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Abstract. We introduce a problem of distinguishing between two quan-
tum states as a new underlying problem to build a computational crypto-
graphic scheme that is “secure” against quantum adversary. Our problem
is a natural generalization of the distinguishability problem between two
probability distributions, which are commonly used in computational
cryptography. More precisely, our problem QSCDy is the computational
distinguishability problem between two types of random coset states
with a hidden permutation over the symmetric group. We show that
(i) QSCDy has the trapdoor property; (ii) the average-case hardness
of QSCDy coincides with its worst-case hardness; and (iii) QSCDy is
at least as hard in the worst case as the graph automorphism prob-
lem. Moreover, we show that QSCDyg cannot be efficiently solved by
any quantum algorithm that naturally extends Shor’s factorization algo-
rithm. These cryptographic properties of QSCDg enable us to construct
a public-key cryptosystem, which is likely to withstand any attack of a
quantum adversary.

1 Introduction

Since Diffie and Hellman [15] first used a computationally intractable problem
to build a key exchange protocol, computational cryptography has been exten-
sively investigated; especially, a number of practical cryptographic systems (e.g.,
public-key cryptosystems (PKCs), bit commitment schemes (BCSs), pseudoran-
dom generators, and digital signature schemes) have been constructed under



reasonable computational assumptions, such as the hardness of the integer fac-
torization problem (IFP) and the discrete logarithm problem (DLP), where we
have not found any efficient classical (deterministic or probabilistic) algorithm.
Nevertheless, if an adversary runs a quantum computer (we call such an adver-
sary a quantum adversary), he can efficiently solve various problems, including
IFP (and quadratic residuosity problem) [40], DLP (and Diffie-Hellman problem)
[10,26,40], and the principal ideal problem [22]. Therefore, the quantum adver-
sary can easily break any cryptosystem whose security relies on the hardness of
these problems.

A new area of cryptography, so-called quantum cryptography, has emerged to
deal with quantum adversary and has been dramatically developed over the past
two decades. In 1984, Bennett and Brassard [7] proposed a quantum key distribu-
tion scheme, which is a key distribution protocol using quantum communication.
Later, Mayers [33] proved its unconditional security. Nevertheless, Mayers [32]
and Lo and Chau [30] independently demonstrated that quantum mechanics can-
not necessarily make all cryptographic schemes information-theoretically secure.
In particular, they proved that no quantum BCS can be both concealing and
binding unconditionally. Therefore, it is still important to take “computational”
approaches to quantum cryptography. In the literature, there are a number of
quantum cryptographic properties discussed from the complexity-theoretic point
of view [1,12-14,16, 36].

Recall that a quantum computer is capable of breaking many computational
assumptions on which the security of existing cryptographic protocols rely. To
build a secure cryptosystem against any attack of a quantum adversary, it is
important to discover computationally-hard problems that can be used as a
building block of the cryptosystem. For example, the subset sum (knapsack)
problem and the shortest vector problem are used as a basis of knapsack-based
cryptosystems [24,36] and lattice-based cryptosystems [4,38]. Although quan-
tum adversaries are currently ineffective in the attack on these cryptosystems,
it is unknown whether they can essentially withstand quantum adversaries. We
therefore continue searching for better underlying problems to build quantum
cryptosystems which can withstand any attack of quantum adversaries. We dis-
cuss this issue in depth in Section 1.2.

This paper proposes a new problem, called QSCDg (quantum state com-
putational distinguishability with fully flipped permutations), which satisfies
useful cryptographic properties to build a quantum cryptosystem. Our prob-
lem QSCDg generalizes the distinguishability problems between two probability
distributions used in [8,18,43].

Definition 1. The advantage of a polynomial-time quantum algorithm 4 that
distinguishes between two [-qubit states pg and p; is the function §(/) defined
as:

5(0) = |PrlA(po) = 1] - PrlA(p1) = 1]|.

where the subscript A means that outputs of A are determined randomly by
measuring the final state of .4 on the computational basis. The distinguishability



problem between pg and p; is said to be solvable by A with absolute (infinitely-
often, resp.) advantage §(I) if the above equation holds for any sufficiently large
(infinitely many, resp.) number .

The problem QSCDyg is defined as the distinguishability problem between
two random coset states p} and p; with a hidden permutation m. Let S, be
the symmetric group of degree n and let K, = {7 € S, : 72 = id and Vi €
{1,...,n}[m(i) # i]}, where n is described as 2(2k + 1) for some k € N.

Definition 2. QSCDy is the distinguishability problem between the following
two quantum states:

ot = gr 3 () +lom) (ol +ol) and o7 = o1t 3™ (10— lom) (o] — (o),

oES, oES,
where ™ € K,,.

