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Abstract. We investigate a general class of (black-box) constructions
for range extension of weak pseudorandom functions: a construction
based on m independent functions F1, . . . , Fm is given by a set of strings
over {1, . . . , m}∗, where for example {〈2〉, 〈1, 2〉} corresponds to the func-
tion X 7→ [F2(X), F2(F1(X))]. All efficient constructions for range ex-
pansion of weak pseudorandom functions that we are aware of are of this
form.
We completely classify such constructions as good, bad or ugly, where the
good constructions are those whose security can be proven via a black-
box reduction, the bad constructions are those whose insecurity can be
proven via a black-box reduction, and the ugly constructions are those
which are neither good nor bad.
Our classification shows that the range expansion from [10] is optimal,
in the sense that it achieves the best possible expansion (2m − 1 when
using m keys).
Along the way we show that for weak quasirandom functions (i.e. in the
information theoretic setting), all constructions which are not bad – in
particular all the ugly ones – are secure.

1 Introduction

Pseudorandomness, introduced by Blum and Micali, is a crucial concept in
theoretical computer science in general, and cryptography in particular. Infor-
mally, an object is pseudorandom if no efficient adversary can distinguish it from
a truly random one. The most popular pseudorandom objects are pseudorandom
generators (PRG), functions (PRF), and permutations (PRP). A PRG is a func-
tion prg : {0, 1}n → {0, 1}m where m > n and no efficient A can distinguish
prg(Un) from Um, where Ui denotes the uniform distribution over i bit strings.
A PRF is a family of functions F : {0, 1}`×{0, 1}n → {0, 1}m, where no efficient
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A can distinguish F (U`, .) from a uniformly random function. Weak PRFs, are
defined similarly to PRFs, but where the adversary gets only to see the outputs
on random inputs (and not on inputs of his choice). PRGs, PRFs, and PRPs are
equivalent, i.e. black-box reducible, to one-way functions [4, 3, 6]. Unfortunately
these reductions are quite inefficient, and therefore practical pseudorandom ob-
jects are either constructed from scratch (like the AES block-cipher, which is
supposed to be a PRP) or from stronger assumptions than OWFs (in particular
number theoretic assumptions like Decisional Diffie-Hellman).

Range Extension for PRGs and PRFs. From a PRG prg : {0, 1}n →
{0, 1}2n one can efficiently construct a PRG with a larger range: on input
X ∈ {0, 1}n compute YL‖YR ← prg(X) and output the 4n-bit string Z ←
prg(YL)‖prg(YR). One can now recursively apply prg on input Z in order to
get a pseudorandom 8n-bit string and so on. The security of this construction
follows by a simple hybrid argument.

From a PRF prf : {0, 1}` × {0, 1}n → {0, 1}n we can get a PRF prf ′ :
{0, 1}`t × {0, 1}n → {0, 1}nt with larger range as

prf ′(k1, . . . , kt, x) = prf(k1, x)‖ . . . ‖prf(kt, x)

This construction also works for weak PRFs, but is not very practical as the
number of keys is linear in the expansion factor. Let bin(i) denote the binary
representation of i padded with 0’s to the length dlog te. The following construc-
tion of a {0, 1}` × {0, 1}n−dlog te → {0, 1}nt function

prf ′′(k, x) = prf(k, x‖bin(0))‖ . . . ‖prf(k, x‖bin(t− 1))

just needs a single key, and prf ′′ is easily seen to be a PRF if prf is. Unfor-
tunately this construction does not work for weak PRFs (just consider a weak
PRF where the output does not depend on the last input bit).

Range Extension for weak PRFs. Efficient range extension for weak PRFs
has been investigated in [2, 10, 11]. All constructions considered in these papers

can be defined by an ordered set α of strings over [m]
def
= {1, . . . , m}. The input to

the construction are m keys k1, . . . , km for the fixed output length PRF F , and
a single input x to F . Each string s ∈ α now defines how to compute a part of
the output, for example s = 〈2, 1, 3〉 corresponds to the value Fk3(Fk1 (Fk2(x))),
thus the expansion factor is the size of α. We give a formal definition for such
constructions, which we call expansions, in Section 3.

Classifying Expansions. Not all expansions are secure in the sense of being
a weak PRF whenever the underlying component F is a weak PRF. Before we
continue, the reader might take a look at the three expansions given in the figure
below, and try to answer the following question: if F is a weak PRF, which of
the three length doubling constructions will also be a weak PRF (here k1, k2 are
two random independent keys).
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In this paper we exactly classify which expansions are secure and which are not
(cf. Theorem 1). Interestingly there are three (and not just two) natural classes
which come up, we will call them good, bad, and ugly (the three constructions in
the figure above are simple examples of a good, a bad, and an ugly expansion).
We call expansions whose security can be proven by a black-box reduction3

good. We call an expansion bad, if its insecurity can be proven by a black-box
reduction. There are also expansion which are neither good nor bad, we call
them ugly.
More on the Notion of Weak (Pseudo/Quasi)Random Functions. A
function is a pseudorandom function if

(i) It cannot be distinguished from a uniformly random function by any efficient
distinguisher.

(ii) It can be efficiently computed.

