
The Security of Triple Encryption and a
Framework for Code-Based Game-Playing Proofs

Mihir Bellare1 and Phillip Rogaway2

1 Dept. of Computer Science & Engineering University of California at San Diego,
9500 Gilman Drive, La Jolla, California 92093 USA.

2 Dept. of Computer Science, University of California, Davis, California 95616, USA

Abstract. We show that, in the ideal-cipher model, triple encryption
(the cascade of three independently-keyed blockciphers) is more secure
than single or double encryption, thereby resolving a long-standing open
problem. Our result demonstrates that for DES parameters (56-bit keys
and 64-bit plaintexts) an adversary’s maximal advantage against triple
encryption is small until it asks about 278 queries. Our proof uses code-
based game-playing in an integral way, and is facilitated by a framework
for such proofs that we provide.

1 Introduction

Triple encryption. Given a blockcipher E : {0, 1}k × {0, 1}n → {0, 1}n with
inverse D consider blockciphers Cascadeeee

E (K0K1K2, X) = EK2(EK1(EK0(X)))
and Cascadeede

E (K0K1K2, X) = EK2(DK1(EK0(X))). Our results are the same
for both constructions. Following [14, 6, 9], we model E as a family of random
permutations, one for each key, and we provide the adversary with oracle access
to the blockcipher E(·, ·) and its inverse E−1(·, ·). Given such oracles, the adver-
sary is asked to distinguish between (a) Cascadeeee

E (K0K1K2, ·) and its inverse,
for a random key K0K1K2, and (b) a random permutation on n bits and its
inverse. We show that the adversary’s advantage in making this determination,
Adveee

k,n(q), remains small until it asks about q = 2k+0.5 min{k,n} queries (the ac-
tual expression is more complex). The bound we get is plotted as the rightmost
curve of Fig. 1 for DES parameters k = 56 and n = 64. In this case an adver-
sary must ask more than 278.5 queries to get advantage 0.5. Also plotted are the
security curves for single and double encryption, where the adversary must ask
255 and 255.5 queries to get advantage 0.5. For a blockcipher with k = n = 64,
the adversary must ask more than 289 queries to get advantage 0.5. As there
are matching attacks and security bounds for single and double encryption [4, 1]
our result proves that, in the ideal-cipher model, triple encryption is much more
secure than single or double encryption.

As background for the above, note that the security of the cascade construc-
tion, where two or more independently keyed blockciphers are composed with
one another, is a long-standing open problem [4, 12]. Even and Goldreich refer
to it as a “critical question” in cryptography [5, p. 109]. They showed that the

0

0.2

0.4

0.6

0.8

1

10 20 30 40 50 60 70 80 90 100 110 120

Fig. 1. Upper bound on adversarial advantage (proven security) verses log2 q (where
q=number of queries) for the cascade construction, assuming key length k = 56 and
block length n = 64. Single encryption is the leftmost curve, double encryption is the
middle curve [1], and triple encryption in the rightmost curve, as given by Theorem 1.

cascade of ciphers is at least as strong as the weakest cipher in the chain [5],
while Maurer and Massey showed that, in a weaker attack model, it is at least
as strong as the first cipher in the chain [11]. Aiello, Bellare, Di Crescenzo, and
Venkatesan [1] prove the security of double-encryption (the two-stage cascade)
in the same model as we use in this paper, showing that the maximal adversary
advantage in q queries is q2/22k. The meet-in-the-middle attack [4] implies that
this is the best possible. So the adversary’s advantage for double-encryption is
only small until q ≈ 2k, just as for single encryption (although it grows as a
slower rate). Thus triple encryption is the shortest potentially “good” cascade.
And, indeed, triple DES is the cascade that is widely standardized and used [13].

The best published attack on three-key triple-encryption is due to Lucks [10].
He does not work out an explicit lower bound for Adveee

k,n(q), but in the case of
triple-DES, the adversary’s advantage becomes large at around q = 290 queries
(using enormous time and memory, too). We prove security to about 278 queries,
so there is no contradiction.

As for the cascade of � ≥ 4 blockciphers, the maximal advantage in our attack
model is no worse than it is for triple encryption, so our result proves that cascade
“works” for all � ≥ 3. It is open if security increases with increasing �.

Game-playing framework. Our proof for triple-encryption uses game-playing
in an integral way, first to recast the advantage we wish to bound via a simpler
game, and later to analyze that game via others. Ultimately one is left with a
game where conventional probabilistic reasoning can be applied.

What constitutes a game-playing proof is a matter of perspective. To some,
a game-playing proof in cryptography is any proof where one conceptualizes
the adversary’s interaction with its environment as a kind of game, the proof
proceeding by constructing a “chain” of such games. Viewed in this way, game-
playing proofs have their origin in the earliest hybrid arguments, which began
with Goldwasser and Micali [7] and Yao [16]. Bellare and Goldwasser [2] provide
an early example of the use of a game-chain to prove security of a construction
that uses multiple different cryptographic primitives.

In our treatment, games are code (ie, programs), not abstract environments;
as we develop it, game-playing centers around making disciplined transforma-

tions to code. This approach begins with Kilian and Rogaway [9], and was used
by Rogaway in many subsequent works. The framework of Section 2 develops
this approach, and in particular our Fundamental Lemma (Lemma 1) is about
the probability that an adversary can distinguish between games (programs)
that differ in a certain syntactic way.

Shoup has independently and contemporaneously prepared a manuscript on
game playing [15], advocating the use of game chains to make proofs more ac-
cessible. Shoup has often used game-playing over the years. His approach is not
code-based. Shoup’s [15, Lemma 1] functions like our Fundamental Lemma, but
the former is cast in terms of conditional probabilities while the latter talks of
programs that differ only after the setting of a flag bad .

Following the web distribution of this paper, Halevi argues for the creation
of an automated tool to help write and verify game-based proofs [8]. We agree.
The possibility for such tools has always been one of our motivations, and one
of the reasons we focus on code-based games.

Our broader paper [3] contains further illustrations of game-based proofs (the
PRP/PRF Switching Lemma, the CBC MAC, and OAEP) and a discussion of
general techniques for code-based game-playing.

2 The Game-Playing Framework

Games are programs, written in pseudocode or in some formalized programming
language. We describe some elements of the language we use. The semantics
of a boolean variable, which we will also call a flag, is that once true it stays
true. A random-assignment statement has the form s

$← S where S is a finite
set. This is the only source of randomness in programs. A game consists of
an initialization procedure (Initialize), a finalization procedure (Finalize), and
named oracles (each a procedure). The adversary, which we also regard as code,
makes calls to the oracles, passing in values from some finite domain associated
to each oracle. The initialization or finalization procedures may be absent, and
often are, and there may be any number of oracles, including none. All variables
in a game are global, and they are not visible to the adversary.

