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1 École normale supérieure,
45 rue d’Ulm, 75005 Paris, France

{Pierre-Alain.Fouque, Jacques.Stern}@ens.fr
2 Orange Labs
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Abstract. In this paper, we study the key recovery problem for the C∗

scheme and generalisations where the quadratic monomial of C∗ (the
product of two linearized monomials) is replaced by a product of three
or more linearized monomials. This problem has been further general-
ized to any system of multivariate polynomials hidden by two invertible
linear maps and named the Isomorphism of Polynomials (IP ) problem
by Patarin. Some cryptosystems have been built on this apparently hard
problem such as an authentication protocol proposed by Patarin and a
traitor tracing scheme proposed by Billet and Gilbert. Here we show that
if the hidden multivariate system is the projection of a quadratic mono-
mial on a base finite field, as in C∗, or a cubic (or higher) monomial as
in the traitor tracing scheme, then it is possible to recover an equivalent
secret key in polynomial time O(nd) where n is the number of variables
and d is the degree of the public polynomials.

1 Introduction

Multivariate cryptography provides alternative schemes to RSA or DLog based
cryptosystems where the underlying hard problem consists of solving a system
of multivariate equations over a finite field. This problem is known to be NP-
hard [13]. Moreover it seems to be interesting to build cryptosystems based on
the assumption that it is hard, since contrary to the factorisation or the DLog
problem, there is actually no known polynomial-time quantum algorithm to solve
it, and generic algorithms that use Gröbner basis are exponential in time and
memory. Finally, the proposed cryptosystems are very efficient in practice and
can be implemented on low-cost smartcards since arithmetic on large integer
is not required. Consequently, at the end of the nineties, a lot of multivariate
cryptosystems were proposed.

One rich family of multivariate scheme is derived from a cryptosystem pro-
posed by Matsumoto and Imai since 1988 and called C∗. Even though this scheme
was broken by Patarin in 1995 [18], Patarin proposed various repairs. One of
these repairs is the Minus transformation, suggested by Shamir in [23], which



is a classical solution to avoid Patarin’s or Gröbner basis attack. The SFLASH
signature scheme, accepted by the NESSIE project in 2003, is a C∗ scheme with
this variation. Recently, SFLASH has been attacked by Dubois et al. in [7, 6].
However, the attacks were not able to recover the secret key, as they rely on
Patarin’s attack which is only able to invert the public key.

The IP Problem. The corresponding key recovery problem, named the IP
Problem, which stands for the Isomorphism of Polynomials has been introduced
by Patarin since 1996 in [20] and studied later by Patarin, Goubin and Courtois
in [22]. It can be stated as follows: given two sets of n polynomials in n variables
A,B over a finite field K of q elements, find if there exist two linear and invertible
mappings S and T in K such that A = T ◦B ◦ S. This problem is not NP-hard
provided the polynomial hierarchy does not collapse as proved by Faugère and
Perret in [10]. However, if we relax S and T to be any linear mapping, then the
problem is called MP, Morphism of Polynomials, and becomes NP-hard as shown
in [22]. Finally, this problem is interesting since many Substitution Permutation
Network block ciphers use as SBoxes a high degree monomial such as x254 in
GF (256) for the AES. Consequently, recovering the key for one round of the AES
is equivalent to solve a special instance of the IP Problem, where the system B
consists in 8 polynomials coming from a high degree monomial projected on
GF (2) and copied 16 times.

1.1 Related Work

Our method for solving the IP problem is not generic but is tailored to work for
some cryptographic instances such as C∗ based schemes or the traitor tracing
scheme of [2]. For these cases, the algorithm is very efficient since it uses only
linear algebra. The first step of our attack is similar to the recent attacks on
SFLASH which can be extended to high degree monomials. In this case, we
define high order differentials which have also been used in the cryptanalysis of
symmetric schemes [16, 15, 14].

Previous Attacks on the IP problem. It is obvious that guessing S allows
us to solve this problem since we can then compute the T function on some
points and check whether it is a bijective linear mapping in time O(n3qn2

).
If each polynomials of B only depends on a small number of variables such

as 8 among the n in the case of the AES SBox, then polynomial time algorithms
exist such as those described by Biryukov and Shamir in [4] or by Biham in [1].