The parameter n of the above definition is used to measure the computa-
tional complexity of our problem and is called the security parameter in the
cryptographic context. From a technical reason, this security parameter must be
of the form 2(2k + 1) for a certain k € N as stated above. Moreover, we assume
that any permutation o can be represented in binary using O(nlogn) bits.

1.1 Owur Contributions

This paper shows three cryptographic properties of QSCDg and its applica-
tion to quantum cryptography. These properties are summarized as follows:
(1) QSCDg has the trapdoor property; namely, given a hidden permutation
7, we can efficiently distinguish between pI and p_; (2) the average-case hard-
ness of QSCDg over randomly chosen permutations 7 € K, coincides with its
worst-case hardness; and (3) the hardness of QSCDg is lower-bounded by the
worst-case hardness of the graph automorphism problem, defined as

GRAPH AUTOMORPHISM PROBLEM: (GA)
input: an undirected graph G = (V, E);
output: YES if G has a non-trivial automorphism, and NO otherwise.

Since GA is not known to be solved efficiently, QSCDg seems hard to solve.
Moreover, we show that QSCDg cannot be efficiently solved by any quantum
algorithm that naturally extends Shor’s factorization algorithm.

Technically speaking, the cryptographic properties of QSCD g follows mainly
from the definition of the set ), of the hidden permutations. Although the def-
inition seems somewhat artificial, the following properties of K, lead to crypto-
graphic and complexity-theoretic properties of QSCDg: (i) ™ € K, is of order 2,
which provides the trapdoor property of QSCDg-. (ii) For any 7 € K,,, the conju-
gacy class of 7 is equal to K,,, which enables us to prove the equivalence between
the worst-case/average-case hardness of QSCDg. (iii) GA is (polynomial-time
Turing) equivalent to its subproblem with the promise that a given graph has



a unique non-trivial automorphism in K, or none at all. This equivalence is
exploited to give a complexity-theoretic lower bound of QSCDyg, that is, the
worst-case hardness of GA. For these proofs, we introduce new techniques: a
new version of the so-called coset sampling method, which is broadly used in ex-
tensions of Shor’s algorithm (see, e.g., [37]) and a quantum version of the hybrid
argument, which is a strong tool for security reduction in modern cryptography.

As for an application of QSCDg, we also construct a public-key cryptosys-
tem. Several advantages of using QSCDg will be discussed in depth in Sec-
tion 1.2.

1.2 Comparison between Our Work and Previous Work

In recent literature, computational-complexity aspects of quantum states have
been spotlighted in connection to quantum cryptography. For instance, the no-
tion of statistical distinguishability between quantum states was investigated
by Watrous [42] and Kobayashi [27] in the context of quantum zero-knowledge
proofs. They proved that certain problems of statistically distinguishing between
two quantum states are promise-complete for quantum zero-knowledge proof sys-
tems. Aharonov and Ta-Shma [2] also studied the computational complexity of
quantum-state generation and showed its connection to quantum adiabatic com-
puting and statistical zero-knowledge proofs.

Our distinguishability problem QSCDg is also rooted in computational com-
plexity theory. In this subsection, we briefly discuss various advantages of using
QSCDg as a basis of quantum cryptosystems in comparison with other existing
cryptosystems and their underlying problems.

Average-case Hardness versus Worst-case Hardness. In general, the
efficient solvability of a problem on average does not guarantee that the prob-
lem can be solved efficiently by a worst-case algorithm. It 1s therefore desirable
to show that the average-case hardness of cracking a cryptographic system is
equivalent to its worst-case hardness. Unfortunately, there are few cryptographic
problems known to be reduced from average-case hardness to worst-case hard-
ness.

There are two types of worst-case/average-case reductions discussed in the
literature. The first one is a strong reduction, which transforms an arbitrary
instance of length n to a random instance of the same length or length poly-
nomial in n. Ajtai [3] found a remarkable connection between the average-case
and the worst-case hardness for certain versions of the shortest vector problem
(SVP) in this strong sense. He showed an efficient reduction from the prob-
lem of approximating the shortest vector in a given n-dimensional lattice in the
worst case to the approximation problem of the shortest vectors in a random
lattice over a certain class of lattices with a larger polynomial approximation
factor in n. A reduction between average-case and worst-case hardness has since
then been extensively studied. Micciancio and Regev [34], for instance, gave the
average-case/worst-case connection factor of approximately n for approximating
SVP (see [9] by Bogdanov and Trevisan and references therein for general results
with respect to worst-case/average-case reductions).



