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3 Université de Limoges, 87060 Limoges (France),
{gaborit,olivier.ruatta}@unilim.fr

4 FH Nordwestschweiz, 5210 Windisch (Switzerland),
{simon.kuenzli,willi.meier}@fhnw.ch

Abstract. In this paper we propose several efficient algorithms for as-
sessing the resistance of Boolean functions against algebraic and fast
algebraic attacks when implemented in LFSR-based stream ciphers. An
algorithm is described which permits to compute the algebraic immu-
nity d of a Boolean function with n variables in O(D2) operations, for
D ≈

`
n
d

´
, rather than in O(D3) operations necessary in all previous algo-

rithms. Our algorithm is based on multivariate polynomial interpolation.
For assessing the vulnerability of arbitrary Boolean functions with re-
spect to fast algebraic attacks, an efficient generic algorithm is presented
that is not based on interpolation. This algorithm is demonstrated to be
particularly efficient for symmetric Boolean functions. As an application
it is shown that large classes of symmetric functions are very vulnerable
to fast algebraic attacks despite their proven resistance against conven-
tional algebraic attacks.
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1 Introduction

Many keystream generators consist of combining several linear feedback shift
registers (LFSRs) and possibly some additional memory. One example is the E0

keystream generator which is part of the Bluetooth standard. LFSRs are very
efficient in hardware and can be designed such that the produced bitstream
has maximum period and good statistical properties. Various approaches to the
cryptanalysis of LFSR-based stream ciphers were discussed in literature (e.g.,
time-memory-tradeoff, fast correlation attacks or BDD-based attacks). For some
keystream generators, algebraic attacks and fast algebraic attacks outmatched
all previously known attacks [3, 12,13].



For LFSR-based filter or combining generators, their security mainly relies
on a nonlinear Boolean output function f filtering the contents of one LFSR or
combining the outputs of several ones. The present paper studies the resistance
of this kind of stream ciphers to (fast) algebraic attacks.

In view of algebraic attacks, the notion of algebraic immunity (or annihila-
tor immunity) has been introduced (the algebraic immunity AI of a Boolean
function f is the minimum value of d such that f or f + 1 admits a function
g of degree d such that fg = 0). The construction of Boolean functions for
LFSR-based stream ciphers with large algebraic immunity achieved much atten-
tion recently, [5–7, 15, 17]. However, many of these functions do not allow for
other good cryptographic properties like large non-linearity or large orders of
resiliency, and as will be shown later, have undesirable properties with regard to
fast algebraic attacks. It seems therefore relevant to be able to efficiently deter-
mine the immunity of existing and newly constructed Boolean functions against
algebraic and fast algebraic attacks.

Until now, the best algorithms known for computing the algebraic immunity d
of a function with n variables work roughly in O(D3) operations, where D ≈

(
n
d

)
.

This is impractical for functions with 20 or more variables. In this paper, we give
an algorithm which computes the AI of a function in O(D2) operations. The
algorithm is based on multivariate polynomial interpolation, and it is applied
to two particular families of Boolean functions: the inverse functions and the
Kasami power functions. The quadratic nature of the algorithm is experimentally
verified, and for the first time, the AI of a function with 20 variables is computed
to be AI = 9.

Resistance against fast algebraic attacks is not fully covered by algebraic
immunity, as has been demonstrated, e.g., by a fast algebraic attack on the
eSTREAM candidate SFINKS, [11]. For determining immunity against fast alge-
braic attacks, we give a new algorithm that is based on methods different from
interpolation, and that for general Boolean functions allows to efficiently assess
immunity against fast algebraic attacks. The complexity of our second algorithm
is inO(DE2), where E ≈

(
n
e

)
and e in many cases of interest is much smaller than

d. This compares favorably with the known algorithms, which are in O(D3). The
algorithm is applied to several of the above mentioned classes of Boolean func-
tions with optimal algebraic immunity, including symmetric Boolean functions,
like the majority functions. Symmetric functions are attractive as the hardware
complexity grows only linearly with the number of input variables. However, it
is shown in this paper that the specific structure of these functions can be ex-
ploited in a much refined algorithm for determining resistance against algebraic
attacks that is particularly efficient. It is concluded that large classes of symmet-
ric functions are very vulnerable to fast algebraic attacks despite their optimal
algebraic immunity. A symmetric function would not be implemented by itself
but rather in combination with other nonlinear components in stream ciphers. It
seems nevertheless essential to know the basic cryptographic properties of each
component used.



The paper is organized as follows. In Section 2, the basics of algebraic and
fast algebraic attacks are described. Section 3 derives an algorithm for efficient
computation of the algebraic immunity as well as a modified algorithm to de-
termine all minimal degree annihilators. In Section 4, an algorithm for efficient
computation of immunity against fast algebraic attacks is presented. In Sec-
tion 5, the algorithm is adapted and improved for symmetric functions, and it
is proven that the class of majority functions which have maximum AI is very
vulnerable to fast algebraic attacks. We finally conclude in Section 6.