In this paper we also consider the setting where (ii) is not necessarily satisfied,
as the function is realized by some oracle, we call such functions simply random
functions (RF). If (i) only holds for distinguishers which may query the function
on random inputs, we prepend the term “weak” (like weak PRF). Functions
which cannot be distinguished from random by any (and not just any efficient)
distinguisher making some bounded number of queries are called quasirandom
functions (QRF).4 In particular any function which is a RF relative to a PSPACE
oracle is a QRF.5

We use the term randomized function to denote a function which is not
deterministic. This could be an efficient family of functions, where a function
is sampled by choosing a random key. It could also be an oracle implementing
a function, where the oracle uses randomness. Clearly, any random function is

3 In such a reduction one constructs an efficient adversary A, such that for every ad-
versary B which breaks the security (as a weak PRF) of the expansion, the adversary
A, given black-box access to B, breaks the security of the underlying randomized
function (here A and B have only black-box access to the randomized function).
Having black-box access to some component means that one only can query it on
inputs of ones choice to get some output, but one does not get to see a description
(say as a Turing machine) of the component.

4 In the literature one often refers to such functions a almost k-wise independent
functions, where k is a bound on the number of queries.

5 This is the case as relative to a PSPACE oracle no computational hardness, and thus
no pseudorandomness, exists. So if we have a RF relative to a PSPACE oracle, its
randomness must be information theoretic, which means it is a QRF.



a randomized function as a deterministic function is easily distinguished from
random, the converse is not true in general.

1.1 Related Work

Optimal Expansions. Efficient range expansion for weak PRFs have been in-
vestigated by Damg̊ard and Nielsen [2]. They prove that there are good expan-
sions which achieve an exponential expansion factor of roughly 2m/2 − 1 (using
m keys). This has been improved to roughly 3m/2 − 1 in [11] and to 2m − 1 in
[10]. From our classification it follows (Corollary 1) that 2m − 1 is indeed the
best possible.6

Expansions in Minicrypt. In [13], we show that in Minicrypt, i.e. under the
assumption that public-key cryptography does not exist7, some ugly construc-
tions8 are secure. We do not know if relative to this assumption all ugly con-
structions are secure (in this paper we show that relative to a PSPACE oracle
all ugly constructions are secure).

1.2 Applications

Weak PRFs are a strictly weaker primitive than PRFs, and thus requiring that
some construction (like AES) is only a weak PRF is less of an assumption than
assuming it to be a “regular” PRF.9 Still, for many applications, weak PRFs are
enough. An example is symmetric encryption [12, 2, 10]. The scheme defined by
encrypting a message M as (r, F (k, r) ⊕M), where r is sampled uniformly at
random, is IND-CPA secure if F is a weak PRF [12]. There is some overhead as
the ciphertext is |r| bits longer than the plaintext, but using range extension for
weak PRFs, a message of any length can be encrypted [2], and thus the overhead
is independent of the message length.

In particular, when using the optimal expansion from [10] in the above scheme
one needs m = dlog2(|M |/n +1)e shared keys (n being the block-length) for the
(fixed output length) weak PRF (those keys can also be computed by expanding
a single key, see [10]). This expansion has a “depth” of m, by which we mean
that to compute some elements of the output, one will have to invoke the weak
PRF up to m times sequentially. Let us, however, stress that to compute all

6 In [10], it is shown – under the Inverse Decisional Diffie Hellman (IDDH) assump-
tion – that their expansion α of size 2m − 1 is optimal for expansions containing
strings of length logarithmic in the expansion factor (this corresponds to log-time
random access to the output blocks). However, this still leaves open the possibility
that a different expansion of larger size exists. In fact, [11] claim to have found a
construction with a better expansion, but their proof is flawed (see [10]).

7 This means relative to an oracle where one-way functions do exist, but key-agreement
does not, such an oracle was constructed by Impagliazzo and Rudich [5].

8 In particular (using notation introduced in the next section) α = {〈1, 2〉, 〈2, 1〉}.
9 Block ciphers like AES are usually not only assumed to be PRFs, but even super

pseudorandom-permutations, i.e. indistinguishable from a uniformly random permu-
tation when adaptively queried from both directions.



2m − 1 outputs, one only needs a total number of 2m − 1 invocations. This is
no contradiction, as if we compute an element with depth c, all the c− 1 values
computed on the way will also be part of the output.

Although a depth of m is only logarithmic in the expansion factor, this might
already be too much (say, due to hardware restrictions). We show (Corollary 2)
that if we require a smaller depth c < m, then the best expansion factor we can
get is

∑c
i=0

(
m
c

)
− 1. Note that for m = c, this indeed gives the 2m − 1 bound.

2 Basic Definitions

By LX and RX we denote the left and right half of a bit string X of even length,
respectively. We denote with [m] the set {1, . . . , m}.

An expansion α is a set of strings over an alphabet [m] for some m ∈ N.
Consider an expansion α = {s1, . . . , st}, each si ∈ [m]∗. With si[j] we denote

the j’th letter of si. We denote with #α
def
= m the alphabet size, with |α|

def
= t

the size, with ‖α‖ =
∑t

i=1 |si| the total length, and for 1 ≤ i ≤ m with αi the

number of occurrences of the letter i in α. Note that
∑#α

i=1 αi = ‖α‖.
For an expansion α, #α = m, |α| = t, and functions F1, . . . , Fm, each X → X ,

we define the function

Cα
F1,...,Fm

= X → X t

as follows. On input X ∈ X , the i’th component (i ∈ [t]) of the output is
computed using si as

Fsi[|si|](Fsi[|si|−1](. . . Fsi[2](Fsi[1](X)) . . .)).

We will refer to the above computation as the evaluation of the i’th chain.
For a randomized function F , we denote with Cα

F the function Cα
F1,...,Fm

where
m = #α and each Fi as an independent instantiation of F .

