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Abstract. Despite well-known results in theoretical cryptography high-
lighting the vulnerabilities of unauthenticated encryption, the IPsec stan-
dards mandate its support. We present evidence that such “encryption-
only” configurations are in fact still often selected by users of IPsec in
practice, even with strong warnings advising against this in the IPsec
standards. We then describe a variety of attacks against such config-
urations and report on their successful implementation in the case of
the Linux kernel implementation of IPsec. Our attacks are realistic in
their requirements, highly efficient, and recover the complete contents of
IPsec-protected datagrams. Our attacks still apply when integrity pro-
tection is provided by a higher layer protocol, and in some cases even
when it is supplied by IPsec itself.
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1 Introduction

The need for authenticated encryption is well understood in the cryptographic
research community — see for example [4, 5, 14]. High-profile examples where the
lack of strong integrity checks is known to lead to attacks or where inappropriate
use of integrity mechanisms still leaves systems vulnerable are plentiful [3,6-
8,28,30]. However the process of adopting authenticated encryption in fielded
systems is slower. Naturally, it takes time to translate theory into standards,
standards into products and finally, for users to take up the latest versions of
products. There is also resistance to change without clear and easily-absorbed
evidence that such change is imperative. Attacks in the cryptographic literature
can be rather technical and difficult for non-experts to understand. In some
cases, it may also be that the attacks are not perceived by users as having a high
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impact. Theoreticians are rightly concerned about attacks on indistinguishability
of ciphertexts, but users are perhaps less so. Attacks requiring huge numbers of
chosen plaintexts are interesting to theoreticians, but may not unduly concern
practitioners. Attacks on paper are easier to dismiss than fully demonstrated
attacks that work in practice against deployed systems.

In this paper, our focus is on the use of integrity protection and encryption
in IPsec, a widely-used suite of protocols providing security for IP. We provide
a short introduction to IPsec in Section 2. Bellovin [6] was the first to point
out that the lack of integrity protection in the first version of IPsec’s encryption
protocol ESP (Encapsulating Security Payload) [1] leads to security weaknesses.
However, the attacks in [6] are actually quite limited in their practical impact. A
close examination of [6] shows that the attacks presented in [6, Sections 3.1 and
3.2] only work in the rather unrealistic scenario where the attacker has access to
accounts on the two network hosts performing the IPsec processing. The other
concrete attack in [6] is contained in Section 3.8 and is attributed to Wagner. Tt
recovers just a single byte of plaintext, from datagrams having special formats,
and then only if 224 ciphertexts matching chosen plaintexts are available to the
attacker. Moreover, the attacks in [6] (and the related paper [22]) are really only
sketches of what might be possible rather than fully implemented, working at-
tacks: they are examples of “attacks in theory”. Nevertheless, Bellovin’s attacks
are well-known in the cryptographic and IPsec standards communities, and are
cited in subsequent versions of the ESP standards [16, 18]. The version in current
use, [16], refers to [6] when warning of the dangers of using encryption without
additional integrity protection, and requires support for integrity protection.
However it also mandates that any implementation of ESP must include sup-
port for encryption-only processing. This surely illustrates the chasm that exists
between the theory and practice of cryptography. Note that the developers of
[16] did have good practical reasons (backward compatibility and performance)
for mandating support for an encryption-only mode.

It is our belief that the availability of the encryption-only option in IPsec
has led users into actually using it, in spite of Bellovin’s work. After all, users
do not typically read RFCs or research papers, and an inexperienced network
administrator might reasonably believe that it is sufficient to use an encryption
algorithm on its own to provide confidentiality for data, especially when selecting
from amongst the myriad of IPsec options. (This point is also made in [10].) We
have found several on-line tutorials showing how to configure IPsec VPNs using
ESP for encryption with no additional integrity protection.! After the release
of the vulnerability announcement [24] describing our attacks, we became aware
that some vendors were aware of Bellovin’s work and had taken steps to prevent
the selection of encryption-only configurations, but others were much less well-
informed, or less concerned.

! See for example: http://www.netbsd.org/Documentation/network/ipsec and
http://lartc.org/howto/lartc.ipsec.tunnel.html.



