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{ the underlying assumptions are plausible, and{ the onsidered lass of attaks is as general as possible.Additionally, enryption shemes are most often used only as a building blokin a larger protool ontext, and thus{ the onsidered lass of attaks should allow for meaningful and general anal-ysis of the enryption sheme in a larger protool ontext.Indistinguishability of iphertexts. The most established lass of attaksonsists of attaks targeted against the indistinguishability of iphertexts (IND-CPA [16℄, resp. IND-CCA [21℄ attaks). Here, adversary A's goal is to win thefollowing game: �rst, A hooses two messages m0;m1, then gets the enryptionb of mb (for a random b 2 f0; 1g), and �nally outputs a guess b0 for b. NowA wins if b = b0, i.e., if it guessed orretly whih message was enrypted. Thesheme is seure if no adversary wins (signi�antly) more often than in half ofthe ases. Intuitively, seurity in this sense implies that \one iphertext lookslike any other."The IND-CPA and IND-CCA notions have been tremendously suessful andeven proved equivalent to a number of alternative and arguably not less appealingnotions (f. [5,6,10,19℄). At the same time, IND-CPA and IND-CCA seurity anbe ahieved under various plausible number-theoreti assumptions [16,13,11℄.Key-dependent message seurity. However, there is one seurity propertythat is useful and important in many appliations, yet is not overed by IND-CPA or IND-CCA seurity: seurity in presene of key-dependent messages. Moreonretely, imagine a senario in whih the adversary an request enryptions ofarbitrary (but eÆiently evaluatable) funtions of the seret deryption key. Inother words, the adversary hooses a funtion g and gets the enryption of g(K)under seret key K. Note that this is something the adversary may not be ableto generate on its own, not even in the publi-key setting. The adversary's goalis now to distinguish suh a key-dependent enryption from an enryption of arandom message. Seurity of an enryption is a useful notion to onsider sine{ in relevant pratial settings, this notion is neessary: onsider, e.g., enrypt-ing your hard drive (whih may ontain the seret key, e.g., on the swappartition, or in a �le that ontains your seret keyring),{ ertain protools use key-dependent message seurity expliitly as a tehnialtool [8℄,and, possibly most importantly from a theoretial perspetive,{ key-dependent message seurity is a key ingredient for showing that seurityresults that are proven in a formal alulus are also omputationally sound.This latter reason may ome a bit surprising, hene we explain it in more detail.Formal seurity proofs. The idea to automate seurity proofs an be traedbak to the seminal work of Dolev and Yao [14℄, who desribed a formal alu-lus to analyze seurity protools. To make the alulus aessible to automatiprovers, however, base primitives like enryption (or, later, signatures) had to2



be over-idealized, disonneting them from their onrete omputational imple-mentations. What was missing for almost 20 years was a soundness result, i.e.,a result that essentially states \whatever an be proven in the abstrat alulusholds as well in the ryptographi world, where the ideal enryption operator isimplemented with an enryption sheme."But �nally, the soundness result by Abadi and Rogaway [1℄ onneted theformal, mahine-aessible world with the ryptographi world. However, withstandard enryption shemes, only a ertain subset of possible protools ouldbe onsidered, namely those that only ontain expressions whih ful�l a ertain\ayliity" ondition.3 To ahieve full generality, a stronger requirement (seu-rity in the presene of key-dependent messages) on the enryption sheme wasneeded. This is not a peuliarity of the approah of Abadi and Rogaway; similarproblems our in related approahes, e.g. [20,2,4℄. In partiular, Ad~ao et al. [2℄show that in a ertain sense, key-dependent message seurity is a neessity forformal soundness.Related work. Around the time when the need for key-dependent seurity hadbeen realized, formal haraterizations of the seurity notion were given in [8,7℄.Moreover, [7℄ showed a simple symmetri enryption sheme to be seure withrespet to their notion. However, their sheme was proven in the random oralemodel, and the proof made heavy use of the \ideal" nature of the random orale(more details on this in Setion 3). Blak et al. posed the question of ahievingkey-dependent seurity in the standard model.Bakes et al. [3℄ onsider several strengthenings of the de�nition from [7℄.They prove strutural results among the notions (inluding a way to \path" asheme that is seure in the sense of [7℄ to math the notions from [3℄). However,Bakes et al. do not give an atual onstrution of a seure sheme.Our work. Our goal is to ahieve key-dependent message seurity, as de�nedby Blak et al., in the standard model. We present several results:{ a (stateless) symmetri enryption sheme that is information-theoretiallyseure in fae of a bounded number and length of enryptions for whih themessages depend in an arbitrary way on the seret key.{ a stateful symmetri enryption sheme that is omputationally seure infae of an arbitrary number of enryptions for whih the messages dependonly on the respetive urrent seret state/key of the sheme. The underlyingomputational assumption is minimal: we assume the existene of one-wayfuntions.We also stress the stritness of key-dependent message seurity:{ We give evidene that the only previously known KDM seure enryptionsheme annot be proven seure in the standard model (i.e., without randomorales).43 They also did only prove seurity against passive adversaries. However, ative seu-rity was ahieved by subsequently by [20,2,4℄.4 A similar, but tehnially di�erent result is also ontained in the independentwork [17℄. 3



Note. Reently, we learned about the (onurrent and independent) work [17℄of Halevi and Krawzyk. They are interested more generally in keyed primi-tives (suh as pseudorandom funtions, PRFs) whih are seure in fae of key-dependent inputs. They also show that an enryption sheme onstruted fromsuh a PRF inherits the underlying PRF's resiliene against key-dependent in-puts/messages. In partiular, Halevi and Krawzyk onstrut a PRF (and aorresponding enryption sheme) that is seure in fae of inputs whih dependin an arbitrary, but known-a-priori way on the key. (That is, for eah way inwhih the query may depend on the key, they give a PRF whih is seure in faeof suh inputs.)In ontrast to that, we are interested in onstruting enryption shemesthat are seure in fae of (enryptions of) messages that depend in an arbitrary,adaptively determined way on the key. Unfortunately, neither our shemes northe shemes of [17℄ an handle the important ase of non-trivial key yles, thatis, yli hains of enryptions of key Ki under key Ki+1 mod n.