However, when n is sufficiently large and each polynomial of B depends on
many variables, the best known algorithm proposed so far by Patarin et al. has
a complexity of O(n3qn). This last algorithm is very similar to the one proposed
by Biryukov et al. in [3] in the context of linear equivalence problem for arbitrary
permutations. In the case of SFLASH, where the set B is the projection of a
quadratic monomial defined over F an extension of degree n of K, then the
Patarin et al. best algorithm has a complexity in O(qn/2).



At Eurocrypt’ 06, Faugère and Perret describe a Gröbner basis algorithm
to solve the IP problem when B is a set of polynomials defined over a small
number n of variables in an extension F. Their algorithm is very efficient when
the system of polynomials B is random and has small degree terms such as
in the authentication scheme proposed by Patarin and some parameters of the
traitor tracing scheme of Billet and Gilbert. However, for larger parameters
proposed by Billet and Gilbert or for the parameters of SFLASH, the algorithm
does not work. Their algorithm considers only terms of small degree in the
system of polynomials so that the system they defined in the unknowns of S
and T will be overdetermined. The complexity of this algorithm is dominated
by the computation of a Gröbner basis for which we do not have complexity
bound reflecting the practical behaviour. So, they conjecture that the complexity
depends on the smallest value d so that there exists terms of degree d in B. For
high degree monomial, as in the cases we consider in this paper, this parameter
is exactly the degree of the monomials.

Differential Attack on SFLASH. As our attack relies on some information
gained during the recent attacks on SFLASH, we informally describe here how
they work.

Recently, some breakthrough results have been published on the cryptanal-
ysis of the SFLASH signature scheme by Dubois et al. in [7, 6]. SFLASH comes
from the C∗ family, i.e. the internal quadratic monomial of the form P (x) =
x1+qθ

over an extension F of degree n of the base finite field K is hidden by two
linear bijective mappings S and T . The public key is P = T ◦ P ◦ S and if some
polynomials of the public key are removed, we get a SFLASH public key. In [7],
the authors consider the case where gcd(θ, n) > 1.

The basic idea of [14, 7, 6] is to recover some of these polynomials or equivalent
polynomials by noticing that the internal polynomial P ◦S over F forms a set of n
polynomials over K. Then, the action of T consists of linear combination of these
n polynomials. Consequently, if we are able to recover other linear combinations
of these polynomials with independent coefficients, we will be able to recover a
complete public key.

The last results show that it is possible to reconstruct equivalent missing
polynomials using only 3 polynomials of the public key. The way to do it is
to reconstruct some special linear applications related to the secret S, of the
form Nu = S−1MuS so that Mu denotes the multiplications by u in F. In [7],
it is shown that the maps Nu where u are solutions of xqθ

+ x = 0 are easy
to recover using a linear characterization, whereas in [6], more involved analysis
are needed. However, this last attack is more powerful since any multiplication
can be recovered. Then, the composition of these maps Nu with the public key
P is of the form T ◦ P ◦Mu ◦ S and since P is multiplicative, P ◦Nu is of the
form T ′ ◦ P ◦ S and if T ′ contains rows independent of those of T , then we get
new polynomials of the public key which will be independent from the first ones.
Finally, once the public key is recovered, Patarin’s attack can be applied.

Consequently, in this paper we can assume that no equation is removed.



1.2 Our Results

In this paper, we show that the recent attacks on multivariate schemes can be
made more devastating and lead to total break of the C∗ schemes family. More
precisely, we show that the IP problem for C∗ is easy and we can recover secret
keys S and T or equivalent can be recovered given a Nu = S−1MuS linear
mappings. Indeed, these matrices depend on the secret S, but Mu are unknown.
Here, we show how we can recover u and then, how we can recover S′ and T ′. This
last step is not always easy and when gcd(n, θ) > 1, many parasitic solutions can
exist. For the SFLASH signature scheme, the recent attacks rely on Patarin’s
attack in their final stage. However, this attack can become exponential in some
bad cases. Here, our attack on the C∗ schemes family is always polynomial to
recover the secret key and can be seen as a new attack on the C∗ scheme.