1.1 Our Contribution

We present new attacks against the encryption-only configuration of IPsec that
are as realistic and devastating as possible, with the aim of finally convincing
users not to select it. In this respect, our attacks have several attractive fea-
tures. Firstly, they are ciphertext-only attacks. Thus they do not require any
special operating conditions under which, for example, the ciphertexts matching
chosen plaintexts are generated. Nor do they require large amounts of cipher-
text to be successful: the attacks can be mounted given only a single encrypted
datagram. Secondly, the attacks merely require the attacker to be able to inject
IP datagrams into the network and intercept certain responses. Some variants
of our attacks even enable these responses to be sent directly to the attacker’s
machine. Thirdly, the attacks are very efficient. For example, one variant that
we have implemented requires the injection of only a handful of datagrams to
recover the complete contents of a datagram encrypted using AES. Fourthly,
the attacks are flexible, with a range of variants being applicable in different
circumstances. And finally, we have written an attack client which shows that
the attacks work in practice against the native implementation of IPsec in Linux.
For example, our client effectively allows a real-time cryptanalysis of encryption-
only IPsec when AES is used as the encryption algorithm. In all these senses,
our attacks improve on the pioneering work of Bellovin [6].

Our work also has consequences for the newly published version of ESP [18].
This RFC no longer requires mandatory support for encryption-only, and re-
peats the advice of [16] concerning the need for integrity protection, but then
goes on to say: “ESP allows encryption-only [...] because this may offer consid-
erably better performance and still provide adequate security, e.g., when higher
layer authentication/integrity protection is offered independently.” It is already
known in theory that applying authentication followed by encryption to build
an authenticated encryption scheme does not result in a generically secure con-
struction [19]. We demonstrate that relying on higher layers for the provision
of integrity in IPsec is inherently insecure in practice as well. Some of our at-
tacks even apply to configurations using the IPsec protocol AH (Authentication
Header) for integrity protection.

More generally, our attacks provide a stark illustration, should one still be re-
quired, of the general need to make appropriate use of authenticated encryption
in fielded systems. We hope that this paper will also be of use to theoreticians
in the field of authenticated encryption searching for convincing real-world ex-
amples to motivate their work.

A further theme of this paper is to illustrate the gaps that exist between
cryptography as studied in theory, as defined in standards, as implemented by
software engineers, and as actually consumed by users. For example, we have
already commented on the differences in viewpoints of theoreticians and users,
and how this can lead to the use of encryption-only ESP in practice. As another
example, our attacks should in fact be prevented by any RFC-compliant imple-
mentation of IPsec, because of some seemingly innocuous post-processing checks
specified in the architectural standard for IPsec [15]. Yet the native Linux ver-



sion of IPsec fails to implement these checks. Drawing on our experiences with
IPsec, we make some recommendations which we hope will help to bridge these

gaps.

2 Background

2.1 IPsec

IPsec, as defined in RFCs 2401-2412, provides security at the IP layer. The in-
terested reader is invited to consult [9, 12] for accessible introductions to IPsec.
Implementations of IPsec exist in Microsoft Windows XP, in the Linux kernel
from release 2.6 onwards.? Various other open source projects are also developing
IPsec implementations and IPsec is widely supported in commercial networking
hardware. The IPsec protocols provide data confidentiality, integrity protection,
data origin authentication and anti-replay services as well as supporting auto-
mated key management.

The IPsec protocols can be deployed in two basic modes: transport and tun-
nel. In tunnel mode, on which we focus here, cryptographic protection is pro-
vided for entire IP datagrams. In essence, a whole datagram plus security fields is
treated as the new payload of an outer IP datagram, with its own header, called
the outer header. The original, or inner, IP datagram is said to be encapsulated
within the outer IP datagram. In tunnel mode, IPsec processing is typically per-
formed at security gateways on behalf of endpoint hosts. The gateways could be
perimeter firewalls or routers.

IPsec provides authentication and integrity protection and/or confidentiality
services through the AH and ESP protocols. Our focus here is on the ESP
protocol, as defined in [16, 18]. ESP is normally invoked to provide confidentiality,
and usually makes use of a block cipher algorithm operating in CBC mode. In
tunnel mode, the entire inner IP datagram is encrypted and forms part of the
payload of the outer IP datagram. The use in ESP of a variety of block ciphers
has been specified, including DES [21], triple-DES [26] and AES [11]. ESP in
tunnel mode inserts security information in the form of a header between the
outer IP header and the encrypted version of the inner datagram. This ESP
header indicates which algorithms and keys were used to protect the payload
in a 32-bit field called the Security Parameters Index (SPI). The ESP header
also contains a 32-bit sequence number to prevent packet replays; when ESP
is used with encryption-only, this sequence number is simply ignored by IPsec
implementations (as it is not protected in any way). ESP in tunnel mode may
also append an authentication field after the encrypted portion. This contains a
MAC value if ESP’s optional integrity protection features are in use.