We can run a game G with an adversary A. To begin, variables are given
initial values. Integer variables are initialized to 0; boolean variables are initial-
ized to false; string variables are initialized to the empty string ε; set variables
are initialized to the empty set ∅; and array variables hold the value undefined at
every point. These conventions often enable omitting explicit initialization code.
When used in a boolean expression, undefined values are regarded as false.

The Initialize procedure is the first to execute, possibly producing an output
inp. This is provided as input to the Adversary procedure A, which now runs. The
adversary code can make oracle queries via statements of the form y ← P (· · ·)
for any oracle P that has been defined in the game. The result is to assign to y the
value returned by the procedure call. We assume that the game and adversary
match syntactically, meaning that all the oracle calls made by the adversary are
to oracles specified in the game, and with arguments that match in quantity

and type. The semantics of a call is call-by-value; the only way for an oracle to
return a value to the adversary is via a return statement. When adversary A
halts, possibly with some adversary output, we call Finalize, providing it any such
output. The Finalize procedure returns a string that we call the game output.
If we omit specifying Initialize or Finalize, or their return-statements, it means
that the procedure returns its input. The game output and adversary output are
often the same, because Finalize (or a return-statement for it) is unspecified.

The adversary and game outputs can be regarded as random variables. We
write Pr[AG ⇒1] for the probability that the adversary output is 1 when we run
game G with adversary A, and Pr[GA ⇒ 1] for the probability that the game
output is 1 when we run game G with adversary A.

Advantages. If G and H are games and A is an adversary, let Adv(AG, AH) =
Pr[AG ⇒1]−Pr[AH ⇒1] and Adv(GA,HA) = Pr[GA ⇒1]−Pr[HA ⇒1]. These
represent the advantage of the adversary in distinguishing the games, the first
measured via adversary output and the second via game output. We refer to the
first as the adversarial advantage and the second as the game advantage. We say
that G,H are adversarially indistinguishable if for any adversary A it is the case
that Adv(AG, AH) = 0, and equivalent if for any adversary A it is the case that
Adv(GA,HA) = 0. We will often use the fact that

Adv(AG, AI) = Adv(AG, AH) + Adv(AH , AI) (1)
Adv(GA, IA) = Adv(GA,HA) + Adv(HA, IA) (2)

for any games G,H, I and any adversary A. These follow simply from the fact
that (a− b) + (b− c) = a− c. These will be referred to as the triangle equalities.

The fundamental lemma. Let G and H be games and let bad be a flag
that occurs in both of them. Then we say that G and H are identical-until-bad if
their code is the same except that there might be places where G has a statement
bad ← true, S while game H has a corresponding statement bad ← true, T for
some T that may be different from S. (One could also say that G and H are
are identical-until-bad if one has the statement if bad then S where the other
has the empty statement, for this can be rewritten in the form above.) The
identical-until-bad predicate is an equivalence relation.

We write Pr[AG sets bad] or Pr[GA sets bad] to refer to the probability that
the flag bad is true at the end of the execution of the adversary A with game G
(that is, when Finalize terminates). The fundamental lemma says that the advan-
tage that an adversary can obtain in distinguishing a pair of identical-until-bad
games is at most the probability that its execution sets bad in one of them.

Lemma 1. [Fundamental lemma of game-playing] Let G and H be identical-
until-bad games and let A be an adversary. Then

Adv(AG, AH) ≤ Pr[AG sets bad] and Adv(GA,HA) ≤ Pr[GA sets bad] .

More generally, if G, H, and I are identical-until-bad games then∣∣Adv(AG, AH)
∣∣ ≤ Pr[AI sets bad] and

∣∣Adv(GA,HA)
∣∣ ≤ Pr[IA sets bad].

One of the most common manipulations of games along a game chain is to change
what happens after bad gets set to true. Any modification following the setting
of bad leaves unchanged the probability of setting bad .

Proposition 1. [After bad is set, nothing matters] Let G and H be identical-
until-bad, and A an adversary. Then Pr[GA sets bad] = Pr[HA sets bad].

3 The Security of Three-Key Triple-Encryption

Definitions. Let E : {0, 1}k × {0, 1}n → {0, 1}n be a blockcipher with key
length k and block length n. For K ∈ {0, 1}k and X ∈ {0, 1}n let EK(X) =
E(K,X). Let E−1 : {0, 1}k × {0, 1}n → {0, 1}n be the blockcipher that is the
inverse of E. We associate to E two blockciphers formed by composition; de-
noted Cascadeeee

E ,Cascadeede
E : {0, 1}3k × {0, 1}n → {0, 1}n, these were defined

in Section 1. These blockciphers have key length 3k and block length n and are
sometimes referred to as the three-key forms of triple encryption. We will call
the two methods EEE and EDE, respectively. There is also a two-key variant
of triple encryption, obtained by setting K0 = K2, but we do not investigate it
since the method admits comparatively efficient attacks [12].

We will be working in the ideal-blockcipher model, as in works like [6, 9, 1].
Let Bloc(k, n) be the set of all blockciphers E : {0, 1}k×{0, 1}n → {0, 1}n. Thus
E

$← Bloc(k, n) means that EK : {0, 1}n → {0, 1}n is a random permutation on
n-bit strings for each K ∈ {0, 1}k. We consider an adversary A that can make
four types of oracle queries: T (X), T −1(Y), E(K,X), and E−1(K,Y), where
X,Y ∈ {0, 1}n and K ∈ {0, 1}k. (As for our syntax, T , T −1, E, E−1 are
formal symbols, not specific functions.) The advantage of A against EEE and
the maximal advantage against EEE obtainable using q queries are defined as

Adveee
k,n(A) = Adv(AC0 , AR0) and Adveee

k,n(q) = max
A

{
Adveee

k,n(A)
}

where the games C0, R0 are shown in Fig. 2 and the maximum is over all ad-
versaries A that make at most q oracle queries (that is, a total of q across all
four oracles). The advantage of A measures its ability to tell whether T (·) is a
random permutation or is Cascadeeee

E (K0K1K2, ·) for K0K1K2 chosen indepen-
dently at random from {0, 1}3k and where E realizes a random blockcipher and
T −1,E−1 realize inverses of T ,E, respectively.