Moreover, we show that for high degree monomials, we can also recover the
matrices Nu as in the case of the quadratic monomials of SFLASH and recover
the secret keys. To get a linear characterization of Nu, we use high order differ-
entials as an analog to symmetric cryptanalysis. These two results improve on
a result of Faugère and Perret at Eurocrypt ’06 using Gröbner basis [10] which
solves only some particular cases but not all the proposed parameters by Billet
and Gilbert. For the C∗ case, Faugère and Perret indicate that their approach
cannot take into account SFLASH parameters since the system of polynomials is
too sparse. Here, we only present polynomial time attack to recover these values
for SFLASH and the second parameter proposed by Billet and Gilbert in the
case of the traitor tracing scheme [2].

1.3 Organization of the Paper

In section 2 we present the problem Isomorphism of Polynomials which repre-
sents the key recovery problem in multivariate schemes. Then, we present the
differential of the public key which allows to give a characterization of the in-
teresting linear mappings we are looking for. Then, we show how to solve the
IP problem when the internal polynomial is a monomial in section 4. In section
5, we show that the SFLASH public key can be recovered in all cases and on
monomial of higher degree of the traitor tracing scheme before the conclusion.

2 Isomorphisms of Polynomials Problem (IP)

In this section, we present the Isomorphism of Polynomials problem stated by
Patarin et al. in [20, 22]. It has been used by Billet and Gilbert in [2] to define
a traitor tracing scheme.

2.1 Description of the IP Problem

The IP Problem is defined for any two sets A,B of n multivariate polynomials
and the problem is to find S and T two linear and bijective maps on n variables



so that A = T ◦B◦S. In this paper, we focus on special instances of this problem
when the system B is the projection on the base field K of a polynomial defined
over an extension of degree n of K.

Let K be a small finite field of q elements and F an extension of degree n
over K. Let π be an isomorphism from Kn onto F and P some polynomial over
F. Then, let S and T be two linear or affine invertible transformations over Kn.
The maps S and T are kept secret. Finally let P = T ◦π−1 ◦P ◦π ◦S be a set of
n polynomial forms over Kn. This system of multivariate polynomials P is also
named the public key. The problem can now be expressed as follows:

IP Problem. Given K, n, P , and P defined as above, find S′ and T ′ affine
transformations over Kn and π′ isomorphism from Kn onto an extension of
degree n of K such as:

P = T ′ ◦ π′−1 ◦ P ◦ π′ ◦ S′.

Remark 1. The choice of π′ is indifferent. Indeed, should we choose π̃, then there
exists some change of coordinates such that ϕ = π̃−1 ◦ π′. If (T ′, S′, π′) is a
solution, then (T̃ = T ′ ◦ ϕ−1, S̃ = ϕ ◦ S′, π̃) is another solution.

In the sequel, by some misuse of language, we avoid writing the isomorphism
π and its inverse π−1 when their use is obvious and simply write P = T ◦P ◦S.

IP with Polynomials. In this article, we mainly study the case where P is a
monomial of the form P (x) = x1+qθ1+...+qθd−1 defined over an extension field F
of degree n of K. If we project this monomial over the base field K, we get n
multivariate polynomial of degree d since the mappings x 7→ xqi

for integers i are
K-linear. Consequently, the changes between the public key P and the internal
polynomial P are changes of variables, which do not modify the degree of the
multivariate polynomials.

2.2 Equivalent Keys

Solutions to the IP Problem are in fact not unique. See [24] for a discussion about
equivalent keys. For instance, let’s analyze the case P (x) = x1+qθ

. Let’s note Mu

(multiplications) and ϕi (Frobenius) defined by Mu(x) = ux and ϕi(x) = xqi

.
So if (T ′, S′) is a solution then so are

(T ′◦π−1◦M
1/uqθ+1 ◦π, π−1◦Mu◦π◦S′) and (T ′◦π−1◦(ϕi)−1◦π, π−1◦ϕi◦π◦S′).

3 Differential and Properties for Monomials

The differential of the public key of a multivariate scheme has been introduced
in a systematic cryptanalytic method by Fouque et al. in [11]. Later, this method
has been developed and extended in [8, 9, 7, 6] to attack various systems.



3.1 Differential of Polynomials

For a general polynomial P , the differential in some point a, denoted by DaP ,
is formally defined by:

DaP (x) = P (x + a)− P (x)− P (a) + P (0).