Further discussion of IPsec configuration and the combined usage of AH
and ESP in tunnel and transport modes is beyond the scope of this paper.
IPsec provides an automated key management service through the Internet Key

2 All further references to Linux in this paper refer to official release 2.6.8.1 of the
Linux kernel from http://kernel.org.



Exchange (IKE) [13]. We will simply assume that key establishment for ESP has
taken place, either manually or using IKE.

2.2 CBC Mode Encryption in ESP

We outline how CBC mode is used by ESP in tunnel mode. For more details, see
[16,21,11,26]. First of all, the original (inner) datagram that is to be protected
is treated as a sequence of bytes. This sequence is padded and then a single Next
Header byte is appended. It is permissible for the padding to be of variable length
and to extend over multiple blocks. We assume throughout that the minimum
amount of padding is used, though our attacks are easily modified to handle
variable length padding. Let us assume that the byte sequence after padding
consists of ¢ blocks, each of n bits. We denote these blocks by P, P», ..., P,. We
use K to denote the key used for the block cipher algorithm and ex(-) (dx(-))
to denote encryption (decryption) of blocks using key K. An n-bit initialization
vector, denoted IV, is selected at random. Then ciphertext blocks are generated
according to the equations:

Co=1V, Ci=ex(Ci_i®PB), (1<i<gq).

The encrypted portion of the outer datagram is then defined to be the sequence
of ¢ + 1 blocks Cy, (1, ..., Cy.

At the receiving security gateway, the payload of the outer datagram can be
recovered using the equations: P, = C;_1 ® dg(C;),1 < i < q. Any padding and
the Next Header byte can then be stripped off. At this point, Section 5.2 of the
IPsec architectural RFC [15] mandates that implementations should check that
the cryptographic processing performed to recover the inner datagram does in
fact match that specified in local IPsec policies. Presumably, if the check fails,
the datagram should be dropped, though this is not made explicit in [15].% In the
Linux kernel implementation of IPsec, the inner datagram is passed directly to
the IP software on the receiving gateway, without any policy checks being per-
formed. This IP software usually just routes the inner datagram to the intended
destination specified in the destination address of the inner datagram.

2.3 Bit Flipping Attacks

CBC mode has a well-known weakness, commonly known as the bit flipping vul-
nerability. Suppose an attacker captures a CBC mode ciphertext Cy, C1,. .., Cy,
then flips (inverts) a specific bit j in C;_; and injects the modified ciphertext
into the network. Upon receipt and decryption, this bit flip is transformed into
a bit flip in position j in the plaintext block P;. This can be seen by examining
the decryption equation P; = C;_1 @ dx(C;). Thus an attacker can introduce
controlled changes into the value of block P; seen by the decrypting party, simply
by flipping bits in C;_; and injecting modified ciphertexts.

% Note that these checks are not specified in the ESP RFCs [16, 18]. The requirement
to drop datagrams has now been made explicit in [17].



Of course, a problem for the attacker is that any modification to C;_;1 typi-
cally results in a value of P;_; that is effectively randomized. On the other hand,
if the modification is made in Cy (equal to I'V'), then no damage to plaintext
blocks will result.

2.4 1P Datagram Headers

The execution of our attacks on ESP in tunnel mode depends in a detailed way
on the structure of the headers of IP datagrams and on the order in which the
fields of these headers are processed. We focus here only on IPv4 headers, as
specified in detail in [20], and on describing those fields that are key to our
attacks. The lay-out of the IP header is shown schematically in Figure 1.
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Fig. 1. Structure of IP header according to RFC 791, [20].

The THL (Internet Header Length) field is 4 bits long and has a value be-
tween 5 and 15. This field indicates the length of the header in 32-bit words.
The typical value is 5; larger values indicate that options bytes are present after
the main header, in the Options field. This field can be up to ten 32-bit words
(40 bytes) in length. It has a strict format; if the format is not followed, then IP
implementations typically generate an ICMP (Internet Control Message Proto-
col) “parameter problem” message which is routed to the host indicated in the
Source Address field. Experiments confirm that, upon receipt of a datagram with
random bytes in the Options field, the implementation of IP in Linux generates
an ICMP message with probability roughly 98.5%. We discuss ICMP in more
detail below.

The Protocol field is 8 bits (1 byte) long and indicates which upper layer
protocol is carried in the IP datagram payload. A minimal set of supported pro-



tocols include ICMP, TCP and UDP. When an IP datagram reaches its intended
destination (as specified in the 32-bit Destination Address field), the protocol
field is inspected. This value determines to which upper layer protocol the pay-
load is passed. If the field contains a value corresponding to a protocol that is
not supported at that host, then the local IP implementation should generate
an ICMP “protocol unreachable” message.