The second type of reduction is a weak reduction of Tompa and Woll [41],
where the reduction i1s randomized only over part of its instances. A typical
example is DLP, which can be randomly reduced to itself by a reduction that
maps instances to not all instances of the same length but rather all instances
of the same underlying group. It is, nonetheless, unknown that there exists a
reduction from DLP with the worst-case prime to DLP with a random prime.

In this paper, we show that QSCDg has a worst-case/average-case reduction
of the first kind. Our reduction depends only on the length of the instance unlike
a reduction for DLP and the average-case hardness of QSCDg coincides with
its worst-case hardness unlike reductions for lattice problems. Note that DLP
and the inverting problem of the RSA function, whose worst-case/average-case
reductions are of the second kind, can be efficiently solved in the worst case
by Shor’s algorithm [40]. The graph isomorphism problem (GI) and GA—well-
known graph-theoretical problems—also have the connection of the second kind
[41]. Although no efficient quantum algorithm is discovered yet for them, there
is no known cryptographic system whose security are reduced from them. Our
distinguishability problem QSCDg is the first cryptographic problem with the
worst-case/average-case reduction of the first kind, which has not been solved
efficiently on a quantum computer.

Most problems seem to lack any strong connection between their average-case
harness and worst-case hardness. In particular, there is no known cryptographic
system that 1s based on the worst-case hardness of the subset sum problem or
its subproblems.

Exponential time versus Subexponential time. The hidden subgroup
problem (HSP) has been a central issue discussed for both positive and negative
aspects of the power of quantum computation. Both IFP and DLP can be viewed
as special cases of HSP on Abelian groups (AHSP). Kitaev [26] showed that
AHSP can be efficiently solved. He introduced a polynomial-time algorithm for
the quantum Fourier transform on Abelian groups, which is a generalization of
the original quantum Fourier transform used in Shor’s algorithm [40]. Although
AHSP can be efficiently solved, the more general non-Abelian group case is
unlikely to be solved by simply applying currently known techniques. (Some
special non-Abelian group cases were studied in [17,20,23,29,35,37].) Another
important variant is the HSP on the dihedral groups (DHSP). Recently, Regev
[37] demonstrated a quantum reduction from the unique shortest vector problem
(uSVP) to a slightly different variant of DHSP. Note that uSVP is used in
lattice-based PKCs [4,38]. Moreover, Kuperburg [29] gave a subexponential-
time quantum algorithm for DHSP. Although these results do not directly imply
a subexponential-time quantum algorithm for uSVP, they may be an important
clue to find the desired algorithm.

Our problem QSCDyg is closely related to a much harder problem: HSP on
the symmetric groups (SHSP). No subexponential-time quantum algorithm is
known for SHSP. A distinguishability problem, similar to QSCDg, defined in
terms of SHSP was introduced by Hallgren, Russell and Ta-Shma [23], who



showed that any standard algorithm® takes exponential time to solve their prob-
lem. Here, we show that their problem is polynomial-time reducible to QSCDg .
This immediately implies that that any standard algorithm that solves QSCD g
also requires exponential time. The hardness result of Hallgren et al. was recently
strengthened by Grigni et al. [20] and Kempe and Shalev [25]. Finding even a
subexponential algorithm for QSCDg seems a daunting task. On the contrary,
this suggests that our problem QSCDg is more reliable than, e.g., uSVP. This
situation is similar to the case of DLP over different groups on classical compu-
tation. DLP over Zg (p is a prime) is classically solved in subexponential time
whereas there 1s no known classical subexponential-time algorithm for DLP over
certain groups used in elliptic curve cryptography. It is believed that DLP over
such groups is more reliable than DLP over Zj.

We prove that the computational complexity of QSCDg is lower-bounded by
that of GA, which is not known to be in NP Nco-NP. Well-known upper bounds
of GA are NP Nco-AM [19,39], SPP [5], and UAP [11]. To our best knowledge,
most cryptographic problems fall in NP N co-NP and few cryptographic systems
are lower-bounded by the worst-case hardness of the problems not known to be
in NP Nco-NP.

Quantum Computational Cryptography. Quantum key distribution gives
a foundation to symmetric-key cryptosystems (SKCs). For instance, the quan-
tum key distribution scheme in [7] achieves unconditionally secure sharing of
secret keys for SKCs using an authenticated classical communication channel.
Both SKCs and PKCs have their own advantages and disadvantages. For in-
stance, PKCs save a number of secret keys compared with SKCs in a large
network; however, they need computational assumptions for their security and
is vulnerable to, for instance, the man-in-the-middle attack. As an application of
QSCDg, we propose a new computational quantum PKC whose security relies
on the computational hardness of QSCDg .

