
An L(1/3 + ε) Algorithm for the Discrete
Logarithm Problem for Low Degree Curves

Andreas Enge1 and Pierrick Gaudry2

1 INRIA Futurs & Laboratoire d’Informatique (CNRS/UMR 7161)
École polytechnique, 91128 Palaiseau Cedex, France

2 LORIA (CNRS/UMR 7503), Campus Scientifique, BP 239
54506 Vandœuvre-lès-Nancy Cedex, France

Abstract. The discrete logarithm problem in Jacobians of curves of
high genus g over finite fields Fq is known to be computable with subex-
ponential complexity Lqg (1/2, O(1)). We present an algorithm for a fam-
ily of plane curves whose degrees in X and Y are low with respect to the
curve genus, and suitably unbalanced. The finite base fields are arbitrary,
but their sizes should not grow too fast compared to the genus. For this
family, the group structure can be computed in subexponential time of
Lqg (1/3, O(1)), and a discrete logarithm computation takes subexponen-
tial time of Lqg (1/3 + ε, o(1)) for any positive ε. These runtime bounds
rely on heuristics similar to the ones used in the number field sieve or
the function field sieve algorithms.

1 Introduction

The discrete logarithm problem in algebraic curves over finite fields has been
receiving particular attention since elliptic curves and subsequently Jacobian
groups of further algebraic curves have been proposed for discrete logarithm
based public key cryptosystems. Although it is now clear that high genus curves
are unsuitable for cryptographical use, it remains crucial to study algorithms for
solving the discrete logarithm problem in those curves for several reasons. The
first reason is that having a better understanding of the situation for high genus
curves might lead to algorithmic improvements also in the small genus case. The
second reason is that the Weil descent strategy of attacking the discrete loga-
rithm problem in elliptic curves defined over extension fields leads to a discrete
logarithm problem in the Jacobian of a high genus curve. Therefore a better al-
gorithm for high genus discrete logarithms becomes naturally a potential threat
for some elliptic curves.

It turned out very early that the discrete logarithm problem in high genus
hyperelliptic curves (for instance in the sense that the size q of the base field
is fixed, while the genus g tends to infinity) can be solved by a subexponential
algorithm of complexity Lqg (1/2, O(1)). The first such algorithm was proposed
in [1]. As other subexponential algorithms, it consists of fixing a factor base
of small prime elements (here, prime divisors) and of creating relations that
correspond to the zero element modulo an equivalence relation (here, equivalence

2 Andreas Enge and Pierrick Gaudry

of divisors modulo principal divisors). After collecting sufficiently many relations
and somehow introducing the base of the discrete logarithm and the element
whose logarithm is sought, linear algebra yields the desired result. Assuming
that smooth elements, that are elements decomposing over the factor base, have
the same density as for instance smooth integers or polynomials, such algorithms
usually end up with a complexity of Lqg (1/2, O(1)).

The algorithm in [1] creates relations by randomly taking low degree func-
tions (that are linear in Y for the curve Y 2 = f(X)), whose divisors are relations.
Its analysis is only heuristic. The first proven algorithms are given in [15] for
the infrastructure of real-quadratic hyperelliptic function fields and in [5] for
Jacobians of hyperelliptic curves. Relations are obtained in a process similar to
that of [11] by taking random linear combinations of factor base elements, re-
ducing modulo the equivalence relation and checking for smoothness. A rigorous
analysis is derived from the lower bound on the density of smooth divisors in
[7]. A generic description of a similar algorithm can be found in [6]; it applies to
all class groups in which a smoothness result is known. Heuristically, it obtains
a running time of Lqg (1/2, O(1)) for the discrete logarithm problem in arbitrary
high genus curves, the smoothness result needed for a proof of the complexity is
however only available for hyperelliptic curves.

A proven algorithm of complexity Lqg (1/2 + ε,O(1)) for very general curves
over a fixed field Fq and with genus g tending to infinity (with the only restriction
that the curves contain a rational point and that the cardinality of the Jacobian
group is bounded by qg+O(

√
g)) is given in [3]. Unlike previous algorithms, it

appears to be specific to algebraic curves and relies on a double randomisation,
taking random combinations of factor base elements and a random function
in a Riemann–Roch space. A relation is obtained whenever the divisor of this
function is smooth. A more general algorithm is proposed in [13] that yields a
proven Lqg (1/2, O(1)) complexity without any restriction on the input curve.

Another line of research on the discrete logarithm problem for algebraic
curves, started in [8] and not pursued in this article, consists of fixing g and
having q tend to infinity. This leads to algorithms that are exponential, but
faster than generic algorithms of square root complexity as soon as g ≥ 3, see
[9, 4].

In the light of algorithms of complexity L(1/3) for the discrete logarithm
problem in finite fields as well as for factoring integers, it has been an open
problem to determine whether this complexity can be achieved also for algebraic
curves. In this article, we present the first probabilistic algorithm of heuris-
tic complexity Lqg (1/3, O(1)) to compute the group structure of certain curves
whose total degree is relatively small compared to their genus. When introducing
the two elements of the Jacobian for which the discrete logarithm problem is to
be solved, some sacrifice has to be made; we obtain an algorithm of complexity
bounded by Lqg (1/3 + ε, o(1)) for any positive constant ε.