The Header Checksum field is a 16-bit (2-byte) value that is formed by in-
terpreting the header (including the Options field if present) as a sequence of
16-bit words, summing them using 1’s complement arithmetic, and then taking
the 1’s complement of the result. If the Header Checksum fails, the datagram is
discarded silently.

In Linux, the sequence of steps taken by IP when processing a datagram
is as follows. First of all, basic checks are performed on the Version field and
IHL field. The next action is to check the Header Checksum field. After this, a
datagram length check is carried out using the Total Length field. The datagram
is dropped if any of these checks fails. Next, options processing is carried out
if the THL field indicates that options are present. Assuming this is completed
successfully, a routing decision is made: either the datagram is delivered locally
or is forwarded to another host. In the former case the Protocol field is used to
determine the upper layer protocol to which the datagram payload should be
passed. In the latter case, the TTL field is checked and the datagram dropped
if the TTL has reached zero.

2.5 ICMP

ICMP is a vital part of IP implementations, allowing network problems to be
reported to Internet hosts, routes to be tested, and diagnostics to be gathered.
ICMP was originally specified in [27], and revised for IPv4 routers in [2]. In the
event of a “problem datagram” being received by a host, that host generates
an ICMP message. This message includes the entire IP header of the offending
datagram (including any options), together with a variable number of bytes of
the datagram’s payload. According to [27], 8 bytes of payload should be included.
On the other hand, according to [2], the ICMP datagram should contain as much
of the original datagram as possible without the length of the ICMP datagram
exceeding 576 bytes. This is intended to aid fault diagnosis, and is how ICMP is
implemented in the Linux kernel.

3 Attacks Based on Destination Address Rewriting

We are now ready to discuss our first group of attacks on encryption-only ESP
in tunnel mode. We focus on the case where the block cipher used by ESP has
64-bit blocks. The two-phase attack we describe here serves as an introduction to
the more sophisticated attacks to follow. We describe the attack in the context of
a pair of security gateways communicating using encryption-only ESP in tunnel



mode to protect the traffic between them. The attack also works in more general
applications of this configuration of ESP.

We need to make one major assumption for the attack to work: that the
attacker, controlling the host located at IP address AttAddr, knows the destina-
tion IP address DestAddr of the target inner datagrams. This assumption will
be relaxed shortly.

3.1 The First Phase

Recall that the Destination Address field lies in the fifth 32-bit word of the IP
header, and therefore forms the first 32 bits of plaintext block Ps in the sequence
of blocks to be encrypted in CBC mode by ESP. The second 32 bits of this block
is the first 32 bits of the payload of the inner datagram. This phase proceeds
as follows, with the attacker at AttAddr listening for IP datagrams during the
attack (see also Figure 2):

1. Capture a target ESP-protected outer datagram from the network. Let
Co,C1, ..., C4 denote the encrypted portion of this datagram’s payload.

2. Modify block C5 in the first 32 bits by XORing it with the 32-bit mask
M = DestAddr @ AttAddr to obtain a block C4.

3. Repeat:
— a. Modify block C%, now in the last 32 bits, by setting these bits to a
random 32-bit value R. Let CY denote the modified block.
— b. Prepare a modified datagram that is identical to the one captured in
step 1, except that block Cs of the encrypted portion is replaced with C%.
Inject this modified datagram into the network.
Until a datagram is received by the attacker at AttAddr.

To see why this phase might work, notice that each injected datagram now
has AttAddr as the destination address of the inner datagram. So when the se-
curity gateway receives the modified outer datagram and decrypts the encrypted
portion, it recovers an inner datagram that will then be routed directly to the
attacker’s machine (we are assuming here that datagrams are not checked after
IPsec processing to see if the correct IPsec policies were applied; this is the case
in the Linux kernel implementation, in contradiction to [15]). The inner data-
gram is in unencrypted form, and its payload will be identical to that of the
original inner datagram except possibly in the first 32 bits (corresponding to the
randomization of the second half of Cs). These payload bits can be recovered
easily using the relation P; = Pj @ (M||R) where Pj is the third block in the
received datagram, M is the address mask used in step 2 and R the random bits
introduced in step 3.

