 3 curves to Jacobians of non-hyperelliptic curves, where
faster index calculus is available. We do this by constructing explicit isogenies of
Jacobians: surjective homomorphisms, with finite kernel, from hyperelliptic to
non-hyperelliptic Jacobians. The kernels of our isogenies will intersect trivially
with any subgroup of cryptographic interest, and so the isogenies will restrict to
isomorphisms of DLP subgroups.

Specifically, let H be a hyperelliptic curve of genus 3 over a finite field of
characteristic p > 3. Suppose the Jacobian JH of H contains a subgroup S
isomorphic to (Z/2Z)3 (over an algebraic closure of the base field), generated
by differences of Weierstrass points. If the 2-Weil pairing restricts trivially to S,
then there exists an isogeny with kernel S from JH to a principally polarized
abelian variety A. Using Recillas’ trigonal construction [12], A may be realized
as the Jacobian of a genus 3 curve X. This construction appears to be due to
Donagi and Livné [5]; our contribution, aside from the cryptological application,
is to provide explicit formulae for the curve X and the isogeny. Näıve moduli
space dimension arguments suggest that there is an overwhelming probability
that X will be non-hyperelliptic, and thus explicitly isomorphic to a nonsingular
plane quartic curve C. We therefore obtain an explicit isogeny φ : JH → JC

with kernel S. If φ is defined over Fq, then it maps JH(Fq) into JC(Fq), where

Diem’s Õ(q) index calculus is available. Given points P and Q = [n]P of odd
order in JH(Fq), we can solve the DLP (that is, recovering n from P and Q) in
JC(Fq), using

Q = [n]P =⇒ φ(Q) = [n]φ(P ).

There are several caveats to our approach, besides the requirement of a sub-
group S as described above. First, it does not apply in characteristic 2 or 3. In
characteristic 2, the subgroup S is the kernel of a verschiebung, so X is neces-
sarily hyperelliptic. In characteristic 3, we cannot use the trigonal construction.
Second, in order to obtain an advantage with index calculus on X over H, the
isogeny must be defined over Fq and X must be non-hyperelliptic. We show in
§8 that, subject to some reasonable assumptions, given a hyperelliptic curve H
of genus 3 over a sufficiently large finite field, our algorithms succeed in giving
an explicit rational isogeny from JH to a non-hyperelliptic Jacobian with proba-
bility ≈ 0.1857. In particular, instances of the DLP can be solved in Õ(q) group
operations for around 18.57% of all Jacobians of hyperelliptic curves of genus 3
over a finite field of characteristic p > 3.

Our results have a number of interesting implications for curve-based cryp-
tography, at least for curves of genus 3. First, the difficulty of the DLP in a
subgroup G of JH depends not only on the size of the subgroup G, but upon the
existence of other rational subgroups of JH that can be used to form quotients.
Second, the security of a given hyperelliptic genus 3 curve depends significantly
upon the factorization of its hyperelliptic polynomial. Neither of these results
has any parallel in genus 1 or 2.

After reviewing some standard definitions for hyperelliptic curves in §2, we
define the kernels of our isogenies in §3. In §4, §5 and §6, we describe and



derive explicit formulae for the trigonal construction, which is our main tool for
constructing isogenies. After giving an example in §7, we compute (heuristically)
the expectation that the methods of this article will compute a rational isogeny
for a randomly chosen curve in §8. Finally, in §9 we briefly describe some of the
problems involved in generalizing these methods.

A Note on the Base Field

We will work over Fq throughout this article, where q is a power of a prime
p > 3. We let G denote the Galois group Gal(Fq/Fq), which is (topologically)
generated by the qth power Frobenius map. Some of the theory of this article
carries over to fields of characteristic zero: in particular, the results of §5 and §6
are valid over fields of characteristic not 2 or 3.

2 Notation and Conventions for Hyperelliptic Curves

We assume that we are given a hyperelliptic curve H of genus 3 over Fq, and
that the Jacobian JH of H is absolutely simple. We will use both an affine model

H : y2 = F (x),

where F is a squarefree polynomial of degree 7 or 8, and a weighted projective
plane model

H : w2 = F̃ (u, v)

for H (where u, v, and w have weights 1, 1, and 4, respectively). The coordinates

of these models are related by x = u/v and y = w/v4. The polynomial F̃ is

squarefree of total degree 8, with F̃ (u, v) = v8F (u/v) and F̃ (x, 1) = F (x).
We emphasize that F need not be monic. By a randomly chosen hyperelliptic
curve, we mean the hyperelliptic curve defined by w2 = F̃ (u, v), where F̃ is
a uniformly randomly chosen squarefree homogenous bivariate polynomial of
degree 8 over Fq. The canonical hyperelliptic involution ι of H is defined by
(x, y) 7→ (x,−y) in the affine model, (u : v : w) 7→ (u : v : −w) in the projective
model, and induces the negation map [−1] on JH . The quotient π : H → P

1 ∼=
H/〈ι〉 sends (u : v : w) to (u : v) in the projective model, and (x, y) to x in the
affine model (where it maps onto the affine patch of P

1 where v 6= 0).

To compute in JH , we fix an isomorphism from JH to the group of degree-
zero divisor classes on H, denoted Pic0(H). Recall that divisors are formal sums
of points in H(Fq), and if D =

∑
P∈H nP (P ) is a divisor, then

∑
P∈H nP is the

degree of D. We say D is principal if D = div(f) :=
∑

P∈H ordP (f)(P ) for some
function f on H, where ordP (f) denotes the number of zeroes (or the negative of
the number of poles) of f at P . Since H is complete, every principal divisor has
degree 0. The group Pic0(H) is defined to be the group of divisors of degree 0
modulo principal divisors; the equivalence class of a divisor D is denoted by [D].