Define the query threshold QTheee
1/2(k, n) as the largest integer q for which

Adveee
k,n(q) ≤ 1/2. We will regard EEE as being secure up to QTheee

1/2(k, n)
queries. Let Advede

k,n(A),Advede
k,n(q), and QThede

1/2(k, n) be defined in the analo-
gous way.

Results. We are now ready to state our result about the security of triple
encryption.

Theorem 1. [Security of triple-encryption] Let k, n ≥ 2. Let α = max(2e2k−n,
2n + k). Then

Adveee
k,n(q) ≤ 4α

q2

23k
+ 10.7

(q

2k+n/2

)2/3

+
12
2k

. (3)

We display the result graphically in Fig. 1 for DES parameters k = 56 and n =
64. Our bound implies that QTheee

1/2(k, n) is, very roughly, about 2k+min(k,n)/2,
meaning that EEE is secure up to this many queries.

For EDE the result is the same, meaning that Advede
k,n(q) is also bounded

by the quantity on the right-hand-side of (3). This can be shown by mostly-
notational modifications to the proof of Theorem 1.

4 Proof of Theorem 1

Overview. The first step in our proof reduces the problem of bounding the
advantage of an adversary A against EEE to bounding certain quantities that
relate to a different, simplified adversary B. By a simplified adversary we mean
one that makes no T (·), T −1(·) queries, meaning it only has oracles E(·, ·) and
E−1(·, ·). We will consider two games, both involving random, distinct keys
K0,K1,K2. In one game (R3) EK2 is random, while in the other (DS), it is
correlated to EK0 , EK1 . The quantities we will need to bound are the ability
of our simplified adversary to either distinguish these games without extending
a 2-chain, or to extend a 2-chain in one of the games, where what it means to
extend a 2-chain is explained below. We will be able to provide these two bounds
via two lemmas. The first considers a simplified game in which an adversary has
only three permutation oracles, either all random or one correlated to the rest,
and has to distinguish them without extending a 2-chain. The second bounds
the probability that the adversary can extend a 2-chain in R3.

Conventions. We begin with some conventions. An adversary A against EEE
can make oracle queries T (X), T −1(Y), E(K,X), or E−1(K,Y) for any X,Y ∈
{0, 1}n and K ∈ {0, 1}k. We will assume that any adversary against EEE is
deterministic and never makes a redundant query. A query is redundant if it has
been made before; a query T −1(Y) is redundant if A has previously received Y
in answer to a query T (X); a query T (X) is redundant if A has previously
received X in answer to a query T −1(Y); a query E−1(K,Y) is redundant
if A has previously received Y in answer to a query E(K,X); a query E(K,X)
is redundant if A has previously received X in answer to a query E−1(K,Y).
Assuming A to be deterministic and not to ask redundant queries is without
loss of generality in the sense that for any A that asks q queries there is an A′

asking at most q queries that satisfies these assumptions and achieves the same
advantage as A. Our general conventions about games imply that A never asks a
query with arguments outside of the intended domain, meaning {0, 1}k for keys
and {0, 1}n for messages.

procedure Initialize

K0, K1, K2
$←{0, 1}k, E

$← Bloc(k, n), T
$← Perm(n), T ← EK2 ◦ EK1 ◦ EK0

procedure T (P) procedure T −1(S)
return T [P] return T−1[S]

procedure E(K, X) procedure E−1(K, Y) Game R0

return EK [X] return E−1
K [Y] Game C0

procedure Initialize

(K0, K1, K2)
$←Distinctk

3 , E
$←Bloc(k, n), T

$←Perm(n), EK2 ←T ◦E−1
K0

◦E−1
K1

procedure T (P) procedure T −1(S)
return T [P] return T−1[S]

procedure E(K, X) procedure E−1(K, Y) Game R1

return EK [X] return E−1
K [Y] Game C1

procedure Initialize

(K0, K1, K2)
$← Distinctk

3 , E
$← Bloc(k, n), EK2 ← T ◦ E−1

K0
◦ E−1

K1

procedure E(K, X) procedure E−1(K, Y) Game R2

return EK [X] return E−1
K [Y] Game CT

procedure Initialize

(K0, K1, K2)
$← Distinctk

3 , E
$← Bloc(k, n), EK2 ← S ◦ E−1

K0
◦ E−1

K1

procedure E(K, X)
if ∃ i ∈ {0, 1, 2} such that K = Ki then Game R3

Q ← E−1
Ki+2

[X], P ← E−1
Ki+1

[Q] Game DS

if P
i+1−→Q

i+2−→X then x2ch ← true

Add arc X
i−→EK [X]

return EK [X]

procedure E−1(K, Y) procedure Finalize(out)
if ∃ i ∈ {0, 1, 2} such that K = Ki then if x2ch then return 1 else return out

Q ← EKi+1 [Y], R ← EKi+2 [Q]

if Y
i+1−→Q

i+2−→R then x2ch ← true

Add arc E−1
K [Y]

i−→Y
return E−1

K [Y]

Fig. 2. The CX or DX games include the boxed statements while the Ri games do not.

4.1 Reduction to simplified adversary

Consider the games in Fig. 2. The R-games (where R stands for random) omit
the boxed assignment statements while the C-games and D-game include them.
Distinctk

3 denotes the set of all triples (K0,K1,K2) ∈ ({0, 1}k)3 such that
K0
= K1 and K1
= K2 and K0
= K2. Games R0, R1, C0, C1 will be run

with an adversary against EEE. The rest of the games will be run with a sim-
plified adversary. Game CT is parameterized by a permutation T ∈ Perm(n),
meaning we are effectively defining one such game for every T , and similarly
DS is parameterized by a permutation S ∈ Perm(n). Game DS grows an (ini-
tially without edges) edge-labeled directed graph with vertex set {0, 1}n. An arc
X

i−→Y is created when a query EKi
(X) returns the value Y or a query E−1

Ki
(Y)

returns the value X. The boolean flag x2ch is set if the adversary extends a
2-chain, meaning that a path P

i+1−→Q
i+2−→R exists in the graph and the adversary

asks either EKi
(R) or E−1

Ki
(P), where the indicated addition is modulo 3. Note

that DS has an explicit Finalize procedure, indicating we will be interested in
the game output rather than the adversary output.

Lemma 2. Let A be an adversary that makes at most q queries. Then there
is a permutation S ∈ Perm(n) and a simplified adversary B making at most q
queries such that Adveee

k,n(A) is at most

Adv(DB
S , RB

3) + Pr
[
DB

S sets x2ch
]
+ Pr

[
RB

3 sets x2ch
]
+

6
2k

.

