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Abstract. We present two universally composable and practical proto-
cols by which a dealer can, verifiably and non-interactively, secret-share
an integer among a set of players. Moreover, at small extra cost and using
a distributed verifier proof, it can be shown in zero-knowledge that three
shared integers a, b, c satisfy ab = c. This implies by known reductions
non-interactive zero-knowledge proofs that a shared integer is in a given
interval, or that one secret integer is larger than another. Such primi-
tives are useful, e.g., for supplying inputs to a multiparty computation
protocol, such as an auction or an election. The protocols use various
set-up assumptions, but do not require the random oracle model.

1 Introduction

Applications such as auctions, elections or benchmarking analysis all involve
computing on confidential data from several parties who do not trust each other
a priori. This means that solutions involving a single trusted party are typically
unsatisfactory. In principle, all such problems can be solved using general secure
multiparty computation [18, 2, 8], where all parties take part in computing the
desired results. But in practice, this is often not realistic: in auctions or elections,
for instance, the number of parties holding inputs can be very large, they cannot
be assumed to be expert users nor can their machines be assumed to be on-line
at particular times. Hence assuming that all such parties can reliably take part
in a multi-round protocol is unrealistic.

It is therefore often suggested that a smaller number of servers are assigned
to do the computation, acting effectively as representatives for the clients sup-
plying inputs. Of course, this makes sense only if the complexity of supplying
inputs is much smaller than the complexity of taking part in the actual computa-
tion. In particular, we would want that supplying inputs is non-interactive. This
problem can be solved using a non-interactive verifiable secret sharing (VSS)
scheme. Having done the VSS’s, the servers hold shares of all inputs and can do
the computation using any of the (numerous) known multiparty computation
techniques. Several non-interactive VSS protocols are known see, e.g., [22].

However, many applications require that the inputs supplied satisfy certain
constraints. These constraints are typically phrased in a natural way as relations
over the integers, because the underlying application is a computation on inte-
gers. This is the case for auctions, elections and many statistical applications
such as benchmarking. For instance, an auction might specify that bids have to



be in a certain interval. In other types of auctions (so called double auctions[4]),
a bid consists of a sequence of numbers that must be monotonely increasing.

Standard efficient techniques for handling this would have a client commit
to his input and prove in zero-knowledge that his numbers satisfy the required
relations. But this solution requires interaction in its basic form. The interaction
can typically be removed following the Fiat-Shamir heuristic if we are willing to
assume the random oracle model. However, it is well known that the security
guarantee provided by a proof in the random oracle model leaves something to
be desired: we cannot instantiate the oracle with a concrete function and be sure
that this always works. Hence, our goal is to avoid random oracles and still have
an efficient solution.

In [5], Boudot presents an efficient technique to prove relations, as outlined
above, given a primitive to prove that a committed integer is a square. Fur-
thermore, in [1], Abe, Cramer and Fehr propose efficient and non-interactive
techniques for proving multiplicative relations on secret-shared values, using
distributed-verifier proofs. Unfortunately, the protocols and definition from [1]
are not directly useful in the scenarios outlined above, for several reasons: First,
the relations that can be proved only hold modulo some (public) prime number,
and not necessarily over the integers. Second, for the case of honest majority, the
protocols in [1] are only “non-interactive with complaints”, that is, if a server is
unhappy with the data he received privately from the dealer, he will complain,
and the dealer must intervene in a second round to resolve these conflicts. It
is clear that we have to avoid this in our scenario. Third, the definition of dis-
tributed verifier proofs used in [1] works with only one prover. In our scenario,
we will have many provers, some of which may be corrupted. In contrast to the
single-prover case, a corrupt prover may now try to exploit the information sent
by honest provers in order to cheat.

In this paper, we propose two protocols that allow a client to non-interactively
VSS integers among the servers, and prove in zero-knowledge, by a distributed
verifier proof, that shared integers a, b, c satisfy ab = c. Using known reductions
[5], this implies non-interactive proofs that a shared integer is in a given interval,
or that shared numbers a, b satisfy a ≥ b. Both protocols require one broadcast
from the prover and one round of messages between the verifiers (servers), which
is a minimal amount of interaction for a distributed verifier proof. Details on the
communication complexity of the protocols follow below. We prove our proto-
cols secure in the Universal Composability model (with static adversary), this
automatically gives us a definition handling the multiple prover case.

For the first solution, we take the protocol of [1] as the point of departure,
introducing new techniques to solve the problems mentioned above. We obtain
our solution by replacing in the protocol from [1] Shamir secret-sharing by Linear
Integer Secret Sharing (LISS) [13] – which exists for any access structure [13].
LISS schemes are basically secret sharing schemes where the secret is recon-
structed by taking a integral linear combination of the shares. Also, we replace
Pedersen commitments [22] by the integer commitments from [15].



While this is quite straightforward, it is not so trivial to solve the problem
of handling complaints without interaction. We first observe that the reason
why the dealer must resolve conflicts in the protocol by Abe et al. is that only
point-to-point channels between dealer and each server are assumed, and hence
servers are not a priori committed to what they received. On the other hand, a
typical implementation would realize the channels using public-key encryption,
so we propose to include this encryption explicitly in the protocol. One might
now hope that a server can prove it received bad data by “opening” the cipher-
texts it received. However, while the sender of a ciphertext can always “open”
it convincingly (simply by revealing the coins used to create it), we need that
the receiver can do so. Since ciphertexts can be adversarially generated, and un-
opened ciphertexts must remain secure, it is not immediately clear how this can
be done in a non-interactive and efficient way. We propose an efficient solution to
the problem based on Identity-Based Encryption (IBE). To our knowledge, this
is a new application of IBE, and we believe the idea is of independent interest, as
the possibility of “complaining convincingly” is often useful in protocol design.