Of course, because of the modifications made to block Cs during the attack,
block P, of the inner datagram is essentially randomized, so the header of the
modified inner datagram is likely to be invalid. Block P, contains the time to live
(TTL), protocol, header checksum and source address fields. Thus the success
rate of each iteration of the attack depends on the combined probability that



the TTL is sufficiently large so that the inner datagram reaches the attacker’s
machine, that the checksum is valid for the new header, and that the new inner
source address is routable. All other fields in the header will be correct, since
they lie in plaintext block P; which is not modified in the attack.

@ Flip bits here @ Randomise here
v c, % fffffff (o C.
!
dy dy dy i
1
D 5 -
i | H
P TIL! PF
[-t-d=-=-f--mmmmmo| Pt Jemmtesesaees PAYLOAD
i SRC ADDR PAYLOAD
@ Steps @ and @ result in ® First 32 bits of payload @ To flip bits here and
random TTL, protocol, checksum also randomised create address in
and source address fields desired range

Fig. 2. Modifications to inner header fields in destination address rewriting attack,
64-bit case.

Based on our experience in implementing our other attacks, we estimate that
this success probability should be roughly 27'7 per iteration, with the largest
factor of 2716 coming from the requirement for the random checksum to be a
valid one. From this, it can be calculated that 2'7 iterations of steps 3a and 3b
of the attack will give a success probability of about 60%.

3.2 The Second Phase — Recovering Further Plaintext

An attacker who has conducted the first phase against an encrypted inner data-
gram of the form Coy,C1,...,C4 does not need to repeat it in order to obtain
decrypted versions of further inner datagrams. Instead, the contents of new data-
grams can be recovered much more efficiently, as follows.

The attacker reuses the payload portion Cy, C1, CY, C3 of the outer datagram
that was successful in the first phase, splicing onto it any g — 6 consecutive
ciphertext blocks from the encrypted payload of the new target datagram, and
finishing with the last three blocks Cy_2, Cq_1, Cy of the original target.* Dummy
blocks can be used if necessary to ensure that a total of ¢ blocks are present.

The attacker then uses this modified byte sequence as the encrypted payload
of an outer datagram. This construction ensures that, upon decryption by the

4 In fact, often only the last two blocks need to be preserved because the padding
rarely extends over more than one block. Variable length padding of up to 255 bytes
is allowed in [16]; our attacks are easily modified to handle this.



security gateway, the payload is correctly padded and is interpreted as an inner
datagram with a valid header and a destination address equal to AttAddr. This
datagram will be routed to the attacker’s machine (for the same reasons that
the successful datagram from the main attack was). From this datagram, a total
of 64(¢ — 6) bits of plaintext from the new target datagram can be recovered
(the first 64 bits are obtained using a similar to trick to that used to recover Pj
in the main attack; the remaining bits appear in clear in blocks 5 up to g — 3 of
the datagram payload).

3.3 Relaxing the Address Assumption

Our main assumption that the attacker know the complete destination IP ad-
dress of the inner datagram can be relaxed. It is enough that the attacker knows
a significant portion of this IP address. The main idea is as follows. Instead of
using a mask equal to DestAddr @ AttAddr in step 2 of the attack, the attacker
instead uses a mask which modifies that portion of the destination address known
to the attacker so that it equals the corresponding portion of the address of his
target machine. He then modifies the remaining bits of the destination address
using a counter, and repeats the main attack for each counter value. One counter
value will produce a destination address exactly matching that of the attacker;
for this counter value, the attacker has the same probability as before (roughly
2717) of receiving a datagram from the gateway. After this effort, a more efficient
second phase can again be used. Other variants are also possible [25].

3.4 Attack Implementation

As a proof of concept and as a precursor to our main attacks, we implemented
a 128-bit version of the first phase of this attack against IP and IPsec as imple-
mented in the Linux kernel. We found that roughly 2'° iterations were sufficient
to produce the desired plaintext-bearing datagram, in line with a theoretical
analysis of our 128-bit attack than can be found in [25]. This experiment con-
firmed the fact that the Linux implementation of IPsec does not carry out the
policy checks described in Section 2.2 (otherwise the modified inner datagrams
would be dropped because they would fail to match the IPsec policies used in
their recovery).

4 Attacks Based on IP Options Processing

Our next set of attacks exploits the way in which IP implementations gener-
ate ICMP messages when processing incorrectly formatted options fields in IP
headers. We focus on the case where the block cipher used by ESP has 64-bit
blocks. We again describe the attack in the context of a pair of security gateways
communicating using encryption-only ESP in tunnel mode.