The relation collection phase is the same as in [1] and consists of looking for
smooth divisors of functions linear in Y . By applying it to the curves of our spe-
cial family, one readily obtains a lower degree of the affine part of the intersection

An L(1/3 + ε) Algorithm for Discrete Logarithm for Low Degree Curves 3

divisor than in the general case, from which a complexity of Lqg (1/3, O(1)) is
derived. For smoothing the two divisors involved in the discrete logarithm prob-
lem, a process is employed that is similar to the one used in the number field
sieve or in the function field sieve. This is the general special-Q descent strategy
(also related to the so-called lattice sieving). Each divisor is partially smoothed
into prime divisors of degree less than the starting divisor. Then each such prime
divisor Q is smoothed again into smaller prime divisors, and we iterate until ev-
ery divisor is rewritten in terms of elements of the factor base. However, in our
case it is necessary to add an arbitrarily small constant ε to the 1/3 parameter
to obtain a proper descent phenomenon; otherwise, the process would get stuck
after one step.

Let us mention that subsequently to our algorithm, Diem has presented at
the 10th Workshop on Elliptic Curve Cryptography (ECC 2006) an algorithm
based on similar ideas, but with a quite different point of view. He manages to
obtain a complexity of L(1/3, O(1) for the discrete logarithm phase, for which
our algorithm takes L(1/3 + ε, o(1)). We will show how to reach a complexity of
L(1/3, O(1)) for discrete logarithms in our setting in the long, journal version.

Acknowledgement. We thank Claus Diem for his careful reading of our article
and many useful remarks.

2 Main idea

Before describing our algorithm with all its technical details on a general class
of curves, we sketch in this section the main idea yielding a complexity of
Lqg (1/3, O(1)) for the relation collection phase for a restricted class of curves.
We provide a simplified analysis by hand waving; Section 3 is devoted to a more
precise description of the heuristics used and of the smoothness properties needed
for the analysis.

Let Fq be a fixed finite field. We consider a family of Cab curves over Fq, that
is, curves of the form

C : Y n +Xd + f(X,Y)

without affine singularities such that gcd(n, d) = 1 and any monomial XiY j

occurring in f satisfies ni + dj < nd. Such a curve has genus g = (n−1)(d−1)
2 ;

we assume that g tends to infinity, and that n ≈ g1/3 and d ≈ g2/3 (we use
the symbol ≈, meaning “about the same size” with no precise definition). The
non-singular model of a Cab curve has a unique point at infinity, and it is Fq-
rational; so there is a natural bijection between degree zero divisors and affine
divisors, and in the following, we shall only be concerned with effective affine
divisors. Choose as factor base F the Lqg (1/3, O(1)) prime divisors of smallest
degree (that is, the prime divisors up to a degree of B ≈ logq Lqg (1/3, O(1))).
To obtain relations, consider functions linear in Y of the form

ϕ = a(X) + b(X)Y

4 Andreas Enge and Pierrick Gaudry

with a, b ∈ Fq[X], gcd(a, b) = 1 and deg a, deg b = δ ≈ g1/3. Whenever the affine
part div(ϕ) of the divisor of ϕ is smooth with respect to the factor base, it yields
a relation, and we have to estimate the probability of this event.

Let N be the norm of the function field extension Fq(C) = Fq(X)[Y]/(Y n +
Xd + f(X,Y)) relative to Fq(X). The norm of ϕ is computed as

N(ϕ) = N(b) N
(
Y +

a

b

)
= bn

((
−a
b

)n

+Xd + f
(
X,−a

b

))
= (−a)n + bnXd + f∗(X),

where each monomial XiY j occurring in f is transformed into a monomial
Xi(−a)jbn−j in f∗.

Since ϕ is linear in Y , all prime divisors it contains are totally split over
Fq(X), and ϕ is B-smooth if and only if its norm is. We have

degX N(ϕ) ≤ max(n deg a, n deg b+ d) = nδ + d ≈ g2/3.

Heuristically, we assume that the norm behaves like a random polynomial of
degree about g2/3. Then it is B-smooth with probability 1/Lqg (1/3, O(1)) (this
is the same theorem as the one stating that a random polynomial of degree
g is logq Lqg (1/2, O(1))-smooth with probability 1/Lqg (1/2, O(1)), cf., for in-
stance, Theorem 2.1 of [2]). Equivalently, we may observe that deg(div(ϕ)) =
degX(N(ϕ)) and assume heuristically that div(ϕ) behaves like a random ef-
fective divisor of the same degree. Then the standard results on arithmetic
semigroups (cf. Section 3) yield again that div(ϕ) is smooth with probability
1/Lqg (1/3, O(1)).

Thus, the expected time for obtaining |F| = Lqg (1/3, O(1)) relations is
Lqg (1/3, O(1)), which is also the complexity of the linear algebra step for com-
puting the Smith normal form and thus the group structure of the Jacobian. The
complexity of the discrete logarithm problem is not considered here, an analysis
for the full algorithm is given in Section 5.

