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Abstract. We define the mesh signature primitive as an anonymous
signature similar in spirit to ring signatures, but with a much richer lan-
guage for expressing signer ambiguity. The language can represent com-
plex access structures, and in particular allows individual signature com-
ponents to be replaced with complete certificate chains. Because with-
holding one’s public key from view is no longer a shield against being
named as a possible cosignatory, mesh signatures may be used as a ring
signature with compulsory enrollment.
We give an efficient construction based on bilinear maps in the common
random string model. Our signatures have linear size, achieve everlasting
perfect anonymity, and reduce to very efficient ring signatures without
random oracles as a special case. We prove non-repudiation from a mild
extension of the SDH assumption, which we introduce and justify metic-
ulously.

1 Introduction

We introduce mesh signatures, which are similar in spirit and purpose to the
ring signatures of Rivest, Shamir, and Tauman [?], but overcome some of their
crucial limitations.

Ring signatures are pseudonymous signatures that are issued in the name of
a “ring” of users, and created by one of them without the participation of the
others, in a way that preserves the instigator’s anonymity. The canonical applica-
tion is for an individual “to leak a secret” non-repudiably on behalf of a crowd.
Technically, ring signatures can thus be viewed as a witness-indistinguishable
disjunction of regular signatures, but because of this, only people who have pre-
viously published a verification key are eligible to be enrolled in such a crowd,
ring signatures can only ever implicate individuals who, by the very act of pub-
lishing their key, are proclaiming their consent.

Mesh signatures generalize this notion to mononote access structures repre-
sentable as a tree, whose interior nodea are And, Or, and Threshold gates, and
whose leaves are regular signatures. The access structure can be satisfied using
different subsets of the regular signatures; once created, the mesh signature will
not reveal what particular subset was used. The regular signatures at the leaves
can be “static”, and thus PKI certificates are eligible if the mesh signer does
not have the CA’s signing key. Since furthermore the monotone tree structure
is powerful enough to express disjunctions of certificate chains, we are no longer



dependent on individual ring members publishing their keys. As a toy exam-
ple, suppose that Alice wants to implicate Bob, who may or may not have a
verification key on record. Alice can still produce the following mesh signature,

σ = [VKAlice : Msg1] or ([VKCertAuth : VKBob] and [VKBob : Msg2]) ,

All that Alice needs to create σ is her own private key and CertAuth’s certificate
verification key. Even if Bob has published no verification key, the mesh signature
σ implicates him via the certificate [VKCertAuth : VKBob] that binds his name to
the string VKBob; the certificate can be real or a fake. Conversely, Bob could have
created σ himself, using the real certificate and his own private key, to implicate
Alice; although in this case her public key would have to be available to the
verifier since her certificate is not part of σ. Another feature of mesh signatures
is that they provide threshold gates, which makes it easy to scale constructs like,

σ = 2-out-of-3 in {[ceo : skrt-memo] , [cfo : skrt-memo] , [coo : skrt-memo]} .

Threshold gates like this can feed or be fed from other gates as in the earlier
example. The unconditional anonymity of mesh signatures guarantees that, as
long as the signature σ is valid, there is no way to tell the true and false clauses
apart in the formula expressed by σ.

We can immediately see how much more practical mesh signatures are than
ring signatures: instead of requiring that each and everyone generate and publish
their public key in a ring scheme, here we just need one trustworthy certificate
authority (or preferably a few) to publish their keys in the mesh scheme—a
natural demand to place on certificate authorities, though not on individuals.

To make the use of certificate chains truly believable, it is important that
mesh signatures be constructible non-interactively from reusable constituent
atomic signatures (in our case, these are Boneh-Boyen short signatures [?]).

1.1 Related Work

The original ring signature primitive was defined in [?], to enable secret leaking
that is at once authenticated (by a crowd) and anonymous (within the crowd).
Whereas that construction [?] was based on trapdoor permutations, a number
of alternatives have subsequently been proposed, based on bilinear pairings [?],
discrete logarithms [?], factoring (Strong-RSA specifically) [?], or hybrids [?]; all
these constructions are set in the random oracle model. Most have linear size
in the ring membership count, except [?] which squeezes it all in constant size
using accumulators in the random oracle model.

A number of general protocols bear similarities with our new primitive. Per-
haps the first such scheme is an anonymous authentication protocol of [?] that
supports access structures and can be turned into a signature using the Fiat-
Shamir heuristic. Another is an interactive anonymous authentication protocol,
called deniable ring authentication [?], that combines the anonymity of ring sig-
natures with the non-transferability of deniable authentication [?], and supports
threshold and access structures. Among specific constructions in the random



oracle model, we note the distributed ring signatures of [?] which lets coali-
tions of users cooperate in an interactive signing protocol, and the hierarchical
identity-based ring signatures of [?], which adds signer ambiguity to the notion
of hierarchical identity-based signature. Additionally, we mention that mesh sig-
natures could in principle be realized using signatures of knowledge [?], which
allow the knowledge of a witness to an NP statement to serve as a signing key,
in the common random string model.

Another related notion that has received much attention is that of group sig-
natures, originally introduced in [?], and which also provides for the anonymous
creation of signatures on behalf of a crowd. The main difference is that group
signatures require the anonymity to be revocable by a group manager, who also
controls enrollment into the group. Group membership is often immutable al-
though this restriction has been relaxed in [?]. There exists efficient constant-size
group signature schemes, with random oracles [?], from interactive assumptions
[?], and in the standard model [?].

