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t. We 
onsider the 
ryptographi
 two-party proto
ol task ofextending a given 
oin toss. The goal is to generate n 
ommon random
oins from a single use of an ideal fun
tionality whi
h gives m < n
ommon random 
oins to the parties. In the framework of UniversalComposability we show the impossibility of se
urely extending a 
oin tossfor statisti
al and perfe
t se
urity. On the other hand, for 
omputationalse
urity the existen
e of a proto
ol for 
oin toss extension depends onthe number m of random 
oins whi
h 
an be obtained �for free�.For the 
ase of stand-alone se
urity, i.e., a simulation based se
urity def-inition without an environment, we present a novel proto
ol for un
ondi-tionally se
ure 
oin toss extension. The new proto
ol works for superlog-arithmi
 m, whi
h is optimal as we show the impossibility of statisti
allyse
ure 
oin toss extension for smaller m.Combining our results with already known results, we obtain a (nearly)
omplete 
hara
terization under whi
h 
ir
umstan
es 
oin toss extensionis possible.Keywords: 
oin toss, universal 
omposability, rea
tive simulatability,
ryptographi
 proto
ols.1 Introdu
tionManuel Blum showed in [5℄ how to �ip a 
oin over the telephone line. His pro-to
ol guaranteed that even if one party does not follow the proto
ol, the otherparty still gets a uniformly distributed 
oin toss result. This general 
on
eptof generating 
ommon randomness in a way su
h that no dishonest party 
andi
tate the result proved very useful in 
ryptography, e.g., in the 
onstru
tion ofproto
ols for general se
ure multi-party 
omputation.Here we are interested in the task of extending a given 
oin toss. That is,suppose that two parties already have the possibility of making a single m-bit
oin-toss. Is it possible for them to get n > m bits of 
ommon randomness? Theanswer we 
ome up with is basi
ally: �it depends.�The �rst thing the extensibility of a given 
oin toss depends on is the requiredse
urity type. One type of se
urity requirement (whi
h we 
all �stand-alone sim-ulatabiliy� here) 
an simply be that the proto
ol imitates an ideal 
oin tossfun
tionality in the sense of [13℄, where a simulator has to invent a realisti
 pro-to
ol run after learning the out
ome of the ideal 
oin-toss. A stronger type of



requirement is to demand universal 
omposability, whi
h basi
ally means thatthe proto
ol imitates an ideal 
oin toss fun
tionality even in arbitrary proto
olenvironments. Se
urity in the latter sense 
an 
onveniently be 
aptured in a sim-ulatability framework like the Universal Composability framework [6,8℄ or theRea
tive Simulatability model [16,3℄.Orthogonal to this, one 
an vary the level of ful�lment of ea
h of these re-quirements. For example, one 
an demand stand-alone simulatability of the pro-to
ol with respe
t to polynomial-time adversaries in the sense that real proto
oland ideal fun
tionality are only 
omputationally indistinguishable. This spe
i�
requirement is already ful�lled by the proto
ol of Blum. Alternatively, one 
andemand, e.g., universal 
omposability of the proto
ol with respe
t to unboundedadversaries. This would then yield statisti
al or even perfe
t se
urity. We showthat whether su
h a proto
ol exists depends on the asymptoti
 behaviour of m.Our results are summarized in the table below. A �yes� or �no� indi
ateswhether a proto
ol for 
oin toss extension exists in that setting. �Depends� meansthat the answer depends on the size of the seed (the m-bit 
oin toss available byassumption), and boldfa
e indi
ates novel results.Se
urity type ↓ / level → Computational Statisti
al Perfe
tstand-alone simulatability yes depends3 nouniversal 
omposability depends4 no noKnown results in the perfe
t and statisti
al 
ase. A folklore theorem states, that(perfe
tly non-trivial) statisti
ally se
ure 
oin-toss is impossible from s
rat
h(even in very lenient se
urity models). By Kitaev, this result was extended evento proto
ols using quantum 
ommuni
ation (
f. [1℄). [4℄ �rst investigated theproblem of extending a 
oin-toss. They presented a statisti
ally se
ure proto
olfor extending a given 
oin-toss (pre-shared using a VSS), if less than 1
6 of theparties are 
orrupted. Note that their main attention was on the e�
ien
y of theproto
ol, sin
e in that s
enario arbitrary multi-party 
omputations and thereforein parti
ular 
oin-toss from s
rat
h are known to be possible. The result doesnot apply to the two-party 
ase.Our results in the perfe
t and statisti
al 
ase. Our results in the perfe
t 
aseare most easily explained. For the perfe
t 
ase, we show impossibility of any
oin toss extension, no matter how (in-)e�
ient. We show this for stand-alonesimulatability (Coro. 7) and for universal 
omposability. Now for the statisti
al
ase. When demanding only stand-alone simulatability, the situation depends onthe number of the already available 
ommon 
oins. Namely, we give an e�
ientproto
ol to extend m 
ommon 
oins to any polynomial number (in the se
urityparameter), if m is superlogarithmi
 (Th. 10). Otherwise, we show that there
an even be no proto
ol that derives m + 1 
ommon random 
oins (Coro. 7).3 Coin toss extension is possible if and only if the seed has superlogarithmi
 length.4 Coin toss extension is impossible if the seed does not have superlogarithmi
 length.The possibility result depends on the 
omplexity assumption we use, 
f. Se
tion 3.1.