We need to make some assumptions for the attack to work. As usual, we
assume that the attacker is able to intercept ESP-protected datagrams and to



inject modified datagrams into the network. We additionally assume that the
attacker is able to monitor one of the gateways for ICMP messages not sent
through the IPsec tunnel. A third-party network service provider is in a perfect
position to mount this attack, for example. This would also be easily achievable
if the IPsec traffic was being broadcast on a wireless network in which WEP
(or an equivalent) was not in use. We will see later how this requirement can
be relaxed in the 128-bit case, provided the attacker has (partial) information
about inner source addresses.

4.1 The First Phase

As before, the attacker has captured an outer datagram and wishes to recover
the plaintext version of the encrypted portion of its payload. Recall that the
THL field is located in the first byte of the IP header, and therefore lies in
plaintext block P; in the sequence of blocks to be encrypted in CBC mode by
ESP. The attacker modifies the contents of the THL field of the inner datagram
by flipping appropriate bits in IV, making the IHL equal a value greater than 5.
When the inner datagram is subsequently processed by the IP software on the
security gateway, the first word(s) of the payload (forming the contents of the
second half of P; onwards) will be interpreted as options bytes. We randomize
the values of these bytes (as seen by the security gateway) by placing a random
value in the last 32 bits of Cs. Then with high probability, these bytes will
be incorrectly formatted, resulting in the generation of an ICMP “parameter
problem” message. The payload of this ICMP message will contain the header
and a segment of the payload of the inner datagram. Thus, if it can be captured
by the attacker, he can learn plaintext information from the inner datagram.
However, randomizing bytes in Cs has the additional effect of randomizing the
contents of P, after decryption by the security gateway. So the inner datagram
is likely to be dropped silently by the security gateway before any IP options
processing takes place, because of an incorrect checksum value. Thus, in fact,
the ICMP message will not often be generated. Moreover, the ICMP message, if
generated, will be sent to the random source address now specified in P,. This
helps to ensure that the ICMP message is not sent through the IPsec tunnel
between the security gateways, thus making it visible to the attacker, but also
means that this address may not be routable. These problems can be overcome
by iterating the attack sufficiently often and using new random bytes on each
iteration. We will quantify the success rate for the Linux implementation of IP
in Section 4.4 below.
This attack is illustrated in Figure 3 and formalized below.

1. Capture a target ESP-protected outer datagram from the network. Let
Co,C1,...,Cq denote the encrypted portion of this datagram’s payload.

2. Modify block Cy = IV in the first byte, XORing it with a mask which
increases the IHL to a value greater than 5, obtaining a block C{.

3. Repeat:
— a. Modify block C5 in the last 32 bits, by setting these bits to a random
32-bit value R. Let C} denote the modified block.



— b. Prepare a modified datagram that is identical to the one captured in
step 1, except that blocks Cy and C5 of the encrypted portion are replaced
with C} and C%. Inject this modified datagram into the network.

Until an ICMP message is intercepted.
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Fig. 3. Modifications to inner header fields in options processing attack, 64-bit case.

4.2 The Second Phase

Tricks similar to those introduced in Section 3.2 can be used in a second phase
to speed up the recovery of all payload bytes from the remainder of the initial
target datagram and further target datagrams. Once again, a successful header
can be re-used and is guaranteed to always generate an ICMP message. The
speed of recovery of plaintext in this second phase is limited only by the rate at
which the security gateway is permitted to generate ICMP messages and by the
number of payload bytes returned by ICMP.

4.3 The 128-Bit Case

A similar attack is possible when the block cipher used by ESP has 128-bit
blocks. Now, however, the ITHL field, Header Checksum field and Source Address
field can all be manipulated by bit flipping in Cy = I'V. This allows the possible
checksums to be tested systematically, which improves the success probability.
The payload bytes which get interpreted as options bytes by the security gateway
can be randomized by selecting a random value for Cs. Again, further plaintext
can be recovered faster in a second phase which re-uses the successful header
from the first phase. Moreover, if the attacker has some (or full) knowledge of
the source address of the inner datagrams, then he can use similar ideas to those



explored in Section 3.3 to direct the ICMP response to his own machine, this
time by changing the source address in the inner header by manipulating the IV.
This is an important variant, since it removes the most stringent requirement
for our attack, namely that the attacker be able to monitor the security gateway
for ICMP messages.

4.4 Attack Implementation

We have successfully carried out the two phases of our attack against IP and
IPsec as implemented in the Linux kernel. We describe the main features and
results of this implementation here.