Efficient ring signatures constructions without random oracles have also been
proposed recently, such as [?], [?], and [?]. The construction of [?] uses bilinear
groups and is efficient but relies on a cumbersome assumption stated without jus-
tification. The results of [?] include an impractical scheme from non-interactive
Zaps [?], but also two efficient constructions (based on [?] or [?] signatures) for
rings of size two, and a discussion of security models for ring signatures.

Probably the most closely related to our work is the very recent ring scheme
of [?] which can efficiently creates linear-size ring signatures in the “trusted
parameters” model; unforgeability is based on computational Diffie-Hellman,
and anonymity on the decisional Subgroup [?] assumption. Because of the latter,
the scheme requires a bilinear map in a group of composite order with a hidden
factorization; such a group is set up explicitly by a central authority, which
afterwards must erase the factorization to ensure anonymity. It may be possible
to use ideas from [?] and base anonymity on the decisional Linear [?] assumption,
which would no longer require secret-coin trusted parameters (TP) but only a
public-coin common random string (CRS), as in our scheme; however anonymity
would still remain computational. The main advantage of [?] over our ring scheme
is that unforgeability rests on a weaker assumption.

2 Definitions and Security Models

Intuitively, a mesh signature is a non-interactive witness-indistinguishable proof
that some monotone boolean expression Υ is true, where each input of Υ is
notionally labeled with a key & message pair and is true only if the mesh signer
is in possession of a valid atomic signature for the stated message and key.

A mesh signature scheme should satisfy two security properties. First, it
should be anonymous (ideally, unconditionally so), i.e., it should not reveal what
assignment to the inputs of Υ caused it to be satisfied. Second, it should be
unforgeable, i.e., the creation of a valid mesh signature must be predicated on
the possession of a set of valid atomic signatures sufficient to satisfy Υ .



2.1 Recursive Mesh Signature Specification

We use ` to denote the number of atomic clauses in a mesh structure (in a
ring signature, this would be equal to the number of users in the ring). Let
Υ be the expression generated by the following grammar, with propositional-
logic semantics, under the restriction that, for each i = 1, ..., `, the production
expr ::= Li corresponding to the symbol Li be used at most once (in other
words, no Li may appear more than once in the written expression of Υ ):

expr ::= L1 | ... | L` single-use input symbols
| ≥t{expr1, ...,exprm} t-out-of-m threshold, with 1 < t < m
| ∧{expr1, ...,exprm} m-wise conjunction, with 1 < m
| ∨{expr1, ...,exprm} m-wise disjunction, with 1 < m

Equivalently, we call Υ an “arborescent monotone threshold circuit” with `
Boolean inputs L1, ..., L` and one Boolean output denoted Υ (L1, ..., L`). It is
apparent by induction that Υ is always a non-trivial monotone function of its
inputs, and in particular Υ (⊥, ...,⊥) = ⊥ and Υ (>, ...,>) = >.

We use expressions of this form to state the meaning of mesh signatures.
The signer specifies the circuit Υ , and assigns to each symbol Lj an atomic
proposition [VK : Msg] to convey the meaning: “This is Msg signed under VK.”
The mesh signature then simply expresses that Υ (L1, ..., L`) = > holds for the
stated interpretation of the Li (without revealing their individual truth values).
For the example in the introduction, Υ = L1 ∨ (L2 ∧ L3) where L1 denotes
[VKAlice : Msg1], etc.

We emphasize that two distinct symbols Li and Lj can express the same
sentence and yet have opposite truth values, since the signer is free to use a
valid atomic signature for one and not for the other. The current construction
does not support cloning truth values without losing the original, just as it
cannot express the negation of a truth value.

2.2 Anonymity Model

The strongest notion of anonymity defined in [?], “anonymity against full key
exposure”, in the context of ring signatures, requires that the signer remain
anonymous following full exposure of all the private keys, after their use. It is
however a constrained notion of anonymity because the keys are not chosen by
the adversary, and are only revealed a posteriori. We contend that, since the
motivating application of ring and mesh schemes is to leak secrets, it is crucial
that anonymity be unconditional and everlasting, subsequently to the exposure
of all secrets, for the long-term peace of mind of the signer. We thus insist on
perfect (i.e., information theoretic) anonymity, even upon prior disclosure of the
signer’s and every user’s secret keys.

Precisely, we require that the identity of the signer be statistically indepen-
dent, conditionally on all public keys and the mesh formula, of any long-term
secret held by any party in the system. We exclude ephemeral randomness from
the above requirement, for the reason that there is no way to prevent the signer



to prove willingly that she herself created a particular signature: revealing the
ephemerals used to create a signature is but one way to do this. By contrast, the
signer must be protected againt coerced disclosure, which is why independence
from her long-term keys is crucial.

2.3 Unforgeability Model

The strongest notion of unforgeability defined in [?], “unforgeability with re-
spect to insider corruption”, for ring signatures, gives the adversary the ability
to corrupt users dynamically, and include its own public keys when making ring
signature queries. Since the point of mesh signatures is to implicate uncoopera-
tive users, it is judicious to allow them to choose their keys maliciously.