In the universal 
omposability setting, the situation is more 
lear: we show thatthere simply is no proto
ol that derives from m 
ommon 
oins m + 1 
oins, nomatter how large m is (Th. 13). (However, here we restri
t to proto
ols that runin a polynomial number of rounds.)Known results in the 
omputational 
ase. The possibility of 
oin tossing (in anon-simulation based model) was �rst shown by [5℄ and this proto
ol 
an beproven se
ure in a stand-alone se
urity model. For the UC framework 
oin-tosswas proven to be impossible in [9℄, unless a helping fun
tionality like a CRS isgiven. In [12℄, the task of 
oin-toss is 
onsidered in a s
enario slightly di�erentfrom ours: in [12℄, proto
ol parti
ipants may not abort proto
ol exe
ution with-out generating output. In that setting, [12℄ show that 
oin-toss is generally notpossible even against 
omputationally limited adversaries. However, to the bestof our knowledge, an extension of a given 
oin toss has not been 
onsidered sofar in the 
omputational setting.Our results in the 
omputational 
ase. We answer the question 
on
erning theminimal size ne
essary for a 
oin-toss to be extensible: If an m-bit 
oin-toss fun
-tionality is given, and m is not superlogarithmi
, then it is already impossible forthe parties to derive m + 1 
ommon random 
oins (in a universally 
omposableway) from it (Th. 5). However, we also show that under strengthened 
omputa-tional assumptions, there are proto
ols that extend m to any polynomial number(in the se
urity parameter) of 
ommon random 
oins, if m is superlogarithmi
(Th. 4). In that sense, we give the remaining parts for a 
omplete 
hara
teriza-tion of the 
omputational 
ase.Notation� A fun
tion f is negligible, if for any c > 0, f(k) ≤ k−c for su�
iently large
k (i.e., f ∈ k−ω(1)).� f is polynomially bounded, if for some c > 0, f(k) ≤ kc for su�
iently large
k (i.e., f ∈ kO(1)).� f is polynomially-large, if there is a c > 0 s.t. f(k)c ≥ k for su�
iently large
k (i.e., f ∈ kΩ(1)).� f is superpolynomial, if for any c > 0, f(k) > kc for su�
iently large k (i.e.,
f ∈ kω(1)).� f is superlogarithmi
, if f/ log k → ∞ (i.e., f ∈ ω(log k)). It is easy to seethat f is superlogarithmi
 if and only if 2−f is negligible.� f is superpolylogarithmi
, if for any c > 0, f(k) > (log k)c for su�
ientlylarge k (i.e., f ∈ (log k)ω(1)).� f is exponentially-small, if there exists a c > 1, s.t. f(k) ≤ c−k for su�
ientlylarge k (i.e., f ∈ Ω(1)−k = 2−Ω(k)).� f is subexponential, if for any c > 1, f(k) < ck for su�
iently large k (i.e.,
f ∈ o(1)k = 2o(k)).



2 Se
urity de�nitionsIn this se
tion we roughly sket
h the se
urity de�nitions used throughout thispaper. We distinguish between two notions: stand-alone simulatability as de�nedin [13℄,5 and Universal Composability (UC) as de�ned in [6℄.Stand-alone simulatability. In [13℄ a de�nition for the se
urity of two-partyse
ure fun
tion evaluations is given (
alled se
urity in the mali
ious model). Wewill give a sket
h, for more details we refer to [13℄.A proto
ol 
onsists of two parties that alternatingly send messages to ea
hother. The parties may also invoke an ideal fun
tionality, whi
h is given as anora
le (in our 
ases, they invoke a smaller 
oin-toss to realise a larger one).We say the proto
ol π stand-alone simulatably realises a probabilisti
 fun
-tion f , if for any e�
ient adversary A that may repla
e none or a single party,there is an e�
ient simulator S s.t. for all inputs the following random variablesare 
omputationally indistinguishable:� The real proto
ol exe
ution. This 
onsists of the view of the 
orrupted partiesupon inputs x1 and x2 for the parties and the auxiliary input z for theadversary, together with the outputs I of the parties.� The ideal proto
ol exe
ution. Here the simulator �rst learn the auxiliaryinput z and possibly the input for the 
orrupted party (the simulator must
orrupt the same party as the adversary). Then he 
an 
hoose the input ofthe 
orrupted party for the probabilisti
 fun
tion f , the other inputs are
hosen honestly (i.e., the �rst input is x1 if the �rst party is un
orrupted,and the se
ond input x2 if the se
ond party is).Then the simulator learns the output I of f (we assume the output to beequal for all parties). It may now generate a fake view v of the 
orruptedparties. The ideal proto
ol exe
ution then 
onsists of v and I.Of 
ourse, in our 
ase the probabilisti
 fun
tion f (the 
oin-toss) has no input,so the above de�nition gets simpler.What we have sket
hed above is what we 
all 
omputational stand-alone sim-ulatability. We further de�ne statisti
al stand-alone simulatability and perfe
tstand-alone simulatability. In these 
ases we do not 
onsider e�
ient adversariesand simulators, but unlimited ones. In the 
ase of statisti
al stand-alone sim-ulatability we require the real and ideal proto
ol exe
ution to be statisti
allyindistinguishable (and not only 
omputationally ), and in the perfe
t 
ase weeven require these distributions to be identi
al.Universal Composability. In 
ontrast to stand-alone simulatability, UniversalComposability [6℄ is a mu
h stri
ter se
urity notion. The main di�eren
e is theexisten
e of an environment, that may intera
t with proto
ol and adversary (orwith ideal fun
tionality and simulator)5 In fa
t, [13℄ does not use the name stand-alone simulatability but simply speaksabout se
urity in the mali
ous model. We adopt the name stand-alone simulatabilityfor this paper to be able to better distinguish the di�erent notions.