For the case of honest majority, the VSS we obtain requires the dealer to
send a total of O(n log n(κ+ l + k + n)) bits, where κ is the security parameter
for the public-key and commitment schemes used, n is the number of players, l
is the bit length of the numbers we share and k is an “information theoretic”
security parameter, controlling the statistical leakage of information.

The protocol can handle any Q2 adversary structure (honest majority in
the threshold case), which is optimal in terms of the number of corruptions
that can be handled at all. However, for realistic values of the parameters, the
efficiency is not what we might hope for. This is because the numbers we will
be computing on will be numbers specifying bids, prices, productions costs, etc.,
that is, numbers that are typically much smaller than those used for public-key
cryptography. Realistic parameter values might be n = 7, l = 32, k = 60 and
κ = 1024. In such a case, each 32 bit number we share is expanded to about
25.000 bits, which hardly seems desirable.

We therefore propose another solution, where we make the stronger as-
sumption that the adversary structure is Q3 (less than n/3 corruptions in the
threshold case). We build a solution using a generalization of the pseudorandom
secret-sharing technique from [10] to the case of linear integer secret sharing.
In the threshold case, the protocol requires the dealer to send, once and for all,
O(T (κ+nk)) bits to the servers, where T is the number of maximal unqualified
sets in the adversary structure. After this, any number of VSS’s can be done by
sending O(l+k) bits to the servers for each value to be shared. Each multiplica-
tion proof requires 3 VSS invocations and in addition O((l+k+n)n) bits should
be sent.

The initial step is not always efficient as a function of n because T may be
exponential in n, depending on the adversary structure. In the typical threshold
case, T would be about

(
n
n/3

)
. But for a small number of servers, T is moderate.

On the other hand, for fixed n and for a large number of VSS invocations we
come very close to sending only l+k bits for every l-bit number we share - where



of course sending l bits is necessary. It is therefore ideally suited for cases, where
a large number of clients need to supply large amounts of data to a small number
of servers. For the example parameter values above and assuming we share, say
200 numbers, the dealer needs to send about 230 bits per number to share.

Both our protocols use a common reference string, and assume that the veri-
fiers have public/secret key pairs set up in advance. Note that if we do not assume
random oracles, we cannot get non-interactive protocols without some sort of set-
up assumption. Of course, using set-up assumptions, our problem could also be
solved using standard techniques for non-interactive zero-knowledge. But with
current state of the art, this approach can only prove the type of statements
we are after using generic techniques. This would give non-interactive proofs of
size Ω(lκ|C|) where |C| is the size of a Boolean circuit C checking the relation
in question. For realistic parameter values, this will be several orders of magni-
tude larger than our complexity. To our knowledge, our solutions are the first
non-interactive protocols for integer relations that do not use random oracles,
and have communication complexity independent of the circuit complexity of
the relation.

2 Preliminaries

In a Linear Integer Secret Sharing (LISS) Scheme there are n players, which are
denoted by P1, . . . , Pn. Let P = {P1, . . . , Pn} be the set of all the players, and
let the power set of P be denoted by P (P). Let s ∈ [−2l..2l] be the secret which
a dealer D wants to secret share between the players in P over a LISS. Then the
sets in P (P) which are allowed to reconstruct the secret s are called qualified
and the sets which should not be able to obtain any information about the secret
s are called forbidden.

Definition 1. The collection of qualified sets, Γ ⊆ P (P), is called a monotone
access structure, if for all A ∈ Γ and A ⊂ B ⊆ P it holds that B ∈ Γ .

We also need the notion of an adversary structure [19].

Definition 2. An adversary structure is a monotone collection of sets, ∆ ⊆
P (P), for which the adversary may corrupt the players of one set in the adversary
structure. It is monotone in the sense that for every A ∈ ∆ it holds that for every
B ⊂ A that B ∈ ∆.

Definition 3. An adversary structure ∆ is Q2 (Q3) if no two (three) sets in
the structure cover the full player set P.

If Γ is the collection of all qualified sets of players in P and Γ is a monotone
access structure, then the corresponding adversary structure, ∆, is the collection
of all the forbidden sets. Note that, ∆ is monotone as required by an adversary
structure, and that Γ ∪ ∆ = P (P) and Γ ∩ ∆ = ∅. That is, an adversary
structure can be seen as a complement of a monotone access structure. Since
the structures, Γ and ∆, are monotone, they can be uniquely represented by



their minimal and maximal sets denoted by Γ− and ∆+, respectively. |∆+| will
denote the number of sets in ∆+. In this paper we use Γ and ∆ interchangeably.
We proceed to define what is meant by a correct and private LISS.

Definition 4. A LISS scheme is correct, if the secret can be reconstructed from
shares of any qualified set in A ∈ Γ , by taking an integer linear combination of
the shares with coefficient that depends only on the index set A.

Definition 5. A LISS scheme is private, if for any forbidden set B ∈ ∆, any
two secret s, s′ ∈ [−2l..2l], and independent random coins r and r′, the statis-
tical distance between the distributions of the shares {si(s, r, k) | i ∈ B} and
{si(s′, r′, k) | i ∈ B} is negligible in the security parameter k.