It remains to show that the search space is sufficiently large to yield the re-
quired Lqg (1/3, O(1)) relations, or otherwise said, that the number of candidates
for ϕ is at least Lqg (1/3, O(1)). The number of ϕ is about

q2δ = q2g1/3
= exp(2 log qg1/3)

< exp(2(g1/3(log q)1/3)(log(g log q))2/3) = Lqg (1/3, O(1)).

The previous inequality in the place of the desired equality shows that a
more rigorous analysis requires a more careful handling of the log q factors; in
particular, δ has to be slightly increased. Moreover, the constant exponent in
the subexponential function needs to be taken into account. This motivates the
following section, in which we examine in more detail the smoothness heuristics
and results that are needed for the algorithm.

An L(1/3 + ε) Algorithm for Discrete Logarithm for Low Degree Curves 5

3 Smoothness

The algorithm presented in this article relies on finding relations as smooth
divisors of random polynomial functions of low degree. We suppose that all
curves are given by an absolutely irreducible plane affine model

C : F (X,Y)

with F ∈ Fq[X,Y], where Fq is the exact constant field of the function field of C.
The factor base F consists essentially of the places of degree bounded by some
parameter µ, with a few technical modifications. Precisely, F is composed of the
following places:

– the places corresponding to the resolution of singularities, regardless of their
degrees, whose number is bounded by (d−1)(d−2)

2 with d = degF . By in-
cluding them in F , the algorithm can be described as if the curves were
non-singular.

– the infinite places corresponding to non-singularities, regardless of their de-
grees, whose number is bounded by d by Bézout’s theorem. By adding them,
it becomes sufficient to only examine the affine part of any divisor.

– places of degree bounded by some parameter µ and of inertia degree 1 with
respect to the function field extension Fq(X)[Y]/(F) over Fq(X). Otherwise
said, places corresponding to prime ideals of the form (u, Y − v) with u ∈
Fq[X] irreducible of degree at most µ and v ∈ Fq[X] of degree less than
deg u; the inertia degree is in fact the degree of the second generator in Y .
Due to the way relations are obtained in the algorithm, no places of higher
inertia degree may occur.

A divisor is called F-smooth if it can be decomposed over the factor base;
thus only its affine part plays a role, and for polynomial functions, this is an
effective (i.e. non-negative) divisor. An effective divisor is called µ-smooth if it is
composed only of places of degree up to µ. To be able to analyse the smoothness
probability, we need the following reasonable assumption.

Heuristic 1. Let D be the divisor of a uniformly randomly chosen polynomial
of the form b(X)Y −a(X) and ν the degree of its affine part. Then the probability
of D to be F-smooth is the same as that of a random effective divisor of degree
ν to be µ-smooth.

Heuristic 1 covers the relation collection phase. For computing discrete log-
arithms, arbitrary non-principal divisors need to be smoothed, and another as-
sumption is needed.

Heuristic 2. The probability of a uniformly randomly chosen effective divisor
of degree ν to be F-smooth is essentially the same as that of being µ-smooth.

Heuristic 2 claims in fact that places of inertia degree larger than 1 do not
play a role for smoothness considerations. In the analogous case of number fields

6 Andreas Enge and Pierrick Gaudry

this is justified by the observation that these places have a Dirichlet density of 0,
and the situation is completely analogous for function fields: A place of degree
µ and inertia degree f dividing µ corresponds to a closed point on C with X-
coordinate in Fqµ/f and Y -coordinate in Fqµ , of which there are on the order of
qµ/f . Clearly, places with f ≥ 2 are completely negligible.

The probability of µ-smoothness is ruled by the usual results on smoothness
probabilities in arithmetic semigroups such as the integers or polynomials over
a finite field, cf. [14].

Unfortunately, most results in the literature assume a fixed semigroup and
give asymptotics for µ and ν tending to infinity, whereas we need information
that is uniform over an infinite family of curves. Theorem 13 of [13] provides
such a result:

Theorem 3 (Heß). Let 0 < ε < 1, γ = 3
1−ε and ν, µ and u = ν

µ such that
3 logq(14g + 4) ≤ µ ≤ νε and u ≥ 2 log(g + 1). Denote by ψ(ν, µ) the number of
µ-smooth effective divisors of degree ν. Then for µ and ν sufficiently large (with
an explicit bound depending only on ε, but not on q or g),

ψ(ν, µ)
qν

≥ e−u log u(1+ log log u+γ
log u) = e−u log u(1+o(1)).

Notice that the proof of Theorem 3, similar in spirit to that for hyperellip-
tic curves in [7], is entirely combinatorial and relies on the fact that there are
essentially qµ/µ places of degree µ. So we expect the result to hold even if one
restricts to places of inertia degree 1.

Denote by

L(α, c) = Lqg (α, c) = ec(g log q)α(log(g log q))1−α

for 0 ≤ α ≤ 1 and c > 0 the subexponential function with respect to g log q, and
let

M = Mqg = logq(g log q) =
log(g log q)

log q
.

The parameter g log q will be the input size for the class of curves we consider;
more intrinsically, this is the logarithmic size of the group in which the discrete
logarithm problem is defined.