However, as a compromise for unconditional anonymity, we relax the fully
dynamic corruption model into an enhanced static one, in which the honest users
are static and created ahead of time by a challenger, and the corrupted users are
under the full control of an adversary who can bring them to life dynamically.
We also need to specify what constitutes a valid forgery. For ring signatures,
a forgery is any signature by a ring without adversarially controlled users. For
mesh signatures, this is overly restrictive, since it excludes forgeries such as,

Υ = ([U1 : m1] ∧ [U3 : m3]) ∨ ([U2 : m2] ∧ [U4 : m4]) ,

where U1 and U2 are honest users, and U3 and U4 are corrupted. Since Υ nom-
inally entails Υ ′ = [U1 : m1] ∨ [U2 : m2], a forger who signs Υ lacking the im-
primatur of both U1 and U2 should be deemed successful. We capture these
circumstances by deeming admissible any forgery on a statement Υ if there ex-
ists a well-formed Υ ′ that involves only honest users and such that Υ ⇒ Υ ′.

To see where this comes from, for all corrupted users let us set the corre-
sponding literal Li ← >, which is the most that they can supposedly do. If Υ
evaluates to >, the forgery is inadmissible; otherwise, Υ reduces to some well-
formed formula Υ ′ which involves honest users, exclusively. Hence, the condition
demands that Υ be unsatisfiable by the volition of the adversarial users alone.
We distill all of this into the following existential unforgeability game, and define
the adversary’s advantage as the probability of outputting an admissible valid
forgery.

Challenger setup: the challenger designates a number ` of public keys,
corresponding to the honest target users under the challenger’s con-
trol.

Interaction: the following occurs interactively, in any order, driven by
the adversary.
Adversary setup: the adversary reveals polynomially many pub-

lic keys, one at a time, corresponding to the users under the
adversary’s control.

Signature queries: the adversary makes up to q mesh signature
queries, one at a time, on specifications Υj whose satisfiability
involves the challenger’s users.



The adversary may also query q atomic signatures to each of
the users controlled by the challenger (since atomic signatures
should be usable instead of signing keys for mesh signing.)

The challenger processes each request before accepting the next one.
Signature forgery: the adversary produces a forged signature whose

specification Υ contains no clause [VKi : Msgi] from an atomic query,
and is such that ∀j, Υ 6= Υj and ∃Υ ′, Υ (L1, ..., L`, ...)⇒ Υ ′(L1, ..., L`)
where Υ ′ is a well-formed formula with honest user clauses only.

3 Framework and Computational Assumption

We write Fp for the finite field of prime order p, and F×p = Fp \ {0} for its mul-
tiplicative group of order p− 1. Let a bilinear context G = (p,G, Ĝ,Gt, g, ĝ, e),
where e : G × Ĝ → Gt is a pairing [?]. We use the “hat-notation” (as in ĝ) to
indicate that an element belongs to Ĝ rather than G.

3.1 Review of the SDH Assumption

The complexity assumption we shall need is inspired from the Strong Diffie-
Hellman assumption proposed in [?], which we now review. The q-SDH problem
in a (bilinear) group G is stated:

(Original SDH) Given elements g, gα, gα2
, ..., gαq ∈ G, choose w ∈ Fp and

output (w, g1/(α+w)).

The SDH assumption then posits that the q-SDH problem above is intractable
for q = O(poly(κ)). What makes this assumption special is that the problem
admits not one but exponentially many “independent” solutions, which are all
equally hard to find. Hence the modified q-SDH problem:

(Modified SDH) Given g, gα ∈ G and q − 1 pairs (wj , g
1/(α+wj)), output

another (w, g1/(α+w)).

It is known from [?] that if the original q-SDH problem is hard, then so is the
modified problem.

Although the SDH problem statement does not require a bilinear group, it is
because the bilinear map provides an efficient Decision Diffie-Hellman procedure
[?] that the correctness of an SDH solution can be decided openly. Specifically,
given g and gα, deciding whether (w, u) = (c, g1/(α+w)) amounts to checking the
equality e(u, ĝα ĝw) = e(g, ĝ), basically a DDH a test that anyone can perform
from public information. The short signature scheme of [?] relies on this.

3.2 Poly-SDH : for Better Use of the Pairing

The verifiability of SDH solutions with a simple DDH test suggests that more
general assumptions could be made, based on the observation that the pairing is



a powerful tool that can be used to decide more complex relations that are not
efficiently reducible to DDH. For example, a natural generalization of the SDH
problem is that of finding ` pairs (wi, ui = gri/(α+wi)) for i = 1, ..., `, such that∑`

i=1 ri = 1 (mod p). Purported solutions can then be verified by checking,

∏̀
i=1

e(ui, ĝ
α ĝwi) = e(g, ĝ) . (1)

Clearly, when ` = 1, this is identical to the SDH problem. For larger values of
`, the adversary is given to spread the exponent inversion task across multiple
pairs, by means of linear combination.

Unfortunately, for ` > 1, the problem is in fact trivial, because Equation (1)
admits spurious solutions that do not require the solver to know the secret α
and invert the exponent: for example, for ` = 2 the solution w1 = 1, u1 = g,
w2 = 0, u2 = g−1 satisfies the equality regardless of α.

To remedy the preceding problem, we change the solver’s task slightly, and
ask that the ` pairs to be output involve ` independent secrets α1, ..., α` that
appear once each, i.e., find,

(
wi, ui = g

ri
αi+wi

)
: i = 1, ..., ` , s.t.

∑̀
i=1

ri = 1 (mod p) .

To decide whether a solution ((w1, u1), ..., (w`, u`)) to the new problem is
correct, one also needs, besides the generators g and ĝ, the ` group elements
(ĝ1, ..., ĝ`) = (ĝα1 , ..., ĝα`). The verification equation is then,

∏̀
i=1

e(ui, ĝi ĝ
wi) = e(g, ĝ) . (2)

Notice that (1) is a special case of (2) where α1 = ... = α` = α; however, for
the security of the assumption it is important that the αi be independently and
uniformly distributed. Despite the added variables, we stress that Equation (2)
is no more expensive to verify.