3 The Kernel of the Isogeny

The eight points of H(Fq) where w = 0 are called the Weierstrass points of H.
Each Weierstrass point W corresponds to a linear factor LW = v(W )u−u(W )v

of F̃ . If W1 and W2 are Weierstrass points, then 2(W1)−2(W2) = div(LW1
/LW2

),
so 2[(W1) − (W2)] = 0; hence [(W1) − (W2)] corresponds to an element of
JH [2](Fq) (the two-torsion subgroup of JH : that is, the kernel of multiplica-
tion by two). In particular, [(W1) − (W2)] = [(W2) − (W1)], so the divisor class
[(W1)−(W2)] corresponds to the pair {W1,W2} of Weierstrass points, and hence

to the quadratic factor LW1
LW2

of F̃ .

Proposition 1. To every G-stable partition of the eight Weierstrass points of H
into four disjoint pairs, we may associate an Fq-rational subgroup of JH [2](Fq)
isomorphic to (Z/2Z)3.

Proof. Let {{W ′
1,W

′′
1 }, {W ′

2,W
′′
2 }, {W ′

3,W
′′
3 }, {W ′

4,W
′′
4 }} be a partition of the

Weierstrass points of H into four disjoint pairs. Each pair {W ′
i ,W

′′
i } corresponds

to the two-torsion divisor class [(W ′
i ) − (W ′′

i )] in JH [2](Fq). We associate the
subgroup S := 〈[(W ′

i ) − (W ′′
i )] : 1 ≤ i ≤ 4〉 to the partition. Observe that

4∑

i=1

[(W ′
i ) − (W ′′

i )] =
[
div

(
w/

4∏

i=1

LW ′′

i

)]
= 0;

this is the only relation on the classes [(W ′
i )−(W ′′

i )], so S ∼= (Z/2Z)3. The action
of G on JH [2](Fq) corresponds to its action on the Weierstrass points, so if the
partition is G-stable, then the subgroup S is G-stable. ⊓⊔

Remark 1. Requiring the pairs of points to be disjoint ensures that the associated
subgroup is 2-Weil isotropic. This is necessary for the quotient by the subgroup
to be an isogeny of principally polarized abelian varieties (see §9).

Remark 2. By “an Fq-rational subgroup of JH [2](Fq) isomorphic to (Z/2Z)3”, we
mean a G-stable subgroup that is isomorphic to (Z/2Z)3 over Fq. We emphasize
that the elements of the subgroup need not be Fq-rational themselves.

Definition 1. We call the subgroups corresponding to partitions of the Weier-
strass points of H as in Proposition 1 tractable subgroups. We let S(H) denote
the set of all Fq-rational tractable subgroups of JH [2](Fq).

Remark 3. Not every subgroup of JH [2](Fq) that is the kernel of an isogeny of
Jacobians is a tractable subgroup. For example, if W1, . . . ,W8 are the Weierstrass
points of H, then the subgroup

〈
[(W1) − (Wi) + (Wj) − (Wk)] : (i, j, k) ∈ {(2, 3, 4), (2, 5, 6), (3, 5, 7)}

〉

is maximally 2-Weil isotropic, and hence is the kernel of an isogeny of Jacobians
(see §9). However, this subgroup contains no nontrivial differences of Weierstrass
points, and so cannot be a tractable subgroup.



Computing S(H) is straightforward if we identify each tractable subgroup
with its corresponding partition of Weierstrass points. Each pair {W ′

i ,W
′′
i } of

Weierstrass points corresponds to a quadratic factor of F̃ . Since the pairs are
disjoint, the corresponding quadratic factors are pairwise coprime, and hence
form (up scalar multiples) a factorization of the hyperelliptic polynomial F̃ . We
therefore have a correspondence of tractable subgroups, partitions of Weierstrass
points into pairs, and sets of quadratic polynomials (up to scalar multiples):

S ←→
{
{W ′

i ,W
′′
i } : 1 ≤ i ≤ 4

}
←→

{
F1, F2, F3, F4

}
, where F̃ = F1F2F3F4.

Since the action of G on JH [2](Fq) corresponds to its action on the set of Weier-
strass points, the action of G on a tractable subgroup S corresponds to the action
of G on the corresponding set {F1, F2, F3, F4}. In particular, S is Fq-rational pre-
cisely when {F1, F2, F3, F4} is fixed by G. The factors Fi are themselves defined
over Fq precisely when the corresponding points of S are Fq-rational.

We can use this information to compute S(H). The set of pairs of Weierstrass
points contains a G-orbit

(
{W ′

i1
,W ′′

i1
}, . . . , {W ′

in
,W ′′

in
}
)

if and only if (possibly
after exchanging some of the W ′

ik
with the W ′′

ik
) either both (W ′

i1
, . . . ,W ′

in
)

and (W ′′
i1

, . . . ,W ′′
in

) are G-orbits or (W ′
i1

, . . . ,W ′
in

,W ′′
i1

, . . . ,W ′′
in

) is a G-orbit.
Every G-orbit of Weierstrass points corresponds to an Fq-irreducible factor of F .
Elementary calculations therefore yield the following useful lemma, as well as
algorithms to compute all of the Fq-rational tractable subgroups of JH [2](Fq).

Lemma 1. Let H : w2 = F̃ (u, v) be a hyperelliptic curve of genus 3 over Fq.
The cardinality of the set S(H) depends only on the degrees of the Fq-irreducible

factors of F̃ , and is described by the following table:

Degrees of Fq-irreducible factors of F̃ #S(H)

(8), (6, 2), (6, 1, 1), (4, 2, 1, 1) 1
(4, 4) 5

(4, 2, 2), (4, 1, 1, 1, 1), (3, 3, 2), (3, 3, 1, 1) 3
(2, 2, 2, 1, 1) 7

(2, 2, 1, 1, 1, 1) 9
(2, 1, 1, 1, 1, 1, 1) 15

(2, 2, 2, 2) 25
(1, 1, 1, 1, 1, 1, 1, 1) 105

Other 0

4 The Trigonal Construction

We will now briefly outline the theoretical aspects of constructing isogenies with
tractable kernels. We will make the construction completely explicit in §5 and §6.

Definition 2. Suppose S = 〈[(W ′
i )− (W ′′

i )] : 1 ≤ i ≤ 4〉 is a tractable subgroup.
We say that a morphism g : P

1 → P
1 is a trigonal map for S if g has degree 3

and g(π(W ′
i )) = g(π(W ′′

i )) for 1 ≤ i ≤ 4.