A labeled matrix consists of a d × e matrix M and a corresponding surjective
function ψ : {1, . . . , d} → {1, . . . , n}. We say that the i-th row is labeled by ψ(i)
or owned by player Pψ(i). For any subset A ⊂ P, we let MA denote the restriction
of M to the rows labeled by some Pψ(i) ∈ A. For any d-vector x, we similarly
denote xA to be the restriction of entries i with Pψ(i) ∈ A. For any two vectors
a and b, let 〈a, b〉 denote the inner product.

Definition 6. An Integer Span Program (ISP) for a monotone access structure
Γ consists of a tuple M = (M,ψ, ε), where M ∈ Zd,e is a labeled matrix with
a surjective function ψ : {1, . . . , d} → {1, . . . , n}, and the target vector ε =
(1, 0, . . . , 0)T ∈ Ze. Furthermore, for every A ⊆ P the following holds,

- for every A ∈ Γ there exists a reconstruction vector λ ∈ Zd such that
MT
Aλ = ε.

- for every A /∈ Γ there exists a sweeping vector κ ∈ Ze such that MAκ = 0
and 〈κ, ε〉 = 1.

The size of M is defined to be d.

In [13] it was shown how to construct a correct and private LISS scheme
from any ISP. For a given ISP we define l0 = l + dlog2(κmax(e − 1))e, where
κmax = max{|a| | a is an entry in some sweeping vector }. To share a secret
s ∈ [−2l..2l], we use a distribution vector ρ which is a uniformly random vector in
[−2l0+k..2l0+k]e with the restriction that 〈ρ, ε〉 = s. The share vector is computed
byMρ = s = (s1, . . . , sd)T , where the share component si is given to player Pψ(i)

for 1 ≤ i ≤ n. The share of player Pj is the subset of share components s{Pj}.
See [13] for a proof of correctness and privacy. There, it was also shown that

LISSs exist for any adversary structure, and in particular they can be constructed
for threshold structures where a player’s share is O((l+k+n2) log n) bits long. It
follows from results and conjectures in [11] that this can probably be improved
to O((l + k + n) log n) bits.



3 Verifiable Secret Sharing (VSS) and Distributed
Verifier Proofs

3.1 Model and Definition

We have a set of dealers {D1, . . . , Dm} and a set of n players or verifiers P =
{P1, . . . , Pn}. We assume an active and static adversary who may corrupt any
number of dealers and a set of players in a given adversary structure. All players,
dealers and the adversary are polynomially bounded. We assume (for simplicity)
synchronous communication. We use the Universal Composability framework [6]
and define ideal functionalities as follows:

Functionality FV SS
– On input s from Dj , send (“Dj , input”) to all players and the adversary.

Wait one round (this models the fact that our implementation takes one
round to finish, after the prover has spoken). Then, if s = ⊥ (which may be
the case if Dj is corrupt), send (“Dj , Fail”) to all players, else send (“Dj ,
OK”) to all players.

Functionality Fab=c
– On input a, b, c from Dj , send (“Dj , input”) to all players and the adversary.

Wait one round. Then, if a, b, c are integers satisfying ab = c, send (“Dj ,
OK”) to all players, else send (“Dj , Fail”) to all players.

Both functionalities need to model that a successfully shared secret can be re-
constructed. To simulate this we add a command to the functionalities, where it
will send the requested shared value to everyone if asked by all honest players.

For our protocols, we will need a set-up assumption, namely D1, . . . , Dm

and P1, . . . , Pn get common input k, pk, pk1, . . . , pkn, where k is the security
parameter, pki is the public key of Pi, and pk is a common reference string. As
private input, Pi has a secret key ski corresponding to pki. For simplicity, we
assume here that the public and secret keys are generated and given to players
initially by an ideal functionality T . But we stress that T can be implemented
by a once-and-for-all preprocessing among the players (it is well known that any
UC functionality can be securely implemented if we have honest majority, or in
general Q2). In Section 3.4, it is even sufficient that players generate their own
key pairs and broadcast the public keys. We also assume a functionality FBC ,
allowing any dealer to broadcast information to the verifiers1. Communication
between verifiers uses standard authenticated but non-secret channels. Note that
the UC framework incorporates, in addition to the adversary Adv attacking the
protocol, an environment Z that chooses inputs for and receives outputs from
honest players. We will only consider environments that give integers (and not
⊥) as input to honest players. This models the assumption that honest players
would only attempt to VSS valid integers.
1 Note, that even if we implement the broadcast via a subprotocol, this can be done

such that we maintain the non-interactive nature of our proofs, namely the dealer
sends a single (signed) message to all players, who then internally agree on what he
said.



3.2 An Integer Commitment Scheme

A commitment scheme for domain S is given by a family of functions compk :
S × Rpk → Cpk, indexed by a public key pk. One commits by publishing C =
compk(s, r), where s ∈ S is the committed value and r ∈ Rpk is a random value.
A homomorphic commitment scheme is a scheme where we assume that S is an
additive group and that for any two commitments C and C ′ and any number
λ, anyone can compute commitments S and P such that being able to open C
and C ′ to s and s′, respectively, allows to open S to the sum s+ s′ and P to the
product λs.

We use a modified version of the Pedersen commitment scheme [22], based
on a multiplicative group G of order unknown to the players. This commitment
scheme first appeared in [16] and later in [15]. We will need primes p, q where
p = 2p′ + 1 and q = 2q′ + 1 and p′, q′ are also prime. The computations are
done in Z∗

n, where n = pq, and the public key is pk = (n, g, h) where g, h are
chosen at random in Qn, the set of squares modulo n. Then we use compk :
(s, r) 7→ gshr mod n. The scheme is homomorphic, since given commitments
C = compk(s, r) and C ′ = compk(s′, r′) then CC ′ = compk(s+s′, r+r′) and Cλ =
compk(λs, λr). Note that if we choose r uniformly random from [0..n2k], then
r mod ord(h) is statistically close to being uniformly random in [0..ord(h)− 1].