2 PreliminariesBasi notation. Throughout the paper, k 2 N denotes the seurity parameterof a given onstrution. Intuitively, a larger seurity parameter should providemore seurity, but a sheme's eÆieny is also allowed to degrade with growingk. A negligible funtion vanishes faster than any given polynomial. The statis-tial distane between two random variables X and Y is denoted by Æ(X ; Y ).The R�enyi entropy H2(X) of a random variable X is de�ned as H2(X) :=�Px log2 Pr [X = x℄2. Two families (Xk) and (Yk) of random variables are om-putationally indistinguishable (written X � Y ) if for every PPT (probabilistipolynomial-time) algorithm A, the funtion jPr [A(Xk) = 1℄� Pr [A(Yk) = 1℄j isnegligible in k. A family UHF of universal hash funtions is a family of fun-tions h : f0; 1gn ! f0; 1gm with the property that for x; x0 2 f0; 1gn withx 6= x0, all y; y0 2 f0; 1gm, and uniformly hosen h 2 UHF , we have thatPr[h(x) = y; h(x0) = y0℄ = 2�2m.We will further need a strengthened version of the leftover hash lemma thattakes into aount additional information S about the randomness K and someadditional information Q unrelated to K.Lemma 1 (Leftover Hash Lemma, extended). Let K, Q, and S be randomvariables over bitstrings of �xed length. Let h be uniformly distributed over afamily UHF of universal hash funtions. Let U be uniformly distributed overbitstrings of length jh(K)j. Assume the following independenes:{ U and (h; S;Q) are independent.{ K and Q are independent.{ h and (K;S;Q) are independent.Then the following bound holds:Æ(h; h(K); S;Q ; h; U; S;Q) � 2jSj+jh(K)j=2�H2(K)=2�1:
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In a typial appliation of this lemma, h, K, and Q would be mutually inde-pendent, and S would be a funtion of (h;K;Q) (say, a side hannel). Further-more, U would be some ompletely independent random variable, representingthe ideal randomness. This would then imply all the independene onditions inthe lemma.Proof. In the following, s; q; k range over all values taken by S, Q, K, respe-tively. By applying the de�nition of the statistial distane, we have" := Æ(h; h(K); S;Q ; h; U; S;Q)=Xs;q Pr[S = s;Q = q℄ Æ(h; h(K)jS = s;Q = q ; h; U jS = s;Q = q): (1)Here Xj(S = s) stands for the distribution of X under the ondition S = s. Sineh and (K;S;Q) are independent, hj(S = s;Q = q) is a universal hash-funtion.And sine U is independent of (S;Q; h), we have that U is uniformly distributedand independent of h given S = s;Q = q. Further, sine by assumption h isindependent of (K;S;Q), we have that h and K are independent given S =s;Q = q. Thus the leftover hash lemma in its basi form [18℄ applies, and we getÆ(h; h(K)jS = s;Q = q ; h; U jS = s;Q = q) � 2jh(K)j=2�H2(Kj(S=s;Q=q))=2�1:Combining this with (1) we get" �Xs;q Pr[S = s;Q = q℄ � 2jh(K)j=2�H2(Kj(S=s;Q=q))=2�1
=Xs;q Pr[S = s;Q = q℄ � 12q2jh(K)j �Xk Pr[K = kjS = s;Q = q℄2
�Xs;q Pr[Q = q℄ � 12q2jh(K)j �Xk Pr[S = sjQ = q℄2 � Pr[K = kjS = s;Q = q℄2
=Xs;q Pr[Q = q℄ � 12q2jh(K)j �Xk Pr[K = k; S = sjQ = q℄2
�Xs;q Pr[Q = q℄ � 12q2jh(K)j �Xk Pr[K = kjQ = q℄2(�)=Xs;q Pr[Q = q℄ � 12q2jh(K)j �Xk Pr[K = k℄2
=Xs;q Pr[Q = q℄ � 12p2jh(K)j � 2�H2(K)
=Xs;q Pr[Q = q℄ � 2jH(k)j=2�H2(K)�1
=Xs 2jH(k)j=2�H2(K)�1 = 2jSj+jH(k)j=2�H2(K)�1:Here (�) uses that Q and K are independent. ut
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Key-dependent message seurity. For formalizing key-dependent messageseurity, we use a variation on the de�nition of Blak et al. [7℄:De�nition 2 (KDM seurity, standard model, symmetri setting). Let� = (K; E ;D) be a symmetri enryption sheme, let K := (K1; : : : ;Kn) beseret keys (where n is polynomial in the seurity parameter), and let A be anadversary. Let{ RealK be the orale that on input g; � returns C  E(1k;K�; g(K)), and{ FakeK be the orale that on input g; � returns C  E(1k;K�; U) for anindependently uniformly seleted fresh U 2 f0; 1gjg(K)j.In both ases, g is enoded as a iruit.5 The KDM advantage of A isAdvKDM� (A) := ���Pr hK $ K : ARealK(�) = 1i� Pr hK $ K : AFakeK(�) = 1i���Here K $ K means that eah key Ki is hosen independently using K.We say that � is KDM seure i� for every PPT adversary A and everypolynomial n, the advantage funtion AdvKDM� (A) is negligible in the seurityparameter. We