Proof (Lemma 2). Game C0 defines T as E2 ◦ E1 ◦ E0 for random E0, E1, E2,
while game C1 defines E2 as T ◦ E−1

K0
◦ E−1

K1
for random T,EK0 , EK1 . However,

these processes are identical. With this factored out, the difference between C1

and C0 is that the former draws the keys K0,K1,K2 from Distinctk
3 while the

latter draws them from ({0, 1}k)3. Games R1 and R0 differ in only the latter
way. So using (1) we have

Adveee
k,n(A) = Adv(AC0 , AR0) ≤ Adv(AC1 , AR1) +

6
2k

.

Game CT is parameterized by a permutation T ∈ Perm(n). For any such T
we consider an adversary AT that has T hardwired in its code and is simpli-
fied, meaning can make queries E(K,X) and E−1(K,Y) only. This adversary
runs A, answering the latter’s E(K,X) and E−1(K,Y) queries via its own or-
acles, and answering T (X) and T −1(Y) queries using T . Note that AT makes
at most q oracle queries. Choose S ∈ Perm(n) such that Adv(ACS

S , AR2
S) is the

maximum over all T ∈ Perm(n) of Adv(ACT

T , AR2
T) and let B = AS . We now

have Adv(AC1 , AR1) ≤ Adv(BCS , BR2). Now by (2) we have

Adv(BCS , BR2) ≤ Adv(CB
S ,DB

S) + Adv(DB
S , RB

3) + Adv(RB
3 , RB

2) .

Game CS (resp. game R2) can be easily transformed into an equivalent game such
that this game and game DS (resp. R3) are identical-until-x2ch, so by the Funda-
mental Lemma we have Adv(CB

S ,DB
S) ≤ Pr[DB

S sets x2ch] and Adv(RB
3 , RB

2) ≤
Pr[RB

3 sets x2ch]. Putting all this together completes the lemma’s proof.

Letting p = Pr
[
RB

3 sets x2ch
]
, we now need to bound

Adv(DB
S , RB

3) + (Pr
[
DB

S sets x2ch
] − p) + 2p . (4)

We will be able to bound the first two terms by bounding the advantages of
a pair B1, B2 of adversaries, related to B, in distinguishing between a pair of
games that involve only three permutation oracles, the first two random, and the
third either random or correlated to the first two. We will bound p separately
via a combinatorial argument. We now state the lemmas we need, conclude the
proof of Theorem 1 using them in Section 4.4, and then return to provide the
proofs of the two lemmas.

4.2 Pseudorandomness of three correlated permutations

We posit a new problem. Consider games G and H defined in Fig. 3. Game G
grows an edge-labeled graph, which we shall describe shortly. An adversary may
make queries Π(i,X) or Π−1(i, Y) where i ∈ {0, 1, 2} and X,Y ∈ {0, 1}n. The
oracles realize three permutations and their inverses, the function realized by
Π−1(i, ·) being the inverse of that realized by Π(i, ·). In both games permu-
tations π0, π1 underlying Π(0, ·) and Π(1, ·) are uniform and independent. In
game G the permutation π2 underlying Π(2, ·) is also uniform and independent
of π0 and π1, but in game H it is equal to π−1

1 ◦ π−1
0 .

Notice that it is easy for an adversary to distinguish between games G and H
by making queries that form a “chain” of length three: for any P ∈ {0, 1}n, let
the adversary ask and be given Q ← π0(P), then R ← π1(Q), then P ′ ← π2(R),
and then have the adversary output 1 if P = P ′ (a “triangle” has been found)
or 0 if P
= P ′ (the “three-chain” is not in fact a triangle). What we will establish
is that, apart from such behavior—extending a known “2-chain”—the adversary
is not able to gain much advantage. To capture this, as the adversary A makes its
queries and gets replies, the games grow an (initially without edges) edge-labeled
directed graph G with vertex set. An arc X

i−→Y is created when a query Π(i,X)
returns the value Y or a query Π−1(i, Y) returns the value X. The boolean flag
x2ch is set in the games if the adversary extends a 2-chain, meaning that a
path P

i+1−→Q
i+2−→R exists in the graph and the adversary asks either Π(i, R) or

Π−1(i, P), where the indicated addition is modulo 3. We will be interested in
the game outputs rather than the adversary outputs. Again using a game-based
proof, we prove the following in Section 4.5:

Lemma 3. If Pr
[
BG makes ≥ h oracle queries

] ≤ δ then Adv(HB , GB) ≤
2.5h2/2n + δ.

We remark that the lemma makes no (explicit) assumption about the probability
that BH makes h or more oracle queries.

4.3 The improbability of forming a 3-chain

Consider an adversary B that can make E(K,X) or E−1(K,Y) queries. Game L
of Fig. 3 implements the oracles as a random blockcipher and its inverse, re-
spectively, but samples these lazily, defining points as they are needed. Write

procedure Initialize Game G

π0, π1, π2
$← Perm(n), π2 ← π−1

1 ◦ π−1
0 Game H

procedure Π(i, X) procedure Π−1(i, Y)

if ∃ P
i+1−→Q

i+2−→X ∈ G then x2ch ← true if ∃ Y
i+1−→Q

i+2−→R ∈ G then x2ch ← true

add X
i−→ πi[X] to G add π−1

i [Y]
i−→ Y to G

return πi[X] return π−1
i [Y]

procedure Finalize(out)
if x2ch then return 1 else return out

Fig. 3. Game H includes the boxed statement, game G does not.

procedure E(K, X) procedure E−1(K, Y) Game L

return EK [X]
$← image(EK) E−1

K [Y]
$← domain(EK)

procedure Finalize

K0, K1, K2
$←{0, 1}k

if (∃P) [EK2 [EK1 [EK0 [P]]]] then bad ← true

Fig. 4. Game L captures improbability of making three chains.

X
K−→Y to mean that that B has made query E(K,X) and obtained Y as a re-

sult, or made query E−1(K,Y) and obtained X as a result, for K ∈ {0, 1}k and
X,Y ∈ {0, 1}n. The Finalize procedure picks keys K0,K1,K2 at random, and
sets bad if the adversary’s queries have formed a three chain, meaning that there
exist points P,Q,R, S ∈ {0, 1}n such that P

K0−→Q
K1−→R

K2−→S: the conditional
which is the last line of Finalize means that there is a P for which EK0 [P] is
defined and EK1 [EK0 [P]] is defined and EK2 [EK1 [EK0 [P]]] is defined. Our next
lemma bounds the probability of this happening. The proof is in Section 4.6.