2 Algebraic Attacks and Fast Algebraic Attacks

2.1 Algebraic Attacks

For an LFSR L with N entries filtered by a Boolean function f with n variables,
algebraic attacks consist of two steps [12]:

– First step. Finding functions g of low degree d such that fg = 0 or (f +
1)g = 0. Until this paper, the complexity of this step was roughly in D3, for
D :=

∑d
i=0

(
n
i

)
(which is about

(
n
d

)
for d < n/2) and where 3 is taken for

the exponent of the matrix inversion.
– Second step. Solving a nonlinear system of multivariate equations g(Li

(x1, . . . , xN )) = 0 for adequate i, induced by the functions g of the anni-
hilator sets Ann(f) and Ann(f + 1). Usually this system is solved by lin-
earization with a complexity of D3

N for DN :=
∑d

i=0

(
N
i

)
. The number of

required bits of keystream is proportional to DN , whereas this value can be
reduced if several annihilators of f and/or f ⊕ 1 with minimum degree are
known. Alternatively, this system can be solved by Gröbner basis, but then
the complexity of solving is difficult to evaluate, see [4, 19].

The lowest degree of the function g 6= 0 for which fg = 0 or (f +1)g = 0 is called
the algebraic (or annihilator) immunity AI of f . In [12] it has been shown that
for any function f with n-bit input vector, functions g 6= 0 and h exist, with
fg = h such that e and d are at most dn/2e. This implies that AI(f) ≤ dn/2e.

2.2 Fast Algebraic Attacks

Fast algebraic attacks were introduced by Courtois in [13]. They were confirmed
and improved later by Armknecht in [3] and Hawkes and Rose in [20]. A prior
aim of fast algebraic attacks is to find a relation fg = h with e := deg g small and
d := deg h larger. In classical algebraic attacks, the degree d of h would neces-
sarily lead to considering a number of unknowns of the order of DN . In fast alge-
braic attacks, one considers that the sequence of the functions h(Li(x1, · · · , xN ))
can be obtained as an LFSR with linear complexity DN . One uses then the
Berlekamp-Massey algorithm to eliminate all monomials of degree superior to
e in the equations, such that eventually one only needs to solve a system in
EN :=

∑e
i=0

(
N
i

)
unknowns. The complexity of fast algebraic attacks can be

summarized in these four steps:



– Relation search step. One searches for functions g and h of low degrees
such that fg = h. For g and h of degrees e and d respectively, with associated
values D :=

∑d
i=0

(
n
i

)
and E :=

∑e
i=0

(
n
i

)
, such g and h can be found

when they exist by solving a linear system with D + E equations, and with
complexity O((D + E)3). Usually one considers e < d.

– Pre-computation step. In this step, one searches for particular linear re-
lations which permit to eliminate monomials with degree greater than e in
the equations. This step needs a sequence of 2DN bits of stream and has a
complexity of O(DN log2(DN )), see [20].

– Substitution step. At this step, one eliminates the monomials of degrees
greater than e. This step has a natural complexity in O(E2

NDN ) but using
discrete Fourier transform, it is claimed in [20] that a complexity O(ENDN

log(DN )) can be obtained.
– Solving step. One solves the system with EN linear equations in O(E3

N ).

Notice that, for arbitrary non-zero functions f , g, h, the relation fg = h implies
fh = h, thus we have d ≥ AI(f) and we can restrict to values e with e ≤ d. Fast
algebraic attacks are always more efficient than conventional algebraic attacks
if d = AI(f) and e < d− 1. In case that e turns out to be large for this d, it is
of interest to determine the minimum e where d is slightly larger than AI(f).

3 Efficient Computation of the Algebraic Immunity

In this section, we present an algorithm which computes the algebraic immunity
AI of a Boolean function in O(D2) operations. In particular, the algorithm re-
turns a non-zero annihilator of minimum degree d, without necessitating a prior
guess of d. The algorithm is based on the notion of multivariate polynomial inter-
polation, it generalizes the classical incremental Newton interpolation algorithm
to the multivariate case. We also explain how to modify the algorithm to return
the set of all non-zero annihilators with minimum degree. Eventually we give
experimental results of our algorithm.

3.1 Multivariate Lagrange Interpolation

Before stating what is the multivariate Lagrange interpolation problem when
it is specified to binary polynomials, we need to introduce some notation. We
denote by F the finite field GF(2) and by Fk the vector space of dimension k over
F. Consider x := x1, . . . , xk a set of k binary variables, α := (α1, . . . , αk) ∈ Fk a
multi-index, z := (z1, . . . , zk) an element of Fk. We denote xα := xα1

1 · · ·x
αk

k and
zα := zα1

1 · · · z
αk

k . Let E := {α1, . . . , αD} ⊆ Fk be a set of multi-indices, then we
denote by xE := {xα1 , . . . , xαD} the set of associated monomials. We identify
the ring of boolean functions in n variables with F[x]/〈x2

i − xi, i = 1, . . . , n〉,
the quotient ring of the ring of polynomials with coefficients in F by the ideal
generated by the relations x2

i − xi, i ∈ {1, . . . , n}. We will use, explicitly or not,
several times this identification. In our framework, the multivariate Lagrange
problem can be stated as follows:



Problem 1. Let E := {α1, . . . , αD} ⊆ Fn, Z := {z1, . . . , zD} ⊆ Fn and v̄ :=
(v1, . . . , vD) ∈ FD. Does there exist a polynomial g ∈ F[x1, . . . , xn] whose mono-
mial support is included in xE and such that g(zi) = vi, ∀i ∈ {1, . . . , D}?

Remark 1. The general multivariate Lagrange interpolation problem has been
addressed in [23], but the proposed algorithm has cubic complexity (on the
number of monomials). We will present an algorithm with a quadratic complexity
over F instead.