and try to distinguish between real and ideal proto
ol. This additional stri
t-ness brings the advantage of a versatile 
omposition theorem (the UniversalComposition Theorem [6℄).We only sket
h the model here and refer to [6℄ for details.A proto
ol 
onsists of several ma
hines that may (a) get input from theenvironment, (b) give output to the environment (both also during the exe
utionof the proto
ol), and (
) send messages to ea
h other.The real proto
ol exe
ution 
onsists of a proto
ol π, an adversary A and anenvironment Z. Here the environment may freely 
ommuni
ate with the adver-sary, and the latter has full 
ontrol over the network, i.e., it may deliver, delay ordrop messages sent between parties. We assume the authenti
ated model in thispaper, so the adversary learns the 
ontent of the messages but may not modifyit. When Z terminates, it gives a single bit of output. The adversary may 
hooseto 
orrupt parties at any point in time.6The ideal proto
ol exe
ution is de�ned analogously, but instead of a proto
ol
π there is an ideal fun
tionality F and instead of the adversary there is a sim-ulator S. The simulator 
an only learn and in�uen
e proto
ol data, if (a) thefun
tionality expli
itly allows this, or (b) it 
orrupts a party (note that the simu-lator may only 
orrupt the same parties as the adversary). In the latter 
ase, thesimulator 
an 
hoose inputs into the fun
tionality in the name of that party andgets the outputs appartaining to that party. In the 
ase of un
orrupted parties,the environment is in 
ontrol of the 
orresponding in- and output of the idealfun
tionality.We say a proto
ol π universally 
omposably (UC)-implements an ideal fun
-tionality F (or short π is universally 
omposable if F is 
lear from the 
ontext),if for any e�
ient adversary A, there is an e�
ient simulator S, s.t. for all e�-
ient environments Z and all auxiliary inputs z for Z, the distributions of theoutput-bit of Z in the real and the ideal proto
ol exe
ution are indistinguishable.What has been sket
hed above we 
all 
omputational UC. We further de�nestatisti
al and perfe
t UC. In these notions, we allow adversary, simulator andenvironment to be unlimited ma
hines. Further, in the 
ase of perfe
t UC, werequire the distributions of the output-bit of Z to be identi
al in real and idealproto
ol exe
ution.The Ideal Fun
tionality for Coin Toss. To des
ribe the task of implementinga universally 
omposable 
oin-toss, we have to de�ne the ideal fun
tionality of
n-bit 
oin-toss.In the following, let n denote a positive integer-valued fun
tion.Below is an informal des
ription of our ideal fun
tionality for a n-bit 
ointoss. First, the fun
tionality waits for initialization inputs from both parties P1and P2. As soon as both parties have this way signalled their willingness to start,the fun
tionality sele
ts n 
oins in form of an n-bit string κ uniformly and sends6 It is then 
alled an adaptive adversary. If the adversary 
an only 
orrupt partiesbefore the start of the proto
ol, we speak of stati
 
orruption. All results in thispaper hold for both variants of the se
urity de�nition.



this κ to the adversary. (Note that a 
oin toss does not guarantee se
re
y of anykind.)If the fun
tionality now sent κ dire
tly and without delay to the parties, thisbehaviour would not be implementable by any proto
ol (this would basi
allymean that the proto
ol output is immediately available, even without intera
-tion). So the fun
tionality lets the adversary de
ide when to deliver κ to ea
hparty. Note however, that the adversary may not in any way in�uen
e the κ thatis delivered.A more detailed des
ription follows:Ideal fun
tionality CTn (n-bit Coin Toss)1. Wait until there have been �init� inputs from P1 and P2. Ignore messagesfrom the adversary, but immediately inform the adversary about the init.2. Sele
t κ ∈ {0, 1}n uniformly and send κ to the adversary. From now on:� on the �rst (and only the �rst) �deliver to 1� message from the ad-versary, send κ to P1,� on the �rst (and only the �rst) �deliver to 2� message from the ad-versary, send κ to P2.Using CTn, we 
an also formally express what we mean by extending a 
ointoss. Namely:De�nition 1. Let n = n(k) and m = m(k) be positive, polynomially boundedand 
omputable fun
tions su
h that m(k) < n(k) for all k. Then a proto
ol is auniversally 
omposable (m → n)-
oin toss extension proto
ol if it se
urely andnon-trivially implements CTn by having a

ess only to CTm. This se
urity 
anbe 
omputational, statisti
al or perfe
t.By a �non-trivial� implementation we mean a proto
ol that, with overwhelm-ing probability, guarantees outputs if no party is 
orrupted and all messages aredelivered. (Alternatively, one may also 
onsider proto
ols that provide outputwith overwhelming probability.) This requirement is useful sin
e without it, atrivial proto
ol that does not generate any output formally implements everyfun
tionality. (Cf. [10℄ and [2, Se
tion 5.1℄ for more dis
ussion and formal de�-nitions of �non-triviality.�)On unlimited simulators. Following [3℄, we have modelled statisti
al and per-fe
t stand-alone and UC se
urity using unlimited simulators. Another approa
his to require the simulators to be polynomial in the running-time of the adver-sary. All our results apply also to that 
ase: For the impossibility results, this isstraightforward, sin
e the se
urity notion gets stri
ter when the simulators be-
ome more restri
ted. The only possibility result for statisti
al/perfe
t se
urityis given in Theorem 10. There, the simulator we 
onstru
t is in fa
t polynomialin the runtime of the adversary.In the following se
tions, we investigate the existen
e of su
h 
oin toss ex-tension proto
ols, depending on the desired se
urity level (i.e., 
omputational /statisti
al / perfe
t se
urity) and the parameters n and m.



3 The Computational Case3.1 Universal ComposabilityIn the following, we need the assumption of enhan
ed trapdoor permutationswith dense publi
 des
riptions (
alled ETD hen
eforth). Roughly, these are trap-door permutations with the additional properties that (i) one 
an 
hoose thepubli
 key in an oblivious fashion, i.e., even given the 
oin tosses we used itis infeasible to invert the fun
tion, and (ii) the publi
 keys are 
omputationallyindistinguishable from random strings. We also need the notion of exponentially-hard ETD, whi
h are se
ure even against subexponential-time adversaries. Fordetailed de�nitions, 
f. the full version [14℄.Lemma 2. There is a 
onstant d ∈ N s.t. the following holds:Assume that ETD exist, s.t. the size of the 
ir
uits des
ribing the ETD isbounded by s(k) for se
urity parameter k.7Then there is a proto
ol π using a uniform 
ommon referen
e string (CRS)of length s(k)d, s.t. π se
urely UC-realises a bit 
ommitment that 
an be usedpolynomially many times.A proto
ol for realising bit 
ommitment using a CRS has been given in [10℄.To show this lemma, we only need to review their 
onstru
tion to see, that aCRS of length sd is indeed su�
ient. For details, see the full version [14℄.Lemma 3. Let s(k) be a polynomially bounded fun
tion, that is 
omputable intime polynomial in k.Assume one of the following holds:� ETD exist and s is a polynomially-large fun
tion.� Exponentially-hard ETD exist and s is a superlogarithmi
 fun
tion.Then there also exist a 
onstant e ∈ N independent of s and ETD, s.t. the sizeof the 
ir
uits des
ribing the ETD is bounded by s(k)e for se
urity parameter k.This is shown by s
aling the se
urity parameter of the original ETD. Theproof is given in the full version [14℄.Theorem 4. Let n = n(k) and m = m(k) be polynomially bounded and e�-
iently 
omputable fun
tions. Assume one of the following 
onditions holds:� m is polynomially-large and ETD exist, or� m is superpolylogarithmi
 and exponentially-hard ETD exist.Then there is a polynomial-time 
omputationally universally 
omposable proto
ol
π for (m→ n)-
oin toss extension.7 By the size of the 
ir
uits we means the total size of the 
ir
uits des
ribing boththe key generation and the domain sampling algorithm. Note that then trivially alsothe size of the resulting keys and the amount of randomness used by the domainsampling algorithm are bounded by s(k).