Based on the previous observations, the (q, `)-Poly-SDH problem can be in-
formally stated as:

(Poly-SDH) Given g, gα1 , ..., gα` ∈ G and q ` pairs (wi,j , g
1/(αi+wi,j)) for

1 ≤ i ≤ ` and 1 ≤ j ≤ q, choose fresh w1, ..., w` ∈ Fp and output ` pairs
(wi, g

ri/(αi+wi)) such that
∑`

i=1 ri = 1.

The αi and wi,j in the instance are drawn from a uniform distribution. The wi

and ri are chosen by the respondent. We require that ∀i,∀j, wi 6= wi,j , lest the
task be easy. The exponents ri need not be revealed, since Equation (2) can
establish that a solution is correct, and thus

∑
i ri = 1, without seeing the ri.

We have chosen to state the (q, `)-Poly-SDH problem in a form analogue to
Modified SDH, rather than Original SDH. There are a few justifications for this:



– the modified form results in a weaker assumption (by analogy to the impli-
cation from Original SDH to Modified SDH);

– the input/output symmetry simplifies the security reductions;
– its instances are more concisely stated when more than one iterator is needed;
– the modified problem form is impervious to a (benign) generic analysis de-

scribed in [?], which relies on the availability of g, gα, and gαd

for certain d,
as in Original SDH instances.

The reason why there are no undesirably easy solutions to the (q, `)-Poly-SDH
problem will become apparent as we prove generic hardness in Section ??.

3.3 Generic Hardness of Poly-SDH

We now take some time to explain why the Poly-SDH assumption based on
Equation (2) is plausible, unlike our first attempt from Equation (1) that was so
easily broken. We give a heuristic argument based on the impossibility of efficient
generic attacks. Specifically, we show that finding a solution to the (q, `)-Poly-
SDH problem will require, on expectation, Ω(

√
p/q `) generic group operations.

The generic group model [?] assumes the lack of any structure beyond that
of an (Abelian) cyclic group, restricting all manipulations on group elements to
the group operation and its inverse (i.e., multiplication and division if the group
is written multiplicatively). In the bilinear version of the model [?], one can also
compute a pairing e : G × Ĝ → Gt, as well as an isomorphism ψ : Ĝ → G
(for “type-1” and “type-2” contexts) and its inverse ψ−1 : G→ Ĝ (for “type-1”
only).

Let us assume that G = Ĝ, which only makes the attack easier. Recall that
the Poly-SDH instance furnishes g, gα1 , ..., gα` , and a large number of pairs
(wi,j , ui,j = g

1/(αi+wi,j)). Based on this information, the attacker must output `
pairs (wi, ui = gri/(αi+wi)) such that

∑
i ri = 1, and where wi is distinct from all

wi,j with the same index i.
First, notice that the pairing e is useful to verify a solution, but not really

to find one. This is because e ranges into Gt, and once we have landed in Gt

we can never leave it. Also, ψ and ψ−1 just model the identity function since
we have already assumed that G = Ĝ. We can thus focus on multiplication and
division in the multiplicative group G of prime order p.

Next, observe that all the group elements that can be created from g, {gαi},
and {g1/(αi+wi,j)} are of the form g

π(α1,...,α`)
∆ , where π ∈ Fp[α1, ..., α`]q`+1 is any

multivariate polynomial in α1, ..., α` of total degree at most q ` + 1, and where
∆ is the common denominator ∆ =

∏`
i=1

∏q
j=1 (αi + wi,j). We need to produce

` elements ui = gri/(αi+wi) and the corresponding wi. Our task is thus to find
` polynomials π1, ..., π` ∈ Fp[α1, ..., α`]q`+1 such that πi/∆ = ri/(αi + wi) for
some

∑
i ri = 1, i.e., such that,

∑̀
i=1

(αi + wi)πi = ∆ =
∏̀
i=1

q∏
j=1

(αi + wi,j) .



We show that there can be no such polynomials πi using a linear change of
variable. For all i = 1, ..., ` and j = 1, ..., q, we define α′i = αi + wi and w′i,j =
wi,j −wi. Notice that all w′i,j 6= 0. Our new task becomes to find ` polynomials
π′1, ..., π

′
` of degree ≤ q `+ 1 in the variables α′1, ..., α

′
`, such that,

∑̀
i=1

α′i π
′
i = ∆ =

∏̀
i=1

q∏
j=1

(α′i + w′i,j) .

Clearly, all the monomials in the left-hand side have degree in α′1, ..., α
′
` at least

1. On the other hand, all w′i,j are non-zero, so the right-hand side yields a non-
vanishing independent degree-0 term equal to

∏
i

∏
j w

′
i,j =

∏
i

∏
j (wi,j − wi) 6=

0, which is a contradiction.
The contradiction shows that the equations above cannot be satisfied identi-

cally in Fp[α′1, ..., α
′
`] or Fp[α1, ..., α`], which proves that the polynomials π′i and

thus πi cannot exist. A standard argument then shows that the equations can
only be satisfied in Fp for certain assignments of α1, ..., α` ∈ Fp: the polynomial
roots. Since the αi are chosen at random, we can bound the probability of hitting
those roots. We find that, if q ` < O( 3

√
p), it takes qG = Ω(

√
ε p/q `) operations

to solve (q, `)-Poly-SDH with probability ε in generic groups of order p.