3 The Good, the Bad & the Ugly

We classify the expansions into three classes depending on the security they
guarantee for Cα

F .
The Good: α is good if the security of Cα

F as a weak random function can be
efficiently black-box reduced to the security of F as a weak random function.10

So whenever F is a weak random function, also Cα
F is, and moreover this holds

relative to any oracle.
The Bad: α is bad if there is an efficient construction F ′ which uses some
function F as a black-box, such that the security of F ′ as a weak random function

10 The reduction being efficient means that from any adversary A which breaks the
security of Cα

F , we construct an adversary B where BA,F breaks the security of F ,
and the size of B (as an oracle circuit) is polynomial in the size of α and the range
of F .



can be efficiently black-box reduced to the security of F as a weak random
function, but Cα

F ′ is not a weak random function.
The Ugly: α is ugly if it is neither good nor bad.

We now give a simple classification of all expansions into three classes G, B
and U, which by Theorem 1 below are exactly the good, the bad, and the ugly
expansions.

Definition 1 An expansion α = {s1, . . . , st} is

– of type B if it does contain a string with two consecutive identical letters or
two identical strings, i.e.

∃i, k where si[k] = si[k + 1] or ∃i, j, 1 ≤ i < j ≤ m : si = sj .

– of type G if it is not of type B and whenever a letter c appears before a letter
d in some s ∈ α, then d does not appear before c in any string s′ ∈ α, i.e.11

∀s, s′ ∈ α, i, j, i′, j′ : s[i] = s′[i′] ∧ s[j] = s′[j′] ∧ i < j ⇒ i′ < j′.

– of type U if it is not of type G or B.

Theorem 1 (main) .

(i) An expansion is good if and only if it is of type G.
(ii) An expansion is bad if and only if it is of type B.
(iii) An expansion is ugly if and only if it is of type U.

That G expansions are good and B expansions are bad follows by rather simple
black-box reductions (Lemmata 1 and 2), the “only if” part is much harder. In
order to show that the U expansions are ugly, one has to come up with an oracle
implementing a random function, such that relative to this oracle the expansion
is not secure (thus it is not good), and another oracle relative to which it is
secure (thus it is not bad). For the latter oracle we use a PSPACE oracle, as
we show (Theorem 2) that for QRFs (recall that any RF is a QRF relative to a
PSPACE oracle) any expansion which is not of type B, is secure. The following
table summarizes the proof of the theorem.

G U B

good by Lemma 2 (and [10]) not good by Lemma 3
not bad by Theorem 2 bad by Lemma 1

So Theorem 1.(i) follows from Lemma 2 and 3, Theorem 1.(ii) follows from
Theorem 2 and Lemma 1, and Theorem 1.(iii) follows from (i) and (ii).
Corollaries. For every m, [10] construct a good expansion of size 2m−1 using
m keys: let α contain all 2m − 1 distinct s (of length at least 1) over [m] where
s[i − 1] < s[i] for all 2 ≤ i ≤ |s|. From our classification it follows that this is
best possible, and moreover, this expansion is the unique good expansion of size
2m − 1 (up to relabellings of the keys).

11 Note that we do not require c 6= d, so this condition implies that no letter appears
more than once in any string.



Corollary 1 For any m and α with alphabet size #α = m, if α is good then

|α| ≤ 2m − 1,

and this is tight for α = {s ∈ [m]∗ ; s[1] < s[2] < . . . < s[|s|]}.

For some c < m, consider the expansion we get by removing all s ∈ α of length
more than c from the optimal expansion just described. This expansion is still
good, and it is not hard to show that it is the best good expansion of depth c
using m keys.

Corollary 2 For any m, c ≤ m, and α with alphabet size #α = m, if α is good
then

|α| ≤

c∑

i=0

(
m

i

)

− 1,

and this is tight for α = {s ∈ [m]∗ ; s[1] < s[2] < . . . < s[|s|], |s| ≤ c}.

Note that Corollary 1 is just a special case of Corollary 2 for the case c = m.

4 The Bad Expansions are Exactly B

To prove that expansions outside of B are not bad, we use the random systems
framework of Maurer [7]. Here we only give a rather informal and restricted
exposition of the framework, in particular we only consider known-plaintext
attacks (KPA), as this is the only attack relevant for this paper.

Notation. We use capital calligraphic letters like X to denote sets, capital
letters like X to denote random variables, and small letters like x denote concrete
values. To save on notation we write X i for X1, X2, . . . , Xi.

Random Systems. Informally, a random system is a system which takes inputs
X1, X2, . . . and generates, for each new input Xi, an output Yi which depends
probabilistically on the inputs and outputs seen so far. We define random systems
in terms of the distribution of the outputs Yi conditioned on X iY i−1, more
formally: An (X ,Y)-random system F is a sequence of conditional probability
distributions P

F

Yi|XiY i−1 for i ≥ 1. Here we denote by P
F

Yi|XiY i−1(yi, x
i, yi−1) the

probability that F will output yi ∈ Y on input xi ∈ X conditioned on the fact
that F did output yj ∈ Y on input xj ∈ X for j = 1, . . . , i− 1.

Uniformly random functions (URFs) are random systems which will be im-
portant in this paper, throughout Rn,m will denote a URF {0, 1}n → {0, 1}m.

