
Alien vs. Quine, The Vanishing Circuit

And Other Tales From The Industry’s Crypt

Vanessa Gratzer1 David Naccache1+2

1. Université Paris ii Panthéon-Assas 2. École Normale Supérieure

Hall Goullencourt, casier 55 Équipe de Cryptographie
12 place du Panthéon 45 rue d’Ulm

f-75231 Paris cedex 05 f-75230 Paris cedex 05
vanessa.gratzer@gmail.com david.naccache@ens.fr

Abstract. In this talk we will illustrate the everyday challenges met by embedded
security practitioners by five real examples. All the examples were actually encountered
while designing, developing or evaluating commercial products.

This note, which is not a refereed research paper, presents the details of one of these
five examples. It is intended to help the audience follow that part of our presentation.

1 Foreword

When I was asked to give this talk, I was delighted, but a bit concerned.

What in my brief decade in the card industry would be of interest to a group
of practitioners far more experienced in security than myself?

What will my story be?

As I started to question ex-colleagues, competitors and suppliers, I quickly
realized that the problem would be in deciding what to leave out rather than
what to include. I was finally able to narrow my list to five examples.

The first ones will deal with an electronic circuit that mysteriously vanished
into thin air, des and rsa key-management in early-generation cards, a crypto-
graphic watchdog chasing own tail and the story of the industry’s first on-board
sensors.

This note, which is not a refereed paper, presents the details of the fifth
example – coauthored with one of my students. It is intended to help the audi-
ence follow that part of the talk – a talk that I dedicate to the memory of our
friends and colleagues Prof. Dr. Thomas Beth (1949–2005) and Prof. Dr. Hans
Dobbertin, (1952–2006).

David Naccache



2 Introduction

Aliens are a fictional bloodthirsty species from deep space that reproduce as par-
asites. Aliens lay eggs that release araneomorph creatures (facehuggers) when
a potential host comes near. The facehugger slides a tubular organ down the
victim’s throat, implanting a larva in the victim’s stomach.

Within a matter of hours the larva evolves into a chestburster and emerges,
violently killing the host; chestbursters develop quickly and the cycle restarts.

Just as Aliens, rootkits, worms, trojans and viruses penetrate healthy sys-
tems and, once in, alter the host’s phenotype or destroy its contents. Put dif-
ferently, malware covertly inhabits seemingly normal systems until something
triggers their awakening.

As illustrated recently [4], detecting new malware species may be a nontriv-
ial task. In theory, the easiest way to exterminate malware is a disk reformat
followed by an os reinstallation from a trusted distribution cd. This relies on
the assumption that computers can be forced to boot from trusted media.

However, most modern pcs have a flash bios. This means that the code-
component in charge of booting has been recorded on a rewritable memory
chip that can be updated by specific programs called flashers or, sometimes, by
malware such as the cih (Tchernobyl) virus.

Hence, a natural question arises:

How can we ascertain that malware did not re-flash the bios to derail
disk reformatting attempts and simulate their successful completion?

Flash smart cards1 are equally problematic. Consider a sim-card produced
by Alice and sold empty to Bob. Bob keys the card. Alice reveals an os code
but flashes a malware simulating the legitimate os. When some trigger-event
occurs2 the malware responds (to Alice) by revealing Bob’s keys.

This note describes methods allowing Bob to check that sims bought from
Alice contain no malware. Bob’s only assumption is that his knowledge of the
device’s hardware specifications is correct.

In biology, the term Alien refers to organisms introduced into a foreign locale.
Alien species usually wreak havoc on their new ecosystems – where they have
no natural predators. In many cases, humans deliberately introduce matching
predators to eradicate the alien species. This is the approach taken here.

Related topic: What we try to achieve differs fundamentally from program
competitions for the control of a virtual computer, such as Core War. Here the
verifier cannot see what happens inside a device and seeks to infer the machine’s
state given its behavior.