require that A only queries its orale with �xed-length funtions g,i.e., jg(K)j is the same for all values of K.The relation to real-or-random seurity. De�nition 2 bears a great re-semblane to the real-or-random (ROR-CPA) de�nition for enryption shemesfrom [5℄. The main di�erene is that De�nition 2 equips the adversary withan orale that delivers enryptions of key-dependent messages (i.e., evaluations)g(K). The way in whih these messages depend on the keys is ompletely up tothe adversary; the only onstraint is that g must be eÆiently evaluatable andhave a �xed output length.On ahieving KDM seurity and ative KDM seurity. Using the equiv-alene of ROR-CPA and IND-CPA seurity from [5℄, it is easy to see that De�ni-tion 2 is stritly stronger than IND-CPA seurity. A natural adaption of De�ni-tion 2 to ative attaks|suh a notion is alled AKDM seurity in [3℄|onsistsin equipping the adversary with a deryption orale that is restrited in the usualsense to prevent trivial attaks. And similarly to the passive ase, it is easy to seethat AKDM seurity is stritly stronger than IND-CCA seurity. On the otherhand, one a sheme is KDM seure, it an be easily and without (muh) loss ofeÆieny upgraded to AKDM seurity, as formalized and proved in [3℄. Hene,the main diÆulty lies in �nding a sheme that is KDM seure in the �rst plae.In the following, this will be our fous.3 The sheme of Blak et al.De�nition 2 is very hard to ahieve. In fat, the only onstrution that is known,due to Blak et al. [7℄, to ahieve De�nition 2 is in the random orale model. It5 This has the side-e�et that for a polynomial-time adversary A, the funtion g isalso polynomial-time omputable. 6



will be very useful to take a loser look at their sheme. We will argue that in avery onrete sense, nothing less than a random orale will do for their sheme.Hene, their onstrution merely shows how powerful random orales are, butdoes not give a hint on how to ahieve KDM seurity in the standard model.This onstitutes one motivation for our upoming weakening of KDM seurity.Sheme 3 (The sheme ver). De�ne the symmetri enryption sheme ver =(K; E ;D) with seurity parameter k 2 N, message spae f0; 1gk and key spaef0; 1gk through{ K(1k) outputs a uniform random key K 2 f0; 1gk.{ E(1k;K;M) samples R $ f0; 1gk and outputs the iphertext (R;H(KjjR)�M).{ D(1k;K; (R;D)) outputs the message H(KjjR)�D.The seurity of ver with a random orale. Blak et al. proveTheorem 4 (Seurity of ver [7℄). If H is a random orale, then ver is KDMseure.The main idea of the proof is to onsider an event bad, where bad ours i�1. the adversary queries H at any point KjjR that was previously used forenryption, or2. one of the funtions g submitted to the enryption orale queries H at theurrently used point KjjR.If bad does not our, the adversary's view is idential in the Real and Fake ex-periments, thanks to the fat that di�erent random orale queries H(X); H(Y )(X 6= Y ) are statistially independent: eah message is padded with ompletelyfresh and message-independent randomness. Hene, by showing (with an indu-tive argument) that bad ours only with small probability, [7℄ show the shemever KDM seure.The inseurity of ver without a random orale. Put informally, the proofof ver utilizes one essential property of the random orale H: knowledge aboutarbitrary many values H(Yi) (with Yi 6= X) does not yield any informationabout H(X). This use of a random orale as a provider of statistial indepen-dene is what makes the proof fail ompletely with any onrete hash funtionused in plae of the random orale. There is no hope for the proof strategy tosueed without random orales. A little more formally, we an show that in therandom orale model, there exists a spei� hash funtion H that has a numberof generally very useful properties: H is ollision-resistant, one-way, an be in-terpreted as a pseudorandom funtion (in a way ompatible with ver), and Hmakes ver IND-CPA. But H makes ver ompletely inseure in the presene ofkey-dependent messages. Hene, there an be no fully blak-box KDM seurityproof for ver that relies on these properties of H alone.Theorem 5 (Inseurity of ver). Relative to a random orale O, there existsa funtion H suh that 7