Given a trigonal map g, Recillas’ trigonal construction [12] specifies a curve X
of genus 3 and a map f : X → P

1 of degree 4. The isomorphism class of X is
independent of the choice of g. Theorem 1, due to Donagi and Livné, states that
if g is a trigonal map for S, then S is the kernel of an isogeny from JH to JX .

Theorem 1 (Donagi and Livné [5, §5]). Let S be a tractable subgroup of
JH [2](Fq), and let g : P

1 → P
1 be a trigonal map for S. If X is the curve formed

from g by Recillas’ trigonal construction, then there is an isogeny φ : JH → JX

defined over Fq with kernel S.

We will give only a brief description of the geometry of X here, concentrating
instead on its explicit construction; we refer the reader to Recillas [12], Donagi [4,
§2], Birkenhake and Lange [1, §12.7], and Vakil [15] for the geometrical theory
(and proofs). The isogeny is analogous to the well-known Richelot isogeny in
genus 2 (see Bost and Mestre [2] and Donagi and Livné [5]).

In abstract terms, if U is the subset of the codomain of g above which g ◦π is
unramified, then X is by definition the closure of the curve over U representing
the pushforward to U of the sheaf of sections of π : (g ◦ π)−1(U) → g−1(U) (in
the étale topology). This means in particular that the Fq-points of X over an
Fq-point P of U represent partitions of the six Fq-points of (g ◦π)−1(P ) into two
sets of three exchanged by the hyperelliptic involution. The fibre product of H
and X over P

1 (with respect to g◦π and f) is the union of two isomorphic curves,
R and R′, which are exchanged by the involution on H ×P1 X induced by the
hyperelliptic involution. The natural projections induce coverings πH : R → H
and πX : R → X of degrees 2 and 3, respectively, so R is a (3, 2)-correspondence
between H and X. The map (πX)∗◦(πH)∗ on divisor classes (that is, pulling back
from H to R, then pushing forward onto X) induces an isogeny φ : JH → JX

with kernel S.1 If we replace R with R′ in the above, we obtain an isogeny
isomorphic to −φ. Thus, up to sign, the construction of the isogeny depends
only on the subgroup S. The curves and morphisms described above form the
commutative diagrams shown in Fig. 1.

The hyperelliptic Jacobians form a codimension-1 subspace of the moduli
space of 3-dimensional principally polarized abelian varieties. Näıvely, then, if X
is a curve of genus 3 selected at random, then the probability that X is hyper-
elliptic is inversely proportional to q; for cryptographically relevant sizes of q,
this probability should be negligible. This is consistent with our experimental
observations. In the sequel, by “a randomly chosen curve H and subgroup S in
S(H)”, we mean a randomly chosen hyperelliptic curve H (in the sense of §2),
together with a subgroup S uniformly randomly chosen from S(H).

Hypothesis 1. The probability that the curve X constructed by the trigonal
construction for a randomly chosen H and S in S(H) is hyperelliptic is negligible.

1 Recall that (πH)∗(
P

P∈H
nP (P )) =

P

P∈H
nP

P

Q∈π
−1

H
(P )

(Q), with appropriate

multiplicities where πH ramifies, and (πX)∗(
P

Q∈R
mQ(Q)) =

P

Q∈R
mQ(πX(Q)).



Fig. 1. The curves, Jacobians, and morphisms of §4
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5 Computing Trigonal Maps

Suppose we are given a tractable subgroup S of JH [2](Fq), corresponding to a
partition {{W ′

i ,W
′′
i } : 1 ≤ i ≤ 4} of the Weierstrass points of H into pairs. In

this section, we compute polynomials N(x) = x3 +ax+b and D(x) = x2 +cx+d
such that the rational map g : x 7→ t = N(x)/D(x) defines a trigonal map for S.
Choosing N and D to have degrees 3 and 2 respectively ensures that g maps the
point at infinity to the point at infinity; this will be useful to us in §6.

By definition, g : P
1 → P

1 is a degree-3 map with g(π(W ′
i )) = g(π(W ′′

i ))
for 1 ≤ i ≤ 4. We will express g as a composition of maps g = p ◦ e, where
e : P

1 → P
3 is the rational normal embedding defined by

e : (u : v) 7−→ (u0 : u1 : u2 : u3) = (u3 : u2v : uv2 : v3),

and p : P
3 → P

1 is the projection defined as follows. For each 1 ≤ i ≤ 4, we let Li

denote the line in P
3 passing through e(π(W ′

i )) and e(π(W ′′
i )). There exists at

least one line L intersecting all four of the Li (generically, there are two). We
take p to be the projection away from L; then p(e(π(W ′

i ))) = p(e(π(W ′′
i ))) for

1 ≤ i ≤ 4, so g = p ◦ e is a trigonal map for S. Given equations for L, we can
use linear algebra to compute a, b, c, and d in Fq such that

L = V (u0 + au2 + bu3, u1 + cu2 + du3) .

The projection p : P
3 → P

1 away from L is then defined by

p : (u0 : u1 : u2 : u3) 7−→ (u0 + au2 + bu3 : u1 + cu2 + du3),

and therefore g = p ◦ e is defined by

g : (u : v) 7−→ (u3 + auv2 + bv3 : u2v + cuv2 + dv3).



Therefore, if we set N(x) = x3 + ax + b and D(x) = x2 + cx + d, then g will be
defined by the rational map x 7−→ N(x)/D(x).

To compute equations for L, we will use the classical theory of Grassmannian
varieties (see Griffiths and Harris [7, §1.5] for details). The set of lines in P

3 has
the structure of an algebraic variety Gr(1, 3), called the Grassmannian. There is
a convenient model for Gr(1, 3) as a quadric hypersurface in P

5: if v0, . . . , v5 are
coordinates on P

5, then we may take

Gr(1, 3) := V (v0v3 + v1v4 + v2v5) .