Of many existing PKCs, few make their security solely based on the worst-
case hardness of their underlying problems. Quantum adversaries can break
many PKCs whose underlying problems are number-theoretic problems because
these problems are solvable by efficient quantum algorithms. Recently, Okamoto,
Tanaka, and Uchiyama [36] proposed a quantum analogue of PKCs based on a
certain subset of the knapsack problem and showed that their cryptosystem
withstands certain known attacks of a quantum adversary. Our quantum PKC
also seems to resist a quantum adversary since we can prove the existence of
a security reduction from the problem GA, which is not known to be solved
efficiently even on a quantum computer.

2 Cryptographic Properties of QSCDy4

We show three cryptographic properties of QSCDyg introduced in the previous
section. These properties will help us construct a cryptographic system in Sec-

® The algorithms that run an essential part of Shor’s algorithm [40] are simply called
standard methods.



tion 3. Hereafter, we assume the reader’s familiarity with basics of quantum com-

putation. Recall the two quantum states pf = 553", cs (|o)+|om)) (o] + (o7])

1
2n!

For simplicity, let ¢ denote the maximally mixed state, i.e., : = % Y oes, lo)al,
which appears later as a technical tool.

and p; = ses, (o) = |om))({e]| — (on|) for a hidden permutation 7 € K.

2.1 Trapdoor Property

We prove that QSCDg has the trapdoor property, which plays a key role in
various cryptosystems. We present an efficient distinction algorithm between p
and p; with a hidden permutation 7 in ,,.

Theorem 1. There exists a polynomial-time quantum algorithm that, given
7 € K, distinguishes between p¥ and p; with certainty.

Proof. Let y be any given unknown state, which is either pt or p; . The desired
distinction algorithm for x is given as follows.

(D1) Prepare two quantum registers: the first register holds a control bit and
the second one holds x. Apply the Hadamard transformation H to the first
register. The state of the system now becomes H|0){(0|H ® x.

(D2) Apply the Controlled-7 operator Cr to the two registers, where C|0)|o) =
|0)|e) and Cr|1)|e) = |1)|ox) for any o € Sy. Since 7% = id for any 7 € K,
the state of the entire system is expressed as # Y ves, |1/)7T70>(1/);"o| if x = pt

and 337 o5 1¥r o) (5 0| if X = pr, where

6.0 = o (310) (o) % lom) +11) (o) % o))
= 210)(Io) £ o)) + 511} (o) o))

(D3) Apply the Hadamard transformation to the first register. If x is
pf and pg, then the state of the system becomes (H @ I)|¢f,) =
L10) (|oy + |on)) and (H @ D)|Y7,) = —=[1)(|o) — |o7)), respectively.
V2 T,0 V2 s
Measure the first register on the computational basis. If the result is 0,
output YES; otherwise, output NO. Clearly, we obtain the correct answer
with probability 1. O

2.2 Reduction from the Worst Case to the Average Case

We reduce the worst-case hardness of QSCDyg to its average-case hardness. Such
a reduction implies that QSCDg with a random 7 is at least as hard as QSCD g
with the most difficult «.

Theorem 2. Assume that there exists a polynomial-time quantum algorithm
A that solves QSCDg with absolute (infinitely-often, resp.) non-negligible ad-
vantage for a uniformly random 7 € K,; namely, there exists a polynomial p



such that, for any sufficiently large (infinitely many, resp.) number n,

PriA(py) = 1] = Pr[A(p7) = 1]| > 1/p(n),
where 7 is chosen uniformly at random from K,,. Then, there exists a polynomial-
time quantum algorithm B that solves QSCDg with absolute (infinitely-often,
resp.) non-negligible advantage in the worst case.

Proof. Let x be any given state, which is either pt or p7 . The desired worst-case
algorithm B is built from the average-case algorithm A in the following way.

(R1) Choose a permutation 7 € S, uniformly at random and then multiply x
by 7 from the right. If y = pt, then we obtain the quantum state

1
X' = ol ; (loT) + |07'7'_17r7'>)((07'| + <0’TT_17TT|)

- % Z (|o"y + |’ ar)) (o' | + (o' 7).

"o'€S,

1
- . : r_ -1 -1
If x = p;, then we obtain y' = o gs: (loy = o= mr)) (0| — (o7 "7T]).
(R2) Invoke the average-case algorithm .A on the input x’.
(R3) Output the outcome of A.

Note that 7='nr € K, for any 7 and there exists a 7 € S, satisfying that
r~lnr = r’ for any 7’ € K,,. Hence, the conjugacy class of 7 is equal to K,,.
Moreover, the number of all 7 € S,, for which 7~ !77 = 7’ is independent of the
choice of 7' € K,,. From these properties, 7~ 'mr is uniformly distributed over
K. Therefore, feeding the input y’ to algorithm 4 guarantees the non-negligible

advantage. O

2.3 Hardness of QSCDg

We show that the computational complexity of QSCDg is lower-bounded by
that of GA by constructing an efficient reduction from GA to QSCDg. Our
reduction constitutes two parts: a reduction from GA to a variant of GA, called
UniqueGAg, and a reduction from UniqueGAg to QSCDg. We also discuss a
relationship between QSCDg and SHSP, which suggests that QSCDg may be
hard for polynomial-time quantum algorithms to solve.