1. H is ollision-resistant,2. for any funtion p(k) 2 k�(1), H is one-way w.r.t. the uniform input distri-bution on f0; 1gp(k),3. the funtion FK(R) := H(KjjR) is a pseudorandom funtion with seed K,4. the sheme ver, instantiated with H, is IND-CPA seure, but5. the sheme ver, instantiated with H, is not KDM seure.Proof (sketh). Assume for simpliity that the seurity parameter k is even. Saythat the random orale O maps arbitrary bitstrings to k-bit strings. Then denoteby O`(x) the �rst k=2 bits of O(x). Now onsider the funtion H : f0; 1g� !f0; 1gk withH(x) := (O(x) for jxj 6= 2k;O(x`)� (O`(x)jjO`(O`(x))) for x = x`jjxr and jx`j = jxrj = k:We show the laimed properties for H:1. H is ollision-resistant. It is lear that ollisions H(x) = H(y) (withx 6= y) annot be found eÆiently if x 6= 2k or y 6= 2k. So assume x = x`jjxrand y = y`jjyr for jx`j = jxrj = jy`j = jyrj = k. Collisions of this form implyO`(x`)�O`(x) = O`(y`)�O`(y) and thusO`(x`)�O`(y`) = O`(x)�O`(y): (2)If x` = y`, then this onstitutes a ollision in O`, so we may assume x` 6= y`. Butthe distributions of O` on k-bit strings and on 2k-bit strings are independent andboth uniform. Hene, �nding x and y to satisfy (2) requires a superpolynomialnumber of queries to O` (resp. O) with overwhelming probability.2. H is one-way w.r.t. the uniform distribution on f0; 1gk. For p(k) = 2k,this follows from ollision-resistane and the fat that H is ompressing: Sinethe preimages of H are not unique, if we are able to �nd a preimage x0 of H(x)for random x 2 f0; 1g2k, with notieable probability we will have x 6= x0. Thisallows to �nd ollisions eÆiently. For details see [12℄. For p(k) 6= 2k, this followsby de�nition of H and the fat that the random orale is one-way.3. FK(R) := H(KjjR) is a pseudorandom funtion. Consider an adversaryA that has orale aess to O and to FK for uniformly hosen K. We denote A'si-th query to FK by Ri. Without loss of generality, assume that A never asksfor the same FK evaluation twie, so the Ri are pairwise distint. Furthermore,let Xi := KjjRi, and Yi := O`(KjjRi). We laim that A doesn't query O withK or any of the values Xi; Yi, exept with negligible probability.We prove our laim indutively as follows. Let Ei denote the event that Aqueries O with a value that starts with K prior to the i-th FK query. Clearly,E1 happens with exponentially small probability. So �x an i � 1. To ompleteour proof, it is suÆient to show that under ondition :Ei, the probability forEi+1 to happen is bounded by a negligible funtion that does not depend on i.8



Assume that :Ei holds. That means that, given A's view up to and inludingthe (i�1)-th FK query, the keyK is uniformly distributed among all k-bit values(or k-bit pre�xes of 2k-bit values) not yet queried by A. By the polynomialityof A, this means that, from A's point of view, K is uniformly distributed on anexponentially-sized subset of 0; 1k. But this means that until the i-th FK query,A has only an exponentially small hane to query one of K;Xj ; Yj (j < i).Hene Ei+1 j :Ei happens only with exponentially small probability.Summing up, A never queries O with K or any of the Xi; Yi, exept with neg-ligible probability. Hene, FK an be substituted with a truly random funtionwithout A notiing, and the laim follows.4. ver with H is IND-CPA. Follows immediately from 3.5. ver with H is not KDM seure. A suessful KDM adversary A on veris the following: A asks its enryption orale for an enryption of O(K) (e.g.,using g with g(x) = O(x) as input to the orale). In the real KDM game, theiphertext will be(R;H(KjjR)�O(K)) = (R;O`(KjjR)jjO`(O`(KjjR)));and hene of the form (R; tjjO`(t)) for some t, whih an be easily reognizedby A. But in the fake KDM game, the iphertext will have the form (R;U) fora uniformly and independently distributed U , whih is generally not of the form(R; tjjO`(t)). Hene, A an suessfully distinguish real enryptions from fakeones. utHalevi and Krawzyk's example. Halevi and Krawzyk give a di�erent ex-ample of the\non-implementability"of ver (see [17, Negative Example 4℄). Theyargue that the random orale H in ver annot be implemented with a PRF thatis onstruted from an ideal ipher using the Davies-Meyer transform. Their ex-ample has the advantage of being less arti�ial, while being formulated in theideal ipher model.