An important advantage of this scheme is that it allows commitment to in-
tegers. This follows since the commitment is done in a group G of unknown
order. More specifically, the following proposition holds for the above commit-
ment scheme.

Proposition 1 ([16]). compk(s, r) is a statistically hiding and computationally
binding commitment scheme, i.e.:

– If factoring is infeasible, then given pk = (n, g, h) it is infeasible to compute
s, s′, r, r′ ∈ Z where s 6= s′ such that compk(s, r) = compk(s′, r′).

– For any two values s, s′, the distributions (pk, compk(s, r)), (pk, compk(s′, r′))
are statistically indistinguishable.

3.3 Public-key Encryption with Verifiable Opening

We introduce here a tool that we will need later. Suppose a player P has a pub-
lic/secret key pair (pk, sk), and receives ciphertext from various senders, some
of whom may be corrupt. We want that the cryptosystem is chosen ciphertext
(CCA) secure and has the additional property that for any received ciphertext c,
P can reveal the decryption result x = Dsk(c) and prove non-interactively and
efficiently that x is correct. We want, of course, that “unopened” ciphertexts
remain secure, which excludes the trivial solution of revealing the secret key.

Note that if c is a valid ciphertext, the random coins used to generate c can
serve as proof of what the plaintext was. But even if the receiver could compute
these coins efficiently, there is still a problem if the sender is corrupt. Then c
may be invalid, and “the coins used to generate c” is not even a well-defined
notion.



A formal definition of the notion we are after can be phrased as a variant of
the standard chosen ciphertext security game, where the oracle answers decryp-
tion queries with the result as well as the proof of correctness. We do not give it
here for lack of space. Instead, we give our solution in a form tailored for direct
use in our protocol below. The proof that it works is then incorporated in the
proof for the overall protocol2.

The key pair (pk, sk) for P will be the master secret and public key for an
identity-based cryptosystem (IBE)[3]. Note that, under reasonable assumptions,
efficient IBE’s exist that do not use random oracles[24]. For the IBE we use, we
need that given identity t and pk, one can easily verify if a secret key skt is the
secret key for identity t. This can indeed be done for all known efficient IBE’s,
we call this IBE with verifiable secret keys (IBE-VSK). We assume that the
system is used in a protocol that assigns a unique tag to each ciphertext to be
sent to P . To encrypt message m, the sender treats the tag t for this ciphertext
as an identity and encrypts the message to this id, i.e., he sends c = Et(m).
The receiver decrypts by computing the secret key skt and then m = Dskt(c).
To reveal the result of decrypting c, P reveals skt. Everyone can now compute
Dskt(c). One must also verify that skt is indeed the secret key corresponding
to t. From the assumption that tags are not reused and standard properties of
IBE, it follows that unopened ciphertexts remain secure. A somewhat similar
idea was used for a different purpose in [7].

3.4 VSS using Integer Commitments

In this section we construct a non-interactive verifiable secret sharing [9] (VSS)
scheme based on LISS. We use the model described in the previous sections.
Specifically, the common reference string will be a public key pk = (g, h, n) for
the integer commitment scheme described above. Moreover, each player Pj has
a key pair (pkj , skj) for an IBE-VSK as described above.

Protocol VSSpk(s)
On input s ∈ [−2l..2l], the dealer D makes a commitment C = compk(s, r)
to s, and then executes the following protocol to prove that he knows how
to open C to value s, and to secret share s:
Protocol Proofg,h(C)

1. Given an ISP M = (M,ψ, ε), the dealer D chooses a random vector
ρ ∈ [−2l0+k..2l0+k]e with 〈ρ, ε〉 = s, and commits to this sharing
vector ρ = (ρ1, . . . , ρe)T by commitments R1, . . . , Re to ρ1, . . . , ρe,
respectively, where R1 = C and all commitments use (g, h) as pub-
lic parameter. The commitments R2, .., Re to the additional ran-
domness are included in the proof π. D computes the shares of s:

2 The problem could also be solved using non-interactive zero-knowledge, but this will
be much too inefficient for our purposes. Using OAEP might work as well, but only
assuming random oracles which we want to avoid



s = (s1, . . . , sd)T = Mρ, and computes the opening information oi
for the corresponding commitment

Ci =
e∏
j=1

R
mij
j

using the homomorphic property, where mij is defined by M = [mij ].
Finally, he includes ci = Epkψ(i)(oi) in his proof π, where all these
ciphertexts are assigned a tag consisting of C concatenated with the
name of D (see Section 3.3). Finally, D broadcasts C, π.

2. For each i, Pψ(i) decrypts ci. If he finds that the resulting opening
information oi is incorrect w.r.t. Ci, then he sends oi to all other
players, along with a proof that oi is indeed the result of decrypt-
ing ci, this counts as an accusation against D. Otherwise he sends
“accept”.

3. For any accusation from Pψ(i), each player verifies that any oi re-
ceived is indeed the value that ci decrypts to. If this is not the case
this oi is discarded.

4. Each player looks at all (non-discarded) oi-values he knows. If any
such oi is inconsistent with Ci, then he rejects. Otherwise he accepts.