4 Special Case : Ring Signatures

We first describe a ring signature based on the Poly-SDH assumption as a spe-
cial case of our technique. It is more efficient than other provably secure ring
signature schemes without random oracles, and is set in the common random
string model without trusted parameters.

Initialization: Given a security parameter κ and a public random string K ∈
{0, 1}poly(κ), the parties generate from K a common bilinear instance G =
(p, G, Ĝ, Gt, g, ĝ, e) ← G(1κ;K) and a collision-resistant hash function
H : {0, 1}∗ → Fp shared by all. Since G has prime order and no hidden
structure, it can safely be generated from public coins.
The string K is also used to generate three random elements Â0, B̂0, and
Ĉ0 in Ĝ. These elements define a public verification key “in the sky” whose
matching signing key is undefined.
For notational convenience, we suppose for now that the isomorphism ψ :
Ĝ→ G is efficiently computable in the instance G, and we let A0 = ψ(Â0),
B0 = ψ(B̂0), and C0 = ψ(Ĉ0) in G. This temporary restriction will be lifted
later in this section.

Key generation: User #i draws a signing key (ai, bi, ci) ∈ (F×p )3, and pub-
lishes (Ai, Bi, Ci, Âi, B̂i, Ĉi) = (gai , gbi , gci , ĝai , ĝbi , ĝci) ∈ G3 × Ĝ3.
In case ψ : Ĝ→ G is easy to compute, users publish only (Âi, B̂i, Ĉi).

Ring signature: To create a ring signature on a message m ∈ Fp attributed to
a ring of ` users, any member of the ring would proceed as follows. W.l.o.g.,
suppose that the signer is User #` in the ring R = (1, ..., `). The signer



selects 2 ` + 1 random integers s0, s1, ..., s`−1, t0, t1, ..., t` ∈ Fp, and outputs
the signature σ = (S0, ..., S`, t0, ..., t`) ∈ G`+1 × F`+1

p , given by,

σ =

 gs0 , ..., gs`−1 ,

(
g ·

`−1∏
i=0

(AiB
mi
i Cti

i )−si

) 1
a`+b` m`+c` t`

, t0, ..., t`

 ,

with m1, ...,m` the messages to be signed, and m0 = H((1,m1), ..., (`,m`)),
a collision-resistant hash of the statement expressed by the signature.

Ring verification: To verify a signature σ = (S1, ..., S`, t1, ..., t`) with re-
spect to a message m and a ring R = (1, ..., `), it suffices to set m1 = ... =
m` = m and m0 = H((1,m1), ..., (`,m`)), and test the equality,

∏̀
i=0

e(Si, Âi B̂
mi
i Ĉti

i ) = e(g, ĝ) .

Consistency of the algorithms is readily verified. Note that the scheme is trivially
modified to force all messages m1, ...,m` to be the same, as in traditional ring
signatures.

The purpose of signing a hash of the message and ring composition under the
public key “in the sky” is to prevent outsiders from appending new components
to an existing signature, which would otherwise give an easy forgery. It also helps
in the security proof.

We emphasize that the public string K has no hidden structure, and can be
drawn publicly at random as long as it is not chosen to grant anyone undue ad-
vantage to compute discrete logarithms in G or sign under the key “in the sky”.
The absence of secret coins is the main difference between a common random
string (CRS) and the much more demanding trusted parameters (TP) model:
in the former the parameters can be drawn in the open; in the latter they must
be crafted in a special way from secret coins by some trusted setup authority,
who must then voluntarily give up the secret knowledge it has (and convince
everyone that it did not cheat). No trusted setup agent, either centralized or
distributed, is needed in our system.

Furthermore, we have irrevocable, or everlasting, unconditional anonymity
of the signatures (i.e., with forward security against coerced disclosure of the
long-term signing keys), as stated by the following theorem.

Theorem 1. The ring signature has everlasting perfect anonymity.

The second security theorem states that the scheme is existentially unforge-
able in the model of Section ??. The proofs will appear in the full version.

Theorem 2. The ring signature is existentially unforgeable under an adaptive
attack, against a static adversary that makes no more than q ring signature
queries, and q atomic signature queries to each one of the ` honest users, adap-
tively, provided that the (q, `+1)-Poly-SDH assumption holds in G, in the com-
mon random string model.



Withholding the Isomorphism. Since the most general types of bilinear instance
G may fail to provide both an efficient isomorphism ψ : Ĝ→ G and an efficient
sampling procedure in Ĝ, it is useful to modify the ring scheme in order to relax
both requirements [?]. This is done as follows.

– First, we redefine the random key “in the sky” to consist just of A0, B0, and
C0, to be sampled directly in G from the common random seed K (skipping
Ĝ altogether).

– Next, we modify the group element of index 0 in the signature, ĝs0 ∈ Ĝ
replacing gs0 ∈ G. The signature becomes, e.g., with User #` as the signer:
σ = (Ŝ0, ..., S`, t0, ..., t`) ∈ Ĝ×G` × F`+1

p , given by, ĝs0 , gs1 , ..., gs`−1 ,

(
g ·

`−1∏
i=0

(AiB
mi
i Cti

i )−si

) 1
a`+b` m`+c` t`

, t0, ..., t`

 ,

– Last, we exchange the arguments under the pairing of index 0 and amend
the verification equation into,

e(A0B
m0
0 Ct0

0 , Ŝ0) ·
∏̀
i=1

e(Si, Âi B̂
mi
i Ĉti

i ) = e(g, ĝ) .