An answer to Problem 1 in terms of existence and uniqueness is presented by
means of the following definition:

Definition 1. Let Z := {z1, . . . , zD} ⊆ Fn and E := {α1, . . . , αD} ⊆ Fn, we
define the Vandermonde matrix as

VZ,E :=

zα1
1 · · · zαD

1
...

. . .
...

zα1
D · · · zαD

D

 , (1)

and we define the Vandermonde determinant to be vZ,E := det(VZ,E).

Proposition 1. There exists an unique solution g ∈ F[x] to Problem 1 if vZ,E 6=
0. Furthermore, the solution g is given by g(x) =

⊕D
j=1 gαj x

αj , where the vector
ḡ := (gα1 , . . . , gαD

)t is the only solution of the system

VZ,E ḡ = v̄ . (2)

Remark 2. Given the set Z := {z1, . . . , zD} ⊆ Fn, the existence of a set E :=
{α1, . . . , αD} ⊆ Fn such that vZ,E 6= 0 is ensured since it is enough to take for
E the set of monomials which are not in the monomial ideal generated by the
leading monomials of a Gröbner basis of the ideal of the polynomials vanishing
at each point of Z.

With the following proposition, the minimum annihilator problem can be re-
duced to a multivariate Lagrange interpolation problem:

Proposition 2. Let f be a Boolean function, Z := f−1(1) and E such that xE

is the complementary of the monomial ideal generated by the leading monomials
of a Gröbner basis for a graduated order of the ideal of the polynomials vanishing
at each point of Z. Then, if β 6∈ E is of minimum weight, the function Rβ defined
below is a minimum-degree annihilator of f ,

Rβ := det


xβ xα1 . . . xαD

zβ
1 zα1

1 . . . zαD
1

...
...

. . .
...

zβ
D zα1

D . . . zαD

D

 .

Furthermore, Rβ = xβ ⊕ g where g is the solution of Problem 1 with v̄ =
(zβ

1 , zβ
2 , . . . , zβ

D).



Proof. The function Rβ(x) is an annihilator of f , as for an argument x ∈ Z the
above matrix becomes singular. In addition, Rβ has minimum degree because
E is the complementary of the monomial ideal generated by the leading terms
of a Gröbner basis for a graduated monomial order. The relation Rβ = xβ ⊕ g
is obtained by developing the determinant defining Rβ with respect to the first
row, and by considering g obtained with Cramer’s rule in Eq. 2. ut

3.2 General Description of the Algorithm

The general idea of the algorithm is to apply Prop. 2 incrementally with a
linear complexity at each step. Let us introduce some more notation: Ed is
the set of all α of weight equal to d. Then E≤d := E0 ∪ . . . ∪ Ed (ordered by
increasing weight) and Ei := {α1, . . . , αi}, which are the first i elements of E≤d.
Let Z := f−1(1) ⊆ Fn (with arbitrary ordering) and Zi := {z1, . . . , zi}. We
assume vZi,Ei

6= 0 for all i ∈ {1, . . . , |Z|}, this condition5 is sufficient to apply
Prop. 2 on the sets Zi, Ei.

Then the algorithm works as follows: apply Prop. 2 for an intermediate set
of points Zi and an associated set of exponents Ei, with β = αi+1. A particular
solution gi = Rβ ⊕ xβ is an intermediate annihilator of f on the set Zi. If one
can verify that gi is also an annihilator of f on the global set Z, then a minimum
degree annihilator of f is found. Otherwise, one considers a new point zi+1 and
Zi+1 with associated set of exponents Ei+1, until an annihilator of f on Z is
found.

Remark 3. Notice that the original interpolation problem with v̄ = 0 is turned
into a sequence of interpolation problems with (in general) non-zero v̄, depending
on the exponent αi+1 used at each step. In particular, the fact v̄ = 0 on f−1(1)
is used implicitly in the computation of the ordered set E associated to f−1(1).

For each intermediate step, the updating procedure can be done in linear time,
resulting in an overall complexity of O(D2) rather than O(D3). In fact, this
is a multivariate generalization of the Newton interpolation scheme: recall that
a Newton basis for the polynomial interpolation problem allows to introduce
interpolation nodes one by one (without the requirement to recalculate previous
coefficients). In addition, the Newton basis leads to a triangular Vandermonde
matrix, which can be solved in quadratic time (on the number of interpolation
nodes).

3.3 Computing a Minimum Degree Annihilator

Define Vi := VZi,Ei
, and consider an LU -decomposition of Vi, i.e. Vi = LiUi,

where Ui is triangular superior and Li is triangular inferior. Then, the system
Viḡi = v̄i with v̄i := (v1, . . . , vi) is equivalent to Uiḡi = L−1

i v̄i, and the solution
ḡi can be found by solving two triangular systems (i.e computing the inverses of

5 Such kind of ordered sets of points and exponents always exists and can be computed
incrementally in quadratic time (see [23]), so we do not lose any generality.



Ui and Li). If the polynomial associated to ḡi is not an annihilator of f , then we
solve the system for Vi+1 and v̄i+1 = (v̄i, vi+1, )t. However, instead of computing
a complete LU -decomposition of Vi+1, we write

Vi+1 =
(

Vi Ci+1

Ri z
αi+1
i+1

)
=

(
Li 0
0 1

) (
Ui L−1

i Ci+1

Ri z
αi+1
i+1

)
with Ci+1 := (zαi+1

1 , . . . , z
αi+1
i )t and Ri := (zα1

i+1, . . . , z
αi
i+1). Consequently, knowl-

edge of an LU -decomposition of Vi yields an almost LU -decomposition of Vi+1

(with the exception of Ri). This is a basic fact usually exploited to design efficient
LU -factorization algorithms.