Lemma 2. There is a bijection between points of Gr(1, 3)(Fq) and lines in P
3,

defined as follows.

1. The point of Gr(1, 3)(Fq) corresponding to the line through (p0 : p1 : p2 : p3)
and (q0 : q1 : q2 : q3) in P

3 has coordinates

(∣∣∣∣
p0 p1

q0 q1

∣∣∣∣ :

∣∣∣∣
p0 p2

q0 q2

∣∣∣∣ :

∣∣∣∣
p0 p3

q0 q3

∣∣∣∣ :

∣∣∣∣
p2 p3

q2 q3

∣∣∣∣ :

∣∣∣∣
p3 p1

q3 q1

∣∣∣∣ :

∣∣∣∣
p1 p2

q1 q2

∣∣∣∣
)

.

2. The line in P
3 corresponding to a point (γ0 : · · · : γ5) of Gr(1, 3)(Fq) is

defined by

V




0u0 − γ3u1 − γ4u2 − γ5u3,
γ3u0 + 0u1 − γ2u2 + γ1u3,
γ4u0 + γ2u1 + 0u2 − γ0u3,
γ5u0 − γ1u1 + γ0u2 + 0u3




(two of the equations will be redundant linear combinations of the others).

Further, if (γ0 : · · · : γ5) is a point in Gr(1, 3)(Fq) corresponding to a line L,
then the points in Gr(1, 3)(Fq) corresponding to lines meeting L are precisely

those in the hyperplane defined by
∑5

i=0 γivi+3, where the subscripts are taken
modulo 6.

Assume that S is represented by a set {Fi = aiu
2 + biuv + civ

2 : 1 ≤ i ≤ 4}
of quadratics, with each Fi corresponding to the pair {W ′

i ,W
′′
i } of Weierstrass

points. Elementary calculations show that the point on Gr(1, 3) corresponding
to the line Li through e(π(W ′

i )) and e(π(W ′′
i )) has coordinates

(c2
i : −cibi : b2

i − aici : a2
i : aibi : aici).

If (γ0 : · · · : γ5) is a point in Gr(1, 3)(Fq) corresponding to a candidate for L,
then by the second part of Lemma 2 we have M(γ0, . . . , γ5)

T = 0, where

M =




a2
1 a1b1 a1c1 c2

1 −c1b1 (b2
1 − a1c1)

a2
2 a2b2 a2c2 c2

2 −c2b2 (b2
2 − a2c2)

a2
3 a3b3 a3c3 c2

3 −c3b3 (b2
3 − a3c3)

a2
4 a4b4 a4c4 c2

4 −c4b4 (b2
4 − a4c4)


 . (1)



The kernel of M is two-dimensional, corresponding to a line in P
5. Let {α, β}

be a basis for kerM , writing α = (α0, . . . , α5) and β = (β0, . . . , β5). If S is Fq-
rational, then so is kerM , so we may take the αi and βi to be in Fq. We want to
find a point PL = (α0 + λβ0 : · · · : α5 + λβ5) where the line in P

5 corresponding
to kerM intersects with Gr(1, 3). The points (u0 : . . . : u3) on the line L in P

3

corresponding to PL satisfy (Mα + λMβ)(u0, . . . , u3)
T = 0, where

Mα :=




0 −α3 −α4 −α5

α3 0 −α2 α1

α4 α2 0 −α0

α5 −α1 α0 0


 and Mβ :=




0 −β3 −β4 −β5

β3 0 −β2 β1

β4 β2 0 −β0

β5 −β1 β0 0


 .

By part (2) of Lemma 2, the rank of Mα + λMβ is 2. Using the expression

det(Mα + λMβ) =
(1

2

( 6∑

i=0

βiβi+3

)
λ2 +

( 6∑

i=0

αiβi+3

)
λ +

1

2

6∑

i=0

αiαi+3

)2

(2)

(where the subscripts are taken modulo 6), we see that this occurs precisely when
det(Mα + λMβ) = 0. We can therefore solve det(Mα + λMβ) = 0 to determine

a value for λ, and to see that Fq(λ) is at most a quadratic extension of Fq.
Considering the discriminant of det(Mα +λMβ) gives us an explicit criterion for
determining whether a given tractable subgroup has a rational trigonal map.

Proposition 2. Suppose S is a subgroup in S(H), and let {α = (αi), β = (βi)}
be any Fq-rational basis of the nullspace of the matrix M defined in (1). There
exists an Fq-rational trigonal map for S if and only if

( 6∑

i=0

αiβi+3

)2

−
( 6∑

i=0

αiαi+3

)( 6∑

i=0

βiβi+3

)

is a square in Fq, where the subscripts are taken modulo 6.

Finally, we use Gaussian elimination to compute a, b, c, and d in Fq(λ) such
that (1, 0, a, b) and (0, 1, c, d) generate the rowspace of Mα + λMβ . We may

then take L = V (u0 + au2 + u3, u1 + cu2 + du3). Both L and the projection
p : P

3 → P
1 with centre L are defined over Fq(λ). Having computed L, we

compute the projection p, the embedding e, and the trigonal map g = p ◦ e as
above.

Proposition 2 shows that the rationality of a trigonal map for a tractable
subgroup S depends only upon whether an element of Fq depending on S is a
square. It seems reasonable to assume that these field elements are uniformly
distributed for random choices of H and S, and indeed this is consistent with
our experimental observations. Since a uniformly randomly chosen element of Fq

is a square with probability ∼ 1/2, we propose the following hypothesis.

Hypothesis 2. The probability that there exists an Fq-rational trigonal map for
a randomly chosen hyperelliptic curve H over Fq and subgroup S in S(H) is 1/2.



6 Equations for the Isogeny

Suppose we have a tractable subgroup S and a trigonal map g for S. We will
now perform an explicit trigonal construction on g to compute a curve X and
an isogeny φ : JH → JX with kernel S. We assume that g has been derived as
in §5, and in particular that g maps the point at infinity to the point at infinity.

Let U be the subset of A
1 = P

1 \ {(1 : 0)} above which g ◦ π is unramified.
We let X|U denote f−1(U), and let H|U denote (g ◦ π)−1(U).