Proof. Let d be as in Lemma 2. Let further e be as in Lemma 3. If m ispolynomially-large or superpolylogarithmi
, then s := m1/(de) is polynomially-large or superlogarithmi
, resp. So, by Lemma 3 there are ETD, s.t. the size ofthe 
ir
uits des
ribing the ETD is bounded by se = m1/e. Then, by Lemma 2there is a UC-se
ure proto
ol for implementing n bit 
ommitments using an
(m1/d)d = m-bit CRS.It is straightforward to see that using n UC-bit-
ommitments one 
an UC-se
urely implement an n-bit 
oin-toss using the proto
ol from [5℄. Furthermore,an m-bit CRS 
an be trivially implemented using an m-bit 
oin-toss. Using theComposition Theorem we 
an put the above 
onstru
tions together and get aproto
ol that UC-realises an n-bit 
oin-toss using an m-bit 
oin-toss. ⊓⊔Note that given stronger, but possibly unrealisti
 assumptions, the lowerbound for m in Theorem 4 
an be de
reased. If we assume that for any super-logarithmi
 m, there are ETD s.t. the size of their 
ir
uits is bounded by m1/d(where d is the 
onstant from Lemma 2), we get 
oin-toss extension even forsuperlogarithmi
 m (using the same proof as for Theorem 4, ex
ept that insteadof Lemma 3 we use the stronger assumption).However, we 
annot expe
t an even better lower bound for m, as the followingtheorem shows:Theorem 5. Let n = n(k) and m = m(k) be fun
tions with n(k) > m(k) ≥ 0for all k, and assume that m is not superlogarithmi
 (i.e., 2−m is non-negligible).Then there is no non-trivial polynomial-time 
omputationally universally 
om-posable proto
ol for (m→ n)-
oin toss extension.Proof (sket
h). Assume for 
ontradi
tion that proto
ol π, with parties P1 and P2using CTm, implements CTn (with m, n as in the theorem statement). Let A1 bean adversary on π that, taking the role of a 
orrupted party P1, simply reroutesall 
ommuni
ation of P1 (with either P2 or CTm) to the proto
ol environment
Z1 and thus lets Z1 take part as P1 in the real proto
ol.Imagine a proto
ol environment Z1, running with π and A1 as above, thatkeeps and internal simulation P1 of P1 and lets this simulation take part in theproto
ol (through A1). After a proto
ol run, Z1 inspe
ts the output κ1 of P1and 
ompares it to the output κ2 of the un
orrupted P2.In a real proto
ol run with π, A1, and Z1, we will have κ1 = κ2 with over-whelming probability sin
e π non-trivially implements CTn, and CTn guarantees
ommon outputs. So a simulator S1, running in the ideal model with CTn and
Z1, must be able to a
hieve that the ideal output κ2 (that is ideally 
hosen by
CTn and 
annot be in�uen
ed by S1) is identi
al to what the simulation P1of P1 inside Z1 outputs. In that sense, S1 must be able to �
onvin
e� P1 toalso output κ2. To this end, S1 may�and must�fake a 
omplete real proto
ol
ommuni
ation as A1 would deliver it to Z1 (and thus, to P1).However, then we 
an 
onstru
t another proto
ol environment Z2 that ex-pe
ts to take the role of party P2 in a real proto
ol run (just like Z1 expe
tedto take the role of P1). To this end, an adversary A2 on π with 
orrupted P2 isemployed that forwards all 
ommuni
ation of P2 with either P1 or CTn to Z2.



Internally, Z2 now simulates S1 (and not P2!) from above and an instan
e CTnof the trusted host CTn. Re
all that S1, given a target string κ by CTn, mimi
san un
orrupted P2 along with an instan
e of CTm. In that situation, S1 
an
onvin
e an honest P1 with overwhelming probability to eventually output κ.Chan
es are 2−m that the CTm-instan
e made up by S1 outputs the sameseed as the real CTm in a run of Z2 with π and A2. So with probability atleast 2−m − µ for negligible µ, in su
h a run, Z2 observes a P1-output κ that isidenti
al to the output of the internally simulated CTn. But then, by assumptionabout the se
urity of π, there is also a simulator S2 for A2 and Z2 that provides
Z2 with an indistinguishable view. In parti
ular, in an ideal run with S2 and
CTn, Z2 observes equal outputs from CTn and CTn with probability at least
2−m−µ′ for negligible µ′. This is a 
ontradi
tion, as both outputs are uniformlyand independently 
hosen n-bit strings, and n ≥ m + 1. ⊓⊔4 Statisti
al and Perfe
t Cases4.1 Stand-alone simulatabilityWe start o� with a negative result:Theorem 6. Let m < n be fun
tions in the se
urity parameter k. If m is notsuperlogarithmi
, there is no two-party n-bit 
oin-toss proto
ol π (not even anine�
ient one) that uses an m-bit 
oin-toss and has the following properties:� Non-triviality. If no party is 
orrupted, the probability that the parties givedi�erent, invalid or no output is negligible (by invalid output we mean outputnot in {0, 1}n).� Se
urity. For any (possibly unbounded) adversary 
orrupting one of the par-ties there is a negligible fun
tion µ, s.t. for every se
urity parameter k andevery c ∈ {0, 1}n, the probability for proto
ol output c is at most 2−n +µ(k).If we require perfe
t non-triviality (the probability for di�erent or no outputs is
0) and perfe
t se
urity (the probability for a given output c is at most 2−n), su
ha proto
ol π does not exist, even if m is superlogarithmi
.Proof (sket
h). It is su�
ient to 
onsider the 
ase n = m + 1.Without loss of generality, we 
an assume that the available m-bit 
oin tossis only used at the end of the proto
ol. Similarly, we 
an assume that in thehonest 
ase, the parties never output distin
t values. A detailed proof for thesestatements 
an be found in the full proof.To show the theorem, we �rst 
onsider �
omplete trans
ripts� of the proto
ol.By a 
omplete trans
ript we mean all messages sent during the run of a proto
ol,ex
luding the value of the m-bit 
oin-toss. We distinguish three sets of 
ompletetrans
ripts: the set A of trans
ripts having non-zero probability for the proto
oloutput 0