Lemma 4. Let k, n ≥ 1. Let B be an adversary that asks at most q queries. Let
α = max(2e 2k−n, 2n + k). Then Pr[BL sets bad] < 2α q2/23k.

4.4 Putting together the pieces to conclude Theorem 1

Let B be a simplified adversary and S ∈ Perm(n) a permutation. We associate
to B,S a pair of adversaries BS,1 and BS,2 that make Π(i,X) or Π−1(i, Y)
queries, where i ∈ {0, 1, 2} and X,Y ∈ {0, 1}n, as follows. For b ∈ {1, 2}, adver-
sary BS,b picks (K0,K1,K2) at random from Distinctk

3 and picks E at random
from Bloc(k, n). It then runs B, replying to its oracle queries as follows. If B
makes a query E(K,X), adversary BS,b returns EK(X) if K
∈ {K0,K1,K2};
returns Π(i,X) if K = Ki for i ∈ {0, 1}; and returns S ◦ Π(2,X) if K = K2.
Similarly, if B makes a query E−1(K,Y), adversary BS,b returns E−1

K (Y) if
K
∈ {K0,K1,K2}; returns Π−1(i, Y) if K = Ki for i ∈ {0, 1}; and returns
Π−1(2, Y) ◦ S−1 if K = K2. Adversaries BS,1, BS,2 differ only in their output,
the first always returning 0 and the second returning the output out of B.

Lemma 5. Let B be a simplified adversary that makes at most q oracle queries,
and let S ∈ Perm(n). Let BS,1, BS,2 be defined as above. Let K = 2k. Then for
b ∈ {1, 2} and any c > 0, Pr[BG

S,b makes ≥ 3cq/K oracle queries] ≤ 1/c.

Proof (Lemma 5). The oracles B sees when it is run by BS,b are exactly a random
block cipher and its inverse. (A random permutation composed with a fixed one
is still random so the composition by S does not change anything.) Now let X
be the random variable that is the number of queries by B that involve keys
K0, K1, or K2 in the experiment where we first run B with oracles E,E−1 for
E

$← Bloc(k, n) and then pick (K0,K1,K2)
$← Distinctk

3 . Then the probability
that BG

S,b makes ≥ 3cq/K oracle queries is exactly the probability that X ≥
3cq/K. Now assume wlog that B always makes exactly q distinct oracle queries
rather than at most q. Then

E[X] = q ·
[
1 −

(
1 − 1

K

)(
1 − 1

K − 1

)(
1 − 1

K − 2

)]

= q ·
[
1 − K − 1

K

K − 2
K − 1

K − 3
K − 2

]
= q ·

[
1 − K − 3

K

]
=

3q

K
.

We can conclude via Markov’s inequality.

Proof (Theorem 1). Let A be an adversary against EEE that makes at most q
oracle queries. Let B be the simplified adversary, and S the permutation, given
by Lemma 2, and let p = Pr

[
RB

3 sets x2ch
]
. Let BS,1, BS,2 be the adversaries

associated to B as described above. Note that

Pr[DB
S sets x2ch]=Pr[HBS,1 ⇒ 1] and Pr[RB

3 sets x2ch]=Pr[GBS,1 ⇒ 1]
Pr[DB

S ⇒ 1]=Pr[HBS,2 ⇒ 1] and Pr[RB
3 ⇒ 1]=Pr[GBS,2 ⇒ 1] .

(5)

Combining (4) and (5) we have:

Adveee
k,n(A) ≤ 2p + Adv(HBS,1 , GBS,1) + Adv(HBS,2 , GBS,2) +

6
2k

. (6)

Let α = max(2e2k−n, 2n + k) and let c be any positive real number. Since the
probability that RB

3 extends a 2-chain is at most the probability that LB forms
a 3-chain we have p ≤ 3 · 2−k + Pr[BL sets bad]. (The extra term is because L
picks the keys K0,K1,K2 independently at random while R3 picks them from
Distinctk

3 .) Applying Lemma 4 we get p ≤ 3·2−k+2α q2·2−3k. Applying Lemma 3
in conjunction with Lemma 5 we have

Adv(HBS,b , GBS,b) ≤ 2.5
2n

(
3cq

2k

)2

+
1
c

for both b = 1 and b = 2. Putting everything together we have

Adveee
k,n(A) ≤ 2

(
3
2k

+ 2α
q2

23k

)
+

5
2n

(
3cq

2k

)2

+
2
c

+
6
2k

.

Now, since the above is true for any c > 0, we pick a particular one that min-
imizes the function f(c) = 45 c2q2 2−n−2k + 2c−1. The derivative is f ′(c) =
90 cq2 2−n−2k − 2c−2, and the only real root of the equation f ′(c) = 0 is c =
(2n+2k/45q2)1/3, for which we have f(c) = 3(45q2/2n+2k)1/3. Plugging this into
the above yields (3) and concludes the proof of Theorem 1.

4.5 Proof of Lemma 3

We prove Lemma 3 as a corollary of:

Lemma 6. If A asks at most q queries then
∣∣Adv(GA,HA)

∣∣ ≤ 2.5 q2/2n.

Proof (Lemma 3). We construct an adversary A that has the same oracles as B.
Adversary A runs B, answering B’s oracle queries via its own oracles. It also
keeps track of the number of oracle queries that B makes. If this number hits h,
it stops and outputs 1; else it outputs whatever B outputs. Then we note that
Pr[HB ⇒ 1] ≤ Pr[HA ⇒ 1] and Pr[GA ⇒ 1] ≤ Pr[GB ⇒ 1] + δ. Thus we have

Adv(HB, GB) = Pr[HB ⇒ 1] − Pr[GB ⇒ 1]
≤ Pr[HA ⇒ 1] − (

Pr[GA ⇒ 1] − δ
)

= Adv(HA, GA) + δ .

As A makes ≤ h queries, conclude by applying Lemma 6 to A with q = h.

Proof (Lemma 6). We assume that the adversary A never repeats a query, never
asks a query Π−1(i, Y) having asked some Π(i,X) that returned Y , and never
asks a query Π(i,X) having asked some Π−1(i, Y) that returned X. Call an
adversary valid if it never extends a two-chain.