In our framework, one can avoid a direct computation of Li as follows. Denote
Xi := (x1, . . . , xi)t, where the elements xj are considered as indeterminate, and
denote Pi(x1, . . . , xi) := L−1

i Xi. Then we have

Vi+1 =
(

Li 0
0 1

) (
Ui Pi(z

αi+1
1 , . . . , z

αi+1
i )

zα1
i+1 · · · z

αi
i+1 z

αi+1
i+1

)
(3)

v̄i+1 =
(

Li 0
0 1

) (
Pi(v1, . . . , vi)

vi+1

)
. (4)

Consequently, the system of equations Vi+1ḡi+1 = v̄i+1 is equivalent to(
Ui Pi(z

αi+1
1 , . . . , z

αi+1
i )

zα1
i+1 · · · z

αi
i+1 z

αi+1
i+1

)
ḡi+1 =

(
Pi(v1, . . . , vi)

vi+1

)
. (5)

Triangulation of the left matrix is an easy task since Ui is triangular (it is
achieved by elimination of the i first entries of the last row by row operations).
The same operations are carried out on the right matrix. This yields Ui+1 and
Pi+1(x1, . . . , xi+1), and the system Ui+1ḡi+1 = Pi+1(v1, . . . , vi+1) can be solved.
If the polynomial associated to ḡi+1 is not an annihilator of f (i.e. if ∃z ∈ Z
such that g(z) 6= 0), the subsequent elements in E≤d and Z are added and so
on. Practically, the only points introducing new constraints on the annihilator
are those for which the input polynomial does not vanish already. The method
terminates because the degree of the annihilator is bounded. Denote by t be the
number of iterations of Alg. 1.

As an input of the algorithm, we do not take a monomial expansion of f , but
the vector of its evaluation at points zi. In the case t = |Z|, this vector can be
computed with asymptotically O(t log(t)) operations using a method based on
fast Fourier transform, and more easily in O(tNm) operations over the ground
field (where Nm is the number of monomials in the algebraic normal form of f) by
simply adding the evaluation of each monomial at the t points. The algorithm
incrementally computes the values of the annihilator at every point and lifts
them in the monomial basis in order to compute the power expansion. Let us
discuss the most costly operations at the ith step of the algorithm:

– The triangulation in step 4 requires i arithmetic operations. As Ui is already
a upper triangular matrix, we only need to eliminate the first i − 1 entries



Algorithm 1 Computation of an annihilator of minimum degree
Input: f , Z := f−1(1), E6dn/2e.
Output: An annihilator of f of minimum degree.
1: Initialization: U1 ← (zα1

1 ), v1 ← f(z1)⊕ 1, ḡ ← 1, P ← (x1), i← 1.
2: while the polynomial associated to ḡ is not an annihilator of f do
3: i← i + 1.

4:

„
Ui P (zαi

1 , . . . , zαi
i−1)

zα1
i . . . z

αi−1
i zαi

i

«
row op.7→

„
Ui

0 . . . 0
P (zαi

1 , . . . , zαi
i )

«
=: Ui+1.

5: Use the same row operations from
`
P (zαi

1 , . . . , zαi
i−1), z

αi
i

´
7→ P (zαi

1 , . . . , zαi
i ) to

perform the update (P (v1, . . . , vi−1), vi) 7→ P (v1, . . . , vi).
6: Solve Uiḡi = P (v1, . . . , vi) with ḡi = (g1, . . . , gi).
7: end while
8: Output g(x) :=

Li
j=1 gjx

αj .

in the last row, and update the entry in the bottom right corner. This is
done by replacing zα1

i , . . . , z
αi−1
i by 0 and zαi

i by zαi
i −

∑i−1
j=1 zα1

i ·Pi,j where
(Pi,1, . . . , Pi,i−1) = P (zαi

1 , . . . , zαi
i−1).

– The updating process of P requires i arithmetic operations.
– Solving the system in step 6 basically requires i2 arithmetic operations. How-

ever, this is also feasible with i arithmetic operations by the following remark,
allowing to correct gi in order to compute gi+1:

Ui+1 gi+1 =
(

Ui Pi(z
αi+1
1 , . . . , z

αi+1
i )

0 ∗

) (
g′i
∗

)
=

(
Pi(v1, . . . , vi)

vi+1

)
.

We do not introduce any new complex computation to check whether g is an
annihilator of f . Namely, we compute the values of g at points which are not
introduced yet. This can be done by updating a vector storing the evaluations
of g at each point considered so far, where a new step leads to a linear number
of operations (corresponding to the number of coordinates). Again, the overal
cost of this computation is quadratic on the number of points.

The arithmetic complexity AC(N) of the proposed algorithm is given by
AC(N) = AC(N − 1) + const · i + O(D). An simple computation shows that
AC(N) = O(t2 + tD). Since t is the number of monomials occurring in a mini-
mum degree annihilator of f , t has the same order of magnitude as D. This is
summarized in the following proposition:

Proposition 3. The arithmetic complexity of Alg. 1 to compute the minimum
degree d of an annihilator of f is O(D2).

In order to obtain the quadratic behavior, it is necessary to handle memory
allocation with care (in particular, management of the extension operations on
the matrix are delicate, and a bad memory allocation leads to an implementation
cubic in space and time). We finally remark that the above method can also be
used to construct functions with high algebraic immunity.