A successfully shared value s can be reconstructed by simply having every
player Pi open every commitment Cj where ψ(j) = i. For some qualified set
of successfully opened shares the players can then use the corresponding recon-
struction vector λ to reconstruct the secret. We have

Theorem 1. Given a secure IBE-VSK, the protocol VSSpk(s) securely imple-
ments FV SS, assuming any Q2 adversary structure Γ .

Proof. To show that VSSpk(s) securely implements FV SS , we are given an ad-
versary Adv and an environment Z, and we need to construct a simulator S. The
simulator interacts with Adv to simulate its view of attacking the protocol, and
on the other hand interacts with FV SS on behalf of corrupt players. This game
is called the ideal process. This is compared to the real process, where Z,Adv
are interacting with a real instance of the protocol. In both processes, Z and
Adv may communicate at any time. The goal is now to show that Z cannot
distinguish the real from the ideal process. Our simulator works as follows:

1. The simulator generates the keys pk, {(pkj , skj)} following T ’s algorithm,
and sends all public keys to Adv, along with secret keys for corrupted players.

2. The simulator S now acts whenever required, as follows:
– If Adv sends C and a proof π to the broadcast functionality on behalf of

corrupt dealer Dj , the simulator does the following: using its secret keys,
it can decrypt ciphertext in π intended for honest players and follow their
algorithm to compute what they would send in the second round. This
also lets it decide if the proof would be accepted. If not, the simulator
sends ⊥ to FV SS . If the proof is acceptable, observe first that since Γ



is Q2, the set of honest players, A, is qualified, and that every honest
player can open his commitment to si. Let λ be a reconstruction vector
for A, that is, 〈s,λ〉 = s and λAC = 0, i.e., if λ = (λ1, . . . , λd)T then

d∑
i=1

siλi =
d∑
i=1

λi

e∑
j=1

mijρj = ρ1 = s,

where λj = 0 for ψ(j) /∈ A. Hence, the above equation implies that∑d
i=1 λimij = δ1j , where δij = 1 if i = j and 0 otherwise. Therefore, by

the homomorphic property, the simulator can open commitment C ′ =∏d
i=1 C

λi
i to s′ =

∑d
i=1 λisi. Now, since

C ′ =
d∏
i=1

Cλii =
d∏
i=1

 e∏
j=1

R
mij
j

λi

=
e∏
j=1

R

∑
i
λimij

j = R1 = C,

we see that the simulator can extract from the proof a way to open
commitment C to a value s. The simulator sends s to FV SS .

– On input (“Dj , input”) from FV SS , where Dj is honest, the simulator
simulates what Dj would send in the protocol, as follows: First, create
a commitment C to an arbitrary value. By the statistical hiding prop-
erty, there exists a way to open C to the correct value s used by Dj ,
except with negligible probability – although s is unknown to S. We
therefore proceed, assuming implicitly that C “contains” s. Now, let A
be the set of corrupted players. Then there exists a sweeping vector κ
such that MAκ = 0 and 〈κ, ε〉 = 1. Let ρ0 = (r1, . . . , re)T be a random
distribution vector such that 〈ρ0, ε〉 = 0, i.e., a distribution vector to
a random sharing of 0. Construct R′

1, . . . , R
′
e as random commitments

of r1, . . . , re, respectively, with the exception that R′
1 = 1 (or the com-

mitment of r1 = 0 using randomness 0). Then, by the homomorphic
property of the commitment scheme, compute commitments

C ′
i =

e∏
j=1

R′
j
mij ,

to shares si which determines the secret 0. Now, given the commitment
C for the secret s, we modify the commitments so they become con-
sistent with s: Compute the public commitments Ri = R′

iC
κi where

κ = (κ1, . . . , κe)T is the sweeping vector for A. Note that R1 = R′
1C

κ1 =
1C1 = C as required, since 〈κ, ε〉 = 1 (i.e., κ1 = 1). The commitments
to the shares in s will be as follows:

Ci =
e∏
j=1

R
mij
j =

e∏
j=1

(R′
jC

κj )mij =
e∏
j=1

R′
j
mijCκjmij .

For the players in A we have that,
e∏
j=1

Cκjmij = C

∑
j
κjmij = C0 = 1,



since the inner product of κ and a row in M which is owned by a player
in A is 0. So for a corrupt Pψ(i) we have C ′

i = Ci, and we know how to
open these commitments. The simulated proof therefore consists of the
commitments R1, . . . , Re, encryptions of correct opening information for
Ci when Pψ(i) is corrupt, and encryptions of random values for honest
players.

To see that this simulation works, note the following: First, the simulation of
the initial set-up stage and of the case where a corrupt dealer gives a proof is
perfect. In particular, when a corrupt dealer does a VSS that would be accepted
in the real protocol, the simulator can always extract the correct secret, and
honest players will therefore output accept also in the ideal process.

In the case where an honest dealer does a VSS, this will in the ideal process
simply mean that it sends integer s to FV SS . The functionality will send accept
to everyone, so all honest players output accept. This is also the case in the
real protocol: correct opening information for each Ci is uniquely determined
from the ciphertext ci, hence no honest player will accuse D and every other
accusation will be rejected by the honest players.

Hence the only possible difference between the ideal and real process is in the
simulated commitment C and proof π that is shown to Adv. By the statistical
hiding property of the commitment scheme and privacy of the LISS scheme,
it follows that the opening information sent to corrupt players, as well as the
commitments R1, . . . , Re have distribution statistically close the one seen in the
real protocol. So the only difference is the fact that the ciphertexts intended
for honest players are random in the simulation, and contain valid openings of
commitments in the real protocol.