Proposition 4. Let ν = blogq L(α, c)c = bcgαM1−αc and µ = dlogq L(β, d)e =
ddgβM1−βe with 0 < β < α ≤ 1 and c, d > 0. Assume that there is a constant
δ > 1−α

α−β such that g ≥ (log q)δ. Then for g sufficiently large,

ψ(ν, µ)
qν

≥ L
(
α− β,− c

d
(α− β) + o(1)

)
,

where o(1) is a function that is bounded in absolute value by a constant (depend-
ing on α, β, c, d and δ) times log log(g log q)

log(g log q) .

An L(1/3 + ε) Algorithm for Discrete Logarithm for Low Degree Curves 7

Proof. One computes

u =
ν

µ
≤ c

d

(
g log q

log(g log q)

)α−β

(the inequality being due only to the rounding of ν and µ),

log u = (α− β) log(g log q)(1 + o(1))

and
log log u

log u
= o(1),

with both o(1) terms being of the form stipulated in the proposition. Applying
Theorem 3 yields the desired result. Its prerequisites are satisfied since

limg→∞
logµ
log ν

= limg→∞
β log g − (1− β) log log q
α log g − (1− α) log log q

≤ limg→∞
β log g

α log g − 1−α
δ log g

=
β

α− 1−α
δ

=: ε < 1

because of the definition of δ. Notice further that g → ∞ is equivalent to
g log q →∞, and that also µ and ν tend to infinity when g does. ut

The choice of µ shall insure that the factor base size, that is about qµ, becomes
subexponential. But the necessary rounding of µ, which may increase qµ by a
factor of almost q, may result in more than subexponentially many elements in
the factor base when q grows too fast compared to g.

Proposition 5. Let 0 < β < 1 and δ > 1−β
β . If g ≥ (log q)δ, then q = L(β, o(1))

for g → ∞. In particular, δ > max
(

1−α
α−β ,

1−β
β

)
in Proposition 4 implies that

qµ = L(β, d+ o(1)).

Proof. To verify the first assertion, one computes

q = elog q = e(log q)1−β(log q)β

≤ eg(1−β)/δ(log q)β(log(g log q))1−β

= e(g log q)β(log(g log q)1−β)g
1−β

δ
−β

,

and g
1−β

δ −β → 0 since 1−β
δ − β < 0. The second assertion is obvious. ut

8 Andreas Enge and Pierrick Gaudry

4 Computing the group structure

This section is concerned with the relation collection phase of the discrete loga-
rithm algorithm; an immediate application is the computation of the cardinality
and the group structure of the Jacobian of the curve. Relation collection is virtu-
ally identical to the process described for hyperelliptic curves in [1]; the running
time of L(1/3, O(1)) is obtained by applying it to a particular class of curves
that are of relatively low degree with respect to their genus and for which the
degrees in X and Y of a plane model are balanced in a certain way.

We consider absolutely irreducible curves over finite fields Fq of characteristic
p of the form

C : Y n + F (X,Y)

with F (X,Y) ∈ Fq[X] of degree d in X and at most n − 1 in Y . The function
field extension Fq(C) = Fq(X)[Y]/(Y n +F (X,Y)) over Fq(X) is supposed to be
separable (which is for instance the case if p - n).

Most importantly, the degrees n and d are related to the genus g by

n ≤ n0g
1/3M−1/3 and d ≤ d0g

2/3M1/3

where M = log(g log q)
log q and n0, d0 are some positive constants.

For instance, C may be a Cab curve of degree n ∼ g1/3M−1/3 in Y and
d ∼ 2g2/3M1/3 in X.

For the running time analysis, we will want to apply Propositions 4 and 5
with α = 2/3 and β = 1/3; so we have to assume that the curves belong to a
family satisfying g ≥ (log q)δ for some δ > 2.

Algorithm 6 (Group structure).
Input: a curve C as above
Output: h = |JC(Fq)| and divisors D1, . . . , Dr with their orders h1, . . . , hr s.t.
JC(Fq) = 〈D1〉 × · · · × 〈Dr〉

1. Compute an approximation of h within a factor of 2, that is, h− and h+ s.t.

h− < h < h+ and h+ ≤ 2h−.

2. Fix a smoothness bound B = dlogq L(1/3, ρ)e (with a parameter ρ to be
determined later) and compute the factor base F consisting of all affine prime
divisors of C of degree at most B as well as all infinite prime divisors and
prime divisors corresponding to singularities regardless of their degrees. Let
t = |F| and F = {P1, . . . , Pt}.

3. Start with an empty matrix of relations R and repeat the following step until
s ≥ 2t relations are obtained (in practice, s slightly larger than t should
suffice):
Draw uniformly at random a function

ϕ = b(X)Y − a(X) ∈ Fq(C)

An L(1/3 + ε) Algorithm for Discrete Logarithm for Low Degree Curves 9

with a, b ∈ Fq[X] of degree at most

m = bσg1/3M2/3c

(with a parameter σ to be determined later). If its divisor is F-smooth, that
is,

divϕ =
t∑

i=1

eiPi,

add a column (e1, . . . , et)T to the matrix R.
4. Compute the rank of R; if it is less than t, declare failure and stop.
5. Compute the Smith normal form S = diag(hr, . . . , h1, 1, . . . , 1) of R, where

1 6= h1|h2| · · · |hr, and unimodular transformation matrices T ∈ Zt×t and
U ∈ Zs×s s.t. TRU = (S|0).
Let h = h1 · · ·hr. If h ≥ h+, declare failure and stop.
Otherwise return h, D1, . . . , Dr s.t.