Conditions for Random Systems. With FA we denote the random system
F, but which additionally defines an internal binary random variable after each
query (called a condition). Let Ai ∈ {0, 1} denote the condition after the i’th
query. We set A0 = 0 and require the condition to be monotone which means
that Ai = 1 ⇒ Ai+1 = 1 (i.e. when the condition failed, it will never hold
again). Let ai denote the event Ai = 1, then with νKPA(FA, ak) we denote the



probability of the event ak occurring when FA is queried on random inputs, i.e.

νKPA(FA, ak)
def
=

∑

xk∈Xk

Pr[Xk = xk] · Pr[ak holds in FA(xk)]

=
1

|X |k

∑

xk∈Xk

Pr[ak holds in FA(xk)].

Indistinguishability. For (X ,Y)-random systems F and G, we denote with
∆KPA

k (F,G) the distinguishing advantage of any unbounded distinguisher in a k
query known-plaintext attack. This advantage is simply the statistical distance,
i.e. with Xk being uniformly random over X k

∆KPA

k (F,G)
def
=

1

2

∑

xk∈Xk,yk∈Yk

Pr[Xk = xk] ·
∣
∣Pr[F(xk) = yk]− Pr[G(xk) = yk]

∣
∣

=
1

2 · |X |k

∑

xk∈Xk,yk∈Yk

∣
∣Pr[F(xk) = yk]− Pr[G(xk) = yk]

∣
∣ .

FA
$ GB denotes that FA is equivalent to GB while the respective condition

holds:

FA
$ GB ⇐⇒ ∀xi, yi : Pr

F
A

ai∧Y i|Xi(yi, xi) = Pr
G

B

bi∧Y i|Xi(yi, xi).

We say that FA is dominated by G, which is denoted by FA � G, if on any
input xi and for any possible output yi the probability that FA(xi) output yi

and the condition A holds, is at most the probability that G(xi) = yi.

FA � G ⇐⇒ ∀xi, yi :Pr
F

A

ai∧Y i|Xi(yi, xi) ≤ Pr
G

Y i|Xi(yi, xi)

or equivalently ∀xi, yi :Pr
F

A

ai∧Yi|XiY i−1ai−1
(yi, x

i, yi−1) ≤ Pr
G

Yi|XiY i−1(yi, x
i, yi−1)

Note that FA
$ GB implies FA � G and GB � F. The following are the two

main propositions of the framework (restricted to the case of KPA attacks).

Proposition 1 If FA � G then ∆KPA

q (F,G) ≤ νKPA(FA, aq).

Proposition 2 For any random systems F and G, there exist conditions A and
B such that

FA
$ GB and ∆KPA

q (F,G) = νKPA(FA, aq) = νKPA(GB, bq).

Proposition 1 is quite easy to prove and appeared in the original paper [7]. Propo-
sition 2 is from (the yet unpublished) [9], a weaker version of this proposition
appeared in [8].



4.1 Expansions not in B are not Bad

By the following theorem, Cα
F1,...,Fm

is a weak quasirandom function whenever
the Fi’s are weak QRFs and α is not in B. The distance of the output of Cα

F1,...,Fm

on q random queries can be upper bounded by the sum of the distances of the
Fi’s on qαi random queries (recall that αi is the number of invocations of Fi on
an invocation of Cα

F1,...,Fm
), plus some term which is small unless q · ‖α‖ is in

the order of 2n/2.

Theorem 2 For any expansion α = {s1, . . . , st} which is not of type B, any
randomized functions Fi : {0, 1}n → {0, 1}n, 1 ≤ i ≤ #α := m, and every q ∈ N:

∆KPA

q (Cα
F1,...,Fm

,Rn,n·t) ≤

m∑

i=1

∆KPA

q·αi
(Fi,Rn,n) +

q2‖α‖2

2n
.

Proof. To save on notation let

I
def
= Cα

R1,...,Rm
and C

def
= Cα

F1,...,Fm
,

where the Ri’s are independent instantiations of Rn,n. By the triangle inequality

∆KPA

q (C,Rn,n·t) ≤ ∆KPA

q (C, I) + ∆KPA

q (I,Rn,n·t). (1)

The theorem follows from the two claims below, which bound the two terms on
the right hand side of (1) respectively.

Claim 1

∆KPA

q (I,Rn,n·t) ≤
q2‖α‖2

2n+1

Proof (of Claim 1). We define a condition D on I as follows: the condition is
satisfied as long as for all i, 1 ≤ i ≤ m, there was no nontrivial collision on the
inputs to the component Ri. Here the trivial collisions are the “unavoidable”
collisions which occur when two chains have the same prefix. For example in

C
{〈1,2,3,4〉,〈1,2,4,3〉}
R1,...,R4

the inputs to R1 in the two different chains are always iden-
tical, the same holds for the inputs to R2 (but not for R3 or R4). We now show
(using that α is not of type B) that this condition satisfies ID � Rn,n·t, i.e.

∀xi, yi : Pr
I

Yi∧di|XiY i−1∧di−1
(yi, x

i, yi−1) ≤ Pr
Rn,n·t

Yi|XiY i−1(yi, x
i, yi−1) = 2−n·t.