4 Information-theoreti KDM seuritySine key-dependent message seurity is very hard to ahieve, we start with twosimple shemes that do not ahieve full KDM seurity, but serve to explain someimportant onepts.4.1 The general idea and a simple sheme (informal presentation)First observe that the usual one-time pad C =M�K (where C is the iphertext,M the message, and K the key) does not ahieve KDM seurity. Enryption ofM = K results in an all-zero iphertext that is learly distinguishable from arandom enryption. However, the slight tweakC = (h;M � h(K)) (h independently drawn universal hash funtion)9



does ahieve a ertain form of key-dependent message seurity: the pad h(K)that is distilled from K is indistinguishable from uniform and independent ran-domness, even if h and some arbitrary (but bounded) information M = M(K)about K is known. (When using suitable bitlengths jKj and jM j, this an beshown using the leftover hash lemma [18℄.) So the enryption M � h(K) of onesingle message M = M(K) looks always like uniform randomness. Hene thesheme is KDM seure in a setting where the enryption orale is only usedone (but on the other hand, information-theoreti seurity against unboundedadversaries is ahieved).4.2 A more formal generalization of the simple shemeOf ourse, one would expet that by expanding the key, the sheme stays seureeven after multiple (key-dependent) enryptions. This is true, but to show this,a hybrid argument and multiple appliations of the leftover hash lemma areneessary. We formalize this statement now.Sheme 6 (The sheme p-BKDM (for\p-bounded KDM")). Let p 2 Z[k℄be a positively-valued polynomial, let `(k) := (2p(k) + 3)k, and let UHF be afamily of universal hash funtions that map `(k)-bit strings to k-bit strings.De�ne the symmetri enryption sheme p-BKDM = (K; E ;D) with seurityparameter k 2 N, message spae f0; 1gk, and key spae f0; 1g`(k) through� K(1k) outputs a uniform random key K 2 f0; 1g`(k).� E(1k;K;M) samples h $ UHF and outputs the iphertext C = (h; h(K) �M).� D(1k;K; (h;D)) outputs the message h(K)�D.De�nition 7 (Bounded KDM seurity). Let p 2 Z[k℄ be a positively-valuedpolynomial. Then a symmetri enryption sheme � is p-bounded KDM seureif it is KDM seure against PPT adversaries that query the enryption oraleat most p(k) times. Further, � is information-theoretially p-bounded KDMseure if it is KDM seure against arbitrary (i.e., omputationally unbounded)adversaries that query the enryption orale at most p(k) times.Theorem 8 (Bounded KDM seurity of p-BKDM). The sheme p-BKDMis information-theoretially p-bounded KDM seure.Proof. In the following, we abbreviate xi; ::; xj with xi::j for all variables x. Letn be the number of keys used. Let an adversary A be given that queries theenryption orale at most p(k) times. Without loss of generality we an assumethe adversary to be deterministi (by �xing the random tape that distinguishesbest) and that it performs exatly p(k) queries. In the i-th enryption in the realexperiment, let �i denote the index of the key that has been used, let hi be thehash funtion hosen by the enryption funtion, let mi be the message that isenrypted, and let i be the seond omponent of the resulting iphertext (i.e.,(hi; i) is the i-th iphertext). Sine the adversary is deterministi, mi dependsdeterministially from the keysK1;n and the iphertexts 1::i�1; h1::i�1, i.e., there10



are deterministi funtions f̂i withmi = f̂i(K1;n; 1::i�1; h1::i�1). Similarly, thereare deterministi funtions �̂i suh that �i = �̂i(1::i�1; h1::i�1).Let Ui be independent uniformly distributed random variables on f0; 1gk thatare independent of all random variables de�ned above. Let"i := Æ(h1::i; 1::i ; h1::i; U1::i)To show that the sheme is information-theoretially p-bounded KDM seure,i.e., that the adversary annot distinguish the real and the fake experiment, itis suÆient to show that "p(k) is negligible sine the view of A an be determin-istially omputed from h1::p(k); 1::p(k).Fix some i 2 f1; : : : ; p(k)g. Let K := K�i , Q := h1::i�1, S := (mi; 1::i�1),h := hi and let U be uniformly distributed on f0; 1gk and independent of(K;Q; S; h). The following onditions hold by onstrution:{ h is a universal hash funtion.{ U is uniformly distributed and independent of (h; S;Q).{ K and Q are independent.{ h is independent of (K;S;Q).So the onditions for Lemma 1 are ful�lled and we haveÆ(h; h(K); S;Q ; h; U; S;Q) � 2jSj+jh(K)j=2�H2(K)=2�1 = 2ik+k=2�`(k)=2�1 � 2�kand thusÆ(h1::i; i; 1::i�1 ; h1::i; Ui; 1::i�1)� Æ(h1::i; hi(K�i);mi; 1::i�1 ; h1::i; U;mi; 1::i�1) � 2�k (3)Sine (hi; Ui) is independent of (h1::i�1; 1::i�1; U1::i�1) by onstrution, from(4.2) we have Æ(h1::i; Ui; 1::i�1 ; h1::i; Ui; U1::i�1) = "i�1 and hene using (3)and the triangle inequality for the statistial distane, we have"i = Æ(h1::i; i; 1::i�1 ; h1::i; Ui; U1::i�1) � 2�k + "i�1:Sine "0 = 0, it follows that "p(k) � p(k) � 2�k is negligible. ut4.3 DisussionThe usefulness of bounded KDM seurity. Our sheme p-BKDM an beused in any protool where the total length of the enrypted messages does notdepend on the length of the key. At a �rst glane, this restrition seems to defeatour purpose to be able to handle key yles: it is not even possible to enrypt akey with itself. However, a loser inspetion reveals that key dependent messagesour in two kinds of settings. In the �rst setting, a protool might make expliituse of key yles in its protool spei�ation, e.g., it might enrypt a key withitself (we might all this intentional key yles). In this ase, p-BKDM annot beused. In the seond setting, a protool does not expliitly onstrut key yles,but just does not exlude the possibility that|due, e.g., to some leakage of11