3.4 Computing All Minimum Degree Annihilators

In this section, we explain how to modify Alg. 1 to compute all minimum-degree
annihilators g of a polynomial f . Notice that Ann(f, d) := {g ∈ 〈xE≤d〉 ⊆
F[x]|fg = 0} is a vector space. Consequently, we only have to compute a ba-
sis of Ann(f, d), and this for the minimum value of d. The idea of the method
proposed here is to run Alg. 1 until we find the first annihilator together with
d. Then, the algorithm searches for further annihilators, considering only expo-
nents in E≤d. In addition, if αi is the exponent lastly introduced and resulting
in an annihilator, we can execute a further search without αi (this can be im-
plemented by backtracking the last update). The reason is that if g and g′ 6= g
are both annihilators which contain xαi , then one can construct another annihi-
lator g ⊕ g′ which is independent of xαi . Hence, the new algorithm can still be
run incrementally, and it terminates after introduction of αD. As the number of
steps required to find the first annihilator is of the same order of magnitude as
D, the asymptotic performance of the new algorithm does not increase. This is
resumed in the following proposition:

Proposition 4. The above modifications of Alg. 1 allow to compute the min-
imum degree d of an annihilator of f , and a basis of Ann(f, d), using O(D2)
arithmetic operations.

3.5 Experimental Results

In this section, we apply Alg. 1 to two particular families of Boolean power func-
tions: the inverse functions and the Kasami type functions (see [10]). We veri-
fied that an implementation of the algorithm in C code followed the announced
quadratic time complexity on the number of variables.

The inverse function is of particular interest, since this function is used with
n = 8 variables in the S-box of AES, and almost directly as a filtering function
in SFINKS [6]. For different values of n, Tab. 1 lists the power exponent of
the function f (which is equal to −1 here), its weight, its algebraic degree, its
nonlinearity and its algebraic immunity.

The Kasami functions in n variables have exponents of the form 22k− 2k +1
with gcd(k, n) = 1 and k ≤ n/2. These functions are of interest since we can see
that, for the number n of variables which is currently usual in cryptography, they
have a high algebraic immunity.6 We consider several Kasami type exponents
(where gcd(k, n) may be different from 1), see Tab. 1. For n = 12, 16, 20, we
converted non-balanced functions to balanced ones by flipping the first entries
in the truth tables. For the first time, we accomplish computation of the AI of
a function with 20 variables, AI = 9 and good nonlinearity.

6 However, it is shown in [24] that Kasami functions have bad algebraic immunity
when n is very large.



Table 1. Computation of the weight, degree, nonlinearity and algebraic immunity for
the inverse function and some Kasami power functions for 12 ≤ n ≤ 20

Inverse function Kasami power functions

n exp. weight deg. nonlin. AI exp. weight deg. nonlin. AI
12 −1 2048 11 1984 5 993 2048 11 1984 5
13 −1 4096 12 4006 6 993 4096 6 212 − 26 6
14 −1 8192 13 8064 6 4033 8192 6 213 − 27 6
15 −1 214 14 16204 6 4033 214 7 214 − 28 7
16 −1 215 15 215 − 28 6 214 − 27 + 1 215 15 215 − 27 7
17 −1 216 16 65174 7 214 − 27 + 1 216 8 216 − 28 8
18 −1 217 17 217 − 29 7 216 − 28 + 1 217 9 217 − 29 8
19 −1 218 18 261420 7 216 − 28 + 1 218 9 218 − 29 9
20 −1 219 19 219 − 210 7 218 − 29 + 1 219 19 219 − 29 9

4 Efficient Computation of Immunity against Fast
Algebraic Attacks

Let us first introduce some notation for this section. Any Boolean function f
with an n-bit input vector x := (x1, . . . , xn) can be characterized by its truth
table T (f) := (f(0), . . . , f(2n − 1)) ∈ F2n

or by its algebraic normal form
f(x) =

⊕
α fαxα, with coefficients fα ∈ F, multi-indices α ∈ Fn (which can

also be identified by their integers) and the abbreviation xα := xα1
1 · · ·xαn

n . Con-
sequently, we define the coefficient vector of f by C(f) := (f0, . . . , f2n−1) ∈ F2n

.
Given a Boolean function f with n input variables, the goal is to decide

whether g of degree e and h of degree d exist, such that fg = h. The known
function f is represented preferably by the truth table T (f), which allows to
efficiently access the required elements, and the unknown functions g and h are
represented by the coefficient vectors C(g) and C(h), which leads to the simple
side conditions gβ = 0 for |β| > e and hγ = 0 for |γ| > d. In order to decide
if g and h exist, one has to set up a number of linear equations in gβ and hγ .
Such equations are obtained, e.g., by evaluation of f(z) ·

⊕
β gβzβ =

⊕
γ hγzγ

for some values of z. There are D + E variables, so one requires at least the
same number of equations. The resulting system of equations can be solved by
Gaussian elimination with time complexity O((D+E)3) = O(D3). If any D+E
equations are linearly independent, then no nontrivial g and h of corresponding
degree exist. Otherwise, one may try to verify a nontrivial solution. Certainly,
there are more sophisticated algorithms, namely we are able to express a single
coefficient hγ as a linear combination of coefficients gβ . If these relations hold
for any value of γ, one may choose γ with |γ| > d such that hγ = 0, in order to
obtain relations in gβ only. Consequently, equations for coefficients of g can be
completely separated from equations for coefficients of h. As there are only E
variables gβ , one requires at least E equations, and the system of equations can
be solved in O(E3). Depending on the parameters n, d, e and on the structure
of f , there are different strategies how to efficiently set up equations.