(2)
Assume we invoke I on the i’th query xi ∈ {0, 1}n, and that di−1, i.e. the
condition was satisfied after the (i− 1)’th query. We evaluate the t = |α| chains
of I = Cα

R1,...,Rm
one by one and assume that the si’s are ordered by increasing

length.12 For any j, when computing the j’th chain we stop just before we
invoke the last component Rsj [|sj |]. Now, if the input to this component is fresh
(i.e. Rsj [|sj |] was never invoked on that input before), then every output has

12 This will only be important if one chain is the prefix on another.



probability exactly 2−n. The probability that we get fresh inputs (to the last
components) on all t chains and the outputs will be consistent with yi in all
chains is thus at most 2−n·t. On the other hand, if at some point we have an
input which is not fresh, then there has been a collision. Now, as no two chains
are equivalent (as α is not in B) and we process them by increasing length, it
follows that this collision was a nontrivial one, and thus di. This concludes the
proof of (2). The first step of

∆KPA

q (I,Rn,n·t) ≤ νKPA(ID, dq) ≤

∑m
i=1(q · αi)

2

2n+1
≤

q2‖α‖2

2n+1
(3)

follows by Proposition 1 using ID � Rn,n·t. The second step follows by the
birthday bound: the fact that dq means that at some point for some i ∈ [m]
the uniformly random output of Ri did collide with some “old” input to Ri.
As Ri is invoked q · αi times, the probability that there will be a collision is at
most (q · αi)

2/2n+1. To get the probability that there will be a collision for any
Ri, i ∈ [m], we take the union bound. 4

Claim 2

∆KPA

q (C, I) ≤
q2‖α‖2

2n+1
+

m∑

i=1

∆KPA

q·αi
(Fi,Rn,n)

Proof (of Claim 2). For every i, 1 ≤ i ≤ m, let Ai and Bi be conditions such
that (the existence of such conditions follows by Proposition 2)

FAi

i $ RBi

n,n and ∆KPA

q (Fi,Rn,n) = νKPA(RBi

n,n, b
i

q) = νKPA(FAi

i , ai
q). (4)

To save on notation let B
def
= B1 ∧ · · · ∧ Bm, A

def
= A1 ∧ · · · ∧ Am and qi = q · αi. .

As for all FAi

i ≡ RBi

n,n for 1 ≤ i ≤ m, it follows that

CA
$ IB. (5)

Let b⇒q d denote the event defined on IB∧D which holds if at any timepoint up
to after the q’th query, either D holds or B does not hold (or equivalently, either
D does not fail, or it only fails after B fails). The first step below follows by
Proposition 1 using (5). The last step follows by the union bound and observing
that bq ∨ dq holds iff dq ∨ [bq ∧ [b⇒q d]].

∆KPA

q (C, I) ≤ νKPA(IB, bq)

≤ νKPA(IB∧D, bq ∨ dq)

≤ νKPA(ID, dq) + νKPA(IB∧D, bq ∧ [b⇒q d]). (6)

We can bound the first term of (6) using (3) as νKPA(ID, dq) ≤ q2‖α‖2/2n+1.

We now bound the second term of (6), using bq ⇐⇒ b
1

q1
∨ . . . ∨ b

m

qm
in the first

inequality, and the union bound in the second step:

νKPA(IB∧D, bq ∧ [b⇒q d]) = νKPA(IB∧D, [b
1

q1
∨ . . . ∨ b

m

qm
] ∧ [b⇒q d])

≤

m∑

i=1

νKPA(IB∧D, b
i

qi
∧ [b⇒q d]).



The term νKPA(IB∧D , b
i

qi
∧ [b⇒q d]) is the probability that when querying I on q

random inputs, the condition Bi defined on Ri will fail, and it will do so before
D fails. Now, as long as D holds, Ri is invoked on uniformly random inputs: the
inputs are either part of the global input (which is random in a KPA attack), or
it is the output of some URF Rj . It is important to note that in this case always
j 6= i,13 so Ri is never invoked on its own output, which guarantees that (while
D holds) the inputs to Ri are not only random, but also independent of Ri. So

the probability that b
i

qi
∧ [b⇒q d] in I can be upper bounded by the probability

that bqi
in RBi

i in a normal KPA attack, i.e.

νKPA(IB∧D, b
i

qi
∧ [b⇒q d]) ≤ νKPA(RBi

i , b
i

qi
) = ∆KPA

qi
(Fi,Rn,n),

where the second step follows by (4). 4
ut

4.2 Type B Expansions are Bad

Lemma 1 Expansions of type B are bad.

Proof. To prove the lemma we show a black-box construction of a random func-
tion GP based on a permutation P such that:

(i) The security of GP as a weak random function can be black-box reduced to
the security of P as a random permutation.

(ii) For every bad expansion α, Cα
GP is not a weak random function.

Note that we assume that G has access to an oracle which implements a random
permutation,14 and not just a weak RF as required by the lemma. We can do
this as random permutations and weak random functions are equivalent, in the
sense that both can be constructed from (and imply the existence of) functions
which are hard to invert on random inputs15 via a black-box reduction [3, 4, 6].

To simplify the argument, in the proof we assume that the random permuta-
tion P : {0, 1}2n → {0, 1}2n is a uniformly random permutation (URP). As by
definition a random permutation is indistinguishable from a URP, this does not
change the statement. GP (X) : {0, 1}2n → {0, 1}2n is defined as follows, first let
Y = LY ‖RY ← P−1(X), now

GP (X) =

{
02n if LY = 0n or X = 02n

P (0n‖RX) otherwise.

We first prove statement (i), namely that GP is a weak random function (in fact,
as we assume that P is a URP, we can even show that GP is a weak quasirandom
function).

13 This is because α is not of type B and thus no s ∈ α has two identical consecutive
letters.

14 A random permutation is a random bijective function (with same range and domain).
15 Such functions are called one-way functions in the special (and most interesting)

case where the function can be efficiently computed in forward direction.