the key|some messages turn out to depend on the keys (we might all thisunintentional key yles). In this ase, the protool does not itself onstrutkey yles (so the restrition of p-BKDM that a message is shorter than thekey does not pose a problem), but only requires that if key yles our theprotool is still seure. But this is exatly what is guaranteed by p-BKDM. Sofor the|possibly muh larger|lass of protools with unintentional key ylesthe p-BKDM sheme an be used.Multiple sessions of p-BKDM. Theorem 8 guarantees that even in the aseof multiple sessions, the sheme p-BKDM is seure assuming that at most p(k)enryptions are performed in all sessions together. In some appliations, espe-ially if the number of sessions annot be bounded in advane, one might needthe stronger property that we may enrypt p(k) messages with eah key. Intu-itively, we might argue that when we reeive an enryption (h;M � h(K)) of amessage M , the entropy of the key K dereases by at most jM �h(K)j bits, butas long as enough entropy remains in K, we do not learn anything aboutM , andneither about the keys M depends on. This leads to the following onjeture:Conjeture 9. The sheme p-BKDM is KDM-seure if the adversary performsat most p(k) enryptions under eah key Ki. This holds even if di�erent keyshave di�erent assoiated polynomials pi (i.e., key Ki has length O(pi(k)k) andwe enrypt pi times under Ki).Unfortunately, we do not know how to formally prove Conjeture 9. Formalizingthe above intuition is not straightforward, sine it is not lear how to alone de�newhat it means that the entropy of a given key dereases while the entropy of theothers does not. We leave this onjeture as an open problem.Why enrypt only key-dependent messages? De�nitions 2 and 7 give theadversary (only) aess to an enryption orale whih enrypts arbitrary fun-tions of the key (in ontrast to [17℄ whih additionally provides an enryptionorale for normal messages). In De�nition 2, no generality is lost, sine an ordi-nary enryption orale an be emulated by hoosing this funtion as a onstantfuntion. Call suh \ordinary" enryption queries non-KDM queries. Now it isoneivable that a sheme allows for an unbounded number of non-KDM queries,but only a limited number of atually key-dependent queries. The seurity of suhshemes an be appropriately aptured using, e.g., the seurity de�nition of [17℄,whih inorporates separate enryption orales for key-dependent and non-KDMqueries. While our De�nition 7 does not allow to model suh shemes, it is easyto see that our sheme p-BKDM is not seure against an unbounded number ofnon-KDM enryptions (not even against omputationally bounded adversaries).5 Computational KDM seurity5.1 MotivationThe dilemma with hybrid arguments. The disussion in Setion 4.3 doesnot only apply to our sheme p-BKDM. There seems to be a general problem12



with proving KDM seurity with a hybrid argument. Starting with the real KDMgame, substituting the �rst enryption with a fake one �rst is not an option: thelater enryptions annot be properly simulated. But to substitute the last realenryption �rst is not easy either: for this, there �rst of all has to be a guaranteethat at that point, the last key has not already leaked ompletely to the adver-sary. In our ase, with a bounded overall number of enryptions, we an give aninformation-theoreti bound on the amount of information that has been leakedbefore the last enryption. But if there is no suh bound, information theoryannot be used to derive suh a bound. Instead, a omputational assumptionmust be used. Yet, there seems to be no straightforward way to derive a use-ful statement (e.g., about the omputational key leakage) that reahes aross apolynomial number of instanes from a single omputational assumption withoutusing a hybrid argument. Of ourse, this exludes ertain interative assump-tions, whih essentially already assume seurity of the sheme in the �rst plae.We do not believe that it is useful or interesting to investigate suh onstrutionsand assumptions.In other words, we annot use hybrid arguments sine we do not know whereto plae the �rst hybrid step. This situation is similar (but not idential) to thease of seletive deommitments [15℄ and adaptively seure enryption (e.g., [9℄).Hybrid (KEM/DEM) enryption shemes. Another ommon tool for on-struting enryption shemes are hybrid enryption shemes (no relation to hy-brid arguments). In a hybrid enryption sheme, a iphertext onsists of a KEM(key enapsulation mehanism) part and a DEM (data enapsulation meha-nism) part. The KEM part of the iphertext enapsulates a symmetri key Kthat is unrelated to the message M to be enrypted. The DEM part of the i-phertext is a (symmetri) enryption of M under K. The atual seret key sk ofthe hybrid sheme is the seret key that is needed to derypt the KEM part. Itis tempting to use a hybrid onstrution to get rid of the dependeny of messageand seret key. However, there still is a dependeny