(D1, . . . , Dr, 0, . . . , 0) = (P1, . . . , Pt)T−1

and h1, . . . , hr.

That the algorithm is correct follows from standard arguments such as given
in [1, 5, 6]. It remains to prove its failure probability and running time. We also
have to show that there actually are subalgorithms to carry out the different
steps; these are given together with the following running time analysis.

1. An approximation h̃ of h can be obtained by appropriately truncating the
L-series of the curve as in [13, Section 6]. The necessary counting of the
number of points on the curve over a small number of extension fields is
shown in [13] to be polynomial in g and log q for curves of degree in O(g).
The bounds on h are then given by h− = h̃/

√
2 and h+ =

√
2h̃.

2. The affine prime divisors of degree up to B are obtained by enumerating all
irreducible monic polynomials f ∈ Fq[X] of degree up to B and factoring
Y n + F (X,Y) over Fq[X]/(f)[Y]. Each factor of degree w yields a prime
divisor of degree w deg f . Altogether, these factorisations can be carried out
by O(qB) repetitions of a randomised algorithm with an expected running
time that is polynomial in n, B and log q, and thus ultimately in g log q.
Since polynomial terms are in L(1/3, o(1)), they can be neglected, and we
retain only the term O(qB) for the remainder of the analysis.
The number of singular places is bounded by O((nd)2) = O(g2) using the
genus formula for a plane curve. They can be fully described in polynomial
time, by computing the desingularisation trees of the singular points (see for
instance [10]).
The non-singular places at infinity are included in the intersection of the
projective curve with the line Z = 0, which has at most O(nd) = O(g)
elements by Bézout’s theorem, and these are also computable in polynomial
time.

10 Andreas Enge and Pierrick Gaudry

So this step terminates with a factor base of size

t = O
(
nqB

)
= L(1/3, ρ+ o(1))

that is computed in time L(1/3, ρ+ o(1)).
3. To estimate the smoothness probability of divϕ under Heuristic 1, we need

to compute the degree of its affine part. Denote the affine degree of a divisor
by degaff. Let σ1, . . . , σn be the different embeddings of Fq(C) into its Galois
closure (that exists because the function field extension is assumed to be
separable). The σi fixing Fq(X), they send affine to affine and infinite to
infinite prime divisors. Hence, all the degaff(ϕσi) are the same and given by

degaff ϕ =
1
n

degaff NFq(C)/Fq(X)(ϕ) = degX N(ϕ).

The norm of ϕ is computed as N(ϕ) = ResY (ϕ, Y n+F (X,Y)), and its degree
in X is bounded from above by

degX ϕ · degY C + degY ϕ · degX C = nm+ d.

The divisor of ϕ is B-smooth if and only if its norm is; this test as well
as the decomposition of a smooth divϕ into prime divisors boils down to a
factorisation of the norm in Fq[X] and takes random polynomial time.
Let τ = (n0σ+d0)/3. Applying Propositions 4 and 5 under Heuristic 1 with
nm+ d ≤ 3τg2/3M1/3 in the place of ν and B = dρg1/3M2/3e in the place
of µ shows that a relation is obtained on average in time L

(
1/3, τ

ρ + o(1)
)
,

so that this step takes overall

L

(
1/3,

τ

ρ
+ ρ+ o(1)

)
.

4. and 5. Since all entries of the matrix are of bit size polynomial in g log q, its
rank and Smith normal form can be computed in quartic time according to
[16, Proposition 8.10], that is in

L(1/3, 4ρ+ o(1)).

The total running time of the algorithm thus becomes

L

(
1/3,max

(
τ

ρ
+ ρ, 4ρ

)
+ o(1)

)
with τ = (n0σ + d0)/3.

For any fixed σ (and thus τ), the value of ρ that minimises the running time
is ρ =

√
τ/3 and we get a complexity of L

(
1/3, 4

√
τ√
3

+ o(1)
)
.

Now τ is not a completely free parameter; it is connected to the success
probability of the algorithm. It is in fact not clear whether the algorithm has
a non-zero success probability at all; as in [1], it is already unknown whether

An L(1/3 + ε) Algorithm for Discrete Logarithm for Low Degree Curves 11

the principal divisors of the special form considered in Step 3. generate the full
relation lattice. The analysis of the proven subexponential algorithm in [5], for
instance, exploits the fact that the created relations are essentially uniformly
distributed among all possible relations in a hypercube of side length about
|JC(Fq)|. Since all our relations are sparse, this line of argumentation definitely
cannot be applied; as in [1], the non-negligible success probability of the algo-
rithm can only be conjectured (and notice also that it does not follow from a
smoothness assumption such as Heuristic 1).