By definition, every point P in X|U (Fq) corresponds to a pair of triples of
points in H|U (Fq), exchanged by the hyperelliptic involution, with each triple
supported on the fibre of g ◦ π over f(P ). We will construct a model of the
abstract curve X|U in U × A

6. We will not prove that our model is isomorphic
to the abstract curve, but we will exhibit a bijection of geometric points.

To be more explicit, suppose Q is a generic point of U . Since g◦π is unramified
above Q, we may choose preimages P1, P2 and P3 of Q such that

(g ◦ π)−1(Q) = {P1, P2, P3, ι(P1), ι(P2), ι(P3)}. (3)

The four points on X in the preimage f−1(Q) correspond to partitions of the six
points in (g ◦ π)−1(Q) into two unordered triples exchanged by the hyperelliptic
involution:

f−1(Q) =





Q1 ↔
{
{P1, P2, P3}, {ι(P1), ι(P2), ι(P3)}

}
,

Q2 ↔
{
{P1, ι(P2), ι(P3)}, {ι(P1), P2, P3}

}
,

Q3 ↔
{
{ι(P1), P2, ι(P3)}, {P1, ι(P2), P3}

}
,

Q4 ↔
{
{ι(P1), ι(P2), P3}, {P1, P2, ι(P3)}

}





. (4)

Every triple is cut out by an ideal (a(x), y−b(x)), where a is a cubic polynomial, b
is a quadratic polynomial, and b2 ≡ F (mod a). If we require a to be monic, then
there is a one-to-one correspondence between such ideals and triples; this is the
well-known Mumford representation. The triple is defined over Fq if and only if a
and b are defined over Fq. For example, the triple {P1, P2, P3} corresponds to the
ideal (a(x), y−b(x)) where a(x) =

∏
i(x−x(Pi)) and b satisfies y(Pi) = b(x(Pi))

for 1 ≤ i ≤ 3; the Lagrange interpolation formula may be used to compute b.
If (a(x), y − b(x)) corresponds to one triple in a partition, then (a(x), y + b(x))
corresponds to the other triple. The union of the triples equals the whole fibre
(g ◦ π)−1(Q), and since the union of the triples is cut out by the product of the
corresponding ideals, we know that a(x) must cut out the fibre of g ◦ π over Q.
Therefore, we have a(x) = N(x) − t(Q)D(x).

For notational convenience, we define

G(t, x) = x3 + g2(t)x
2 + g1(t)x + g0(t) := N(x) − tD(x).

Let f0, f1, and f2 be the elements of Fq[t] such that

f0(t) + f1(t)x + f2(t)x
2 ≡ F (x) (mod G(t, x)).



The triples in the pairs over the generic point of U have Mumford representatives
of the form (G(t, x), y − (b0 + b1x + b2x

2)), where

(b0 + b1x + b2x
2)2 ≡ F (x) (mod G(t, x)). (5)

Viewing b0, b1, and b2 as coordinates on A
3, we expand both sides of (5) modulo

G(t, x) and equate coefficients to obtain a variety X̃ in U × A
3 parametrizing

triples:

X̃ := V (c0(t, b0, b1, b2), c1(t, b0, b1, b2), c2(t, b0, b1, b2)) ,

where

c0(t, b0, b1, b2) = g2(t)g0(t)b
2
2 − 2g0(t)b2b1 + b2

0 − f0(t),
c1(t, b0, b1, b2) = (g2(t)g1(t) − g0(t))b

2
2 − 2g1(t)b2b1 + 2b1b0 − f1(t), and

c2(t, b0, b1, b2) = (g2(t)
2 − g1(t))b

2
2 − 2g2(t)b2b1 + 2b2b0 + b2

1 − f2(t).
(6)

The Mumford representatives corresponding to the triples in each pair are
exchanged by the involution ι∗ : X̃ −→ X̃ defined by

ι∗ : (t, b0, b1, b2) 7−→ (t,−b0,−b1,−b2);

the curve X|U is therefore the quotient of X̃ by the involution ι∗. To form this
quotient, let m : U × A

3 −→ U × A
6 be the map defined by

m : (t, b0, b1, b2) 7−→ (t, b00, b01, b02, b11, b12, b22) = (t, b2
0, b0b1, b0b2, b

2
1, b1b2, b

2
2);

the image B of m is the variety defined by

B = V

(
b2
01 − b00b11, b01b02 − b00b12, b2

02 − b00b22,
b02b11 − b01b12, b02b12 − b01b22, b2

12 − b11b22

)
⊂ U × A

3.

We have X|U = m(X̃), so

X|U = V




g2g0b22 − 2g0b12 + b00 − f0,
(g2g1 − g0)b22 − 2g1b12 + 2b01 − f1,

(g2
2 − g1)b22 − 2g2b12 + 2b02 + b11 − f2


 ∩ B ⊂ U × A

6. (7)

Consider again the fibre of f : X → P
1 over the generic point Q = (t) of U

(as in (4)). If {P1, P2, P3} is one of the triples in a pair in the fibre, then by
the Lagrange interpolation formula the value of b2 at the corresponding point
of X̃ is

b2 =
∑

y(Pi)/((x(Pi) − x(Pj))(x(Pi) − x(Pk))),

where the sum is taken over the cyclic permutations (i, j, k) of (1, 2, 3). Interpo-
lating for all triples in the pairs in the fibre, an elementary but involved symbolic
calculation shows that if we define ∆1, ∆2, and ∆3 by

∆i := (x(Pj) − x(Pk))2



and Γ1, Γ2, and Γ3 by

Γi :=
(
f2(t)x(Pi)

2 + f1(t)x(Pi) + f0(t)
)
∆i = F (x(Pi))∆i

for each cyclic permutation (i, j, k) of (1, 2, 3), and set

∆ := ∆1∆2∆3,

then b2 satisfies

(
∆b4

2 − 2
( ∑

i

Γi

)
b2
2 +

1

∆

(
2
( ∑

i

Γ 2
i

)
−

( ∑

i

Γi

)2
))2

− 64
( ∏

i

Γi

)
b2
2 = 0. (8)

Now ∆,
∑

i Γi,
∑

i Γ 2
i , and

∏
i Γi are symmetric functions with respect to per-

mutations of the points in the fibre g−1(Q) = g−1((t)). They are therefore poly-
nomials in the homogeneous elementary symmetric functions

e1 =
∑

x(Pi), e2 =
∑

x(Pi)x(Pj), and e3 =
∏

x(Pi),

which are polynomials in t. Indeed, the ei are given by the coefficients of G(t, x):

e1 = −g2(t), e2 = g1(t), and e3 = −g0(t).