1 e.g. sst Emosyn, Atmel at90sc3232, Infineon sle88cfx4000p, Electronic Marin’s emtcg, etc.
2 e.g. a specific 128-bit challenge value sent during the gsm authentication protocol.

2



3 The Arena

We tested the approach on Motorola’s 68hc05, a very common eight-bit micro-
controller (more than five billion units sold). The chip’s specifications were very
slightly modified to better reflect the behavior of a miniature pc.

The 68hc05 has an accumulator A, an index register X, a program counter
PC (pointing to the memory instruction being executed), a carry flag C and a
zero flag Z indicating if the last operation resulted in a zero or not. We denote
by ζ(x) a function returning one if x = 0 and zero otherwise (e.g. ζ(x) = b2−xc).

The platform has ` ≤ 216 = 65536 memory bytes denoted M[0], . . . , M[`− 1].
Any address a ≥ ` is interpreted as a mod `. We model the memory as a state
machine insensitive to power-off. This means that upon shut-down, execution
halts and the machine’s ram is backed-up in non-volatile memory. Reboot re-
stores ram, resets A, X, C and Z and launches execution at address 0x0002

(which alias is start).

The very first ram state (digital genotype) is recorded by the manufacturer
in the non-volatile memory. Then the device starts evolving and modifies its
code and data as it interacts with the external world.

The machine has two i/o ports (bytes) denoted In and Out. Reading In

allows a program to receive data from outside while assigning a value to Out

displays this value outside the machine. In and Out are located at memory cells
M[0] and M[1] respectively. Out’s value is restored upon reboot (In isn’t). If the
device attempts to write into In, execute In or execute Out, execution halts.

The (potentially infested) system pretends to implement an os function
named Install(p). When given a string p, Install(p) installs p at start.
We do not exclude the possibility that Install might be modified, mimicked
or spied by malware. Given that the next reboot will grant p complete control
over the chip, Install would typically require some cryptographic proof before
installing p.

We reproduce here some of the 68hc05’s instructions (for the entire set see
[3]). β denotes the function allowing to encode short-range jumps3.

effect lda i sta i bne k bra k

new A ← M[i mod `]

new X ←
new Z ← ζ(new A) ζ(A)

effect on M M[i mod `] ← A

new PC← PC + 2 mod ` PC + 2 mod ` β(PC, Z, k, `) β(PC, 0, k, `)

opcode 0xB6 0xB7 0x26 0x20

cycles 3 4 3 3

3 The seventh bit of k indicates if k mod 128 should be regarded as positive or negative, i.e.

β(PC, z, k, `) =

�
PC + 2 + (1− z)×

�
k − 256×

�
k

128

���
mod `

3



effect inca incx lda ,X ldx ,X

new A ← A + 1 mod 256 M[X]

new X ← X + 1 mod 256 M[X]

new Z ← ζ(new A) ζ(new X) ζ(new A) ζ(new X)

effect on M

new PC← PC + 1 mod ` PC + 1 mod ` PC + 1 mod ` PC + 1 mod `

opcode 0x4C 0x5C 0xF6 0xFE

cycles 3 3 3 3

effect ldx i sta i,X lda i,X tst i

new A ← M[i + X mod `]

new X ← M[i mod `]

new Z ← ζ(new X) ζ(A) ζ(new A) ζ(M[i mod `])

effect on M M[i + X mod `] ← A

new PC← PC + 2 mod ` PC + 2 mod ` PC + 2 mod ` PC + 2 mod `

opcode 0xBE 0xE7 0xE6 0x3D

cycles 3 5 4 4

effect ora i inc i stx i

new A ← A ∨ M[i mod `]

new X ← ζ(X)

new Z ← ζ(new A) ζ(new M[i mod `])

effect on M M[i mod `] ← M[i mod `] + 1 mod 256 M[i mod `] ← X

new PC← PC + 2 mod ` PC + 2 mod ` PC + 2 mod `

opcode 0xBA 0x3C 0xBF

cycles 3 5 4

4 Quines as Malware Predators

A Quine (named after the logician Willard van Orman Quine) is a program
that prints a copy of its own code [1, 2]. Writing Quines is a tricky programming
exercise yielding Lisp, C or natural language examples such as:

((lambda (x) (list x (list (quote quote) x)))

(quote (lambda (x) (list x (list (quote quote) x)))))

char *f="char*f=%c%s%c;main(){printf(f,34,f,34,10);}%c";
main() {printf(f,34,f,34,10);}

Copy the next sentence twice. Copy the next sentence twice.