A necessary condition for the success of the algorithm is nonetheless that the
number of potential functions ϕ tested for smoothness in Step 3. must be at least
as large as the number of tests, since otherwise the matrix is filled with redundant
multiple relations. Thus we need q2m ≥ L

(
1/3, 4

√
τ√
3

)
or, taking logarithms,

2σ ≥ 4√
3

√
τ =

4
3

√
n0σ + d0,

which holds asymptotically for σ → ∞. Precisely, the optimal value of σ is the
positive solution of the quadratic equation σ2 − 4

9n0σ − 4
9d0 = 0.

5 Computing discrete logarithms

In order to smooth the basis of the discrete logarithm and the element whose
logarithm is sought, we are going to perform a special-Q descent with a slightly
larger subexponentiality parameter 1/3 + ε. Let us first describe an algorithm
that does one step of the special-Q descent and that will be used as a building
block by the final algorithm.

Heuristic Result 7. Let Q be an affine prime divisor of the curve C of the
form div(u(X), Y −v(X)), with deg u(X) ≤ logq L(1/3+ t, c) for some constants
c > 0 and ε < t ≤ 1/3 − ε. There is an algorithm that finds a divisor R
equivalent to Q such that all prime divisors of R are either in F or have a
degree bounded by logq L(1/3 + t − ε, c′), and such that all these prime divisors
are of the form div(ui(X), Y − vi(X)). The heuristic expected running time is
bounded by L(1/3 + ε, cn0

c′ (1/3 + ε+ o(1))).

Justification. Let us consider the set LQ of functions of the form a(X) + b(X)Y
whose divisors containQ in their support. In other words, this is the Fq[X]-lattice

LQ = {a(X) + b(X)Y : u(X)|a(X) + v(X)b(X)}.

A basis of this lattice is given by the two vectors b1 = u(X) and b2 = −v(X)+Y .
Hence,

LQ = {λ(X)b1 + µ(X)b2 : λ, µ ∈ Fq[X]}.

When λ and µ are taken of degree at most δ = logq L(1/3 + t, c), the function
ϕ corresponding to λ(X)b1 + µ(X)b2 has the form a(X) + b(X)Y with a and b

12 Andreas Enge and Pierrick Gaudry

of degree ∆ ≤ 2 logq L(1/3 + t, c). The degree of the norm of ϕ is then ∆n+ d,
which is dominated by logq L(2/3 + t, cn0).

We rely now on Heuristic 1 that says that the zero divisor of the function has
the same smoothness properties as a random effective divisor of the same degree,
and apply Proposition 4. Therefore the expected number of functions one has to
try before having found one whose divisor is logq L(1/3 + t− ε, c′)-smooth is

L
(
1/3 + ε,

cn0

c′
(1/3 + ε+ o(1))

)
.

The fact that the prime divisors that we obtain are of the same form as Q
comes from the shape of the function we have chosen.

It remains to check that the number of functions we can test in the lattice is
large enough compared to this expected number of tests. With our choice of δ,
the size of the sieving space is L(1/3+ t, 2c), which is larger than any L(1/3+ ε)
since t is greater than ε. ut

This result suffices to carry out a full descent if one can initialise the process
and finish it once smoothness is reached up to a t < ε. The next two heuristic
results explain these steps.

Heuristic Result 8. Assume that ρ > (1
3 + ε)n0

2 . Let Q be an affine prime
divisor of C of the form div(u(X), Y − v(X)), with deg u(X) ≤ logq L(1/3 +
t, c), for some constants c > 0 and 0 < t ≤ ε. There is an algorithm that
finds a divisor R equivalent to Q such that all prime divisors of R are in F
(defined with this value of ρ), and such that all these prime divisors are of the
form div(ui(X), Y − vi(X)). The heuristic expected running time is bounded by
L

(
1/3 + t, (1/3 + t) cn0

ρ + o(1)
)
.

Justification. Let us consider the same lattice LQ as in the proof of Proposition 7.
Assume that λ and µ are taken of degree at most δ = logq L(1/3 + t, c), then,
as before, the norm of the corresponding functions are of degree bounded by
logq L(2/3 + t, cn0). Using again Heuristic 1, one gets by Proposition 4 that a
logq L(1/3, ρ)-smooth divisor can be obtained in heuristic expected time

L

(
1/3 + t, (1/3 + t)

cn0

ρ
+ o(1)

)
.

One has to check that we have enough possibilities for λ and µ to cover this
search. The sieving space is q2δ = L(1/3 + t, 2c). Therefore it is large enough if
2c > (1/3 + t) cn0

ρ , that is if ρ > (1/3 + t)n0
2 . Since ε > t, this is guaranteed by

our hypothesis on ρ. ut

Heuristic Result 9. Let D be a degree 0 divisor and
∑

P ePP its decomposition
into prime divisors such that

∑
P |mP | ∈ O(g). Then there is an algorithm that

finds a divisor R equivalent to D such that all prime divisors of R are of the
form div(ui(X), Y − vi(X)) with deg ui(X) ≤ logq L(2/3 − ε, c). The heuristic
expected running time is bounded by L(1/3 + ε, (1/3 + ε) 1

c + o(1)).