To describe the desired reduction, we begin with introducing two variants of
GA. Earlier, Kobler, Schéning and Toran [28] introduced the following unique
graph automorphism problem (UniqueGA).

UNIQUE GRAPH AUTOMORPHISM PROBLEM: (UniqueGA)

input: an undirected graph G = (V, E);

promise: G has a unique non-trivial automorphism or no non-trivial
automorphisms;

output: YES if G has the non-trivial automorphism, and NO otherwise.



Notice that UniqueGA is called (1GA, GA) as a promise problem in [28]. Connec-
tion to our distinguishability problem, we introduce the unique graph automor-
phism with fully-flipped permutation (UniqueGAg), which plays an important
role in the reduction.

UNIQUE GRAPH AUTOMORPHISM WITH FULLY-FLIPPED PERMUTA-
TION: (UniqueGAg)
input: an undirected graph G = (V| E), where |V| = n = 2(2k + 1) for
some k € N;
promise: G has a unique non-trivial automorphism 7 € K,,, or no non-trivial
automorphisms;
output: YES if G has the non-trivial automorphism, and NO otherwise.

Next, we discuss the so-called coset sampling method, which has been largely
used in many extensions of Shor’s algorithm.

Lemma 1. There exists a polynomial-time quantum algorithm that, given an
instance G of UniqueGAg, generates a quantum state pf if G is an “YES”
instance with its unique non-trivial automorphism m, or 1 = 7 3 .5 |o)(o] if
G is a “NO” instance.

Proof. Given an instance G of UniqueGA g, we first prepare the quantum state
ﬁ Y ves, |0)|a(G)), where o(G) is the graph resulting from by relabeling its
nodes according to a permutation ¢. By discarding the second register, we obtain
the unique quantum state y in the first register. Then, x = pf if G is an “YES”
instance with the unique non-trivial automorphism =, and y = ¢ otherwise, as
requested. a

Now, we introduce a new version of the coset sampling method as a technical
tool for our reduction. Note that this algorithm essentially requires the fact that
the hidden m is an odd permutation, which is one of the special properties of

K.

Lemma 2. There exists a polynomial-time quantum algorithm that, given an
instance G of UniqueGA g, generates a quantum state p; if G is an “YES” in-
stance with the unique non-trivial automorphism 7, or ¢ if G is a “NO” instance.

Proof. Similar to the algorithm of Lemma 1, we prepare the quantum state
ﬁzoeSn |oY|o(G)). Next, we compute the sign of each permutation in the
first register and then invert its phase if the permutation is odd. We obtain the
quantum state ﬁZoesn(—1)Sgn(0)|0'>|0'(G)>, where sgn(o) = 0 if o is even,
and sgn(o) = 1 otherwise. By discarding the second register, we can obtain a
quantum state y in the first register. Note that, since 7 is odd, if ¢ is odd (even,
resp.) then o7 is even (odd, resp.). Therefore, x = p; if G is an “YES” instance
with the unique non-trivial automorphism , and y = ¢ otherwise. a

We are now ready to present a reduction from GA to QSCDg, which implies
that QSCDg is computationally at least as hard as GA.



Theorem 3. If there exists a polynomial-time quantum algorithm that solves
QSCDg with absolute non-negligible advantage, there exists a polynomial-time
quantum algorithm that solves any instance of GA in the worst case with non-
negligible probability.

Proof. We first show that GA is polynomial-time Turing equivalent to
UniqueGAg and then give a reduction from UniqueGAg to QSCDg. The re-
duction from GA to UniqueGA ¢ is similar to the one given by Kobler, Schoning
and Toran [28], who presented a polynomial-time Turing reduction from GA to
UniqueGA. Their polynomial-time algorithm for GA invokes UniqueGA as an
oracle with a promised input, that is, a graph with even number of nodes which
has either the unique non-trivial automorphism without fixed points or no non-
trivial automorphisms. Carefully reading the construction of their reduction, we
can easily modify it to fit our reduction from GA to UniqueGAg. Moreover,
slightly modifying the gadgets for their reduction, we can satisfy the condition
that n = 2(2k + 1) for some k € N. Thus, we obtain the following lemma.

Lemma 3. UniqueGAg is polynomial-time Turing equivalent® to GA.