betweenM and sk: the KEMiphertext provides a relation between sk and K on the one hand, and the DEMiphertext relates K and M on the other. Hybrid enryption tehniques do nothelp to get rid of dependenies between message and seret key.Similarly, hybrid enryption tehniques annot be used to inrease the al-lowed message lengths of the sheme from the previous setion. Conretely, itmay be tempting to use the p-BKDM sheme as a KEM to enapsulate a shortkey K, and then to use that key K as seret key for a omputationally seureDEM whih enrypts long messages with short keys. Unfortunately, this breaksthe seurity proof of p-BKDM (and also, depending on the used DEM, also theseurity itself). Namely, the proof of p-BKDM depends not on the size of theKEM key K, but on the amount of released information about the atual KEMseret key (whih orresponds to the length of the message in the KDM setting).So hybrid enryption does not help here, either.Stateful KDM seurity. To nonetheless get a sheme that is seure in faeof arbitrarily many enryptions of key-dependent messages, we propose stateful13



enryption shemes. In a stateful enryption sheme, the seret key (i.e., theinternal state) is updated on eah enryption. (Deryption must then be syn-hronized with enryption: we assume that iphertexts are derypted in the orderthey got produed by enryption.) For suh a stateful enryption sheme, thereare essentially two interpretations of KDM seurity:� the message may depend on the urrent seret key (i.e., state) only, or� the message may depend on the urrent and all previously used seret keys(i.e., on the urrent and all previous states).We all the �rst notion weak stateful KDM seurity, and the seond strong statefulKDM seurity. Weak stateful KDM seurity an be thought of as KDM seurityin a setting in whih erasures are trusted, and strong stateful KDM seuritymandates that erasures are not trusted (in the most adversarial sense).De�nition 10 (Weak and strong stateful KDM seurity). A stateful sym-metri enryption sheme � is seure in the sense of weak stateful KDM se-urity i� � is ful�lls De�nition 2, where the enryption queries are interpretedas a funtion in the urrent state of the enryption algorithm. Further, � isseure in the sense of strong stateful KDM seurity i� � satis�es De�nition 2,where the enryption queries are interpreted as a funtion in the urrent and allprevious states of the enryption algorithm.Below we will give a sheme that irumvents the hybrid argument dilemmausing preisely the fat that there is a hanging state.Relation to Blak et al.'s notion of \stateful KDM seurity". Blak etal. [7℄ already onsider the potential KDM seurity of a stateful symmetri en-ryption sheme. They show that there an be no stateful KDM seure sheme.However, they showed this under the assumption that enryption is determinis-ti. In our de�nition, enryption is still probabilisti, even though stateful. Weuse the state update mehanism in addition to using randomness, not insteadof it. Their argument does not apply to our de�nition of stateful KDM seurity,neither to our weak nor to our strong variant.Weak vs. strong stateful KDM seurity. For some appliations, strongstateful KDM seurity is neessary: enrypting your hard drive (that may ontainthe seret key) annot be done in a provably seure way with weak stateful KDMseurity. (One the seret key gets to be proessed by the sheme, the statemay have already been updated, so that the message now depends on a previousstate.) Also, the notion of key yles (i.e., keyKi is enrypted underKi+1 mod n)does not make sense with weak stateful KDM seure shemes. In these ases, theuse of a strong stateful KDM sheme is �ne. However, it seems tehnially muhmore diÆult to onstrut a strong stateful KDM seure sheme.5.2 A seure shemeWe do not know how to ful�ll strong stateful KDM seurity. (The issues thatarise are similar as in the stateless ase.) However, we an present a sheme thatis seure in the sense of weak stateful KDM seurity.14



Idea of the onstrution. Our sheme is a omputational variant of p-BKDM(although its analysis will turn out to be very di�erent). The main problem ofp-BKDM is that the seret key runs out of entropy after too many KDM enryp-tions. Only as long as there is enough entropy left in K, a suitably independentrandom pad an be distilled for enryption. However, in a omputational setting,randomness an be expanded with a pseudorandom generator, and some distilled,high-quality randomness an be used to generate more (pseudo-)randomness asa new key. More onretely, onsider the following sheme:Sheme 11 (The sheme sKDM (for \stateful KDM")). Let UHF be afamily of universal hash funtions that map 5k-bit strings to k-bit strings, andlet G be a pseudorandom generator (against uniform adversaries) that maps ak-bit seed to a 6k-bit string. De�ne the stateful symmetri enryption shemesKDM = (K; E ;D) with seurity parameter k 2 N, message spae f0; 1gk, andkey spae f0; 1g5k through� K(1k) outputs a uniform random initial key (i.e., state) K0 2 f0; 1g5k.� E(1k;Kj ;Mj) proeeds as follows:1. sample hj $ UHF ,2. set Sj := hj(Kj),3. set (Kj+1; Pj) := G(S),4. output Cj := (hj ; Pj �Mj).Ciphertext is Cj , and new key (i.e., state) is Kj+1.