Figure 4 shows the experimental set-up, with two Linux machines acting as
security gateways for an ESP tunnel using either DES or AES as the encryption
algorithm (the end host shown in this figure is not active during this attack).
These machines are connected to a hub, as is the attack platform — this is simply
to ease packet sniffing in the network. Also connected to this hub is a router,
configured to act as the default router for the security gateways, thus ensuring
that any ICMP messages can take at least a first hop towards their destinations.

Router Hub

%I ESP Tunnel

L O R SR AN
7o\

—
]
—

0=0

IPsec Gateway A Attacker IPsec Gateway B Endhost

Fig. 4. Experimental set-up for attacks based on options processing and protocol field
manipulation.

We used a value of 6 for the modified THL field, so as to maximise the
number of plaintext bytes returned for each injected datagram in the second
phase. We observed experimentally that presenting a datagram with a random
source address and random options bytes to the IP implementation in Linux
results in an ICMP “parameter problem” message with probability about 0.85.
Moreover, the probability that a random 16-bit value represents the correct



header checksum for the modified inner datagram is roughly 276, Thus the
expected success probability of the first phase of the attack in the 64-bit case is
roughly 0.85 x 2716 per iteration. For example, then, 26 iterations should give
a success rate of 57%.

We performed 100 runs of the first phase of the attack. An average of 77600
iterations (taking on average 2.64 minutes with our attack client) were needed to
successfully generate an ICMP message. Linux is generous in providing 524 bytes
of inner datagram payload in ICMP messages. As a consequence, the first phase
and each injected datagram in the second phase yields 512 bytes of plaintext
data (provided the encrypted payload in the target selected for the first phase is
longer than 568 bytes, including the IV and encrypted inner header). Thus the
second phase can rapidly recover the complete contents of inner datagrams. Our
attack client, written in C, captures multiple ESP-protected datagrams, selects
the one of optimum length for the first phase, conducts the first phase, and then
runs the second, faster phase on remaining datagrams. Our attack client is also
written to carry out the 128-bit variant of this attack.

5 Attacks Based on Protocol Field Manipulation

Our third class of attacks exploits the way in which IP implementations generate
ICMP messages when faced with unsupported upper layer protocols. We focus
on the case where the block cipher used by ESP has 128-bit blocks, as this is
the more efficient case. We need to make the same assumptions as in Section 4
for the attack to work.

5.1 The First Phase

Recall that the protocol field is located in the second byte of the third 32-bit
word of the IP header, and therefore lies in plaintext block P; in the sequence of
blocks to be encrypted in CBC mode by ESP. The attacker modifies the contents
of the protocol field of the inner datagram by flipping appropriate bits in IV,
making the field equal a value corresponding to an upper layer protocol that is
not supported by the end host receiving the inner datagram. Now, when the inner
datagram arrives at the end host that is its final destination, an ICMP “protocol
unreachable” message will be generated. The payload of this ICMP message will
contain the header and a segment of the payload of the inner datagram. Thus,
if it can be captured by the attacker, then he can learn plaintext information
from the inner datagram. Note that, in contrast to the attack based on options
processing, the end host, not the security gateway, generates the ICMP message.

An attacker must solve two problems here. Firstly, the attacker must alter
the source address of the inner datagram, so that the ICMP response will not
be routed through the IPsec tunnel and so that the attacker can intercept it.
Secondly, the attacker must fix the header checksum so that it contains the
correct value for the modified inner header. Fortunately, in the 128-bit case,



both of these requirements can be met by further manipulating only IV, and in
a systematic way that leads to a very efficient attack.

Consider an attacker who modifies the protocol field by forcing a flip in bit
i of the field (where 0 < ¢ < 8) and who alters the inner source address by
forcing a flip in bit j of the address (where 0 < j < 32). These bit flips can
both be induced by manipulating V. To correct the inner header checksum, the
attacker XORs it with two masks in sequence (one mask for each bit flip), again
by flipping bits in IV. A detailed analysis of the checksum algorithm (see [25])
shows that one of only 17 possible masks will correct each bit flip. The attacker
tries these pairs of masks in decreasing order of probability. A maximum of
172 = 289 iterations will be needed, with an expected number much smaller
than this because of the way mask probabilities are distributed. In fact, a simple
analysis shows that when ¢ + 8 # j mod 16, the expected number of iterations
is slightly less than 7, and smaller still when ¢ + 8 = j mod 16. This attack can
be formalized just as with the earlier attacks.

In an important variant of this attack, now requiring on average 2% itera-
tions, the attacker can additionally exploit knowledge of the inner source address
to rewrite this address, thus ensuring that any ICMP response is directed to a
host he controls. This removes the requirement that the attacker be able to
monitor the security gateway for ICMP messages.