An L(1/3 + ε) Algorithm for Discrete Logarithm for Low Degree Curves 13

Justification. In order to smooth D, we apply the classical Hafner-McCurley
strategy: a random linear combination of elements of the factor base is added to
D, and the obtained divisor is tested for smoothness. Each test takes polynomial
time since the effective group law in the Jacobian reduces to computing Riemann-
Roch spaces as in [12].

Following Heuristic 2, the additional restriction on the form of the prime
divisors has no influence on the running time, and the desired result follows
from Proposition 4. ut

Armed with these heuristic partial smoothing results, we can now derive a
full special-Q descent algorithm. Let us fix a constant ε > 0, a parameter of
the algorithm. This ε is to be thought of as small (and of course ε < 1/6). The
algorithm assumes that Algorithm 6 has been run as a precomputation, with a
value of ρ that is larger than a bound given below. Similarly, the constants c0
and cK are made explicit below.

Algorithm 10 (Discrete logarithm).

1. Use Heuristic Result 9 to build a list L of prime divisors of degree at most
logq L(2/3−ε, c0), such that if we know their discrete logarithms, the discrete
logarithm of D is implied.

2. While there is a Q in L of degree more than logq L(1/3+ε, cK), use Heuristic
Result 7 to replace Q in L by a list of prime divisors of degree bounded by a
subexponential function with parameter reduced by ε.

3. For each Q in L that is not in F , use Heuristic Result 8 to decompose Q
in F .

In order to analyse the algorithm, let us model it by a tree: the root is the
divisor D, its sons are the prime divisors coming from its decomposition using
Heuristic Result 9, then each internal node corresponds to a prime divisor and
its sons are the prime divisors obtained using Heuristic Result 7 or Heuristic
Result 8. The depth of the tree is bounded by 1/(3ε) since at each intermedi-
ate step the subexponential parameter is reduced by at least ε and one has to
cover a range of 1/3. The number of sons of each node is bounded by g. Hence
the total number of nodes is bounded by g1/(3ε). Since ε is a fixed constant,
this is a polynomial in g log q and therefore contributes only for a o(1) in the
subexponential complexity.

Let us allow a computation time of L(1/3 + ε, ν + o(1)), for fixed positive
constants ε and ν. Then the first step that uses Heuristic Result 9 can decompose
D in prime divisors of degree at most logq L(2/3−ε, c0) in time L(1/3+ε, ν+o(1))
for c0 = (1/3 + ε)/ν. Going one step down the tree, one can decompose these
primes using Heuristic Result 7 in primes of degrees at most logq L(2/3− 2ε, c1)
in the same time, for c1 = c0n0(1/3 + ε)/ν. Going from level k to level k + 1 in
the tree will decompose in primes of degree at most logq L(2/3− (k+ 2)ε, ck+1)
in the same time, for ck+1 = ckn0(1/3 + ε)/ν. Finally, each last step will be
feasible in the same running time if ρ > cKn0(1/3 + ε)/ν, where K is the depth
of the tree.

14 Andreas Enge and Pierrick Gaudry

This value of ρ is feasible and does not affect the overall complexity. It only
changes the exponent in the L(1/3) runtime of the group structure algorithm,
whose complexity remains negligible compared to the L(1/3 + ε) of the present
algorithm. Therefore, a suitable choice of ρ, c0 and cK in Algorithm 10 results
in a running time of L(1/3 + ε, ν + o(1)) for any given ε and ν.

Choosing ε/2 in the place of ε (and an arbitrary ν) shows that even a com-
plexity of L(1/3 + ε, o(1)) is achievable.

Remark. In the analysis, we have remained silent about the exact nature of the
o(1) terms. As long as a fixed number of them is involved, this does not pose
any problem. But at first sight, since Heuristic Result 7 is used a non-constant
number of times, one apparently needs to make the o(1) terms explicit to check
that they do not sum up to something that is not tending to zero. However,
although the number of nodes in the tree of Algorithm 10 is in g1/(3ε), the o(1)
term is the same for any given level in the tree, so that actually only the depth
of the tree is important for these o(1)-terms considerations. The depth of the
tree is in 1/(3ε), which is a constant, so that we actually consider a constant
number of o(1) terms and need not make them explicit.

6 Extensions to wider families of curves

6.1 Highly singular curves

Consider the case where the curve has an equation of the appropriate form,
but with a genus that is much smaller than nd. Then letting g′ = nd, one may
apply the exact same algorithms yielding an L(1/3+ε) complexity. However, the
subexponential function is now taken with respect to qg′ . This may still result
in a subexponential complexity in qg, depending on the relation between q, g
and g′.

6.2 Different balancing between n and d

Here we consider the case where n ≈ gα and d ≈ g1−α for α ∈
[
1
3 ,

1
2

]
. We

shall just give an informal description of an algorithm that yields an L(1/3)
complexity for the group structure. Note that to obtain the claimed complexity
without ε, the bounds on n and d should resemble the ones we have in Section 4.
For instance, bounds of the form n ≤ n0g

αM−α and d ≤ d0g
1−αMα would

suffice. For the sake of better readability, we content ourselves with approximate
bounds.