4.1 Setting up Equations

In this section, we consider the product fg = h where f , g and h are arbitrary
Boolean functions in n variables. Here are some additional notational conven-
tions: For α, β, γ ∈ Fn, let α ⊆ β be an abbreviation for supp(α) ⊆ supp(β),
where supp(α) := {i|αi = 1}, and let α ∨ β := (α1 ∨ β1, . . . , αn ∨ βn). For
B,C ∈ F2n

, we define the scalar product B ·C :=
⊕2n−1

k=0 [B]k · [C]k. All expres-
sions are modulo 2 here. With the following theorem, we are able to express a
single coefficient hγ as a linear combination of coefficients gβ , where the linear
combination is computed either with T (f) or with C(f).

Theorem 1. Let f(x) =
⊕

α fαxα and g(x) =
⊕

β gβxβ. Set h(x) =
⊕

γ

hγxγ := f(x) · g(x). With Ai,j ∈ F and Bi,j ∈ F2n

, we have for each γ

hγ =
⊕

β

(
γ

β

)
Aγ,β · gβ (6)

Ai,j := Bi,j · T (f) = Bi,i−j · C(f) (7)

[Bi,j ]k :=
(

i

k

)
·
(

k

j

)
. (8)

Proof. The binary Moebius transform relates the ANF of a Boolean function
with the corresponding truth table, namely considering Lucas’ theorem f(k) =⊕

α

(
k
α

)
fα =

⊕
α⊆k fα and fk =

⊕
α

(
k
α

)
f(α) =

⊕
α⊆k f(α). We obtain the

relation hγ =
⊕

α⊆γ f(α)g(α). With g(α) =
⊕

β⊆α gβ , this becomes hγ =⊕
α⊆γ

⊕
β⊆α gβf(α). Rearranging the coefficients, we finally have the prod-

uct hγ =
⊕

β⊆γ gβ

⊕
β⊆α⊆γ f(α) =

⊕
β

(
γ
β

)
gβBγ,β · T (f). In order to prove

the second relation, we multiply the ANF of both functions and obtain hγ =⊕
α∨β=γ fαgβ . This binary sum can then be partitioned according to hγ =⊕
β⊆γ gβ

⊕
α⊆γ;α∨β=γ fα. With Lucas’ theorem again, we have the relation hγ =⊕

β⊆γ gβ

⊕
γ−β⊆α⊆γ fα =

⊕
β

(
γ
β

)
gβBγ,γ−β · C(f). ut

4.2 Determining the Existence of Solutions

We propose an efficient algorithm to determine the existence of g and h with
corresponding degrees, see Alg. 2. The algorithm is based on the equation hγ =⊕

β⊆γ gβ

⊕
β⊆α⊆γ f(α), which is a variant of Th. 1.

Let us discuss the complexity of Alg. 2. Initialization of G takes at most
O(E2) time and memory, and I can be constructed in O(E) time. Iteration
initiates by choosing a fixed γ of weight d + 1, this step will be repeated E
times to set up the same number of equations. Notice that the set {γ : |γ| =
d + 1} is sufficient to choose E different values of γ, as E <

(
n

d+1

)
in the case

of e � d and d ≈ n/2 (which is the typical scope of fast algebraic attacks).
Thereafter, one chooses a fixed β of weight b. This step will be repeated for all(
d+1

b

)
elements of weight b, and for all b = 0, . . . , e. Given this choice of γ and β,

we find |A| = 2d+1−b, which corresponds to the number of operations to compute



Algorithm 2 Determine the existence of g and h for any f

Input: A Boolean function f with n input variables and two integers 0 ≤ e ≤ AI(f)
and AI(f) ≤ d ≤ n.

Output: Determine if g of degree at most e and h of degree at most d exist such that
fg = h.

1: Initialize an E × E matrix G, and let each entry be zero.
2: Compute an ordered set I ← {β : |β| ≤ e}.
3: for i from 1 to E do
4: Choose a random γ with |γ| = d + 1.
5: Determine the set B ← {β : β ⊆ γ, |β| ≤ e}.
6: for all β in B do
7: Determine the set A ← {α : β ⊆ α ⊆ γ}.
8: Compute A←

L
A f(α).

9: Let the entry of G in row i and column β (in respect to I) be 1 if A = 1.
10: end for
11: end for
12: Solve the linear system of equations, and output no g and h of corresponding

degree if there is only a trivial solution.

A. Overall complexity of the iteration becomes E
∑e

b=0

(
d+1

b

)
2d+1−b < E(e +

1)
(
d+1

e

)
2d+1 < DE2, where the last inequality holds in the specified range of

parameters. Time complexity of the final step of Alg. 2 is O(E3). The dominating
term, and hence complexity of Alg. 2 corresponds to O(DE2). Compared to the
complexity O(D3) of Alg. 2 in [21], Alg. 2 is very efficient for g of low degree.