We may also refer it as DP (x, a) which is symmetric since DaP (x) = DxP (a).
The later notation also represents the fact that the differential is a bilinear
expression and consequently, it can be represented by a matrix. In our case, all
polynomials of the public key can be represented as a bilinear mapping.
The interest of studying the differential is that it “lowers” the degree and it is
homogeneous. For instance, if deg(P) = 2 then deg(DaP) = 1 and DaP is linear.
In this case, the differential acts as it “kills” the parts of degree 1 and 0 of P.

Differential of Monomials of Higher Degree. For higher degrees, we may
define differentials of higher order. For instance, if deg(P) = 3: Da,bP (x) =
Da(DbP (x)) defines a second order differential and deg(Da,bP(x)) = 1. We may
also note it DP (a, b, x) for the same reason as previously.

Differential of the Public Key. Let us study how the differential operates on
the public key. We assume here that P (x) = x1+qθ

. First, if S and T are linear,
then we have

DaP(x) = T (DS(a)P (S(x))) (1)

Taking into Account the Affine Parts. If S and T are affine, we denote by
Σc the addition with c. With this notation, we have: (P ◦Σc)(x) = P (x)+xcqθ

+
xqθ

c + P (c). Now, we can easily express that Da(P ◦ Σc)(x) = DaP (x), since
xcqθ

+xqθ

c+P (c) is affine. Since S(x) = DS(x)+S(0) and P ◦S = P ◦ΣS(0)◦DS,
we deduce a similar relation: DaP(x) = DT (DDS(a)P (DS(x))). So, the previous
relation is just like relation (1) where S and T are replaced by their linear part
DS and DT .

3.2 Multiplicative Property of the Differential

In this section, we show that a characterization equation exists for hidden mono-
mials that involves a linear mapping N . Since the equation is linear in the un-
known of N and depends only on the public key, N can be easily found.

Multiplicative Property for SFLASH. For P (x) = x1+qθ

there is an inter-
esting property of the differential:

DxP (Mu(y)) + DyP (Mu(x)) = Mu+uqθ (DyP (x)) (2)



where Mu is the multiplication by u in F. We can also rewrite this equation as
DP (xu, y)+DP (x, yu) = (u+uqθ

)DP (x, y). How is this property (2) transfered
to the public system? Firstly for the sake of simplicity, we may assume that S
and T are linear. Otherwise, we will see that considering only their linear part
is a good approach when they are affine.

If we denote by Nu the conjugate by S of Mu, namely Nu = S−1 ◦Mu ◦ S,
property (2) becomes:

DxP(Nu(y)) + DyP(Nu(x)) = T (Mu+uqθ (DS(y)F (S(x))))

= (T ◦Mu+uqθ ◦ T−1)(DyP(x))
(3)

If we consider the vector space of symmetric bilinear forms such that b(x, x) = 0
of dimension n(n− 1)/2, then the bilinear forms of the left hand side are in the
vector space V spanned by the bilinear forms of the differential of the public
key DyP(x) of dimension n. This equation is linear in the n2 unknowns of Nu

and stating that one quadratic form of the LHS is in this vector space gives
n(n − 1)/2 linear equations and n additional unknowns. Therefore, expressing
that 3 forms of the LHS are in V is sufficient to completely determine Nu.

Multiplicative Property for Higher Degree. For degree 3 or 4, similar
expressions for this property can be derived, by considering respectively:

Dx,yP(Nu(z)) + Dx,zP(Nu(y)) + Dy,zP(Nu(x)), (4)

Dx,y,zP(Nu(v)) + Dx,y,vP(Nu(z)) + Dx,z,vP(Nu(y)) + Dy,z,vP(Nu(x))). (5)

In case (4), we get trilinear forms and the multiplication by u + uqθ

is replaced
by u + uqθ1 + uqθ2 for degree 3 and by u + uqθ1 + uqθ2 + uqθ3 for degree 4.

Multiplicative Property is a Characterization. The property (2) and the
ones infered for higher degree are a characterization. Indeed the only linear
mappings M and M ′ satisfying:

DxP (M(y)) + DyP (M(x)) = M ′(DyP (x)) (6)

are the multiplications.
The idea of the proof is that the K-linear applications over F can be expressed

as linearized polynomials such as M(x) =
∑n−1

i=0 λix
qi

where coefficients λi be-
long to F. By replacing this expression in equation (6), provided that n is large
enough, all coefficients λi must be null except λ0. Hence the result M(x) = λ0x.