We begin by noting that to bound A’s advantage in distinguishing games G
and H we may assume that A is valid. Why? Because for any adversary A∗ mak-
ing at most q0 queries there exists a valid A that makes at most q0 queries and the
advantage of A is at least that of A∗. Adversary A runs A∗, answering A∗’s oracle
queries via its own oracles, but at any point that A∗ would extend a two chain,
adversary A simply halts and outputs 1. So now assuming A’s validity, our task is
to show that |Adv(AG1 , AH1)| ≤ 2.5 q2/2n where the games G1,H1 are shown in
Fig. 5. We show that games G1 and H1 are close by showing that both are close
to game G3 (defined in the same figure). First, we claim that

∣∣Adv(AG1 , AG3)
∣∣ ≤

0.5 q2/N where, here and in the rest of this proof, N = 2n. Rewrite game G1

to game G1.5 (not shown) by lazily growing π0, π1, π2, setting the flag bad
whenever there is a collision; that is, game G1.5 is identical to game G2 ex-
cept, after setting bad at line 211, set Y

$← image(πi), and after setting bad at
line 221, set X

$← domain(πi). Then modify game G1.5 to not re-sample after
setting bad , obtaining game G2. Now

∣∣Adv(AG1 , AG3)
∣∣ =

∣∣Adv(AG1.5 , AG3)
∣∣ =∣∣Adv(AG1.5 , AG2)

∣∣ ≤ Pr[AG2 sets bad]. Then note that on the ith query the
probability that bad will be set in game G2 is at most (i − 1)/N since the size
of domain(πj) and image(πj) will be at most i − 1 for each j ∈ {0, 1, 2}. So

procedure Initialize Game G1

100 π0, π1, π2
$← Perm(n), π2 ← π−1

1 ◦ π−1
0 Game H1

procedure Π(i, X) procedure Π−1(i, Y)
110 return πi[X] 120 return π−1

i [Y]

procedure Π(i, X) procedure Π−1(i, Y) Game G2

210 Y
$←{0, 1}n 220 X

$←{0, 1}n

211 if Y ∈ image(πi) then bad ← true 221 if X∈domain(πi) then bad ← true
213 π[X] ← Y 223 π[X] ← Y
214 return Y 224 return X

procedure Π(i, X) procedure Π−1(i, Y) Game G3

310 return Y
$←{0, 1}n 320 return X

$←{0, 1}n

procedure Π(i, X) Game G4

410 if ∃ (i, X, Y) ∈ C then return Y
411 Xi ← X

412 Xi+1
$←{0, 1}n, if Xi+1 ∈ Si+1 then bad ← true, Xi+1

$←{0, 1}n \ Si+1

413 Xi+2
$←{0, 1}n, if Xi+2 ∈ Si+2 then bad ← true, Xi+2

$←{0, 1}n \ Si+2

414 Si ← Si ∪ {Xi}, Si+1 ← Si+1 ∪ {Xi+1}, Si+2 ← Si+2 ∪ {Xi+2}
415 C ← C ∪ {(i, Xi, Xi+1), (i + 1, Xi+1, Xi+2), (i + 2, Xi+2, Xi)}
416 return Xi+1

procedure Π−1(i, Y)
420 if ∃ (i, X, Y) ∈ C then return X
421 Xi+1 ← Y

422 Xi
$←{0, 1}n, if Xi ∈ Si+1 then bad ← true, Xi

$←{0, 1}n \ Si+1

423 Xi+2
$←{0, 1}n, if Xi+2 ∈ Si+2 then bad ← true, Xi+2

$←{0, 1}n \ Si+2

424 Si ← Si ∪ {Xi}, Si+1 ← Si+1 ∪ {Xi+1}, Si+2 ← Si+2 ∪ {Xi+2}
425 C ← C ∪ {(i, Xi, Xi+1), (i + 1, Xi+1, Xi+2), (i + 2, Xi+2, Xi)}
426 return Xi

Fig. 5. Games for bounding the probability of distinguishing (π0, π1, π2) and
(π0, π1, π

−1
1 ◦ π−1

0) by an adversary that never extends a two-chain.

over all q queries, the probability that bad ever gets set in game G2 is at most
0.5q(q − 1)/N ≤ 0.5q2/N . To establish Lemma 6 we now claim that∣∣Adv(AH1 , AG3)

∣∣ ≤ 2 q2/N . (7)

First rewrite game H1 as game G4 (again in Fig. 5). Addition (+1 and +2)
is again understood to be modulo 3. Game G4 uses a form of lazy sampling,
but it is not maximally lazy; on each query, not only is its answer chosen, but
answers for some related queries are chosen and stored. In particular, the game
maintains a set C of commitments. Initially there are no commitments, but every
time a query Π(i,X) or Π−1(i, Y) is asked, one of two things happens: if a
commitment has already been made specifying how to answer this query, we
answer according to that commitment; else we not only answer the query asked,

but commit ourselves to all of the queries in a “triangle” containing the queried
point. In greater detail, (i,X, Y) ∈ C (for i ∈ {0, 1, 2} and X,Y ∈ {0, 1}n) means
that it has already been decided that πi(X) = Y , so a forward query Π(i,X)
will need to be answered by Y and a backward query Π−1(i, Y) will need to be
answered by X. In effect, we grow permutations π0, π1, and π2 but store their
values in C and their domains in S0, S1, and S2.

We claim that games H1 and G4 are adversarially indistinguishable even by
an adversary that is not valid and asks all 6N possible queries. From this we know
that Pr[AG4⇒1] = Pr[AH1⇒1]. To show this equivalence we claim that whether
the queries are answered by game G4 or by game H1 the adversary gets the same
view: any of (N !)2 possible outcomes, each with probability 1/(N !)2, the answers
correspond to a pair of permutations π0, π1 along with π2 = π−1

1 ◦ π−1
0 . This is

obviously the case when playing game H1; we must show it is so for game G4.
Note that sets S0, S1, S2, and C begin with no points in them, then they grow
to 1, 1, 1, and 3 points; then to 2, 2, 2, and 6 points; and so forth, until they
have N , N , N , and 3N points. Not every query changes the sizes of these sets;
it either leaves the sets unaltered or changes them as indicated. The first query
that augments C extends the partial functions (π0, π1, π2) in any of N2 different
ways, each with the same probability; the second query that augments C extends
(π0, π1, π2) in any of (N − 1)2 different ways, each with the same probability;
and so forth, until we have extended (π0, π1, π2) in any of (N !)2 different ways,
each with the same probability. This establishes the claim.