4.3 Experimental Results

In [15], a class of (non-symmetric) Boolean functions f with maximum algebraic
immunity is presented; these functions will be referred here as DGM functions.
Application of Alg. 2 on their examples for n = 5, 6, 7, 8, 9, 10 reveals that h
and g exist with d = AI(f) = dn/2e and e = 1. We point out that this is
the most efficient situation for a fast algebraic attack. Explicit functions g with
corresponding degree are also obtained by Alg. 2, see Tab. 2 (where dim denotes
the dimension of the solution space for g of degree e). A formal expansion of
f(x) · g(x) was performed to verify the results. A reaction on this attack is
presented in [16].

5 Efficient Computation of Immunity for Symmetric
Functions

Consider the case that f(x) is a symmetric Boolean function. This means that
f(x) = f(x1, . . . , xn) is invariant under changing the variables xi. Therefore,
we have f(y) = f(y′) if |y| = |y′| and we can identify f with its (abbreviated)
truth table T s(f) := (fs(0), . . . , fs(n)) ∈ Fn+1 where fs(i) := f(y) for a y with
|y| = i. Let σi(x) :=

⊕
|α|=i xα denote the elementary symmetric polynomial of



Table 2. Degrees of the functions h and g for DGM functions f with n input variables

n deg f deg h deg g g dim

5 4 3 1 1 + x4 4
6 4 3 1 1 + x6 4
7 5 4 1 1 + x4 + x5 1
8 5 4 1 1 + x5 + x6 1
9 8 5 1 x4 + x5 + x6 + x7 1

10 8 6 1 x5 + x6 + x7 + x8 1

degree i. Then, each symmetric function f can be expressed by f(x) =
⊕

fs
i σi(x)

with fs
i ∈ F. Similarly to the non-symmetric case, f can be identified with its

(abbreviated) coefficient vector Cs(f) := (fs
0 , . . . , fs

n) ∈ Fn+1.
In this section, we present a general analysis of the resulting system of equa-

tions for symmetric functions and propose a generic and a specific algorithm in
order to determine the existence of g and h of low degrees.

5.1 Setting up Equations

One can derive a much simpler relation for the coefficients hγ in the case of
symmetric functions f .

Corollary 1. Let f(x) =
⊕n

i=0 fs
i σi(x) be a symmetric function and g(x) =⊕

β gβxβ. Set h(x) =
⊕

γ hγxγ := f(x) · g(x). Then, with As
i,j ∈ F and Bs

i,j ∈
Fn+1, we have for each γ

hγ =
⊕

β

(
γ

β

)
As
|γ|,|β| · gβ (9)

As
i,j := Bs

i,j · T s(f) = Bs
i,i−j · Cs(f) (10)

[
Bs

i,j

]
k

:=
(

i− j

i− k

)
. (11)

Proof. Notice that Th. 1 holds for any function f , including symmetric functions.
Computation of Aγ,β = Bγ,β ·T (f) for symmetric functions may be simplified by
collecting all terms of the truth table with the same weight. Therefore, let i := |γ|
and j := |β| and define [Bs

i,j ]k :=
⊕

|α|=k[Bγ,β ]α, such that Aγ,β = As
i,j :=

Bs
i,j · T s(f). For j ≤ i we have

⊕
|α|=k

(
γ
α

)(
α
β

)
=

⊕
|α|=k;β⊆α⊆γ 1. Counting the

number of choices of the k elements of the support of α, we find that the above
sum equals

(
i−j
k−j

)
. The proof of As

i,j = Bs
i,i−j · Cs(f) is similar. ut



5.2 Determining the Existence of Solutions

Given a symmetric function f , the existence of g and h with corresponding
degrees can be determined by an adapted version of Alg. 2 (which will be referred
as Alg. 2s): step 7 is omitted, and step 8 is replaced by A← As

i,j . The discussion
of this slightly modified algorithm is similar to Sect. 4.2. However, computation
of As

i,j requires only n + 1 evaluations of the function f , which can be neglected
in terms of complexity. Consequently, time complexity to set up equations is
only about O(E2), and overall complexity of Alg. 2s becomes O(E3).

Next, we will derive a method of very low (polynomial) complexity to de-
termine the existence of g and h of low degree for a symmetric function f , but
with the price that the method uses only sufficient conditions (i.e. some solutions
may be lost). More precisely, we constrict ourselves to homogeneous functions
g of degree e (i.e. g contains monomials of degree e only), and Eq. 9 becomes
hγ = As

|γ|,e
⊕

|β|=e

(
γ
β

)
gβ . Remember that hγ = 0 for |γ| > d, so the homoge-

neous function g is determined by the corresponding system of equations for all
γ with |γ| = d + 1, . . . , n. In this system, the coefficient As

|γ|,e is constant for(
n
|γ|

)
equations. If As

|γ|,e = 0, then all these equations are linearly dependent
(i.e. of type 0 = 0). On the other hand, if As

|γ|,e = 1, then a number of
(

n
|γ|

)
additional equations is possibly linearly independent. Consequently, if the sum
of all possibly linearly independent equations for |γ| = d + 1, . . . , n is smaller
than the number of variables

(
n
e

)
, then nontrivial homogeneous functions g exist.

This sufficient criterion is formalized by

n∑
i=d+1

As
i,e ·

(
n

i

)
<

(
n

e

)
. (12)

Given some degree e, the goal is to find the minimum value of d such that Eq. 12
holds. This can be done incrementally, starting from d = n. We formalized Alg. 3
of polynomial complexity O(n3). This algorithm turned out to be very powerful
(but not necessarily optimal) in practice, see Sect. 5.4 for some experimental
results.