n, the set B of trans
ripts having zero probability of output 0
n andzero probability that the proto
ol gives no output, and the set C of trans
riptshaving non-zero probability of giving no output. Note that, sin
e for a 
omplete



trans
ript, the proto
ol output only depends on the m-bit 
oin-toss, any of theabove non-zero probabilities is at least 2−m.For any partial trans
ript p (i.e., a situation during the run of the proto
ol),we de�ne three values α, β, γ. The value α denotes the probability with whi
ha 
orrupted Ali
e 
an enfor
e a trans
ript in A starting from p, the value βdenotes the probability with whi
h a 
orrupted Bob 
an enfor
e a trans
ript in
B, and the value γ denotes the probability that the 
omplete proto
ol trans
riptwill lie in C if no-one is 
orrupted. We show indu
tively that for any partialtrans
ript p, (1 − α)(1 − β) ≤ γ. In parti
ular, this holds for the beginning ofthe proto
ol. For simpli
ity, we assume that 2−m is not only non-negligible, butnoti
eable (in the full proof, the general 
ase is 
onsidered). Sin
e a trans
riptin C gives no output with probability at least 2−m, the probability that theproto
ol generates no output (in the un
orrupted 
ase) is at least 2−mγ. By thenon-triviality 
ondition, this probability is negligible, so γ must be negligible,too. So (1 − α)(1 − β) is negligible, too. Therefore max {1− α, 1 − β} must benegligible. For now, we assume that 1−α is negligible or 1− β is negligible (forthe general 
ase, see the full proof).If 1 − α is negligible, the probability for output 0n is at least 2−mα. Sin
e
α is overwhelming and 2−m noti
eable, this is greater than 2−n = 1

22−m by anoti
eable amount whi
h 
ontradi
ts the se
urity property.If 1− β is negligible, we 
onsider the maximum probability a 
orrupted Bob
an a
hieve that the proto
ol output is not 0
n. By the se
urity property, thisprobability should be at most (2n−1)2−n plus a negligible amount, whi
h is notoverwhelming. However, sin
e every trans
ript in B gives su
h an output withprobability 1, the probability of su
h is β, whi
h is overwhelming, in 
ontradi
-tion of the se
urity property.The perfe
t 
ase is proven similarly. ⊓⊔The full proof is given in the full version [14℄.Corollary 7. By a non-trivial 
oin-toss proto
ol we mean a proto
ol s.t. (in theun
orrupted 
ase) the probability that the parties give no or di�erent output isnegligible. By a perfe
tly non-trivial 
oin-toss proto
ol where this probability iszero.Let m be not superlogarithmi
 and n > m. Then there is no non-trivial pro-to
ol realising n-bit 
oin-toss using an m-bit 
oin-toss in the sense of statisti
alstand-alone simulatability.Let m be any fun
tion (possibly superlogarithmi
) and n > m. Then there isno perfe
tly non-trivial proto
ol realising n-bit 
oin-toss using an m-bit 
oin-tossin the sense of perfe
t stand-alone simulatability.Proof. A statisti
ally se
ure proto
ol would have the se
urity property fromTheorem 6 and thus, if non-trivial, 
ontradi
t Theorem 6. Analogously for perfe
tse
urity. ⊓⊔However, not all is lost:



Now we will prove that there exists a proto
ol for 
oin toss extension from mto n bit whi
h is statisti
ally stand-alone simulatably se
ure. The basi
 idea isto have the parties P1 and P2 
ontribute random strings to generate one stringwith su�
iently large min-entropy (the min-entropy of a random variable Xis de�ned as minx− logPr[X = x]). The randomness from this string is thenextra
ted using a randomness extra
tor. Interestingly the amount of perfe
trandomness (i.e., the size of the m-bit 
oin-toss) one needs to invest is smallerthan the amount extra
ted. This makes 
oin toss extension possible.To obtain the 
oin toss extension we need a result about randomness extra
-tors able to extra
t one bit of randomness while leaving the seed reusable like a
atalyst.Lemma 8. For every m there exists a fun
tion hm : {0, 1}m × {0, 1}m−1 →
{0, 1}, (s, x) 7→ r su
h that for a uniformly distributed s and for an x with amin-entropy of at least t the statisti
al distan
e of s‖hm(s, x) and the uniformdistribution on {0, 1}m+1 is at most 2−t/2/

√
2.Proof. Let hm(s, x) := 〈s1 . . . sm−1, x〉⊕sm. Here 〈·, ·〉 denotes the inner produ
tand ⊕ the addition over GF(2). It is easy to verify that hm(s, ·) 
onstitutesa family of universal hash fun
tions [11℄, where s is the index sele
ting fromthat family. Therefore the Leftover Hash Lemma [15,17℄ guarantees that thestatisti
al distan
e between s‖hm(s, x) and the uniform distribution on {0, 1}m+1is bounded by 1

2

√
2 · 2−t = 2−t/2/

√
2. ⊓⊔With this fun
tion hm a simple proto
ol is possible whi
h extends m(k) 
ointosses to m(k) + 1 if the fun
tion m(k) is superlogarithmi
.Theorem 9. Let m(k) be a superlogarithmi
 fun
tion, then there exists a 
on-stant round statisti
ally stand-alone simulatable proto
ol that realises an (m+1)-bit 
oin-toss using an m-bit 
oin-toss.Proof. Let hm be as in Lemma 8. Then the following proto
ol realises a 
ointoss extension by one bit. Assume m := m(k) where k is the se
urity parameter.1. P1 uniformly 
hooses a ∈ {0, 1}⌊m−1