Claim 3

∆KPA

q (GP ,R2n,2n) ≤
3q2

2n

Proof (of Claim 3). By the triangle inequality

∆KPA

q (GP ,R2n,2n) ≤ ∆KPA

q (GP , P ) + ∆KPA

q (P,R2n,2n) (7)

GP is equivalent to P unless we happen to query GP on input 02n or an input
X where the first n bits of P−1(X) are 0n. For a random X , this happens with
probability ≤ 2−2n + 2−n. By the union bound

∆KPA

q (GP , P ) ≤
2q

2n
. (8)

By the so called PRF/PRP switching lemma (see e.g. [1]) we have

∆KPA

q (P,R2n,2n) ≤
q2

22n+1
. (9)

The claim follows from (7), (8), and (9). 4

Now we prove statement (ii), i.e. that for every bad expansion α, Cα
GP is not a

weak random function. Recall that α = {s1, . . . , st} is bad if either si = sj for
some i 6= j or there is a si with two consecutive identical letters, i.e. for some
j : si[j] = si[j + 1]. When si = sj then also the i’th and j’th tuple in the output
of Cα

GP (X) are identical for any X , and thus easy to distinguish from random.
We now consider the other case. Let α be any expansion where for some

element s ∈ α we have for some j that s[j] = s[j + 1]. As we prove a negative
statement, we can without loss of generality assume that s is the only element
in α. We claim that Cα

GP is not random as for any m = #α instantiations
GP

1 , . . . , GP
m of GP and any X we have Cα

GP
1 ,...,GP

m

(X) = 02n. To see this let

X0 = X and for i = 1, . . . , |s| : Xi = GP
s[i](Xi−1), then Cα

GP
1 ,...,GP

m

(X) = X|s|.

Now by the definition of GP , for any Z and i ∈ [m], GP
i (GP

i (Z)) = 02n, in
particular Xj+1 = GP

s[j+1](G
P
s[j](Xj−1)) = 02n, and as GP

i (02n) = 02n for any i

we get X` = 02n for all ` ≥ j. For concreteness let us illustrate this computation
on the example α = {〈1, 2, 2, 3〉}. Here P2 is the P used by GP

2 , and X3 = 02n

holds as LP−1
2 (X2) = 0n.

X = X0
GP

1→ X1
GP

2→ X2 = P2(0
n‖RX1)

GP
2→ X3 = 02n GP

3→ X4 = 02n.

ut

5 The Good Expansions are Exactly G

5.1 Type G Expansions are Good

The following lemma is from [10], for completeness we give a proof in the ap-
pendix.

Lemma 2 Expansions of type G are good.



5.2 Expansions not in G are Not Good

Lemma 3 Expansions not in G are not good.

By Lemma 1 expansions of type B are not good. It remains to show that there
exists an oracle O relative to which a weak random function FO exists, but
where for any expansion α = {s1, . . . , st} of type U the function Cα

FO is not
weakly random. The oracle O we construct will consist of two parts, which can
be accessed by setting the first part of the input to either “eval” or “break”.

Let n be our security parameter (think of O as a family of oracles, one for
each n ∈ N). Let m = maxi |si| and ` = n3m. Let FO : {0, 1}n×{0, 1}`→ {0, 1}`

(O still to be defined)
FO(k, x) = O(eval, k, x).

We will often write the key as a subscript FO
k (.) = FO(k, .). The all zero string

0n is excluded from the valid keys as later 0n will have the special meaning of
“no key”.

We now define the “eval” part of the oracle. Initially, 2mn−1 disjoint subsets
of {0, 1}`, each of size 2n, are sampled. Each such set corresponds to an ordered
sequence of at most m (and at least one) keys, the set corresponding to the keys
k1, . . . , km′ , m′ ≤ m is denoted S0(m−m′)n‖k1‖k2‖...‖km′

. With S0 we denote the

elements from {0, 1}` which are in no set, i.e. S0 = {0, 1}` \
⋃

x∈{0,1}mn\0mn Sx

(we have |S0| = 2mn3

− 2mn2

+ 2n, i.e. all but a 2−n fraction of elements from
{0, 1}` are in S0).

Now for any key k, O(eval, k, .) maps the elements from S0 at random to
S0(m−1)n‖k. As for the inputs not in S0, for any key k and keys k1, . . . , km′ ,
O(eval, k, .) is defined as a random bijective function from S0(m−m′)n‖k1‖k2‖...‖km′

to S0(m−m′−1)n‖k1‖k2‖...‖km′‖k (where for m = m′, we shift the leftmost key out,

i.e. we map Sk1‖k2‖...‖km
to Sk2‖...‖km‖k). Note that this means that for any t ≤ m

and x ∈ S0 a value computed as y = FO
kt

(FO
kt−1

. . . FO
k1

(x)) is in S0(m−t)n‖k1‖...‖kt
.

For a computationally bounded distinguisher, this y will look random, but the
computationally unbounded “break” part of the oracle (defined below) can learn
the keys k1, . . . , kt used.

We now define the “break” part of the oracle. O(break, .) is a ({0, 1}`)2 →
{0, 1} function and defined as follows. For any Y1 ∈ S0m−m′n‖a1‖...‖am′

and Y2 ∈

S0m−m′′n‖b1‖...‖bm′′
, we define O(break, {Y1, Y2}) = 1 if there are i, i′, j, j′ where

ai = bi′ aj = bj′ i < j i′ > j′, .

and O(break, {Y1, Y2}) = 0 otherwise. In particular, O(break, {Y1, Y2}) outputs
0 if either Y1 ∈ S0 or Y2 ∈ S0.