We start by loading a Quine into the tested computer. The device might
be under the malware’s total spell. The malware might hence neutralize the
Quine or even analyze it and mutate (adapt its own code in an attempt to fool
the verifier). As download ends, we start a protocol, called phenotyping, with
whatever survived inside the platform.

4



Phenotyping will allow us to prove (Section 5) or assess the conjecture (Sec-
tion 4) that the Quine survived and is now in full control of the platform. If
the Quine survived we use it to reinstall the os and eliminate itself; otherwise
we know that the platform is infected. As we make no assumptions on the mal-
ware’s malefic abilities, there exist extreme situations where decontamination
by software is impossible. A trivial case is a malware controlling the i/o port
and not letting anything new in. Under such extreme circumstances the algo-
rithms presented in this note will only detect the malware but will be of no
avail to eliminate it.

The underlying idea is that, upon activation, the Quine will (allegedly!) start
dumping-out its own code plus whatever else found on board. We then prove or
conjecture that the unique program capable of such a behavior, under specific
complexity constraints, is only the Quine itself.

In several aspects, the setting is analogous to the scenario of Alien vs. Preda-
tor, where a group of humans (os and legitimate applications) finds itself in the
middle of a brutal war between two alien species (malware, Quine) in a confined
environment (68hc05).

5 Space-Constrained Quines

We start by analyzing the simple Quine given below (Quine1.asm). This 19-
byte program inspects ` = 256 bytes platforms. Quine1 is divided into three
functional blocks separated by artificial horizontal lines. First, a primitive com-
mand dispatcher reads a byte from In and determines if the verifier wants to
read the device’s contents (In = 0) or write a byte into the ram (In 6= 0).

As the program enters print the index register is null. print is a simple
loop causing 256 bytes to be sent out of the device. As the loop ends, the device
re-jumps to start to interpret a new command.

The store block queries a byte from the verifier, stores it in M[X] and re-
jumps to start.

start: ldx In ; X←In 0xBE 0x00

bne store ; if X 6=0 goto store 0x26 0x09

print: lda M,X ; A←M[X] 0xE6 0x00

sta Out ; Out←A 0xB7 0x01

incx ; X++ 0x5C

bne print ; if X 6=0 goto print 0x26 0xF9

bra start ; if X=0 goto start 0x20 0xF3

store: lda In ; A←In 0xB6 0x00

sta M,X ; M[X]←A 0xE7 0x00

bra start ; goto start 0x20 0xED

5



The associated phenotyping φ1 is the following:

1. Install(Quine1.asm) and reboot.

2. Feed Quine1 with 235 random bytes to be stored at M[21], . . . , M[255].

3. Activate print (command zero) and compare the observed output to:

s1 = 0x00 0x00 0xBE 0x00 0x26 0x09 0xE6 0x00 0xB7 0x01

0x5C 0x26 0xF9 0x20 0xF3 0xB6 0x00 0xE7 0x00 0x20

0xED M[21], . . . , M[255]

Is Quine1.asm the only nineteen-byte program capable of always printing
s1 when subject to φ1?

We conjecture so although (unlike the variant presented in the next section)
we are unable to provide a formal proof. To illustrate the difficulty, consider a
slight variant:

start: ldx In ; X←In 0xBE 0x00

bne store ; if X 6=0 goto store 0x26 0x0B

label: tst label ; 0x3D 0x06

print: lda M,X ; A←M[X] 0xE6 0x00
...