Algorithm 3 Determine the degrees of g and h for symmetric f

Input: A symmetric Boolean function f with n input variables.
Output: Degrees of specific homogeneous functions g and h such that fg = h.
1: for e from 0 to dn/2e do
2: Let d← n, number of equations ← 0, number of variables ←

`
n
e

´
.

3: while number of equations < number of variables and d + 1 > 0 do
4: Compute A← As

d,e.
5: Add A ·

`
n
d

´
to the number of equations.

6: d← d− 1.
7: end while
8: Output deg g = e and deg h = d + 1.
9: end for



For a specified class of symmetric Boolean functions f , it is desirable to prove
some general statements concerning the degrees of g and h for any number of
input variables n. In the next section, we apply technique based on Alg. 3 in
order to prove a theorem for the class of majority functions.

5.3 Fast Algebraic Attacks on the Majority Function

We denote by f the symmetric Boolean majority function with n ≥ 2 input vari-
ables, defined by fs(i) := 0 if i ≤ bn/2c and fs(i) := 1 otherwise. For example,
T s(f) := (0, 0, 1) for n = 2, and T s(f) := (0, 0, 1, 1) for n = 3. The algebraic de-
gree of this function is 2blog2 nc. In [7] and [17], it could be proven independently
that f has maximum algebraic immunity7. However, in the following theorem, we
disclose the properties of f (and related functions) with respect to fast algebraic
attacks.

Theorem 2. Let f be the majority function with any n ≥ 2 input variables.
Then there exist Boolean functions g and h such that fg = h, where d := deg h =
bn/2c+ 1 and e := deg g = d− 2j, and where j ∈ N0 is maximum so that e > 0.

Proof. According to Eq. 9 for symmetric functions, we set up a system of equa-
tions in the coefficients of g only. The coefficients As

i,j of Eq. 10 have a sim-
ple form in the case of the majority function, namely As

i,j =
⊕

k≥d

(
i−j
k−j

)
=⊕

k≥d

(
i−j−1
k−j−1

)
+

⊕
k≥d

(
i−j−1
k−j

)
=

(
i−j−1
d−j−1

)
+2

⊕
k≥d

(
i−j−1
k−j

)
=

(
i−j−1
d−j−1

)
for i > d.

Additionally, we assume that g is homogeneous of degree e := d− 2j where j is
chosen maximum such that e ≥ 1. According to Lucas’ theorem, we find As

d+i,e =
0 for 1 ≤ i < d − e. Consequently, only equations with |γ| = 2d − e, . . . , n may
impose conditions on the coefficients gβ . As we can show that

∑e−1
i=0

(
n
i

)
<

(
n
e

)
,

the sufficient criterion (12) is satisfied, and nontrivial solutions exist. ut

Algebraic and fast algebraic attacks are invariant with regard to binary
affine transformations in the input variables. Consequently, Th. 2 is valid for
all Boolean functions which are derived from the majority function by means of
affine transformations. We notice that such a class of functions was proposed in
a recent paper, discussing design principles of stream ciphers [5, 6].

5.4 Experimental Results

Application of Alg. 2s reveals that Th. 2 is optimal for the majority function
where d = bn/2c+ 1 (verification for n = 5, 6, . . . , 16). An explicit homogeneous
function g can be constructed according to g(x) =

∏e
i=1(x2i−1+x2i). We verified

that Alg. 3 can discover the solutions of Th. 2.
In [7], a large pool of symmetric Boolean functions with maximum algebraic

immunity is presented (defined for n even). One of these functions is the ma-
jority function, whereas the other functions are nonlinear transformations of
7 Notice that for n odd, it is verified in [17] up to n = 11 that the majority function

is the only symmetric Boolean function with maximum AI.



the majority function. Application of Alg. 3 brings out that Th. 2 is valid for
all functions f (verification for n = 6, 8, . . . , 16). For some functions f , Alg. 3
finds better solutions than predicted by Th. 2 (e.g. for T s(f) := (0, 0, 0, 1, 1, 0, 1)
where d = 3 and e = 1), which means that Th. 2 is not optimal for all symmet-
ric functions. All solutions found by Alg. 3 can be constructed according to the
above equation. Furthermore, Alg. 2s finds a few solutions which are (possibly)
better than predicted by Alg. 3 (e.g. for T s(f) := (0, 0, 0, 1, 1, 1, 0) where d = 3
and e = 2), which means that Alg. 3 is not optimal for all symmetric functions.

6 Conclusions

In this paper, several efficient algorithms have been derived for assessing resis-
tance of LFSR-based stream ciphers against conventional as well as fast algebraic
attacks. This resistance is directly linked to the Boolean output function used.
In many recent proposals, the number of inputs for this function is about 20
or larger. For such input sizes, verification of immunity against (fast) algebraic
attacks by existing algorithms is infeasible. Due to improved efficiency of our
algorithms, provable resistance of these stream ciphers against conventional and
fast algebraic attacks has become amenable. Our algorithms have been applied
to various classes of Boolean functions. In one direction the algebraic immunity
of two families of Boolean power functions, the inverse functions and Kasami
type functions, have been determined. For the first time, the algebraic immunity
AI of a highly nonlinear function with 20 variables is computed to be as large
as AI = 9. In another direction, our algorithms have been applied to demon-
strate that large classes of Boolean functions with optimal algebraic immunity
are very vulnerable to fast algebraic attacks. This applies in particular to classes
of symmetric functions including the majority functions.
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