� D(1k;Kj ; (hj ; Dj)) proeeds as follows:1. set Sj := hj(Kj),2. set (Kj+1; Pj) := G(S),3. output Mj := Pj �Dj .Plaintext is Mj , and new key (i.e., state) is Kj+1.Theorem 12. If G is a pseudorandom generator, then sKDM satis�es weakstateful KDM seurity.Proof. Fix an adversary A that attaks sKDM in the sense of weak statefulKDM seurity. Say that, without loss of generality, A makes preisely p(k) en-ryption queries for a positively-valued polynomial p 2 Z[k℄. Assume that A hasan advantage that is not negligible.Preparation for hybrid argument. For 0 � j � p(k), de�ne the hybrid gameGame j as follows. Game j is the same as the weak stateful KDM game withadversary A, only that� the �rst j enryption queries are answered as in the fake weak stateful KDMgame (i.e., with enryptions of uniform and independent randomness), and� the remaining queries are answered as in the real game (i.e., with enryptionsof adversary-delivered funtions evaluated at the urrent seret key).Base step for hybrid argument. We will redue distinguishing between twoadjaent games to some omputational assumption. We will now �rst formulate15



this assumption. Let K 2 f0; 1g5k be uniformly distributed, and letM 2 f0; 1gkbe arbitrary (in partiular, M an be a funtion of K). Then by Lemma 1 itfollows that Æ(M;h; h(K) ; M;h; Uk) � 2�k for independently sampled h $ UHF and independent uniform Uk 2 f0; 1gk. (Atually, in this ase we ouldeven use the original version of the Leftover Hash Lemma [18℄.) This impliesÆ(M;h;G(h(K)) ; M;h;G(Uk)) � 2�k;from whih the omputational indistinguishability hain(M;h;G(h(K)))| {z }=:DR � (M;h;G(U)) � (M;h; U6k)| {z }=:DF (4)
for independent uniform U6k 2 f0; 1g6k follows by assumption on G. For ourhybrid argument, it is important that (4) even holds when M is a funtion of Khosen by the distinguisher.Hybrid argument. We will now onstrut from adversary A an adversary Bthat ontradits (4) by distinguishing DR and DF . This ontradition then on-ludes our proof. Let n denote the number of keys. Let �i denote the index ofthe key hosen by A for the i-th enryption. Let gi denote the funtion hosen byA in the i-th enryption. Then, the adversary B hooses some j 2 f1; : : : ; p(k)guniformly at random and then performs the following simulation for A:{ The �rst j� 1 enryptions requested by A are simulated as fake enryptions(i.e., with random messages). This is possible without using the keys sinefor a random message, hi(K�i) is information-theoretially hidden in theiphertext.{ For the j-th enryption, B hooses K� randomly for all � 6= �j and de�nes6M(K) := gj(K1; : : : ;K�j�1;K;K�j+1; : : : ;Kn) and requests an input D =:(M;h; (P;K 0)) with that M . (Note that D may be DR or DF .) Then B setsthe new key K�j := K 0 and gives (h;M � P ) as the iphertext to A.{ For all further enryptions queries, B omputes the real iphertext using thekeys K1; : : : ;Kn produed in the preeding steps.{ Finally, B outputs the output of A.It is now easy to verify that if B gets DR as input, B simulates the Game j� 1,and if B gets DF as input, B simulates the Game j. HenePr �B(DR) = 1�� Pr �B(DF ) = 1�= 1p(k) p(k)Xj=1 Pr [A = 1 in Game j � 1℄� 1p(k) p(k)Xj=1 Pr [A = 1 in Game j℄

= 1p(k)�Pr [A = 1 in Game 0℄� Pr [A = 1 in Game p(k)℄�:The right hand side is not negligible by assumption, thus the right hand side isnot negligible either. This ontradits (4) and thus onludes the proof.6 Note that in this funtion de�nition, K is the argument while theK�i are hardwired.In partiular, B does not need to know the atual value of K for this step.16



5.3 The usefulness of stateful KDM seurityIn a sense, strong stateful KDM seurity is \just as good" as standard KDMseurity. Arbitrarily large messages (in partiular keys) an be enrypted bysplitting up the message into parts and enrypting eah part individually. Thekey-depenies of the message parts an be preserved, sine the dependeniesaross states (i.e., dependenies on earlier keys) are allowed. This tehnique isgenerally not possible with weak stateful KDM seurity. We know of no weaklystateful KDM seure sheme with whih one ould seurely enrypt one's ownkey (let alone onstrut key yles).But despite the drawbaks of weak stateful KDM seurity, we believe that thisnotion is still useful: �rst, it serves as a stepping stone towards ahieving strongstateful KDM seurity (or even stateless KDM seurity). Seond, in ertain appli-ations, weak stateful KDM seurity might be suÆient. Imagine, e.g., a settingin whih the enrypted message ontains side-hannel information (like, say, in-ternal measurements from the enryption devie) on the internal state/seretkey. If we assume that the old state is erased after enryption, the side-hannelinformation only refers to the urrent internal state, and weak stateful KDM se-urity is enough to provide message serey. Third, weak stateful KDM seurityprovides an alternative assumption to the assumption of absene of key ylesin the formal protool analysis setting. Instead of assuming the absene of keyyles (this assumption may not make sense in a sheme in whih the key spae islarger than the message spae), we an assume that the enrypted terms dependonly on the urrent internal state of the enryption algorithm. This assumptionis still a strengthening of standard IND-CPA seurity and makes sense, sine theenryption algorithm is only used to enrypt.
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