... ; same code as in Quine1

For all practical purposes, this modification (Quine2.asm)4 has nearly no
effect on the program’s behavior: instead of printing s1, this code will print:

s2 = 0x00 0x00 0xBE 0x00 0x26 0x0B 0x3D 0x06 0xE6 0x00

0xB7 0x01 0x5C 0x26 0xF9 0x20 0xF1 0xB6 0x00 0xE7

0x00 0x20 0xEB M[23], . . . , M[255]

Let Quine3 be Quine2 where tst is replaced by inc.

When executed, inc will increment the memory cell at address label which
is precisely inc’s own opcode. But since inc’s opcode is 0x3C, execution will
transform 0x3C into 0x3D which is... the opcode of tst.

All in all, φ2 does not allow to distinguish a tst from an inc present at
label, as both Quine2 be Quine3 will output s2.

The subtlety of this example shows that a microprocessor-Quine-pheno-
typing triple {µ,Q, φ} rigorously defines a problem:

Given a state machine µ find a state M (malware) that simulates the
behavior of a state Q (legitimate os) when µ is subject to stimulus φ
(phenotyping).

4 φ1 should be slightly twitched as well (233 random values to write).

6



Security practitioners can proceed by analogy to the assessment of cryp-
tosystems which specifications are published and submitted to public scrutiny.
If an M simulating Q with respect to φ is found, a fix can either replace Q or
φ or both. Note the analogy: Given a stream-cipher µ and a key Q (defining an
observed cipher-steam φ), prove that the key Q has no equivalent-keys M .

An alternative solution, described in the next section, consists in proving
the Quine’s behavior under the assumption that the verifier is allowed to count
clock cycles (state transitions if µ is a Turing Machine).

6 Time-Constrained Quines

Consider the following program loaded at address start:

start: ldx In ; 3 cycles ; X←In (instruction I1)

stx Out ; 4 cycles ; Out←X (instruction I2)
...

... ; ; other instructions

Latch a first value v1 at In and reboot, as seven cycles elapse v1 pops-up at
Out. If we power-off the device before the eighth cycle and reboot, v1 reappears
on Out5 immediately. Repeating the process with values v2 and v3, we witness
two seven-cycle transitions v1 Ã v2 and v2 Ã v3.

It is impossible to modify two memory cells in seven cycles as all instructions
capable of modifying a memory cell require at least four cycles. Hence we are
assured that between successive reboots, the only memory changes are in Out.
This means that no matter what the examined code is, this code has no time
to mutate in seven cycles and necessarily remains invariant between reboots.

The instructions other than sta and stx capable of modifying directly Out

are: ror, rol, neg, lsr, lsl, asl, asr, bset, bclr, clr, com, dec and inc.
Hence, it suffices to select v2 6= dir(v1) and v3 6= dir(v2), where dir stands for
any of the previous instructions6, to ascertain that Out is being modified by an
sta or an stx (we also need v1 6= v2 6= v3 to actually see the transition).

v1 = 0x04, v2 = 0x07, v3 = 0x10 satisfy these constraints.

As reading or computing with a memory cell takes at least three cycles there
are only four cycles left to alter the contents of Out; consequently, the only sta

and stx instructions capable of causing the transitions fast enough are:

I2 ∈ sta Out stx Out sta ,X stx, X

5 Out being a memory cell, its value is backed-up upon power-off.
6 for ror and rol, consider the two sub-cases C = 0 and C = 1.

7



To aim at Out (which address is 0x0001), sta ,X and stx ,X would require
an X=0x01 but this is impossible (if the code takes the time to assign a value
to X it wouldn’t be able to compute the transition’s value by time). Hence, we
infer that the code’s structure is:

start: ??? ??? ; 3 cycles ; an instruction causing • ←In

st• Out ; 4 cycles ; an instruction causing Out← •
...