Now let us go back to assuming that the adversary is valid. We make a change
to game G4 to arrive at game G5, shown in Fig. 6. In the transition, we drop
the first commitment from each group of three, since our assumptions about the
adversary’s behavior mean that these queries cannot be asked. We also drop the
sequels to bad getting set at lines 412, 413, 422, and 423. More interestingly, in
game G5 we maintain a set of “poisoned” queries P. As with game G4, when the
adversary asks Π(i,Xi) we return a random Xi+1, and when the adversary asks
Π−1(i,Xi+1) we return a random Xi, and in either case we choose a random
Xi+2 and “complete the triangle” using this point. We don’t expect the adversary
to ask about Xi+2, and, what is more, his asking will cause problems. So we
record the unlikely but problematic queries involving Xi2 in P. If the adversary
makes a poisoned query then we set bad . The changes we have made can only
increase the probability that bad gets set: Pr[AG4 sets bad] ≤ Pr[AG5 sets bad].

We claim that game G5 is adversarially indistinguishable from game G3.
Remember that our adversary is valid: it does not ask queries whose answers
are trivially known and it does not ask to extend any 2-chain. Suppose first
that the adversary asks a query whose answer has not been memoized in a
commitment. Then for a forward query, we choose a uniform value Xi+1 at
line 514 and return it at line 519. Likewise for a backward query, we choose a
uniform value Xi at line 524 and return it at line 529. So consider instead a query
for which a commitment has been memoized. The code executes at lines 511–
512 or lines 521–522. If the memoized query was poisoned—added to set P by
an earlier execution of lines 518 or 528—then we return a random string (at

procedure Π(i, X) Game G5

510 if ∃ (i, X, Y) ∈ C then

511 if (+1, i, X) ∈ P then bad ← true, Y
$←{0, 1}n

512 return Y
513 Xi ← X

514 Xi+1
$←{0, 1}n, if Xi+1 ∈ Si+1 then bad ← true

515 Xi+2
$←{0, 1}n, if Xi+2 ∈ Si+2 then bad ← true

516 Si ← Si ∪ {Xi}, Si+1 ← Si+1 ∪ {Xi+1}, Si+2 ← Si+2 ∪ {Xi+2}
517 C ← C ∪ {(i + 1, Xi+1, Xi+2), (i + 2, Xi+2, Xi)}
518 P ← P ∪ {(1, i + 2, Xi+2), (−1, i + 1, Xi+2)}
519 return Xi+1

procedure Π−1(i, Y)
520 if ∃ (i, X, Y) ∈ C then

521 if ∃ (−1, i, Y) ∈ P then bad ← true, X
$←{0, 1}n

522 return X
523 Xi+1 ← Y

524 Xi
$←{0, 1}n, if Xi ∈ Si+1 then bad ← true

525 Xi+2
$←{0, 1}n, if Xi+2 ∈ Si+2 then bad ← true

526 Si ← Si ∪ {Xi}, Si+1 ← Si+1 ∪ {Xi+1}, Si+2 ← Si+2 ∪ {Xi+2}
527 C ← C ∪ {(i + 1, Xi+1, Xi+2), (i + 2, Xi+2, Xi)}
528 P ← P ∪ {(1, i + 2, Xi+2), (−1, i + 1, Xi+2)}
529 return Xi

Fig. 6. Game G5.

line 511 or 521). If the memoized query was not poisoned, then we are extending
a 1-chain, providing a value Xi+2 that was selected uniformly from {0, 1}n at an
earlier execution of line 515 or 525, with this value not yet having influenced the
run. Thus we return a uniform random value, independent of all oracle responses
so far, and Pr[AG5 ⇒ 1] = Pr[AG3 ⇒ 1].

Finally, we must bound the probability that bad gets set in game G5. The
probability that bad ever gets set at any of lines 514, 515, 524, or 525 is at
most 2(1 + 2 + · · · + (q − 1))/N ≤ q2/N . The probability that it gets set at
lines 511 or 521 is at most 2(1 + 2 + · · · + (q − 1))/N because no information
about the poisoned query is surfaced to the adversary. Overall we have that
Pr[AG5 sets bad] ≤ 2q2/N . Putting everything together we have (7) and the
proof of the lemma is complete.

4.6 Proof of Lemma 4

To prove this lemma we can assume without loss of generality that B is deter-
ministic. For any particular blockcipher E ∈ Bloc(k, n) we consider the game
in which B is executed with oracles E,E−1, which it queries, adaptively, un-
til it halts. Note that there is no randomness involved in this game, since E is
fixed and B is deterministic. Recall that X

K→ Y means that B has either made

query E(K,X) and obtained Y as a result, or it has made query E−1(K,Y) and
obtained X as a result, for K ∈ {0, 1}k and X,Y ∈ {0, 1}n. Now we let

ChE,B
3 =

∣∣∣{ (K0,K1,K2, P) : ∃ Q,R, S [P K0→ Q
K1→ R

K2→ S] }
∣∣∣ .

This is the number of 3-chains created by B’s queries. Here K0,K1,K2 ∈ {0, 1}k

are keys, and P,Q,R, S ∈ {0, 1}n. As the notation indicates, ChE,B
3 is a number

that depends on E and B. Regarding it as a random variable over the choice
of E we have the following lemma, from which Lemma 4 will follow.

Lemma 7. Let α = max(2e2k−n, 2n + k). Then E[ChE,B
3] < 2α · q2, the expec-

tation over E
$← Bloc(k, n).

Proof (Lemma 4). Consider the following game LE parameterized by a blockci-
pher E ∈ Bloc(k, n): adversary B is executed with oracles E,E−1 until it halts,
then K0,K1,K2 are chosen at random from {0, 1}k, and flag bad is set if there
exist P,Q,R, S such that P

K0→ Q
K1→ R

K2→ S. Let pE,B = Pr[LE
B sets bad],

the probability being over the random choices of K0,K1,K2. Then for any
E ∈ Bloc(k, n) we have

pE,B = Pr
[
∃ P,Q,R, S : P

K0→ Q
K1→ R

K2→ S
]

=
|{ (K0,K1,K2) : ∃ P,Q,R, S : P

K0→ Q
K1→ R

K2→ S }|
23k

≤
∑

P |{ (K0,K1,K2) : ∃ Q,R, S : P
K0→ Q

K1→ R
K2→ S }|

23k
=

ChE,B
3

23k
.

By Lemma 7 we have Pr[BL sets bad] = E[pE,B] ≤ E[ChE,B
3]·2−3k < 2α q2 2−3k

where α = max(2e2k−n, 2n + k) and the expectation is over E
$← Bloc(k, n).