Expressing ∆,
∑

i Γi,
∑

i Γ 2
i , and

∏
i Γi in terms of f0, f1, f2, g0, g1, and g2,

and then simplifying, we define δ4, δ2, and δ0 by

δ4 := −27g2
0 + 18g0g1g2 − 4g0g

3
2 − 4g3

1 + g2
1g2

2 ,
δ2 := 12f0g1 − 4f0g

2
2 − 18f1g0 + 2f1g1g2 + 12f2g0g2 − 4f2g

2
1 ,

δ0 := −4f0f2 + f2
1 ,

and s by

s := f3
0 − f2

0 f1g2 − 2f2
0 f2g1 + f2

0 f2g
2
2 + f0f

2
1 g1 + 3f0f1f2g0 − f0f1f2g1g2

− 2f0f
2
2 g0g2 + f0f

2
2 g2

1 − f3
1 g0 + f2

1 f2g0g2 − f1f
2
2 g0g1 + f3

2 g2
0 .

(9)

Since s(t) = F (x(P1))F (x(P2))F (x(P3)) = (y(P1)y(P2)y(P3))
2, there is a square

root of s(t) in Fq[t]; in fact, it is defined over Fq(
√

s(0)). We therefore define

δ1 := 8
√

s. (10)

With this notation (8) becomes
(
δ4(t)b

4
2 + δ2(t)b

2
2 + δ0(t)

)2 − δ1(t)
2b2

2 = 0, and
hence on X|U we have

(
δ4(t)b

2
22 + δ2(t)b22 + δ0(t)

)2 − δ1(t)
2b22 = 0. (11)

Observe that (11) gives us a (singular) affine plane model for X. We can also
use (11) to compute a square root for b22 on X|U : we have

b22 = ρ2, where ρ :=
δ4(t)b

2
22 + δ2(t)b22 + δ0(t)

δ1(t)
. (12)



Given a point (t, b00, . . . , b22) of X|U , the two triples of points corresponding to

the two points of X̃ over (t, b00, . . . , b22) have Mumford representatives

(
G(t, x), y−(

b02

ρ
+

b12

ρ
x+

b22

ρ
x2)

)
and

(
G(t, x), y+(

b02

ρ
+

b12

ρ
x+

b22

ρ
x2)

)
. (13)

We will now compute the Recillas correspondence R inducing the isogeny
from JH to JX . We know that R is a component of the fibre product H ×P1 X
(with respect to g ◦π and f). We may realise the open affine subset H|U ×U X|U
as the subvariety V (G(t, x)) of H|U × X|U . Now, V (G(t, x)) decomposes into
two components: clearing denominators in (13), we find V (G(t, x)) = R ∪ R′,
where

R = V
(
G(t, x), (δ4(t)b

2
22 + δ2(t)b22 + δ0(t)

)
y − δ1(t)(b02 + b12x + b22x

2)
)

and

R′ = V
(
G(t, x), (δ4(t)b

2
22 + δ2(t)b22 + δ0(t)

)
y + δ1(t)(b02 + b12x + b22x

2)
)
.

The natural projections πX : R → X and πH : R → H send (x, y, t, b00, . . . , b22)
to (t, b00, . . . , b22) and (x, y), respectively. On the level of divisor classes, the
isogeny φ : JH → JX is made explicit by the map

φ = (πX)∗ ◦ (πH)∗.

In terms of ideals cutting out effective divisors, φ is realized by the map

ID 7−→
(

ID +
(
G(t, x), y −

(b02

ρ
+

b12

ρ
x +

b22

ρ
x2

)))
∩ Fq[s, t, b00, . . . , b22].

Taking R′ in place of R in the above gives an isogeny equal to −φ.
It remains to determine the rationality of the isogeny. We see from (7) that

X is defined over the field of definition of g. The correspondence R, and the
isogeny φ, are both defined over the field of definition of ρ, which is Fq(

√
s(0)).

This gives us a useful criterion for when an Fq-rational subgroup S and trigonal
map g lead to an Fq-rational isogeny.

Proposition 3. If S is a subgroup in S(H) with an Fq-rational trigonal map g,
then the trigonal construction on g yields an Fq-rational isogeny if and only if
s(0) is a square in Fq, where s is defined in (9).

Remark 4. If φ is not Fq-rational, then JX is a quadratic twist of JH/S (see §9).

If we assume that the values s(0) are uniformly distributed for randomly
chosen H, S, and g, then the probability that s(0) is a square in Fq is 1/2.
Indeed, it is easily seen that s(0) is a square for H if and only if it is not a
square for the quadratic twist of H. This suggests that the probability that we
can compute an Fq-rational φ given an Fq-rational g for a randomly chosen H
and S in S(H) is 1/2. This is consistent with our experimental observations, so
we propose Hypothesis 3.

Hypothesis 3. Given a randomly chosen hyperelliptic curve H over Fq and
tractable subgroup S in S(H) with an Fq-rational trigonal map g, the probability
that we can compute an Fq-rational isogeny φ with kernel S is 1/2.



7 Computing Isogenies

Suppose we are given a hyperelliptic curve H of genus 3, defined over Fq, and
a DLP in JH(Fq) to solve. Our goal is to compute a nonsingular plane quartic
curve C and an isogeny JH → JC so that we can reduce to a DLP in JC(Fq).