The complete proof of this lemma is placed in Appendix. It therefore suffices
to show a reduction from UniqueGAg to QSCDg. Assume that there exists a
polynomial-time quantum algorithm A that solves QSCDg with absolute non-
negligible advantage. For a given instance G of UniqueGAg, we perform the
following procedure:

(S1) Generate two sequences St = (x*,..,x%) and S= = (x,...,x") of
8p?(n)n quantum states from G using the algorithms of Lemmas 1 and 2,
respectively.

(S2) Invoke A on each component in ST and S~ as an input. Let Rt =
(A(x™), ..., A(xT)) and R~ = (A(x™), ...,/ A(x7)) be the resulting sequences.
(S3) Output YES if the gap between the numbers of 1’s in RT and R~ is at
least 4p(n)n, output NO otherwise.

8P2(Tl)ﬂ 8p2(n)n
—_—N— —_—N—
Note that if G is an “YES” instance, St = (pf,...,pF) and S™ = (p7,...,p7),

8p%(n)n

—_——
otherwise St = S~ = (¢, ..., ¢). Therefore, if G is an “YES” instance, then there
is a gap between the numbers of 1’s in Rt and in R~ because of the property
of A; otherwise, there is no gaps between them.

We now estimate this gap by the Hoeffding bound. Let X and X~ be two
random variables expressing the numbers of 1’s in Rt and in R~ respectively. If
G is an “YES” instance, Pr[|[X* — X~| > 4p(n)n] > 1 — 2¢™" by the Hoeffding
bound since |Pr[A(pt) = 1] — Pr[A(pz) = 1]| > 1/p(n). Similarly, if G is a
“NO” instance, Pr[|X* — X~| < 4p(n)n] > 1 —2e~™. This guarantees the above
procedure to solve UniqueGAg efficiently, as requested. a

8 If a Turing reduction to a promise problem makes only queries that satisfy the
promise, the reduction is called smart [21]. Smart reductions are desirable for security
reductions. The reduction from GA to UniqueGA in [28] is indeed smart and thus,
so is this reduction.



As stated in Section 1, the distinguishability problem QSCDyg is rooted in
SHSP. Tt is shown that a natural extension of Shor’s algorithm cannot solve
the distinguishability problem between p¥ and : in [23,20,25]. Here, we give a
theorem on a relationship between QSCDg and the distinguishability problem
between p¥ and ¢.

Before stating the theorem, we give a conversion algorithm for pt and p; .
This algorithm will be used in the proof of the theorem as well as the construction
of a PKC in the subsequent section.

Lemma 4. There exists a polynomial-time quantum algorithm that converts
pT into p7 and keeps ¢ as it is with certainty.

Proof. Given pf, the desired algorithm inverts its phase according to the sign
of the permutation by performing the following transformation:

o) +lom) = (=17 |g) 4 (157 o).

Recall that sgn(o) = 0 if o is even and sgn(o) = 1 otherwise. Note that deciding
the sign of a given permutation takes only polynomial time. Since 7 1s odd, the
above algorithm converts p? into p, . Clearly, the algorithm does not alter the
quantum state ¢. O

The following theorem implies that QSCDg cannot be efficiently solved by
any algorithm that naturally extends Shor’s factoring algorithm. To prove the
theorem, we need a quantum version of the so-called hybrid argument.

Theorem 4. If there exists a polynomial-time quantum algorithm that solves
QSCDg with absolute (infinitely-often, resp.) non-negligible advantage, then
there exists a polynomial-time quantum algorithm that solves the distinguisha-
bility problem between p} and : with absolute (infinitely-often, resp.) non-
negligible advantage.

Proof. We prove only the absolute advantage case. Assume that a polynomial-
time quantum algorithm A solves QSCDg with absolute non-negligible advan-
tage; namely, there exist a number ng > 1 and a polynomial ¢(n) such that

PrlA(pF) = 1] = PrfA(p7) = 11| > 1/a(n)

for all numbers n > ng. Let A’ be the algorithm that applies the conversion
algorithm of Lemma 4 to a given state x (= p} or ¢) and then feeds the resulting
state x’ (= py or ¢) to A. Note that A'(pt) = A(py) and A'(:) = A(:). Tt

immediately follows by the triangle inequality that, for any number n > ng,

PrlA(p}) = 1] - PriAG) = 1]| +

PriA'(p7) = 1] = Pr{A'() = 1] > 1/q(n).
This inequality implies that, for each number n > ng, we obtain either

PrlA(pF) = 1] = PrfA) = 1]] > 1/24(n)



or

PriA’(p7) = 1] = Pr[A'() = 1]| > 1/2q(n).