Remark 2. This result is true only if n is not too close to d. When n is too small,
there is a side effect that allows linear applications other than multiplications to
be solution of equation (6). Experimentally, we have found the lower limit of n
according to d. For d = 2 and d = 3, we must have n ≥ 5. For d = 4, we must
have n ≥ 7.



4 Recovering S and T

The basic idea to recover equivalents for S and T is to find some Nu and use
equation: Nu = S−1MuS. If we can recover u, then Mu is known and we can
linearized it to SNu = MuS, where S is the unknown we are looking for.

Description of the Attack. In the following, we describe the different steps
of the attack to recover equivalent S and T .

1. Find all linear transformations L such as DxP(L(y)) + DyP(L(x)) is a set
of bilinear forms, all of them being linear combinations of the elements of
DyP(x). Due to the characterization, the space of solutions is the conjugate
by S of the multiplications.

2. Pick up at random one solution L which characteristic polynomial is irre-
ducible over K.

3. Find u such as L and Mu are conjugate. Since L and Mu must have the
same characteristic polynomial, choose u as any root of the characteristic
polynomial of L. Since characteristic polynomial is irreducible over K, roots
are primitive elements of F.

4. Solve the linear system X.L = Mu.X where the unknown X is a linear
mapping of Kn.

5. Pick up at random any non trivial solution S.
6. Compute T as P ◦ S−1 ◦ P−1.

Recovering L. In [7, 6], it is described how the first step of this attack can
be mounted since systems in step 1 is overdefined. Consequently, only a few
coordinates of DyP(x) are sufficient to solve it. This is the same reason why the
“Minus” scheme of SFLASH can be defeated even if some public polynomial are
removed.

It is also possible to reconstruct S and T even though they are affine. The
computations are the same, but we replace P by DP. At steps 5 and 6, we
can find actually the linear parts of S and T , that is DS and DT . Then, using
equation:

(DT )−1 ◦DP(x) = D(F ◦S)(x) = (DS(x))1+qθ

+(DS(x))qθ

S(0)+DS(x)S(0)qθ

replace x by random values, in order to gain enough linear independent equa-
tions, all of the form ayqθ

+by+c = 0, and find the solution S(0). Then, compute
T (0) = P(0)− (DT ◦ P ◦ S)(0).

Recovering Mu. To recover Mu, we first show how we recover u. Since L is the
conjugate of Mu by the secret matrix S, they are similar and so, they have the
same minimal polynomial. Furthermore, u is a root of the minimal polynomial
of Mu

3. Indeed, if Π is the minimal polynomial of Mu, then Π(Mu) = 0 and so
3 In fact, one can prove that u and Mu have the same minimal polynomial.



Π(ux) = 0 for all x, and so Π(u) = 0 for x = 1. Moreover, it is also well-known
that the roots of a minimal polynomial are conjugates, i.e. are the elements
{u, uq, uq2

, . . . , uqn−1}. This result can be easily seen since the coefficients of
the minimal polynomial belong to Fq, and for any element α of Fq, we have
αqi

= α, thus for the minimal polynomial p of u, p(uqi

) = p(u)qi

= 0. The
conjugate property stands also for matrices, since Mu = (ϕi

q)
−1Muqi ϕi

q, where
ϕi

q(x) = xqi

is the ith frobenius map. Therefore, even though we do not choose
the right conjugate, since the frobenius application commutes with the internal
monomial, we will always find equivalent secret keys. So, once L is known, it
suffices to select any of the roots of its minimal polynomial as value for u.

Equivalent Keys and Space of Solutions. At step 1, solutions should be
a subspace of dimension n, isomorphic to F, since it is the conjugate by S of
the space of multiplication matrices. For instance, trivial solutions are diagonal
matrices which correspond to elements of K. So at this step we just need to
select any matrix corresponding to a multiplication by a primitive element of
F. At step 3, roots of the characteristic polynomial are conjugate, since it is
irreducible over K and its coefficients belong to K. Thus selecting uqi

instead
of u is equivalent to multiply the solutions by ϕi. At step 5, solutions can be
obtained from a particular one, by multiplying it by any multiplication matrix
Mu.