We begin by computing the set S(H) of Fq-rational tractable subgroups
of JH [2](Fq). For each S in S(H), we apply Proposition 2 to determine whether
there exists an Fq-rational trigonal map g for S. If so, we use the formulae of §5
to compute g; if not, we move on to the next S. Having computed g, we apply
Proposition 3 to determine whether we can compute an isogeny over Fq. If so,
we use the formulae of §6 to compute equations for X and the isogeny JH → JX ;
if not, we move on to the next S.

The formulae of §6 give an affine model of X in A
1 × A

6. In order to apply
Diem’s algorithm to the DLP in JX , we need a nonsingular plane quartic model
of X: that is, a nonsingular curve C ⊂ P

2 isomorphic to X, cut out by a quartic
form. Such a model exists if and only if X is not hyperelliptic. To find C, we
compute a basis B of the Riemann–Roch space of a canonical divisor of X. This
is a routine geometrical calculation; some of the various approaches are listed in
Hess [8]. In practice, the algorithms implemented in Magma [9] compute B very
quickly. The three functions in B define a map ψ : X → P

2. If the image of ψ
is a conic, then X is hyperelliptic; in this situation, we move on to the next S.
Otherwise, the image of ψ is a nonsingular plane quartic C, and ψ restricts to
an isomorphism ψ : X → C.

If the procedure outlined above succeeds for some S in S(H), then we have
computed an explicit Fq-rational isogeny ψ∗ ◦ φ : JH → JC . We can then map
our DLP from JH(Fq) into JC(Fq), and solve using Diem’s algorithm.

We emphasize that the entire procedure is very fast: as we saw above, the
curve X and the isogeny can be constructed using only low-degree polynomial
arithmetic and low-dimensional linear algebra. For a rough idea of the compu-
tational effort involved, given a random H over a 160-bit prime field, a näıve
implementation of our algorithms in Magma [9] computes the trigonal map g,
the curve X, the nonsingular plane quartic C, and the isogeny φ : JH → JC

in a few seconds on a 1.2GHz laptop. Since the difficulty of the construction
depends only upon the size of Fq (and not upon the size of the DLP subgroup
of JH(Fq)), we may conclude that instances of the DLP in 160-bit Jacobians
chosen for cryptography may also be reduced to instances of the DLP in non-
hyperelliptic Jacobians in a mattter of seconds.

Example 1. We will give an example over a small field. Let H be the hyperelliptic
curve over F37 defined by

H : y2 = x7 + 28x6 + 15x5 + 20x4 + 33x3 + 12x2 + 29x + 2.

Using the ideas in §3, we see that JH has one F37-rational tractable subgroup:

S(H) = {S} where S =

{
u2 + ξ1uv + ξ2v

2, u2 + ξ37
1 uv + ξ37

2 v2,

u2 + ξ372

1 uv + ξ372

2 v2, uv + 20v2

}
,



where ξ1 is an element of F373 satisfying ξ3
1 +29ξ2

1 +9ξ1+13 = 0, and ξ2 = ξ50100
1 .

Applying the methods of §5, we compute polynomials

N(x) = x3 + 16x + 22 and D(x) = x2 + 32x + 18

such that g : x 7−→ N(x)/D(x) is an F37-rational trigonal map for S. Using the
formulae of §6, we compute a curve X ⊂ A

1 × A
6 of genus 3, defined by

X = V




19t5+10t4+12t3+18t2b22+7t2+36tb12+15tb22+t+b00+30b12+30,

5t5+26t4+15t3+32t2b22+23t2+27tb12+2tb22+19t+2b01+5b12+15b22+17,

36t5+29t4+7t3+t2b22+13t2+2tb12+32tb22+21t+2b02+b11+21b22+18,

b00b11−b2
01

,b00b12−b01b02,b00b22−b2
02

,b02b11−b01b12,b02b12−b01b22,b2
12

−b11b22




together with a map on divisors inducing an isogeny from JH to JX with kernel S
(we will not show the equations, for lack of space). Computing the canonical
morphism of X, we find that X is non-hyperelliptic, and isomorphic to the
nonsingular plane quartic curve

C = V

(
u4 + 26u3v + 2u3w + 17u2v2 + 9u2vw + 20u2w2 + 34uv3 + 24uv2w

+ 5uvw2 + 36uw3 + 19v4 + 13v3w + v2w2 + 23vw3 + 5w4

)
.

Composing the isomorphism with the isogeny JH → JX , we obtain an explicit
isogeny φ : JH → JC . Using Magma, we can verify that JH and JC are isogenous
by checking that the zeta functions of H and C are identical: indeed,

Z(H;T ) = Z(C;T ) =
373T 6 + 4 · 372T 5 − 6 · 37T 4 − 240T 3 − 6T 2 + 4T + 1

37T 2 − 38T + 1
.

If D and D′ are the divisor classes on H with Mumford representatives (x2+13x+
29, y−10x−2) and (x2+19x+18, y−15x−2), respectively, then D′ = [22359]D.
Applying φ, we find that

φ(D) = [(7 : 18 : 1) + (34 : 34 : 1) − (18 : 22 : 1) − (15 : 33 : 1)] and
φ(D′) = [(7 : 23 : 1) + (6 : 13 : 1) − (13 : 15 : 1) − (7 : 18 : 1)] ;

direct calculation verifies that φ(D′) = [22359]φ(D), as expected.

8 Expectation of Existence of Computable Isogenies

We conclude by estimating the proportion of genus 3 hyperelliptic Jacobians
over Fq for which the methods of this article produce a rational isogeny — and
thus the proportion of hyperelliptic curves for which the DLP may be solved
using Diem’s algorithm — as q tends to infinity. We will assume that if we are
given a selection of Fq-rational tractable subgroups, then it is equally probable
that any one of them will yield a rational isogeny. This appears consistent with
our experimental observations.

Hypothesis 4. If S1 and S2 are distinct subgroups in S(H), then the proba-
bility that we can compute an Fq-rational isogeny with kernel S1 is independent
of the probability that we can compute an Fq-rational isogeny with kernel S2.