... ; ; other instructions

where • stands for register A or register X. The only possible code fragments
capable of doing so are:

I1

I2
∈

adc In adc ,X add In add ,X eor In eor ,X

sta Out sta Out sta Out sta Out sta Out sta Out

lda In lda ,X ora In ora ,X ldx In ldx ,X

sta Out sta Out sta Out sta Out stx Out stx Out

There is no way to further refine the analysis without more experiments, but
one can already guarantee that as the execution of any of these fragments ends,
the machine’s state is either SA = {A = v3, X = 0x00} or SX = {A = 0x00, X =
v3}.

Now assume that Out = v3 = 0x10. Consider the code:

start: ldx In ; 3 cycles ; X←In

stx Out ; 4 cycles ; Out←X

lda ,X ; 3 cycles ; A←M[X] (instruction I3)

sta Out ; 4 cycles ; Out←A (instruction I4)
...

... ; ; other instructions

– Latch In← v4 = 0x02, reboot, wait fourteen cycles; witness the transition7

0x10 Ã 0x02 Ã 0xBE; power-off before the fifteenth cycle completes.

– Latch In← v6 = 0x04, reboot, wait fourteen cycles; witness the transition8

0xBE Ã 0x06 Ã 0xF6; power-off before the fifteenth cycle completes.

As v5 6= dir(v4) and v7 6= dir(v6) the second transition is, again, necessarily
caused by some member of the sta or stx families and, more specifically9 one
of the following:

7 v5 = 0xBE is the opcode of ldx, read from address 0x02
8 v7 = 0xF6 is the opcode of lda ,X, read from address 0x06
9 taking timing constraints into account and ruling-out stx ,X who can only cause an Out = 0x01,

a value never witnessed.

8



I4 ∈ sta Out stx Out sta ,X

I3 cannot be an instruction that has no effect on X and A as this will either
inhibit a transition or cause a transition to zero (remember: immediately before
the execution of I3 the machine’s state is either SA or SX). This rules-out eighteen
jump instructions as well as all cmp, bit, cpx, tsta and tstx variants. lda i
and ldx i are impossible as both would have forced 0x02 and 0x04 to transit
to the same constant value.

In addition, v5 6= dir(v4) implies that I3 cannot be a dir-variant operating
on A or X, which rules-out negx, nega, comx, coma, rorx, rora, rolx, rola,
decx, deca, dec, incx, inca, clrx, clra, lsrx, lsra, lslx, lsla, aslx, asla,
asrx and asra altogether.

As no carry was set, we sieve-out sbc and adc whose effects will be strictly
identical to sub i and add i (dealt with below).

add i, sub i, eor i, and i and ora i are impossible as the system

{
0x02 ? x=0xBE

0x06 ? x=0xF6

has no solutions when operator ? is substituted by +,−,⊕,∧ or ∨.

The only possible I3 candidates at this point are:

I3 ∈ sub ,X and ,X eor ,X ora ,X add ,X lda, X ldx ,X

But before the execution of I3 the machine’s state is:

SA = {A = 0x06, X = 0x00} or SX = {A = 0x00, X = 0x06}
The ",X" versions of sub, and, eor, ora and add are impossible because:

– if the device is in state SA we note that

0x06 ? 0x06 6= 0xF6 for ? ∈ {−,∨,⊕,∧+}

– and if the device is in state SX we note that

A − opcode(sub, X) = 0x00 − 0xF0 = 0x10 6= 0xF6

A ∧ opcode(and, X) = 0x00 ∧ 0xF4 = 0x00 6= 0xF6

A ⊕ opcode(eor, X) = 0x00 ⊕ 0xF8 = 0xF8 6= 0xF6

A ∨ opcode(ora, X) = 0x00 ∨ 0xFA = 0xFA 6= 0xF6

A + opcode(add, X) = 0x00 + 0xFB = 0xFB 6= 0xF6

9



ldx ,X is impossible as it would have caused a transition to opcode(ldx, X) =
0xFE 6= 0xF6 (if SX) or to 0x06 (if SA).