The desired algorithm B first chooses either A or A’ at random and then simu-
lates the chosen algorithm. Obviously, this algorithm solves the distinguishability
problem between pf and ¢ with absolute non-negligible advantage, completing
the proof. a

3 Application

We have shown useful cryptographic properties of QSCDg. As an application
of QSCDg, we build a quantum public-key cryptosystem (PKC) whose security
relies on the hardness of QSCDg . First, we give an efficient quantum algorithm
that generates pf from =.

Lemma 5. There exists a polynomial-time quantum algorithm that, given = €
K., generates the quantum state pF with certainty.

Proof. The desired generation algorithm uses two registers and is given as fol-
lows. The correctness of the algorithm is obvious.

(G1) Choose a permutation ¢ from S,, uniformly at random and store it in the
second register. Then, the entire system is in the state |0)|c).
(G2) Apply the Hadamard transformation to the first register: %(|O> +|1)]o).

(G3) Apply the Controlled-m to the both registers: \/Li(|0>|a> + | 1)|om)).
(G4) Apply the Hadamard transformation to the first register again: %((|0) +

[D)le) +(10) = [1))|om)).

(G5) Measure the first register on the computational basis. If 0 is observed, then
the quantum state in the second register is pf. Otherwise, the state of the
second register is p . Now, apply the conversion algorithm given in Lemma 4
to py . a

Next, we describe our quantum PKC and give its security proof. For the
security proof, we need to specify the model of attacks. Of all attack models in [6],
we pay our attention to a quantum analogue of the indistinguishability against
the chosen plaintext attack (IND-CPA). In particular, we adopt the weakest
scenario in quantum counterparts of IND-CPA as follows.

Alice (sender) wants to send securely a classical message to Bob (receiver) via
a quantum channel. Assume that Alice and Bob are polynomial-time quantum
Turing machines. Bob first generates certain quantum states for encryption keys.
Alice then requests Bob for his encryption keys. Note that anyone can request
him for the encryption keys. Now, we assume that Eve (adversary) can pick
up the encrypted messages from the quantum channel, and tries to extract the
original message using her quantum computer, i.e., a polynomial-time quantum
Turing machine. Since Eve can also obtain Bob’s encryption keys as well as
Alice does, she can exploit polynomially many encryption keys to distinguish



the encrypted message. Thus, we assume that Eve attacks the protocol during
the message transmission phase to reveal the content of the encrypted message.

The protocol to transmit a message using our PKC consists of two phases:
the key transmission phase and the message transmission phase. We will give a
reduction from the worst-case hardness of GA to such Eve’s attack.

+

Pr

quantum channel

Alice Bob

P ox Py

v '/b/+
.

Fig. 1: our public-key cryptosystem

We first describe the protocol of our quantum PKC as follows.

[Key transmission phase]

(A1) Bob chooses a decryption key 7 uniformly at random from &,,.

(A2) Bob generates sufficiently many copies of the encryption key p7 .
(A3) Alice obtains encryption keys from Bob.

[Message transmission phase]

(A4) Alice encrypts 0 or 1 into p} or p-, respectively, and sends it to Bob.
(Ab) Bob decrypts Alice’s message using the decryption key .

Step (A1) can be easily implemented by uniformly choosing transpositions one
by one in such a way that all transpositions are different and by forming the
product of these transpositions. Step (A2) is done by the generation algorithm
of Lemma 5. For Step (A4), we exploit the conversion algorithm of Lemma 4.
Note that Alice sends Bob either the received state pf or its converted state
p= depending on Alice’s bit. Finally, the distinction algorithm in Theorem 1
achieves Step (A5).

The security of our PKC is shown by reducing GA to Eve’s attack during
the message transmission phase. Our reduction is a modification of the reduction
given in Theorem 3.

Proposition 1. Assume that there exists a polynomial-time quantum adver-
sary A in the message transmission phase that, for any sufficiently large n,
satisfies the following inequality

1[A(p}, pF ) =1] = Pr[A(pr p®)) = 1] > 1/p(n)
for a certain polynomial {(n) indicating the number of the encryption keys in
use by A and another polynomial p(n). Then, there exists a polynomial-time
quantum algorithm that solves any instance of GA in the worst case with non-
negligible probability.