2
⌋ and sends a to P22. P2 uniformly 
hooses b ∈ {0, 1}⌈m−1

2
⌉ and sends b to P13. If one party fails to send a string of appropriate length or aborts then thisstring is assumed by the other party to be an all-zero string of the appropriatelength4. P1 and P2 invoke the m-bit 
oin toss fun
tionality and obtain a uniformlydistributed s ∈ {0, 1}m. If one party Pi fails to invoke the 
oin toss fun
tion-ality or aborts, then the other party 
hooses s at random5. Both P1 and P2 
ompute s‖hm(s, a‖b) and output this string.Similar to 
onstru
tion 7.4.7 in [13℄ the proto
ol is 
onstru
ted in a way thatthe adversary is not able to abort the proto
ol (not even by not terminating).Hen
e we 
an safely assume that the adversary will send some message of the
orre
t length and will invoke the 
oin toss fun
tionality. We assume the adver-sary to 
orrupt P2, 
orruption of P1 is handled analogously. Further we assume



the random tape of A to be �xed in the following. Due to these assumptionsthere exists a fun
tion fA : {0, 1}⌊m/2⌋ → {0, 1}⌈m/2⌉ for ea
h real adversary Asu
h that the message b sent in step 2 of the proto
ol equals fA(a). There is noloss in generality if we assume the view of the parties to 
onsists of just a, b, sand the proto
ol output to be s‖hm(s, a‖b).Now for a spe
i�
 adversaryA with �xed random tape the output distributionof the real proto
ol (i.e., view and output) is 
ompletely des
ribed by the fol-lowing experiment: 
hoose a
R∈ {0, 1}⌊m/2⌋, let b← fA(a), 
hoose s

R∈ {0, 1}m(k),let r ← s‖hm(s, a‖b) and return ((a, b, s), r).We now des
ribe the simulator. To distinguish the the random variablesin the ideal model from their real 
ounterparts, we de
orate them with a ∼,e.g., ã, b̃, s̃. The simulator in the ideal model obtains a string r̃
R∈ {0, 1}m+1 fromthe ideal n-bit 
oin-toss fun
tionality and sets s̃ = r1 . . . rm. Then the simulator
hooses ã

R∈ {0, 1}⌊m−1

2
⌋ and 
omputes b̃ = fA(ã) by giving ã to a simulated
opy of the real adversary. If hm(s̃, ã‖b̃) = r̃m+1 then the simulator gives s̃ tothe simulated real adversary expe
ting the 
oin toss. Then the simulator outputsthe view (ã, b̃, s̃). If however, hm(s̃, ã‖b̃) 6= r̃m+1 then the simulator rewinds theadversary, i.e., the simulator 
hooses a fresh ã

R∈ {0, 1}⌊m−1

2
⌋ and again 
omputes

b̃ = fA(a). If now hm(s̃, ã‖b̃) = r̃m+1 the simulator outputs (ã, b̃, s̃). If again
hm(s̃, ã‖b̃) 6= r̃m+1 then the simulator rewinds the adversary again. If after kinvo
ations of the adversary no triple (ã, b̃, s̃) was output, the simulator abortsand outputs fail .To show that the simulator is 
orre
t, we have to show that the following todistributions are statisti
ally indistinguishable: ((a, b, s), r) as de�ned in the realmodel, and ((ã, b̃, s̃), r̃).By 
onstru
tion of the simulator, it is obvious that the two distributionsare identi
al under the 
ondition that rm = 0, r̃m = 0 and that the simulatordoes not fail. The same holds given rm = 1, r̃m = 1 and that the simulatordoes not fail. Therefore it is su�
ient to show two things: (i) the statisti
aldistan
e between r and the uniform distribution on n bits is negligible, and(ii) the probability that that the simulator fails is negligible. Property (i) isshown using the properties of the randomness extra
tor hm. Sin
e a is 
hosenat random, the min-entropy of a is at least ⌊m−1

2 ⌋ ≥ m
2 − 1, so the min-entropyof a‖b is also at least m

2 − 1. Sin
e s is uniformly distributed, it follows byLemma 8 that the statisti
al distan
e between r = s‖hm(s, a‖b) is bounded by
2−m/4−1/2/

√
2 = (2−m)1/4/2. Sin
e for superlogarithmi
 m it is 2−m negligible,this statisti
al distan
e is negligible.Property (ii) is then easily shown: From (i) we see, that after ea
h invo
ationof the adversary the distribution of hm(s̃, ã‖b̃) is negligibly far from uniform. Sothe probability that hm(s̃, ã‖b̃) 6= r̃m is at most negligibly higher than 1

2 . Sin
ethe hm(s̃, ã‖b̃) in the di�erent invokations of the adversary are independent, theprobability that hm(s̃, ã‖b̃) 6= r̃m after ea
h a
tivation is neglibigly far from 2−k.So the simulator fails only with negligible probability.



It follows that the real and the ideal proto
ol exe
ution are indistinguishable,and the proto
ol stand-alone simulatably implements an (m+1)-bit 
oin-toss. �The idea of the one bit extension proto
ol 
an be extended by using anextra
tor whi
h extra
ts a larger amount of randomness (while not ne
essarilytreating the seed like a 
atalyst). This yields 
onstant round 
oin toss extensionproto
ols. However, the simulator needed for su
h a proto
ol does not seemto be e�
ient, even if the real adversary is. To get a proto
ol that also ful�lsboth the property of 
omputational stand-alone simulatabiliy and of statisti
alstand-alone simulatabiliy, we need a simulator that is e�
ient if the adversaryis. Below we give su
h a 
oin toss extension proto
ol for superlogarithmi
 m(k)whi
h is statisti
ally se
ure and 
omputationaly se
ure, i.e., the simulator forpolynomial adversaries is polynomially bounded, too. The basi
 idea here is toextra
t one bit at a time in polynomially many rounds.Theorem 10. Let m(k) be superlogarithmi
, and p(k) be a positive polynomially-bounded fun
tion, then there exists a statisti
ally and 
omputationally stand-alone simulatable proto
ol that realises an (m + p)-bit 
oin-toss using an m-bit
oin-toss.Proof. Let hm be as in Lemma 8. Then the following proto
ol realises a 
ointoss extension by p(k) bits.1. for i = 1 to p(k) do(a) P1 uniformly 
hooses ai ∈ {0, 1}⌊m−1