Let us restrict to Cab curves for simplicity, and let us call P∞ the unique
place at infinity. We proceed as in Algorithm 6, but the functions we consider
are of the more general form:

ϕ = a0(X) + a1(X)Y + · · ·+ ak(X)Y k,

where the ai(X) have a degree bounded by gβ and k is taken of the form gγ ,
for some β and γ to be determined. Then the divisor of ϕ is of the form E −
(degE)P∞, with E effective of degree bounded by gγ+1−α + gβ+α.

An L(1/3 + ε) Algorithm for Discrete Logarithm for Low Degree Curves 15

Fix a smoothness bound of gβ+γ ; with the usual heuristic, one can find E
that is smooth in time about gmax(α−γ,(1−α)−β). The consistency check that the
sieving space must be larger than the factor base yields the condition

β + γ ≥ max(α− γ, (1− α)− β),

which gives β + 2γ ≥ α and γ + 2β ≥ 1− α. This in turn imposes that β + γ ≥
1/3. Therefore, in this setting we can not hope to get something better than
an L(1/3) complexity. We now show that this complexity is achievable: taking
β = 2/3−α and γ = α− 1/3, all the conditions are verified, and the complexity
is as announced.

In the particular case of α = 1/3, we recover β = 1/3 and γ = 0, which
corresponds to Algorithm 6. In the other extremal case α = 1/2, we get β = γ =
1/6.

If α gets smaller than 1/3, then the L(1/3) complexity is not achievable with
this algorithm. In fact, for each value of α ∈ [0, 1/3], there is an L(x) complexity
with x ∈ [1/3, 1/2], and finally, for hyperelliptic curves one essentially recovers
Adleman-Demarrais-Huang’s L(1/2) algorithm.

All of this concerns only the group structure. For the special-Q descent how-
ever, things get more complicated and the L(1/3 + ε) complexity is lost when
α is bigger than 1/3. More precisely, the same kind of computations as above
yields a complexity of L(α+ ε) for α ∈ [1/3, 1/2].

References

[1] L. M. Adleman, J. DeMarrais, and M.-D. Huang. A subexponential algorithm
for discrete logarithms over the rational subgroup of the jacobians of large genus
hyperelliptic curves over finite fields. In L. Adleman and M.-D. Huang, editors,
ANTS-I, volume 877 of Lecture Notes in Comput. Sci., pages 28–40. Springer–
Verlag, 1994.

[2] R. L. Bender and C. Pomerance. Rigorous discrete logarithm computations in
finite fields via smooth polynomials. In D. A. Buell and J. T. Teitelbaum, editors,
Computational Perspectives on Number Theory: Proceedings of a Conference in
Honor of A.O.L. Atkin, volume 7 of Studies in Advanced Mathematics, pages
221–232. American Mathematical Society, 1998.

[3] J.-M. Couveignes. Algebraic groups and discrete logarithm. In Public-key cryp-
tography and computational number theory, pages 17–27. de Gruyter, 2001.

[4] C. Diem. An index calculus algorithm for plane curves of small degree. In F. Heß,
S. Pauli, and M. Pohst, editors, ANTS-VII, volume 4076 of Lecture Notes in
Comput. Sci., pages 543–557. Springer–Verlag, 2006.

[5] A. Enge. Computing discrete logarithms in high-genus hyperelliptic Jacobians in
provably subexponential time. Math. Comp., 71:729–742, 2002.

[6] A. Enge and P. Gaudry. A general framework for subexponential discrete loga-
rithm algorithms. Acta Arith., 102:83–103, 2002.

[7] A. Enge and A. Stein. Smooth ideals in hyperelliptic function fields. Math. Comp.,
71:1219–1230, 2002.

16 Andreas Enge and Pierrick Gaudry

[8] P. Gaudry. An algorithm for solving the discrete log problem on hyperelliptic
curves. In B. Preneel, editor, Advances in Cryptology – EUROCRYPT 2000,
volume 1807 of Lecture Notes in Comput. Sci., pages 19–34. Springer–Verlag,
2000.

[9] P. Gaudry, E. Thomé, N. Thériault, and C. Diem. A double large prime variation
for small genus hyperelliptic index calculus. Math. Comp., 76:475–492, 2007.

[10] G. Haché. Construction effective de codes géométriques. PhD thesis, Université
de Paris VI, 1996.

[11] J. L. Haffner and K. S. McCurley. A rigorous subexponential algorithm for com-
putation of class groups. J. Amer. Math. Soc., 2(4):837–850, 1989.

[12] F. Heß. Computing Riemann-Roch spaces in algebraic function fields and related
topics. J. Symbolic Comput., 33:425–445, 2002.

[13] F. Heß. Computing relations in divisor class groups of algebraic curves over finite
fields. Preprint, 2004.

[14] E. Manstavičius. Semigroup elements free of large prime factors. In F. Schweiger
and E. Manstavičius, editors, New Trends in Probability and Statistic, pages 135–
153, 1992.

[15] V. Müller, A. Stein, and C. Thiel. Computing discrete logarithms in real quadratic
congruence function fields of large genus. Math. Comp., 68(226):807–822, 1999.

[16] A. Storjohann. Algorithms for Matrix Canonical Forms. PhD thesis, Eid-
genössische Technische Hochschule Zürich, 2000.