Proof. The proof immediately follows by replacing p¥, po, and ¢ in the proof of
Theorem 3 with (p;'r',pjr_@l(n)), (px s pi®l(n)), and (¢, 121 (")) respectively. O



4 Concluding Remarks

The computational distinguishability problem QSCDg has shown useful prop-
erties to build a computational PKC whose security is based on the computa-
tional hardness of GA. Although GA is reducible to QSCDg, the gap between
the hardness of GA and that of QSCDg seems large because a combinatorial
structure of its underlying graphs which GA enjoys is completely lost in QSCDy .
It 1s therefore important to discover a classical problem, such as the problems
of finding a centralizer or finding a normalizer [31], which captures the true
hardness of QSCDg. Discovering an efficient quantum algorithm for QSCD g
is likely to require a new tool and a new technique, which also bring a break-
through in quantum computation. It is important to discover useful quantum
states whose computational distinguishability is used for constructing a more
secure cryptosystem.
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Appendix: Reduction from GA to UniqueGAg

In this Appendix, we prove Lemma 3. Kobler, Schéning and Tordn [28] proved
the polynomial-time Turing equivalence between GA and UniqueGA. We first
review their reduction and then show how to modify it to obtain the reduction
from GA to UniqueGAg. Note that the reduction from UniqueGAg to GA is
obvious.

We begin with a technical tool and notations. The reduction of Kobler et
al. uses a technical tool called a label to distinguish each node of a given graph
G from the others. The label j attached to node ¢ consists of two chains, one
of which is of length 2n + 3 connected to node ¢ and the other is of length j
connected to the n 4+ 2-nd node of the first chain (Fig. 2).

n+1l n+1
s A QA [ A R
®_O_ ...... AO_S:O; ...... _O
...... ._O
j
Fig. 2: label

Note that the total size of the label j is 2n + j + 3. Let G|;) denote the graph
obtained from G by attaching label 1 to node i. Similarly, G;, ;) is defined as



the graph with labels 1, ..., j respectively attached to nodes i1, ..., ;. Note that
any automorphism of Gi;; maps the node 7 into itself and any label adds no new
automorphism into the modified graph. Let Aut(G) be the automorphism group
of the graph G and let Aut(G)[1,... ;] be the point-wise stabilizer of {1,...,i} in
Aut(G), ie., Aut(G)p,.. i1 = {0 € Aut(G) : Vj € {1, ..., i}[o(j) = j]}.

Kobler et al. [28] proved the following theorem. The reduction from GA to
UniqueGA in [28] is described in its proof.

Theorem 5. [28, Theorem 1.31] GA is polynomial-time Turing reducible to
UniqueGA.

Proof. Given an oracle O for UniqueGA, the following algorithm solves GA in
polynomial time. Let G be any given instance of GA.

(U1) Repeat (U2)-(U3) for each i starting with n down to 1.

(U2) Repeat (U3) for each j ranging from i + 1 to n.

(U3) Invoke O with input graph Gy ;-1,i]UGp . i1 ;). If the outcome of O
is YES, output YES and halt.

(U4) Output NO.

If G is an “YES” instance, there is at least one non-trivial automor-
phism. Take the largest number 7 € {1,...,n} such that there exists a num-
ber j € {1,...,n} and a non-trivial automorphism 7 € Aut(G)p,.. ;) for which
7(i) = j and i # j. We claim that there is exactly one such non-trivial auto-
morphism. This is seen as follows. First, note that Aut(G)p,.. ;1] is expressed
as Aut(G)p,..i-1] = mAut(G)p,. i1+ - -+ maAut(G)p . ;- For any two dis-
tinct cosets m, Aut(G)p ... 5 and m Aut(G)p .. 4 and for any two automorphisms
o € mAut(G)p,. i) and ¢’ € mAut(G)p,. 5, it holds that o(i) # ¢’(i). Since
|Aut(G)p,... ;7| = 1 and there exists the unique coset 7 Aut(() such that o (i) = j
for any o € mp Aut(G) by the definition of 4, we obtain |mx Aut(G)p1,.. 5| = 1. This
implies that the non-trivial automorphism 7 1s unique. Note that the unique non-
trivial automorphism interchanges two subgraphs Gpy, . ;14 and G, i1 ;]
Therefore, the above algorithm successfully outputs YES at Step (U3).

On the contrary, if G is a “NO” instance, then for every distinct ¢ and j,
the modified graph has no non-trivial automorphism. Thus, the above algorithm
correctly rejects such a graph G. a

Finally, we describe the reduction from GA to UniqueGAg by slightly mod-
ifying the reduction given in the above proof.

Lemma 6. GA is polynomial-time Turing reducible to UniqueGAg.

Proof. We only need to change the number of nodes to invoke oracle UniqueGA g
in (U3). To do so, we first modify the size of each label. Since the number m
of all nodes Gy, i—1qU Gp,....i—1,;] is even, if there is no k such that m =
2(2k + 1) then we add one more node appropriately to the original labels. We
then attach our modified labels of length 2n+4:44 and 2n+j+4 to nodes ¢ and 7,
respectively. Note that this modified graph satisfies the promise of UniqueGAg.
Our algorithm therefore works correctly for any instance of GA. a