5.2 The Second Phase

Just as with the attack in Section 4, once the first phase is complete, a second
phase which recovers the complete contents of the remainder of the initial target
datagram and further target datagrams can be invoked.

5.3 The 64-Bit Case

A similar, but less efficient, attack is possible when the block cipher used by ESP
has 64-bit blocks, but now the protocol field is manipulated by randomizing the
last 32 bits of block C5. The success probability is now limited by the need for
a random checksum to have the correct value, and for a random protocol field
to represent an unsupported protocol. In practice, it is close to 2716, because,
typically, only a handful of protocols are supported. Again, further plaintext can
be recovered faster in a second phase which re-uses the successful header from
the first phase.

5.4 Attack Implementation

We have successfully implemented the two phases of the 128-bit attack against
the Linux kernel implementation of IP and IPsec in our attack client. The ex-
perimental set-up is shown in Figure 4. In our attack, we used values ¢ = 0 and
j = 6 (many other pairs worked equally well).

According to the probability analysis sketched in Section 5.1, the expected
number of iterations of the first phase with these parameters is slightly less than



7. We performed 1000 runs of the first phase of the attack. An average of 6.53
iterations (taking 1.34 seconds with our attack client) was needed to successfully
generate an ICMP “protocol unreachable” message containing plaintext infor-
mation. Because of the way in which Linux implements ICMP, the first phase
and each injected datagram in the second phase yields about 500 bytes of plain-
text data. This means that our attack client is able to recover large amounts of
plaintext easily in the second phase of the attack. Overall, because of the small
number of trials needed, the attack effectively takes place in real time.

6 Impact

We have presented a number of attacks and variants on encryption-only ESP
in tunnel mode, as implemented in the Linux kernel. The attacks are efficient
and have been demonstrated to work under realistic network conditions. Per-
haps surprisingly, ESP using a 128-bit block cipher such as AES may be more
vulnerable to our attacks than one using a 64-bit block cipher. The underly-
ing reason for this is that in the 128-bit case, more fields of the inner header
can be manipulated by modifying IV, without any impact on the contents of
plaintext blocks. A related point is that the complexity of the attacks does not
depend on the key size of the block cipher employed by ESP: triple-DES is just
as vulnerable as DES.

We note that, as with [23], our work demonstrates that the open source
approach does not necessarily result in secure software: an encryption-only con-
figuration was all too easy to select, the IPsec implementation did not carry out
the post-processing checks mandated in the RFCs, and we found other flaws in
the implementation, particularly in the handling of padding (c.f. [29]).

Concerning the real-world impact of our attacks, we have presented evidence
in the introduction that encryption-only IPsec may still be in common use. But
we have performed only limited experiments against other IP /IPsec implemen-
tations. We do know that several vendors attempt to disable encryption-only.
However, disabling encryption-only configurations is not enough to prevent our
attacks, as they still apply to some configurations where integrity-protection is
supplied by IPsec itself. As just one instance, the attacks in Sections 3 and 4 still
work if AH is applied in transport mode end-to-end and is tunnelled inside ESP
from gateway-to-gateway. This is because the redirection or ICMP generation
take place at the gateway, before any integrity checking occurs. We note too that
our attacks are not prevented if integrity protection is offered independently of
IPsec by a higher-layer protocol. This contradicts the statement made in [18]
that we quoted in Section 1.

7 Conclusions

We believe that the dangers of encryption-only ESP that we have highlighted
here, coupled with the difficulty of ensuring that security-unaware users pick



strong configurations from amongst the myriad possibilities, means that a con-
servative approach is called for in the IPsec standards themselves. Unfortunately,
ESPv3 [18] still permits the use of encryption-only ESP, though it is no longer
mandatory to support it.

The complexity of the IPsec standards has been commented on before [10]. It
certainly does not help an implementation team if processing checks important to
the security of one module (ESP) are contained in another document altogether
(RFC 2401, [15]). It is worrying that the security of the encryption-only mode
depends completely on these checks being carried out: the security dangles from
a very thin thread indeed, as our attacks on the native Linux implementation
make clear. It would help, then, if the reasons why those checks need to be
performed were spelled out in the standard: this would give an implementor a
stronger motivation for getting things right.

We hope that this work will help in persuading users to migrate away from
encryption-only IPsec configurations. We also hope that it serves as an instruc-
tive example to the theoretical community of the gaps that exist between theory
and practice in cryptography, and that it helps to bridge these gaps.
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