Towards the proof of Lemma 7, for E ∈ Bloc(k, n) and Q,R ∈ {0, 1}n we let

KeysE(Q,R) = |{ K : E(K,Q) = R }| and KeysE = max
Q,R

{KeysE(Q,R)} .

The first is the number of keys for which Q maps to R under E, and the second
is the maximum value of KeysE(Q,R) over all Q,R ∈ {0, 1}n. No adversary
is involved in this definition; KeysE is simply a number associated to a given
blockcipher. Viewing it as a random variable over the choice of blockcipher we
have the following.

Lemma 8. Suppose β ≥ 2e2k−n. Then Pr
[
KeysE ≥ β

]
< 22n+1−β , where the

probability is over E
$← Bloc(k, n).

Proof (Lemma 8). We claim that for any Q,R ∈ {0, 1}n

Pr
[
KeysE(Q,R) ≥ β

]
< 21−β . (8)

The lemma follows via the union bound. We prove (8) using an occupancy-
problem approach. Let b =
β�. Then

Pr
[
KeysE(Q,R) ≥ β

]
=

∑2k

i=b

(
2k

i

)(
1
2n

)i (
1 − 1

2n

)2k−i

≤ ∑2k

i=b

(
2ke

i

)i (
1
2n

)i

≤ ∑2k

i=b

(
2ke

2nb

)i

.

Let x = (e/b)2k−n. The assumption β ≥ 2e2k−n gives x ≤ 1/2. So the above is

=
∑2k

i=bx
i < xb · ∑∞

i=0x
i =

xb

1 − x
≤ 2−b

1 − 1/2
= 21−b ≤ 21−β

as desired.

Proof (Lemma 7). For any Q,R ∈ {0, 1}n we let

ChE,B
2 (R) = |{ (K0,K1, P) : ∃ Q [P K0→ Q

K1→ R] }|
ChE,B

1 (Q) = |{ (K0, P) : P
K0→ Q }|

ChE,B
0 (R) = |{ K2 : ∃ S [R K2→ S] }| .

Then for any E ∈ Bloc(k, n) we have

ChE,B
3 =

∑
RChE,B

2 (R) · ChE,B
0 (R)

≤ ∑
R

(∑
QChE,B

1 (Q) · KeysE(Q,R)
)
· ChE,B

0 (R)

≤ ∑
R

(∑
QChE,B

1 (Q) · KeysE
)
· ChE,B

0 (R)

= KeysE ·
(∑

QChE,B
1 (Q)

)
·
(∑

RChE,B
0 (R)

)

≤ KeysE · q · q = q2 · KeysE .

Using the above and Lemma 8, we have the following, where the probability and
expectation are both over E

$← Bloc(k, n):

E[ChE,B
3] < E

[
ChE,B

3 | KeysE < α
]

+ E
[
ChE,B

3 | KeysE ≥ α
]
· 22n+1−α

≤ q2 · α + q2 · 2k · 22n+1−α .

The last inequality above used the fact that KeysE is always at most 2k. Since
α = max(2e2k−n, 2n + k) > 2 we get E[ChE,B

3] < q2α + q2 · 2 < 2α · q2 as
desired.

Acknowledgments

We thank the Eurocrypt 2006 PC for their comments. Mihir Bellare was sup-
ported by NSF grants CCR-0208842 and CNS-0524765. Phil Rogaway was sup-
ported by NSF 0208842 and a gift from Intel Corp. Much of the work on this
paper was carried out while Phil was hosted by Chiang Mai University, Thailand.

References

1. W. Aiello, M. Bellare, G. Di Crescenzo, and R. Venkatesan. Security amplification
by composition: the case of doubly-iterated, ideal ciphers. Advances in Cryptol-
ogy — CRYPTO ’98, Lecture Notes in Computer Science, vol 1462, Springer,
pp. 390–407, 1998.

2. M. Bellare and S. Goldwasser. New paradigms for digital signatures and message
authentication based on non-interactive zero knowledge proofs. Advances in Cryp-
tology — CRYPTO ’89, Lecture Notes in Computer Science, vol. 435, Springer,
pp. 194–211, 1990.

3. M. Bellare and P. Rogaway. Code-based game-playing proofs and the security of
triple encryption. Cryptology ePrint archive report 2004/331, 2006.

4. W. Diffie and M. Hellman. Exhaustive cryptanalysis of the data encryption stan-
dard. Computer, vol. 10, pp. 74–84, 1977.

5. S. Even and O. Goldreich. On the power of cascade ciphers. ACM Transactions
on Computer Systems, vol. 3, no. 2, pp. 108–116, 1985.

6. S. Even and Y. Mansour. A construction of a cipher from a single pseudoran-
dom permutation. Advances in Cryptology — ASIACRYPT ’91, Lecture Notes in
Computer Science, vol.739, Springer, pp. 210–224, 1993.

7. S. Goldwasser and S. Micali. Probabilistic encryption. J. Comput. Syst. Sci.,
vol. 28, no. 2, pp. 270–299, 1984. Earlier version in STOC ’82.

8. S. Halevi. A plausible approach to computer-aided cryptographic proofs. Cryptol-
ogy ePrint archive report 2005/181, 2005.

9. J. Kilian and P. Rogaway. How to protect DES against exhaustive key search (an
analysis of DESX). J. of Cryptology, vol. 14, no. 1, pp. 17–35, 2001. Earlier version
in Crypto ’96.

10. S. Lucks. Attacking triple encryption. Fast Software Encryption (FSE ’98), Lecture
Notes in Computer Science, vol. 1372, Springer, pp. 239–253, 1998.

11. U. Maurer and J. Massey. Cascade ciphers: the importance of being first. J. of
Cryptology, vol. 6, no. 1, pp. 55–61, 1993.

12. R. Merkle and M. Hellman. On the security of multiple encryption. Communica-
tions of the ACM, vol. 24, pp. 465–467, 1981.

13. National Institute of Standards and Technology. FIPS PUB 46-3, Data Encryp-
tion Standard (DES), 1999. Also ANSI X9.52, Triple Data Encryption Algorithm
modes of operation, 1998, and other standards.

14. C. Shannon. Communication theory of secrecy systems. Bell Systems Technical
Journal, vol. 28, no. 4, pp. 656–715, 1949.

15. V. Shoup. Sequences of games: a tool for taming complexity in security proofs.
Cryptology ePrint archive report 2004/332, 2006.

16. A. Yao. Theory and applications of trapdoor functions. IEEE Symposium on the
Foundations of Computer Science (FOCS 1982), IEEE Press, pp. 80–91, 1982.