It is easy to see that the security theorems continue to hold in the modified
ring signature scheme. On the one hand, anonymity is unconditional and thus
insensitive to the existence of some efficient algorithm for ψ or for sampling in
Ĝ. On the other hand, unforgeability relies no more on the presence of such
algorithms than on their absence, as an inspection of the proof would show.

5 General Case : Mesh Signatures

We now describe our mesh signature scheme, based on the Poly-SDH assumption.
We proceed in stages: we first define a few useful notions, which we then use to
describe the actual system.

5.1 Flattened Mesh Representation

Recall that a mesh signature is characterized by an expression Υ generated by
the grammar: Υ ::= N and,

N ::= L1 | ... | L` | ≥t{N1, ..., Nm} | ∧ {N1, ..., Nm} | ∨ {N1, ..., Nm} .

To harmonize the notation with the scheme description, we need to consider an
extra literal L0 whose meaning is unimportant for now, and let Υ̃ be as above
with `+ 1 input literals L0, ..., L`.

We show how to convert the recursive expression of Υ̃ into a representation as
a list of `+1 polynomials in `+1 variables (or fewer, depending on the structure
of Υ̃ ), akin to Linear Secret Sharing Structures [?,?].



The principle is as follows. To each input symbol Li we associate a degree-1
homogeneous polynomial πi =

∑`
j=0 yi,j Zj , where the variables Z0, ..., Z` are

common to all polynomials and the integer coefficients yi,j are constant. The
polynomials are such that, if the formula Υ̃ is satisfied by setting some subset of
symbols to >, then the span of the corresponding polynomials will contain the
pure monomial Z0; conversely, any set of polynomials whose span contains the
monomial Z0 indicates a satisfying assignment.

The following algorithm computes such a representation from Υ̃ . Proceeding
recursively, it assigns temporary polynomials to the interior nodes as it walks
down the tree from the root to the leaves (i.e., from the output gate to the input
symbols):

1. Initialize a counter kc ← 0.
The counter kc is used for allocating new variables, so that each Zk+kc is
always a “fresh” variable that is never used before or after in the algorithm.

2. Label the root node N0 with the polynomial πN0 ← Z0.
3. Select a non-leaf node N with non-empty label πN 6= ∅.

(a) Denote by N1, ..., Nm the m ≥ 2 children of N .
(b) If N is ∨{N1, ..., Nm}, then ∀i = 1, ...,m let πNi = πN .
(c) If N is ∧{N1, ..., Nm}, then ∀i = 1, ...,m let πNi = πN +

∑m−1
k=1 li,k Zk+kc

where li,k ∈ Z. The selection of li,k is explained below.
(d) If N is ≥t{N1, ..., Nm}, then ∀i = 1, ...,m let πNi = πN +

∑t−1
k=1 li,k Zk+kc

where li,k ∈ Z.
(e) Label each child Ni with the polynomial πNi .
(f) Unlabel node N , i.e., set πN ← ∅.
(g) Increment kc ← kc + t− 1 (using t = 1 and t = m for ∨- and ∧-gates).
(h) Continue at Step ?? if an eligible node remains, otherwise skip to Step ??.

4. Let ϑ ← kc and output the polynomials (π0, ..., π`) associated with the leaf
nodes L0, ..., L`. Each polynomial πi is represented as a vector of coefficients
(yi,0, ..., yi,ϑ) ∈ Fϑ+1

p such that πi =
∑ϑ

k=0 yi,k Zk is the result of the sequence
of operations in Steps ??, ?? and ??.

We note that the only variables with non-zero coefficients in the output polyno-
mials are Z0, ..., Zϑ, where ϑ = kc is the final counter value and may be equal to
or lesser than `.

In Steps ?? and ??, the coefficients li,k must ensure that no linear relation
exists in any set of πi of size < m or < t. (By construction, m or t of them
will always be linearly dependent.) To ensure this property, we let (li,k) form
a Vandermonde matrix in Fm×(m−1)

p or Fm×(t−1)
p , i.e., set li,k = ak

i for distinct
ai ∈ Fp; independence follows from the existence of polynomial interpolation.
We also require that (li,k) be constructed deterministically, so that anyone can
verify that the πi faithfully encode Υ̃ simply by reproducing the process.

The following lemma shows the equivalence between the recursive specifica-
tion of Υ̃ and its flattened representation. It is adapted from a classic result [?]
for Linear Secret Sharing Structures, and proven by induction on the structure
of Υ̃ . We refer to the literature [?] for further details.



Lemma 1. [?] Let Υ̃ be an arborescent monotone threshold circuit as defined,
and (π0, ..., π`) a flattened representation of it per the above algorithm. A minimal
truth assignment χ : {L0, ..., L`} → {⊥,>} satisfies Υ̃ (χ(L0), ..., χ(L`)) = > if
and only if there exist integer coefficients (ν0, ..., ν`) such that,

∑̀
i=0

νi πi = Z0 , and ∀i : νi = 0 ⇐⇒ χ(Li) = ⊥ .

5.2 Information-Theoretic Blinding

In the signature scheme (yet to be described), we use both the polynomials
(π0, ..., π`) and the linear combination (ν0, ..., ν`) from Lemma ??: the latter to
create a signature, and the former to indicate how to verify it. However, since the
linear coefficients νi reveal which of the Li are true, they must be kept secret. In
the actual signature, these coefficients appear not as integers but as exponents
of elements of G, and are thus already computationally hidden; however, this is
not enough and we need to take an extra step to ensure perfect hiding.