We cannot argue that the two sets of encryptions are indistinguishable based
directly on the ideal process because S knows all secret keys. Instead, we con-
struct a machine S′ that acts as an adversary breaking the underlying IBE-VSK.
S′ will run the algorithms of Z,Adv and S, with the following modifications to
S: S′ receives public keys for the honest players from an oracle. Whenever S
needs to decrypt a ciphertext sent to an honest player with tag t (see Section
3.3), S′ will ask the oracle for the secret key for that tag, and can then decrypt.
When S wants to create ciphertext for honest players in a simulated proof, S′

will ask the oracle to encrypt either 1) random data or 2) genuine opening in-
formation for the relevant commitments. The latter is possible because S′ also
runs Z and therefore knows each secret that is shared, this allows it to create
the commitment C as a genuine commitment containing the right value, and
from this it can compute how to open all the other commitments in that VSS. In
the case 1), we produce exactly what we get in the ideal process, in case 2) we
produce something statistically close to what we get in the real process. Hence,
if Z could distinguish the two processes, S′ can use the output from Z to break
the underlying IBE-VSK. ut

For lack of space, we do not prove formally here that the protocol for recon-
struction of the committed secret works. It is quite straightforward based on the
binding property of the commitment scheme.



3.5 Verifiable Commitment Multiplication Proof

We now show a (distributed verifier) proof that VSS’ed integers s, s′, s′′ satisfy
that s′′ = ss′:

Protocol MultProofpk(s, s′, s′′)
1. The prover makes commitments C,C ′, C ′′ to s, s′, s′′ and then executes

Proofg,h(C), Proofg,h(C ′), and Proofg,h(C ′′).
2. The prover executes ProofC′,h(C ′′) using the same distribution vector

ρs as in step 1 (but with new independent randomness for the commit-
ments).

3. Every player verifies whether his shares obtained from Proofg,h(C) (from
step 1.) and ProofC′,h(C ′′) (from step 2.) coincide. If this does not
hold, he accuses the dealer by opening the ciphertexts he received in
Proofg,h(C) and ProofC′,h(C ′′). Each player verifies any accusation made.

4. The proof is accepted if all subproofs were accepted, and no valid accu-
sations were made.

Note that the four executions of the Proof protocol can be run in parallel. A
similar protocol appeared in [1], but we have here added Proofg,h(C ′)3.

Theorem 2. Assuming the integer commitment scheme is binding and given a
secure IBE-VSK, MultProofpk(s, s′, s′′) securely implements Fab=c assuming any
Q2 adversary structure Γ .

Proof. Note that making commitments C,C ′, C ′′ and then executing the first
3 instances of Proof is equivalent to executing 3 instances of VSSpk. Therefore,
to simulate this, we run the simulator from the previous theorem 3 times (in
parallel). To simulate the execution of ProofC′,h(C ′′), we run the same simulator
again, with the following changes: when simulating the actions of an honest
dealer, the simulator will not create its own commitment to play the role of
the commitment to the secret, instead it will use C ′′. Also, it will use the same
distribution vector that was used in the simulation of Proofg,h(C).

To show that this simulation works, we only need to check that when we
extract opening information from an acceptable proof given by a corrupt prover,
we will get values s, s′, s′′ such that ss′ = s′′. Note, that if the proof is accepted,
it follows from the proof of Theorem 1 that we can extract from step 1. pairs
(s, r), (s′, r′) and (s′′, r′′) such that C = comg,h(s, r), C ′ = comg,h(s′, r′) and
C ′′ = comg,h(s′′, r′′). Furthermore, steps 2. and 3. ensure that we can extract
(s, r∗) such that C ′′ = comC′,h(s, r∗) = C ′shr

∗ 4. Combining this with the
expression for C ′ = comg,h(s′, r′) = gs

′
hr

′
we get C ′′ = C ′shr

∗
= (gs

′
hr

′
)shr

∗
=

gss
′
hr

′s+r∗ In other words, we can now open C ′′ to both s′′ and ss′, which
contradicts the binding property unless s′′ = ss′. ut
3 This is necessary since the order of the group of the commitments is unknown and

we can therefore not prove soundness the same way as in [1] (Lemma 1).
4 Note that the proof in step 2. uses C′, which might have been adversarially generated,

in place of g which comes from the common reference string. However, this is not a
problem since the extraction will work for any set of values.



4 Verifiable Multiplication Proof Based on
Pseudo-Random Sharing

4.1 Replicated Integer Secret-Sharing and Share Conversion

In this section we first introduce RISS, an integer version of Replicated Secret-
Sharing [20], where we share an integer over a monotone access structure. Then
we define share conversion, and show that shares generated by a RISS scheme
can be locally converted to shares in the same secret generated by LISS schemes.

Scheme Replicated Integer Secret-Sharing (RISS)
Let ∆ be an adversary structure. For each set B ∈ ∆+ choose a uniformly
random rB integer from the interval [−2l+k..2l+k] and send privately rB to
each player Pi /∈ B. Furthermore, publish r = s+

∑
B∈∆+ rB , where s is the

secret from the interval [−2l..2l].

Lemma 1. The RISS scheme is correct and (statistically) private.

Definition 7. Let S and S ′ be two secret-sharing schemes. We say that S is
locally convertible to S ′ if there exist local conversion functions g1, . . . , gn such
that the following holds. If (s1, . . . , sn) are valid shares of a secret s in S, then
(g1(s1), . . . , gn(sn)) are valid shares of the same secret s in S ′. We denote by
g the concatenation of all gi, namely g(s1, . . . , sn) = (g1(s1), . . . , gn(sn)), and
refer to g as a share conversion function.