2
⌋ and sends ai to P2(b) P2 uniformly 
hooses bi ∈ {0, 1}⌈m−1

2
⌉ and sends bi to P1(
) If one party fails to send a string of appropriate length or aborts thenthis string is assumed by the other party to be an all-zero string of theappropriate length2. P1 and P2 invoke the m-bit 
oin toss fun
tionality and obtain a uniformlydistributed s ∈ {0, 1}m. If one party Pi fails to invoke the 
oin toss fun
tion-ality or aborts, then the other party 
hooses s at random3. P1 and P2 
ompute s‖hm(s, a1‖b1)‖ . . . ‖hm(s, ap(k)‖bp(k)) and output thisstring.We only roughly sket
h the di�eren
es to the proof of Theorem 9. For ea
h proto-
ol round the simulator follows the strategy des
ribed in the proof of Theorem 9(i.e., the simulator rewinds the adversary by one round, if the 
oin-toss produ
edis not the 
orre
t one.) Then using standard hybrid te
hniques it 
an be shownthat this simulator indeed gives an indistinguishable ideal proto
ol run. Here it isonly noteworthy that we use the fa
t that s‖hm(s, a1‖b1)‖ . . . ‖hm(s, ap(k)‖bp(k))is statisti
ally indistinguishable from the uniform distribution on m + p bits.However, this follows dire
tly from Lemma 8 and the fa
t that ea
h ai‖bi hasmin-entropy at least ⌊m−1

2 ⌋ even given the values of all aµ‖bµ for µ < i. ⊓⊔4.2 Universal Composability (statisti
al/perfe
t 
ase)In the 
ase of statisti
al se
urity, adversary and proto
ol environment are allowedto be 
omputationally unbounded. In that 
ase, we show that there is no simu-



latably se
ure 
oin toss extension proto
ol that runs in a polynomial number ofrounds. This is for
ed by requiring the parties to halt after a polynomial num-ber of a
tivations. However, note that we do not impose any restri
tions on theamount of 
omputational work these parties perform in one of those a
tivations.The proof of this statement is done by 
ontradi
tion. Furthermore, the proofis split up into an auxiliary lemma and the a
tual proof. In the auxiliary lemma,we show that without loss of generality, a proto
ol for statisti
ally universally
omposable 
oin toss extension has a 
ertain outer form. Then we show that anysu
h proto
ol (of this parti
ular outer form) is inse
ure.For the following statements, we always assume that m = m(k), n = n(k)are arbitrary fun
tions, only satisfying 0 ≤ m(k) < n(k) for all k. We alsorestri
t to proto
ols that pro
eed in a polynomial number of rounds. That is,by a �proto
ol� we mean in the following one in whi
h ea
h party halts after atmost p(k) a
tivations, where p(k) is a polynomial whi
h depends only on theproto
ol. (As stated above, the parties are still unbounded in ea
h a
tivation.)We start with a helping lemma whose proof is available in the full version [14℄.Lemma 11. If there is a statisti
ally universally 
omposable proto
ol for (m→
n)-
oin toss extension, then there is also one in whi
h ea
h party� has only one 
onne
tion to the other party and one 
onne
tion to CTm,� in ea
h a
tivation sends either an �init� message to CTm or some messageto the other party,� sends in ea
h proto
ol run at most one message to CTm, and this is alwaysan �init� message,� the internal state of ea
h of the two parties 
onsists only of the view that thisparty has experien
ed so far, and� after Pi sends �init� to CTm, it does not further 
ommuni
ate with P3−i(for i = 1, 2 and in 
ase of no 
orruptions).We pro
eed withLemma 12. There is no statisti
ally universally 
omposable proto
ol for (m→
n)-
oin toss extension whi
h meets the requirements from Lemma 11.Proof. Assume for 
ontradi
tion that π, using CTm, is a statisti
ally universally
omposable implementation of CTn, and also satis�es the requirements fromLemma 11.Assume a �xed environment Z0 that gives both parties �init� input andthen waits for both parties to output a 
oin toss result. Consider an adversary
A0 that delivers all messages between the parties immediately. The resultingsetting D0 is depi
ted in Figure 1.Denote the proto
ol 
ommuni
ation in a run of D0, i.e., the ordered list ofmessages sent between P1 and P2, by com. Denote by κ1 and κ2 the �nal outputsof the parties. For M ⊆ {0, 1}n and a possible proto
ol 
ommuni
ation pre�x c,let E(M, c) be the probability that the proto
ol outputs are identi
al and in M ,provided that the proto
ol 
ommuni
ation starts with c, i.e.,

E(M, c) := Pr[κ1 = κ2 ∈M | c ≤ com ] ,
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Fig. 1. Left: The initial setting D0 for the statisti
al 
ase. (Some 
onne
tionswhi
h are not important for our proof have been omitted.) Right: Setting D1with a 
orrupted P1. Setting D2 (with P2 
orrupted instead of P1) is de�nedanalogously.where x ≤ y means that x is a pre�x of y.Note that the parties have, apart from their 
ommuni
ation com , only theseed ω ∈ {0, 1}m provided by CTm for 
omputing their �nal output κ. So we mayassume that there is a deterministi
 fun
tion f for whi
h κ1 = κ2 = f(com, ω)with overwhelming probability.For a �xed proto
ol 
ommuni
ation com = c, 
onsider the set
Mc := {0, 1}n \ { f(c, s) | s ∈ {0, 1}m }of �improbable outputs� after 
ommuni
ation c. Then obviously |Mc| ≥ 2n −

2m ≥ 2n−1. By de�nition of the ideal output (i.e., the output of CTn in theideal model), this implies that for su�
iently large se
urity parameters k, theprobability that κ1 = κ2 ∈Mc is at least 2/5. (Here, any number stri
tly between
0 and 1/2 would have done as well.) Otherwise, an environment 
ould distinguishreal and ideal model by testing for κ1 = κ2 ∈Mc. Sin
e E(Mc, ε) is exa
tly thatprobability, we have E(Mc, ε) ≥ 2/5 for su�
iently large k. Also, E(Mc, c) isnegligible by de�nition, so Mc satis�es