By Lemma ?? we know that
∑`

i=0 νi πi = Z0, where each νi ∈ Fp and each
πi ∈ Fp[Z0, ..., Zϑ]1. We hide the linear coefficients νi using random blinding
terms (h0, ..., h`) such that

∑`
i=0 hi πi = 0. Since

∑`
i=0 (νi + hi)πi = Z0, the

blinded coefficients νi + hi still bear witness that Υ̃ (L0, ..., L`) = >. However,
these witnesses have been rendered information-theoretically indistinguishable,
because the distribution of (ν0 + h0, ..., ν` + h`) is conditionally independent of
the truth values of the Li given that Υ̃ (L0, ..., L`) = >.

The difficulty is that no scalar hi will satisfy
∑`

i=0 hi πi = 0 when the πi

contain uninstantiated variables. However, given a specific set of πi, it is easy to
build hi that have polynomial values.

1. Draw a random vector s = (s1, ..., s`) ∈ F`
p of scalar coefficients.

2. For i = 1, ..., `, define hi = −si π0, and set the remaining term h0 =∑`
j=1 sj πj .

In the actual scheme, these polynomials are evaluated “in the exponent” for un-
known assignments to the Zk, but regardless of their values we have

∑`
i=0 hi πi =

(
∑`

j=1 sj πj)π0 +
∑`

i=1 (−si π0)πi = 0, and so the blinding terms (h0, ..., h`)
meet our requirements.

Remark that the random vector s can be chosen independently of the πi. This
is important for the actual signature scheme, where the relevant polynomials
will have coefficients that involve discrete logarithms not known explicitly (in
addition to the Zk being instantiated as discrete logarithms of random group
elements). In spite of this, we will be able to select a suitable vector s and
compute the blinding terms hi “in the exponent”.

5.3 Construction

The full mesh signature scheme can now be described as follows.



Initialization: Given a security parameter κ and a public random string K ∈
{0, 1}poly(κ), all participants generate the common bilinear instance G =
(p,G, Ĝ,Gt, g, ĝ, e) ← G(1κ;K). Here, we require that the accompanying
isomorphism ψ : Ĝ→ G be efficiently computable.
The stringK also indicates a hash functionH : {0, 1}∗ → Fp from a collision-
resistant family.
Given a mesh size parameter λ, the string K then specifies λ + 1 elements
ĝ0, ĝ1, ..., ĝλ in Ĝ, on which the efficient algorithm for ψ can be applied to
obtain the images g0, g1, ..., gλ in G.
Additionally, K defines λ+ 1 random triples (Â0,k, B̂0,k, Ĉ0,k) ∈ Ĝ3 for k ∈
{0, ..., λ}; these elements together constitute a public verification key “in the
sky” with no known signing key. We define A0,k = ψ(Â0,k), B0,k = ψ(B̂0,k),
C0,k = ψ(Ĉ0,k), in G, again easy to compute.

Key generation: To create a key pair, User #i draws a triple (ai, bi, ci) ∈
(F×p )3 as signing key. User #i computes for each k ∈ {0, ..., λ} the triple
(Âi,k, B̂i,k, Ĉi,k) = (ĝai

k , ĝ
bi

k , ĝ
ci

k ) ∈ Ĝ3, and lets these 3 (λ+ 1) group ele-
ments constitute his or her verification key.
For simplicity, we write (Ai,k, Bi,k, Ci,k) = (ψ(Âi,k), ψ(B̂i,k), ψ(Ĉi,k)) =
(gai

k , g
bi

k , g
ci

k ) ∈ G3, which anyone can compute from the verification key of
User #i thanks to ψ.

Mesh signature: On input the following mesh signature specification:
– ` atomic signature specifications [VKi : Msgi], not necessarily all distinct,

and ` boolean flags Li, for i = 1, ..., `;
– a well-formed formula Υ with ` boolean inputs; and an assignment χ :
{L1, ..., L`} → {⊥,>} that satifies Υ (L1, ..., L`) = >;

– ∀i = 1, ..., ` such that χ(Li) = >, a valid Boneh-Boyen signature in G
on the statement [VKi : Msgi], given as a pair,

( ui = g
1

a+b w+c ti , ti ) , for random ti ∈ Fp ,

where w = Msgi and (a, b, c) is the signing key for the clause [VKi : Msgi].
The signer firsts extends Υ into Υ ′ that involves the public key “in the sky”:
1. Compute Msg0 = H([VK1 : Msg1] , ..., [VK` : Msg`] , Υ ) by hashing the

mesh specification, and associate the literal L0 to the clause [VK0 : Msg0].
2. Construct Υ̃ = L0 ∨ Υ , which is well-formed per the definition.
3. Extend χ so that χ(L0) = ⊥, as we lack an atomic signature for L0.

The signer then builds the mesh signature from the circuit Υ̃ , the assignment
χ, and the atomic signatures (ui, ti) known for such i that χ(Li) = >, as:
4. Create a flattened representation of Υ̃ and χ as discussed in Section ??.

Accordingly, let π0, ..., π` ∈ Fp[Z0, ..., Zϑ] be public degree-1 multivariate
polynomials that encode Υ̃ , and ν0, ..., ν` ∈ Fp the secret scalar coeffi-
cients of a linear combination that expresses χ. Explicitly determine all
the coefficients yj,k ∈ Fp in all polynomials πj =

∑ϑ
k=0 yj,k Zk.

5. Create a random blinding vector s = (s1, ..., s`) ∈ F`
p as in Section ??.

6. ∀i ∈ {0, ..., `} : χ(Li) = ⊥, pick ti ∈ Fp and fix ui = g0 = 1 ∈ G.