Note by the locality feature of the conversion, that converted shares cannot
reveal more information about s than the original shares.

The following theorem is proved in the full version of the paper [14], using
ideas similar to what was used in [10]

Theorem 3. The RISS scheme RΓ , realizing Γ , is locally convertible to any
LISS realizing an access structure Γ ′ ⊆ Γ .

Clearly, for any prime p, a RISS sharing of integer s can be thought of
as a replicated sharing over Zp of s mod p, by reducing all shares modulo p.
Furthermore, in [10] it was shown how to locally convert a replicated sharing
over Zp to any linear secret sharing (LSS) scheme over Zp (such as Shamir’s
scheme). From these two observations, we immediately get

Proposition 2. The RISS scheme RΓ , realizing Γ , is locally convertible to any
LSS over Zp realizing an access structure Γ ′ ⊆ Γ , where the original secret s
after conversion will be s mod p.

4.2 Application to VSS

We now show how the results from the previous subsection can be used to
generate a series of verifiably shared secrets by broadcasting only two values per
secret, at the initial cost of distributing a set of random seeds to the players. We



use the model defined earlier, where each player Pi has a public and a secret key.
In this case, we assume that there is a public key pkB defined for each B ∈ ∆+,
and Pi’s public key consists of all pkB for those B in which Pi is not a member.
The secret key consists of all secret keys corresponding to relevant pkB ’s. As
before, we assume these are keys for an IBE-VSK.

The following protocol does the intial distribution of seeds.

Protocol Random{rB}(∆
+)

1. For each B ∈ ∆+ the dealer D choose an uniformly random rB from
[0..2k[.

2. For each B ∈ ∆+ D broadcasts rB encrypted under pkB . The dealer’s
name is used as tag for this ciphertext. Each player decrypts all the
ciphertexts for which he has the secret key.

The protocol clearly ensures that players have mutually consistent shares, i.e.,
all honest players not in B agree on the value of rB , for any B ∈ ∆+.

Given a pseudorandom function (PRF) ϕ·(·) with k-bit keys and inputs, and
outputs in [−2l+k..2l+k], the following protocol is realizable.

Protocol VSS{rB}(s)
It is assumed that the dealer D has run Random{rB}(∆

+) on some adversary
structure, ∆.
1. D broadcasts a value a, to serve as a “label” for this instance of the

protocol. The only demand is that a can be used as input to ϕ, and that
D never reuses an a-value. D computes, with his knowledge of {rB},
r = s+

∑
B ϕrB (a) and broadcasts r.

2. Each player Pi checks that r ∈ [−(|∆+| + 1)2l+k..(|∆+| + 1)2l+k], and
rejects if this is not the case. Otherwise, he computes ϕrB (a), for every
B where Pi 6∈ B.

This lemma follows easily by inspection of the protocol:

Lemma 2. If D is honest, no honest player will reject in VSS{rB}(s). No matter
what the dealer does, if honest players accept, the set of values r, {ϕrB (a)| B ∈
∆+} form a RISS sharing of some value s′. If D is honest, s′ = s, otherwise
s′ ∈ [−(2|∆+|+ 2)2l+k..(2|∆+|+ 2)2l+k].

It is also quite straightforward to see that if D is honest, and the PRF is secure,
a polynomially bounded adversary does not learn anything about the secret
involved. A proof of this is implicit in the proof of Theorem 4 below. We discuss
in the full version of this paper [14] how a secret can be reconstructed, once it
has been VSS’ed as above.

4.3 Multiplication Proof

In this section we describe a protocol which non-interactively proves that a
shared value is the product of two other shared values. For simplicity, we will only



consider the case of a threshold adversary who corrupts t < n/3 of the players,
so the adversary structure ∆ will in this section consist of all set of cardinality
at most t. The full version of this paper [14] will describe a generalization to all
Q3 adversary structures.

We will need a tool from [10], called Pseudorandom Zero Sharing (PRZS).
This protocol assumes that for all B ∈ ∆+, players not in B have been given t
random seeds r1B , . . . , r

t
B and a prime p > n is agreed in advance. Based on this,

the protocol generates (by local computation only) a pseudorandom polynomial
f over Zp of degree at most 2t such that f(0) = 0 and each player Pi knows
f(i). The protocol is a simple generalization of the share conversion technique.

In the following Random{rB ,r1B ,...,r
t
B
}(∆+) will denote the protocol where the

dealer distributes the seeds rB , r1B , . . . , r
t
B to all players not in B using encryption

under pkB . We will choose a fixed prime p, such p > 2(4|∆+|+ 2)222(l+k).

Protocol MultProof{rB ,r1B ,...,rtB}(a, b, c)
1. The dealer D executes Random{rB ,r1B ,...,r

t
B
}(∆+).

2. D executes VSS{rB}(a), VSS{rB}(b) and VSS{rB}(c).
3. The players use Proposition 2 to locally convert the RISS sharings we

now have of a, b, c to Shamir sharings of a mod p,b mod p and c mod p,
consistent with polynomials fa, fb and fc of degree at most t, t and 2t
respectively. The players use PRZS to generate shares in a polynomial
f of degree at most 2t with f(0) = 0.

4. D uses his knowledge of all seeds to compute the polynomial h = f +
fafb − fc and broadcasts h.

5. Each player Pi verifies that h(i) = f(i) + fa(i)fb(i) − fc(i). If the ver-
ification fails then Pi broadcast “Accusation” and opens all encrypted
values rB , r1B , .., r

t
B known by him.