E(Mc, ε)− E(Mc, c) ≥
1

3
(1)for su�
iently large k.Sin
e the proto
ol 
onsists by assumption only of polynomially many rounds,

c is a list of size at most p(k) for a �xed polynomial p. This means that there isa pre�x c of c and a single message m (either sent from P1 to P2 or vi
e versa)su
h that cm ≤ c and
E(Mc, c)− E(Mc, cm) ≥ 1

3p(k)
(2)



for su�
iently large k. Intuitively, this means that at a 
ertain point during theproto
ol run, a single message m had a signi�
ant impa
t on the probability thatthe proto
ol output is in Mc.Note that su
h an m must be either sent by P1 or P2. So there is a j ∈ {1, 2},su
h that for in�nitely many k, party Pj sends su
h an m with probability atleast 1/2. We des
ribe a modi�
ation Dj of setting D0. In setting Dj, party Pj is
orrupted and simulated (honestly) inside Zj . Furthermore, adversaryAj simplyrelays all 
ommuni
ation between this simulation inside Zj and the un
orruptedparty P3−j . For supplying inputs to the simulation of Pj and to the un
orrupted
P3−j , a simulation of Z0 is employed inside Zj . The situation (for j = 1) isdepi
ted in Figure 1.Sin
e Dj is basi
ally only a re-grouping of D0, the random variables com , ω,and κi are distributed exa
tly as in D0, so we simply identify them. In parti
ular,in Dj , for in�nitely many k, there is with probability at least 1/2 a pre�x c anda message m sent by Pj of com that satisfy (2).Now we slightly 
hange the environment Zj into an environment Z ′

j . Ea
htime the simulated Pj sends a message m to P3−j , Z ′
j 
he
ks for all subsets Mof {0, 1}n whether

∃M ⊆ {0, 1}n : E(M, c)− E(M, cm) ≥ 1

3p(k)
, (3)where c denotes the 
ommuni
ation between Pj and P3−j so far.If (3) holds at some point for the �rst time, then Z ′

j tosses a 
oin b uniformlyat random, and pro
eeds as follows: if b = 0, then Z ′
j keeps going just as Zjwould have. In parti
ular, Z ′

j then lets Pj send m to P3−j . However, if b = 1,then Z ′
j rewinds the simulation of Pj to the point before that a
tivation, anda
tivates Pj again with fresh randomness, thereby letting Pj send a possiblydi�erent message m′. In the further proof, c, m, and M refer to these values forwhi
h (3) holds.In any 
ase, after having tossed the 
oin b on
e, Z ′

j remembers the set Mfrom (3), and does not 
he
k (3) again. After the proto
ol �nishes, Zj outputseither (⊥,⊥) (if (3) was never ful�lled), or (b, β) for the evaluation β of thepredi
ate [κ1 = κ2 ∈ M ] (i.e., β = 1 i� the proto
ol gives output, the proto
oloutputs mat
h and lie in M).Now by our 
hoi
e of j, Pr[b 6= ⊥] ≥ 1/2 for in�nitely many k.Also, Lemma 11 guarantees that the internal state of the parties at the timeof tossing b 
onsists only of c. So, when Z ′
j has 
hosen b = 1, and rewound thesimulated Pj , the probability that at the end of the proto
ol κ1 = κ2 ∈M is thesame as the probability of that event in the setting Dj under the 
ondition thatthe 
ommuni
ation com begins with c̄. This probability again is exa
tly E(M, c̄)by de�nition.Similarly, when Z ′

j has 
hosen b = 0, the probability that at the end ofthe proto
ol κ1 = κ2 ∈ M is the same as the probability of that event in thesetting Dj under the 
ondition that the 
ommuni
ation com begins with c̄m,i.e. E(M, c̄m).



Therefore just before Z ′
j 
hooses b (i.e., when c̄ and M are already deter-mined), the probability that at the end we will have β = 1 ∧ b = 1 is 1

2E(M, c̄)and the probability of β = 1 ∧ b = 0 is 1
2E(M, c̄m). Therefore the di�eren
ebetween these probabilities is at least 1

2

(

E(M, c̄)− E(M, c̄m)
)

≥ 1
3p(k) .Sin
e this bound on the di�eren
e of the probabilities always holds when

b 6= ⊥, by averaging we get
Pr[β = 1 ∧ b = 1 | b 6= ⊥]− Pr[β = 1 ∧ b = 0 | b 6= ⊥] ≥ 1

3p(k)and using the fa
t that Pr[b 6= ⊥] ≥ 1
2 for in�nitely many k we then have that

Pr[β = 1 ∧ b = 1]− Pr[β = 1 ∧ b = 0] ≥ 1

6p(k)
(4)for in�nitely many k when Z ′

j runs with the real proto
ol as des
ribed above.We show that no simulator Sj 
an a
hieve property (4) in the ideal model,where Z ′
j runs with CTn and Sj . To distinguish random variables during a runof Z ′

j in the ideal model from those in the real model, we add a tilde to a randomvariable in a run of Z ′
j in the ideal model, e.g., b̃, β̃.For any Sj a
hieving indistinguishability of real and ideal model, this 
anhappen only with negligible probability, so we 
an assume without losing gener-ality that Sj always delivers outputs.By 
onstru
tion of b̃ and κ, the variable b̃ and the tuple (M̃, κ) are indepen-dent given b̃ 6= ⊥. Hen
e, sin
e β̃ is a fun
tion of M̃ and κ,

Pr

[

(b̃, β̃) = (0, 1)
]

= Pr

[

(b̃, β̃) = (1, 1)
]

. (5)So 
omparing (4) and and (5), Z ′
j 's output distribution di�ers non-negligibly inreal and ideal model. So no simulator Sj 
an simulate atta
ks 
arried out by Z ′

jand Aj , whi
h gives the desired 
ontradi
ation. ⊓⊔Combining the above Lemmas 11 and 12 we therefore get:Theorem 13. There is no non-trivial statisti
ally universally 
omposable pro-to
ol for (m→ n)-
oin toss extension that pro
eeds in a polynomial of rounds.The 
ase of perfe
t se
urity is shown analogously.A
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