7. For all j = 0, ..., ` and k = 0, ..., ϑ, let mj = Msgj and calculate,

vj,k =
(
Aj,k B

mj

j,k C
tj

j,k

)yj,k

, vj =
ϑ∏

k=0

vj,k .

8. Compute, for i = 1, ..., `, and k = 0, ..., ϑ, respectively,

Si = ui
νi v0

−si , Pk =
∏̀
j=1

vj,k
sj .

(The value of any intervening ui such that χ(Li) = ⊥ is unimportant
since then νi = 0; this is true in particular for the 0-th user “in the sky”.)

9. Output the mesh signature, consisting of the statement Υ and the tuple,

σ = ( t0, ..., t`, S1, ..., S`, P0, ..., Pϑ ) ∈ F`+1
p ×G`+ϑ+1 .

Mesh verification: A fully qualified mesh signature package consists of:
– `+ 1 propositions [VK0 : Msg0] , ..., [VK` : Msg`] viewed as inputs to,
– an arborescent monotone threshold circuit Υ̃ : {⊥,>}`+1 → {⊥,>},
– a mesh signature σ = (t0, ..., t`, S1, ..., S`, P0, ..., Pϑ) ∈ F`+1

p ×G`+ϑ+1.
To verify such a signature, the verifier proceeds as follows:
1. Ascertain that Υ̃ (>, ?, ..., ?) = >, extract from Υ̃ (L0, ..., L`) the sub-

circuit Υ (L1, ..., L`) such that Υ̃ = Υ ∨ L0, and verify that Msg0 =
H([VK1 : Msg1] , ..., [VK` : Msg`] , Υ ).

2. Compute the representation (π0, ..., π`) of the formula Υ̃ by reproducing
the deterministic conversion of Section ??.

3. For i = 0, ..., `, determine the coefficients yi,k ∈ Fp of the polynomials
πi =

∑ϑ
k=0 yi,k Zk.

4. For i = 0, ..., ` and k = 0, ..., ϑ, retrieve (Âi,k, B̂i,k, Ĉi,k) from the key
VKi, let mi = Msgi, and calculate,

v̂i,k =
(
Âi,k B̂

mi

i,k Ĉ
ti

i,k

)yi,k

, v̂i =
ϑ∏

k=0

v̂i,k .

5. Using the pairing, verify the equalities, for all k = 0, ..., ϑ,

e (Pk, v̂0) ·
∏̀
i=1

e (Si, v̂i,k) =

{
e(g, ĝ0) for k = 0
1 otherwise

.

6. Accept the signature if and only if all ϑ+ 1 equalities hold in Gt.
(Optional) Probabilistic check: Mesh signatures can be verified using fewer

total pairings, at the cost of some additional random bits and exponentia-
tions. In the same setting as above, replace Step ?? onward by the following:

??′. Set d0 = 1, pick random d1, ..., dϑ ∈ Fp, and verify the single equality,

e(
ϑ∏

k=0

P dk

k , v̂0) ·
∏̀
i=1

e(Si,

ϑ∏
k=0

v̂dk

i,k) = e(g, ĝ0) .



??′. Accept the signature as valid if and only if the equality holds in Gt.

Theorem 3. The mesh signature is consistent.

Proof. For any list of public polynomials π0, ..., π` and secret coefficients ν0, ..., ν`

that respectively encode per Lemma ?? a well-formed mesh specification Υ̃ and
an assignment χ that satisfies it, we need to show that a signature created by
the above algorithm will be accepted by the same. A straightforward sequence
of substitutions in the scheme description shows this to be the case.

Theorem 4. The mesh signature has everlasting perfect anonymity.

Theorem 5. The mesh signature is existentially unforgeable under an adaptive
attack, against a static adversary that makes no more than q mesh signature
queries, and no more than q atomic signature queries to each of the ` honest
users, adaptively, provided that the (q, `+ 1)-Poly-SDH assumption holds in G,
in the common random string model.

Optimization. We note that the user keys and the key “in the sky” can be
shortened significantly. It turns out that in the proofs the bi are always known
to the simulators and are thus superfluous: we can set bi = 1 and omit the
B̂i,k = ĝbi

k = ĝk from the keys. This holds in the ring scheme, too.
We can independently compress the key “in the sky” to just two elements

of Ĝ, if we observe that for Υ̃ = Υ ∨ L0 the encoding algorithm of Section ??
always gives π0 = Z0, i.e., y0,0 = 1 and y0,k = 0 for k 6= 0, meaning that the
tuples (Â0,k, ..., Ĉ0,k) for k 6= 0 are in fact never used. Furthermore, it is safe to
set B̂0,0 = ĝ, which leaves just the pair (Â0,0, Ĉ0,0).

6 Conclusion

We have introduced mesh signatures as a generalization of ring signatures with
a richer language for expressing signer ambiguity. Mesh signatures scale to large
crowds with many co-signers and independent certificate authorities; they can
even implicate unwilling individuals who, by withholding their ring public key,
would have otherwise remained out of reach. Because in principle mesh signatures
require neither trusted setup nor centralized authorities, they provide a credible
answer to the question of how to leak a secret authoritatively.

We have constructed a simple and practical mesh signature scheme in prime
order bilinear groups, that achieves everlasting unconditional anonymity, and
existential unforgeability in the common random string model, without trusted
setup authority. To obtain this result, we introduced a new complexity assump-
tion, which we prove sound in the generic model; it is in the spirit of the SDH
assumption, but better exploits the group structure of the values computed by
pairing. Incidentally, we obtain an efficient ring signature without random ora-
cles as a special case of our construction.
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