Claim 4 For any α of type U, Cα
FO is not a weak random function (relative to

the oracle O).

Proof (of Claim 4). Let X ∈ {0, 1}` be a random input, and Y = Cα
FO (X). Let

Yi denote the i’th `-bit block of Y
def
= Y1‖ . . . ‖Yt. As α = {s1, . . . , st} is of type



U, there are i, j and letters c, d such that si = ∗c ∗ d∗, and sj = ∗d ∗ c∗, where
each ∗ is a wildcard, i.e. stands for “any” string. As Yi ∈ S∗si

= S∗c∗d∗ and
Yj ∈ S∗sj

= S∗d∗c∗, it follows that O(break, {Yi, Yj}) = 1. On the other hand,
for a random Y ′ = Y ′

1‖ . . . ‖Y ′
t the probability that O(break, {Y ′

i , Y ′
j }) = 1 is

very small: we get a rough (but already exponentially small) upper bound on
this probability by using that the oracle will output 0 whenever Y ′

i is in S0, i.e.

Pr[O(break, {Y ′
i , Y ′

j }) = 1] ≤ Pr[Y ′
i 6∈ S0] < 1/2n.

Thus we can distinguish the output Y of Cα
FO from random Y ′ with advantage

almost 1. 4

Claim 5 FO is a weak random function relative to O.

Proof (sketch of Claim 5). Clearly the function FO is a random function relative
to the oracle O(eval, ., .) alone (i.e. where there is no O(break, .)).

Now we will show that adding the oracle O(break, .) will not break the se-
curity of FO as a weak random function (but note that it trivially does break
the security of FO as a (non weak) random function16), as if an adversary AO

can distinguish FO(k, .) from random on random inputs and access to the oracle
O(break, .), then there is an adversary BO,A which uses A as “black-box” and
which can distinguish FO without querying the oracle O(break, .) at all (this
is a contradiction as FO is a random function relative to O(eval, .) alone). The
adversary BO,A on input Q = {(X1, Y1), . . . , (Xq , Yq)} (where the Xi’s are ran-
dom and the Yi’s are either random or Yi = FO(k, Xi) for a random k) runs
A on input Q. Here A has no access to the oracle O, but B controls A’s oracle
gates. B initializes an empty set T , this T will be used to remember the queries
made by A. Whenever A requests the output of O(eval, .) on some input k, x,
BO,A correctly answers with y = O(eval, k, x) and adds (k, x, y) to T . When
A requests the output of O(break, .) on an input {Y, Y ′}, B guesses the answer
itself, and we will show that BO,A can indeed guess O(break, {Y, Y ′}) correctly
with high probability. We now describe how BO,A guesses O(break, {Y, Y ′}).

BO,A first looks up the sequence (k1, x1, y1), . . . , (kt, xt, yt) ∈ T where Y = yt

and for i = 2, . . . , t : xi = yi−1 (where t is maximal, i.e. (k, x, x1) 6∈ T for
any k, x). Similarly it looks up the sequence (k′

1, x
′
1, y

′
1), . . . , (k

′
t′ , x

′
t′ , y

′
t′) where

yt′ = Y ′. Note that this means that Y and Y ′ were computed as

Y = FO
kt

(FO
kt−1

(. . . FO
1 (x1) . . .)) Y ′ = FO

kt′
(FO

kt′−1
(. . . FO

1 (x′
1) . . .)). (10)

Now, if there are i, j, i′, j′ where i < j ≤ m, j′ < i′ ≤ m and ki = k′
i′ , kj = k′

j′ ,

then BO,A guesses that O(break, {Y, Y ′}) is 1 and guesses that it is 0 otherwise.

16 Having chosen plaintext access to a function T (.), we pick some key k and evaluate

C
〈1,2〉,〈2,1〉

T (.),FO(k,.)
on some input X to get an output Y = Y1‖Y2. As {〈1, 2〉, 〈2, 1〉} is ugly,

if T (.) is of the form FO(k′, .), then O(break, {Y1, Y2}) will be 1, and if T (.) is a
URF, then O(break, {Y1, Y2}) will almost certainly be 0. Thus we can distinguish
FO(k, .) with random k from a URF .



When the guess is 1, it is always correct by the definition of O(break, .). So we
must show that when the guess is 0 then O(break, {Y, Y ′}) = 1 is very unlikely.

First we assume that the random X1, . . . , Xq ∈ Q are all in S0, this will hold
but with probability q/2n. Next, we assume that for the case where the Yi are
computed as FO(k, Xi), A never makes a query O(eval, k, X) for any X . As k
is random this will be true with probability at least q/2n. Now if BO,A wrongly
guesses that O(break, {Y, Y ′}) is 0, then the initial input x1 or x′

1 from (10) was
not in S0. As x1 and x′

1 were not received as an output from O (otherwise we
could extend one of the sequences of (10)), A has guessed a value outside of S0.
As S0 is a random subset which covers all but a 1/2n fraction of possible inputs,
the probability that A could have guessed an x1 outside of S0 is at most 1/2n

(same for x′
1). 4

The lemma follows from the two claims above.
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10. Ueli Maurer and Johan Sjödin. A fast and key-efficient reduction of chosen-
ciphertext to known-plaintext security. In Advances in Cryptology — EURO-
CRYPT ’07, LNCS. Springer, 2007. This proceedings.



11. Kazuhiko Minematsu and Yukiyasu Tsunoo. Expanding weak PRF with small key
size. In ICISC ’05, volume 3935 of LNCS, pages 284–298. Springer, 2005.