6. The proof is rejected if one of the following situations happen: one of
the VSS protocols in Step 2 was rejected, the broadcasted polynomial
h is not of degree at most 2t, h(0) 6= 0, or broadcasted values by a
player are consistent with the encrypted values but inconsistent with
the broadcasted values by D.

Theorem 4. When based on a secure IBE-VSK and PRF, then the protocol
MultProof{rB ,r1B ,...,rtB}(a, b, c) securely implements Fab=c, for any threshold-t ad-
versary structure where t < n/3.

Proof. We construct a simulator S that works as follows:
1. S generates the keys pk, {(pkB , skB)} following T ’s algorithm, and sends all

public keys to Adv, along with secret keys for corrupted players.
2. S now acts whenever required, as follows:

– When Adv does a proof on behalf of a corrupt dealer, S can simply
decrypt everything sent by the adversary, and decide if the proof would
be accepted in the real process. If so, it reconstructs values a, b and c
and sends them to the ideal functionality. Otherwise, it sends ⊥ to the
ideal functionality and uses the honest players’ algorithm to compute



the messages (complaints) they would send to corrupt players, and sends
these to Adv.

– When an honest dealer does a proof, S will generate a simulated proof
by simply following the prover’s algorithm, using a = b = c = 0.

To see that this simulation works as required, note first that the simulation
of the set-up phase and proofs by corrupt dealers is perfect. This is because
the simulator follows the honest players algorithm to compute their reaction
to the proof, so we just need to check that when the proof is accepted, the
simulator can send a correct witness to the functionality. By Lemma 2, the
values a, b, c that the simulator reconstructs from the proof will be in the interval
[−(2|∆+| + 2)2l+k . . . (2|∆+| + 2)2l+k], so we know that |ab|, |c| are less than
p/2. Now, from Step 5, we know that h agrees with f + fafb − fc in all points
owned by honest players, of which there are at least 2t + 1. This implies that
h = f + fafb− fc, and therefore that ab = c mod p. But if ab 6= c, it would have
to be the case that |ab− c| ≥ p, while on the other hand we already know that
|ab− c| ≤ |ab|+ |c| < p. So indeed ab = c.

It remains to show that the simulation of an honest dealer’s proof shown to
the adversary is indistinguishable from a real proof. For this, consider the real
process Real, and assume the worst case where the adversary has corrupted a
maximal set B of players. This means that when an honest dealer does a proof,
the key skB is the only secret key the adversary does not know. We then define
a new “hybrid” process Hyb1, where we replace the broadcasted encryptions of
rB , r

1
B , . . . , r

t
B (under pkB) by encryptions of independent random values. By an

argument similar to the proof of Theorem 1, Real is indistinguishable from Hyb1
if the underlying IBE-VSK is secure. Note that in Hyb1, we can replace evalu-
ations of the PRF using seeds rB , r1B , . . . , r

t
B by oracle access to the PRF with

the same seeds, and all messages sent will remain unchanged. We define Hyb2
by replacing the PRF oracles by oracles for truly random functions. By security
of the PRF, Hyb2 is indistinguishable from Hyb1. Finally, we define Hyb3 as fol-
lows: we first replace the dealer’s inputs (a, b, c) to the VSS{rB}(·)-protocols by
random values in the legal interval, and second, we choose the polynomial h to
broadcast as a uniformly random polynomial, subject to h(0) = 0, deg(h) ≤ 2t,
and that h(i) agrees with the adversary’s information for all corrupt players Pi.
Now, Hyb3 is statistically indistinguishable from Hyb2: consider, for instance,
the execution of VSS{rB}(a) in Hyb2. If we subtract the randomness that the
adversary already knows, we see that he can compute R+ a, where R is a truly
random value in Ir = [−2l+k..2l+k]. This is statistically indistinguishable from
R + r where r is a random value in Is = [−2l..2l], which is what the adversary
would see in Hyb3. The polynomial h is easily seen to have exactly the same
distribution in Hyb2 and Hyb3. It follows that Real is indistinguishable from
Hyb3.

To finish the proof, note that in the argument we just gave, we did not use
anything special about the inputs a, b, c, other than ab = c. Therefore, essentially
the same argument shows that the ideal process is also indistinguishable from



Hyb3 since the simulator uses a = b = c = 0 and otherwise follows the protocol.
The theorem now follows from transitivity of indistinguishability. ut

5 Interval Proofs and Application to Secure Computing

Boudot [5] observes that to prove that a number x lies in an interval [a, b] it
is sufficient to prove that x − a ≥ 0 and b − x ≥ 0. By using a homomorphic
commitments scheme and a primitive to prove that a committed integer is a
square, he constructs an efficient proof that a committed number is non-negative.
Only a small constant number of calls to the primitive is required.

Boudot’s protocols can be run in our settings by using one of the VSS pro-
tocols we have presented to play the role of commitments in Boudot’s protocols.
Note that both types of VSS’s we construct are linear and so we have the ho-
momorphic properties needed. In this way, we get a non-interactive proof that a
shared number is in a given interval, using a constant number of invocations of
our VSS protocol.

Furthermore, each number x we prove something about is verifiably shared
among the players, using a LISS scheme (a RISS scheme in case of the second
protocol). If we consider the shares as numbers mod q for any prime q, we obtain
a linear sharing over Zq of x mod q. We can now, possibly after local conversion
using [10], do secure computing on such numbers using, e.g., the protocols from
[17, 4, 12]. If what we really want is secure addition and multiplication over the
integers, we can use the initial interval proofs to make sure the numbers are
small enough to avoid modular reductions.
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