Theorem 2. Assume Hypotheses 1, 2, 3, and 4. Let T be the set of integer
partitions of 8; for each T in T we define νT (n) to be the multiplicity of n in T ,
and define s(T ) = #S(H), where H is any hyperelliptic curve over Fq such that
the multiset of degrees of the Fq-irreducible factors of its hyperelliptic polynomial
coincides with T . As q tends to infinity, the expectation that the algorithms in this
article will give a reduction of the DLP in a subgroup of JH(Fq) for a randomly
chosen hyperelliptic curve H of genus 3 over Fq to a subgroup of JC(Fq) for
some nonsingular plane quartic curve C is

∑

T∈T

((
1 − (1 − 1/4)s(T )

)
/

∏

n∈T

(
νT (n)! · nνT (n)

))
≈ 0.1857. (14)

Proof. Hypotheses 1, 2, 3, and 4 together imply that if H is a randomly chosen
hyperelliptic curve of genus 3 over Fq, then the probability that we will succeed
in computing a rational isogeny from JH is

1 − (1 − (1/2 · 1/2))#S(H). (15)

Lemma 1 implies that S(H) depends only on the degrees of the irreducible factors

of F̃ . For each T in T , let Nq(T ) denote the number of homogeneous squarefree
polynomials over Fq whose multiset of degrees of irreducible factors coincides
with T . By (15), the expectation that we can compute an Fq-rational isogeny
from the Jacobian of a randomly chosen hyperelliptic curve to the Jacobian of
a non-hyperelliptic curve using the methods in this article is

Eq :=

∑
T∈T

(1 − (1 − 1/4)s(T ))Nq(T )∑
T∈T

Nq(T )
.

Let Nq(n) denote the number of monic irreducible polynomials of degree n

over Fq; clearly Nq(T ) = (q − 1)
∏

n∈T

(Nq(n)
νT (n)

)
. Computing Nq(T ) is a straight-

forward combinatorial exercise: we find that Nq(n) = qn/n + O(qn−1), so

Nq(T ) =
( ∏

n∈T

(νT (n)! · nνT (n))−1
)
q9 + O(q8),

and
∑

T∈T
Nq(T ) = q9 + O(q8). Therefore, as q tends to infinity, we have

lim
q→∞

Eq =
∑

T∈T

(
(1 − (1 − 1/4)s(T ))/

∏

n∈T

(νT (n)! · nνT (n))
)
.

The result follows upon explicitly computing this sum using the values for s(T )
derived in Lemma 1. ⊓⊔

Theorem 2 gives the expectation that we can construct an explicit isogeny
for a randomly selected hyperelliptic curve. However, looking at the table in
Lemma 1, we see that we can ensure that a particular curve has no rational
isogenies if its hyperelliptic polynomial has an irreducible factor of degree 5



or 7 (or a single irreducible factor of degree 3). It may be difficult to efficiently
construct a curve in this form if we are using the CM construction, for example,
to ensure that the Jacobian has a large prime-order subgroup. In any case,
it is interesting to note that the security of genus 3 hyperelliptic Jacobians
depends significantly upon the factorization of their hyperelliptic polynomials.
This observation has no analogue for elliptic curves or Jacobians of genus 2
curves.

Remark 5. We noted in §4 that the isomorphism class of the curve X in the
trigonal construction is independent of the choice of trigonal map. If there is no
rational trigonal map for a given subgroup S, then the methods of §5 construct
a pair of Galois-conjugate trigonal maps g1 and g2 (corresponding to the roots
of (2)) instead. Applying the trigonal construction to g1 and g2, we obtain a
pair of curves X1 and X2 over Fq2 , which must be twists. If the isomorphism
between these two curves was made explicit, then Galois descent could be used
to compute a curve X in their isomorphism class defined over Fq, and hence a
nonsingular plane quartic C and isogeny JH → JC over Fq. This approach would
allow us to replace the 1/4 in (15) and (14) with 1/2, raising the expectation of
success in Theorem 2 to over 30%.

9 Other Isogenies

In this article, we have used a special kind of (2, 2, 2)-isogeny for moving instances
of the DLP from hyperelliptic to non-hyperelliptic Jacobians. More generally, we
can consider using other types of isogenies. There are two important issues to
consider here: the first is a theoretical restriction on the types of subgroups S of
JH that can be kernels of isogenies of Jacobians, and the second is a practical
restriction on the isogenies that we can currently compute.

Suppose JH is a hyperelliptic Jacobian, and S a (finite) Fq-rational subgroup
of JH . The quotient JH → JH/S exists as an isogeny of abelian varieties (see
Serre [14, §III.3.12], for example). For the quotient to be an isogeny of Jacobians,
there must be an integer m such that S is a maximal isotropic subgroup with
respect to the m-Weil pairing (see Proposition 16.8 of Milne [10]): this ensures
that the canonical polarization on JH induces a principal polarization on the
quotient. The simplest such subgroups have the form (Z/lZ)3 where l is prime.
The theorem of Oort and Ueno [11] then guarantees that there will be an iso-
morphism over Fq from JH/S to the Jacobian JX of some (possibly reducible)
curve X. Standard arguments from Galois cohomology (see Serre [13, §III.1], for
example) show that the isomorphism is defined over either Fq or Fq2 , so JH/S is
either isomorphic to JX over Fq or a quadratic twist of JX . We can expect X to
be isomorphic to a non-hyperelliptic curve C. To compute an Fq-rational isogeny
from JH to a non-hyperelliptic Jacobian, therefore, the minimum requirement
is an Fq-rational l-Weil isotropic subgroup of JH(Fq) isomorphic to (Z/lZ)3 for
some prime l.

The second and more serious problem is the lack of general constructions
for isogenies in genus 3. Apart from integer and Frobenius endomorphisms, we



know of no constructions for explicit isogenies of general Jacobians of genus 3
hyperelliptic curves other than the one presented here. This situation stands in
marked contrast to the case of isogenies of elliptic curves, which have been made
completely explicit by Vélu [16]. Deriving general formulae for explicit isogenies
in genus 3 (and 2) remains a significant problem in computational number theory.
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