12. Moni Naor and Omer Reingold. From unpredictability to indistinguishability:
A simple construction of pseudo-random functions from MACs. In Advances in
Cryptology — CRYPTO ’98, LNCS, pages 267–282. Springer, 1998.
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A Proof of Lemma 2

Proof (of Lemma 2). To show that expansions of type G are good, we must show
that for any expansion α of type G, the security of Cα

F as a weak random function
can be black-box reduced to the security of F as a weak random function.

Let AdvA
q (F, G) denote the advantage of the distinguisher A to distinguish

the randomized function F from G in a q query known-plaintext attack. More
formally, consider the random variable QF = (X1, . . . , Xq, Y1, . . . , Yq) where the
Xi’s are uniformly random and Yi = F ′(Xi) for an instantiation F ′ of F , then

AdvA
q (F, G) = Pr[A(QF )→ 1]− Pr[A(QG)→ 1].

We prove the following statement:

For any expansion α of type G, any randomized function F with range
and domain {0, 1}n, there exists an adversary B such that for any ad-
versary A

AdvBA,F

q·αmax
(F,Rn,n) ≥

AdvA
q (Cα

F ,Rn,n·t)

#α
−

q2 · α2
max

2n
. (11)

Where αmax = max(α1, . . . , α#α). Moreover B only uses A and F as a
black-box and it is efficient (basically, all that B has to do is to simulate
Cα

F on q inputs and it invokes A only once).

So if A breaks the security of Cα
F as a weak RF, then B breaks the security of the

underlying F as a weak RF. For the special case of pseudorandom functions, this
statement implies that if F is a weak PRF, then so is Cα

F . We now prove (11).
Consider an expansion α = {s1, . . . , st} of type G. We can assume without

loss of generality that for all s ∈ α and 0 < i < j ≤ t it holds that s[i] < s[j] (as
we can always permute the letters of an α of type G so that this holds).

For the proof it will be convenient to introduce a new random system. With
Ba,b we denote a random beacon {0, 1}a → {0, 1}b, this system is simply a ran-
dom source which outputs a new uniformly random value in {0, 1}b on each input.
As Ba,b and Ra,b have exactly the same output distribution unless queried twice
on the same input, it is easy to show that for any A (e.g. using the framework
from section 4 for the second step)

AdvA
q (Ba,b,Ra,b) ≤ ∆KPA

q (Ba,b,Ra,b) ≤
q2

2a+1
. (12)



Let m := #α and consider the hybrid systems Ci
def
= Cα

B1,...,Bi,Fi+1,...,Fm
, where

each Bi denotes an instantiation of Bn,n. As C0 ≡ Cα
F1,...,Fm

, Cm ≡ Cα
B1,...,Bm

≡
Bn,t·n we have

AdvA
q (Cα

F1,...,Fm
,Bn,t·n) =

m∑

i=1

AdvA
q (Ci−1, Ci). (13)

For i ∈ [m] let BA,F
i be an adversary which on input (X1, . . . , Xqαi

, Y1, . . . , Yqαi
)

simulates the computation of Cα
B1,...,Bi−1,T,Fi+1,...,Fm

(T to be defined) on q ran-

dom inputs X ′
1, . . . , X

′
q to get outputs Y ′

1 , . . . , Y ′
q , and then outputs the output

of A(X ′
1, . . . , X

′
q , Y

′
1 , . . . , Y ′

q ). In this simulation the component T is only queried
on uniformly random inputs17. Instead of choosing those inputs at random,
we require that BA,F

i uses the values X1, X2, . . . if it has to define the ran-
dom values which are used as inputs to T . Now, if T is a beacon Bn,n, then
Cα

B1,...,Bi−1,T,Fi+1,...,Fm
is Ci, and if T is an instance of F then it is Ci−1, so

AdvBA,F
i

qαi
(F,Bn,n) = AdvA

q (Ci−1, Ci). (14)

Now consider an adversary BA,F which first chooses a random i ∈ [m] and then

runs BA,F
i . Using (14) in the second and (13) in the third step, we get:

AdvBA,F

q·αmax
(F,Bn,n) =

1

m

m∑

i=1

AdvBA,F
i

qαi
(F,Bn,n)

=
1

m

m∑

i=1

AdvA
q (Ci−1, Ci)

=
AdvA

q (Cα
F1,...,Fm

,Bn,t·n)

m
. (15)

To conclude the proof of (11) we must “replace” the beacons B in (15) by URFs
R. Below we use the triangle inequality in the first and third, and (15) in the
second step. In the last step we use (12) twice.

AdvBA,F

q·αmax
(F,Rn,n)

≥ AdvBA,F

q·αmax
(F,Bn,n)−AdvBA,F

q·αmax
(Bn,n,Rn,n)

=
AdvA

q (Cα
F1 ,...,Fm

,Bn,t·n)

m
−AdvBA,F

q·αmax
(Bn,n,Rn,n)

≥
AdvA

q (Cα
F1 ,...,Fm

,Rn,t·n)

m
−

AdvA
q (Bn,t·n,Rn,t·n)

m
−AdvBA,F

q·αmax
(Bn,n,Rn,n)

≥
AdvA

q (Cα
F1 ,...,Fm

,Rn,t·n)

m
−

q2

2n+1 ·m
−

q2 · α2
max

2n+1
︸ ︷︷ ︸

q2·α2
max/2n

�

17 As s[i] < s[j] if i < j, so T is invoked on either the global input or on the output of
some Bj , j < i.