I3 is hence identified as being necessarily lda ,X.

It follows immediately that I4 = sta Out and that the ten register-A-type
candidates for {I1, I2} are inconsistent.

The phenotyped code is thus one of the following two:

ldx In ldx ,X

↘ ↙
stx Out

lda ,X

sta Out

Only the leftmost is capable of causing the observed transition 0x02 Ã 0xBE.

All in all, we have built a proof that the device actually executed the frag-
ment presented at the beginning of this section.

Extending the code further ahead to:

start: ldx In ; X←In 0xBE 0x00

stx Out ; Out←X 0xBF 0x01

print: lda ,X ; A←M[X] 0xF6

sta Out ; Out←A 0xB7 0x01

incx ; X← X + 1 0x5C

bne print ; if X 6= 0 goto print 0x26 0xFA

and subjecting the chip to three additional experiments, we observe:

In← 0x09 ⇒ 0xF6 Ã 0x09 Ã 0x5C

In← 0x0A ⇒ 0x5C Ã 0x0A Ã 0x26

In← 0x0B ⇒ 0x26 Ã 0x0B Ã 0xFA

Note that the identified code ”happens to” allow the verifier to inspect with
absolute certainty the platform’s first 256 bytes. The rest is clear. The verifier
does a last time measurement, allowing the Quine to print the device’s first 256
bytes (power-off as soon as the last bne iteration completes, to avoid falling into
the jaws of Aliens hiding beyond address 0x000B).

It remains to check the Quine’s payload (code between 0x000C and 0x00FF)
and unleash the Quine’s execution beyond address 0x000B. Quine won the game.

10



7 Questions

This work raises a number of intriguing questions: Is it possible to prove secu-
rity using only space constraints? In the negative, can we modify the assembly
language to allow such proofs10? Can space-constrained Quines solve space-
complete problems to flood memory instead of receiving random data?

Another interesting challenge consists in developing a time-constrained Quine
whose proof does not require rebooting but the observation of one long succes-
sion of transitions. We conjecture that such programs exist. A possible starting
point might be a code (not necessarily located at start) similar to:

loop: sta Out

lda In

sta Out

ldx In

stx Out

lda ,X

sta Out

bne loop

Here the idea is that the verifier will feed the Quine with values chosen
randomly in a specific set (to rule-out dir-variants) to repeatedly explore the
code’s immediate environment until some degree of certainty is acquired11.

If possible, this would have the advantage of making the Quine a function
automatically insertable into any application whose code needs to be authen-
ticated. Moreover, if we manage to constrain the capabilities of such a Quine,
e.g. not allow it read data beyond a given offset12, we could offer the selective
ability to audit critical program parts while preserving the privacy of others.
For instance, the code of an accounting program could be audited while secret
signature keys would provably remain out of the Quine’s reach.

Finally, as time-constrained phenotyping is extremely quick (a few clock
cycles), preserves nearly all the platform’s data and requires only table lookups
and comparisons, we currently try to extend the approach to more complex
microprocessors and implement it between chips in motherboards.

References

1. J. Burger, D. Brill and F. Machi, Self-reproducing programs, Byte, volume 5, August 1980, pp.
74–75.

10 The approach would analogous to Java bytecode which is purposely shaped to fit type-inference.
11 To exit the bne loop the verifier will purposely read a zero somewhere.
12 e.g. the example above cannot read data beyond address 255

11



2. D. Hofstadter, Godel, Escher, and Bach: An eternal golden braid, Basic Books, Inc. New York,
pp. 498–504.

3. Motorola Inc., 68hc(7)05h12 General release specifications, hc05h12grs/d Rev. 1.0, November
1998.

4. T. Zeller, The ghost in the cd; Sony bmg stirs a debate over software used to guard content,
The New York Times, c1, November 14, 2005.

12