Remark 3. In the wording of the IP problem, we can assume that P is unknown,
only its degree is known, since the number of monomials of a given degree is
small.

5 Applications

The following experimental results have been obtained with an Opteron 850
2.2GHz, with 32 GBytes of Ram. The systems associated with the instance of
the problems and their solutions have been generated using the Magma software,
version 2.13-15.

If the following tables, tgen is the time for computing the coefficient of the
problem, mainly the linear application that gives DxP(L(y)) + DyP(L(x)) for
any L, at step 1, tsol is the time for solving the problem, which is basically
a linear algebra issue, regarding intersection of subspaces. ‘s.’ and ‘m.’ denote
respectively second and minute.

5.1 SFLASH Signature Scheme

The following results concern a general instance of the IP problem for an ho-
mogeneous C∗scheme of degree 2, that is we are looking for linear S and T .
Nevertheless, this is almost the problem of key recovery for the SFLASH Signa-
ture scheme, where some coordinates (equations) are missing, since finding Mu

enables to regenerate missing coordinates.



q d n tgen tsol

216 2 19 0.4 s. 0.5 s.
216 2 21 0.6 s. 1 s.
27 2 37 6 s. 23 s.
2 2 67 55 s. 10 s.
27 2 67 60 s. 12 m.

The first row corresponds to the second challenge of Billet and Gilbert.
Faugère and Perret in [10] were unable to solve it and conjectured that the
system was too sparse. Moreover, row 3 and 5 correspond to the practical in-
stances of SFLASH v2 and SFLASH v3. In this case, the number of variables is
too large and Gröbner basis algorithm cannot take into account such parame-
ters. However, contrary to [10], our approach can only deal with internal system
of multivariate scheme coming from the projection of a monomial and not any
polynomials. In the case of SFLASH parameters, we do not give the value r of
the removed equations since previous attacks [7, 6] can always be used to recover
missing polynomials of the public key.

5.2 Traitor Tracing of Billet and Gilbert

Here as above, the results concern a general instance of the IP problem for an
homogeneous C∗ scheme, but of degree 3 and 4. The change was in the use of
the expressions (4), and (5).

q d n tgen tsol θ1 θ2 θ3

29 3 10 0.6 s. 0.1 s. 1 4
29 3 18 12 s. 5 s. 1 6
29 3 19 15 s. 7 s. 1 4
29 3 20 20 s. 11 s. 1 4
29 3 21 26 s. 15 s. 1 6
216 4 7 0.2 s. 0.2 s. 1 2 6
216 4 8 0.65 s. 0.4 s. 1 3 7
216 4 9 1.4 s. 0.3 s. 1 2 7
28 4 10 11 s. 8 s. 1 3 5
28 4 11 19 s. 44 s. 1 2 6
28 4 12 32 s. 80 s. 1 2 10

In these experiments, we give the values of θ1, θ2 and θ3 such that the mono-
mials can be inverted and so that there is no intermediate finite field of F, i.e.
gcd(θ1, θ2, n) = 1. We can remark that from n = 7 for d = 4, we can solve the IP
problem for monomials more efficiently than [10]. These results confirm experi-
mentally the complexity of the resolution of the problem, namely O(log(q)2nd).
We can finally remark that the degree d is exactly the heuristic value given
by Faugère and Perret in the case of high degree monomials defined over an
extension field.



5.3 The `-IC scheme

At PKC’07, Ding et al. presented a new multivariate scheme based on Cremona
maps in [5]. This scheme has been attacked at PKC’08 by Fouque et al. in [12]. In
this attack, the authors are also able to recover equivalent secret keys. The way
they recover u consists in raising Nu to some power so that uα has a small order
and then, exhaustive search can be performed. Fortunately, for the proposed
parameters, it is always the case. However, if this trick is not possible, our
method that computes the minimal polynomial can be done and we get directly
the value u. Consequently, we can improve the cryptanalysis of the `-IC scheme.

6 Conclusion

Here, we describe a key recovery attack on the C∗schemes family which lead to
the recovery of equivalent secret keys. This means that an attacker would be in
the same position than a legitimate user. Moreover, this attack is polynomial
in time and space, and so it is very practical and can be executed within few
seconds on the recommended values of the parameters of the schemes.
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