Group Signatures with Efficient Concurrent Join

Aggelos Kiayias'** and Moti Yung?

! Computer Science and Engineering, University of Connecticut
Storrs, CT, USA. aggelos@cse.uconn.edu
2 RSA Laboratories, Bedford, MA, and
Computer Science, Columbia University
New York, NY, USA. moti@cs.columbia.edu

Abstract. A group signature is a basic privacy mechanism. The group
joining operation is a critical component of such a scheme. To date all
secure group signature schemes either employed a trusted-party aided
join operation or a complex joining protocol requiring many interactions
between the prospective user and the Group Manager (GM). In addi-
tion no efficient scheme employed a join protocol proven secure against
adversaries that have the capability to dynamically initiate multiple con-
current join sessions during an attack.

This work presents the first efficient group signature scheme with a sim-
ple Joining protocol that is based on a “single message and signature
response” interaction between the prospective user and the GM. This
single-message and signature-response registration paradigm where no
other actions are taken, is the most efficient possible join interaction
and was originally alluded to in 1997 by Camenisch and Stadler, but its
efficient instantiation remained open till now.

The fact that joining has two short communication flows and does not
require secure channels is highly advantageous: for example, it allows
users to easily join by a proxy (i.e., a security officer of a company can
send a file with all registration requests in his company and get back their
certificates for distribution back to members of the company). It further
allows an easy and non-interactive global system re-keying operation as
well as straightforward treatment of multi-group signatures. We present
a strong security model for group signatures (the first explicitly taking
into account concurrent join attacks) and an efficient scheme with a
single-message and signature-response join protocol.

1 Introduction

Group signatures is a useful anonymous non-repudiable multi-use credential
primitive that was introduced by Chaum and Van Heyst [17]. It involves a group
of users, each holding a membership certificate that allows a user to issue a pub-
licly verifiable signature while hiding the identity of the actual signer within
the group. The public-verification procedure employs only the public-key of the
group. Furthermore, in the case of any dispute or abuse, it is possible for the

** Research partly supported by NSF CAREER Award CNS-0447808.

group manager (GM) to “open” an individual signature and reveal the identity
of its originator.

Constructing an efficient group signature has been a research target for many
years, see e.g., [18,16,13,14,9,26,3,1,11,24,8,2,10,12]. A scalable scheme that
provides constant signature size and has resistance to attacks by coalitions of
users was given in [1]. Earlier constructions were designed without a formal
model and definition of security of such schemes, and thus with partial security
proofs at the best case (while many were actually broken).

A central issue in group signatures has been the way by which users join the
group. Recently, [5] gave the first formal model of a somewhat “relaxed” group
signature primitive where a trusted party generates and hands out all users’ keys.
They also produced a generic solution thus demonstrating the polynomial-time
plausibility of their notion of trusted-party aided join group signatures. This is
in contrast with users who dynamically join the system and get their individual
keys by interacting with the group manager (as in the protocol of [1]). Dynamic
joins that allow users to register sequentially were studied formally in [23,25]
where efficient constructions were given and in [5, 6] where a generic plausibility
proof was provided.

The most efficient and conceptually simple joining procedure for a group
signature scheme (what we will call the “single-message and signature-response
paradigm”) was illustrated by Camenisch and Stadler [16] who sketched a generic
solution (which was followed in careful details in [5,6]). In this type of joining
protocol, the prospective user has an appropriately distributed secret z’ and
it computes a one way function f on it to obtain z = f(z). The user sends
z to the GM who, in turn, signs = and returns the signature v to the user
using an appropriate signing algorithm. This completes the interaction of the
join protocol. The possession ofthe signature v on = f(z') enables a user to
sign anonymously a message m by simply encrypting x probabilistically into
¥ (under the GM’s public key or whatever entity is supposed to execute the
opening algorithm) and by providing a zero-knowledge proof of (i) the fact that
the % is an encryption of some known to the prover, (ii) the fact that the prover
knows z’ a preimage of that z under f, (iii) the fact that the prover knows a
signature issued by the GM on that z.

While the Camenisch-Stadler approach is elegant and advantageous (as we ar-
gue below), its instantiation by an efficient scheme turned out to be elusive, since
the many schemes that have been suggested in the last eight years approximated
it but none really employed it. In fact, all the efficient schemes in the non-trusted-
party-aided joining setting that were not broken used additional communications
during the join protocol usually to assure that certain constraints and certain
knowledge of the joining user is present, i.e., the prospective user had to engage
in an interactive zero-knowledge proof with the GM. It was not at all appar-
ent whether the single-message and signature-response join would actually be
instantiable in an efficient manner in a provably secure scheme. Moreover the
employment of such proofs of knowledge has the usual shortcomings with respect
to adversaries operating in the concurrent setting (namely, rewinding cannot be

employed and a “straight-line” approach needs to be followed that makes the
joining protocols even more involved).

To conclude the motivation for our result, we summarize the advantages of
a group signature employing a single-message and signature-response joining
protocol:

1. Concurrency: Joining of users can be done concurrently where a batch of
users join at the same time. This enables group managers over the Internet
(where servers are multi-thread machines).

2. Proxy Join: Users can be joined by a proxy collecting all their requests
and then collecting the responses from the group manager; this is a very
effective way to enroll companies and organizations by delegating collection
and distribution to security officers. It is highly effective in enrolling to an
identity escrow scheme without the need for random oracle proofs.

3. Multi-Group Scenario: There may be a number of groups; since single-
message and signature-response joins require essentially no interaction be-
tween the GM and the prospective user users may accumulate many GM
membership signatures on the same x value non-interactively thus easily
becoming members of multiple-groups.

1.1 Our result

In this work we implement the first group signature scheme with a single-message
and signature-response join protocol to be exploited for concurrent joins and
other advantages as above, thus implementing efficiently the Camenisch-Stadler
approach for the first time3.

We start by presenting the first model of “group signature with concurrent
joins” which builds on the recent formal models and consists of a set of attacks.
We note that in a privacy primitive interacting users may be conducting simul-
taneous attacks against each other and these need to be captured formally. We
call our attacks: misidentification attack, framing attack and anonymity attack
and is an extension of our sequential-join formal model for group signatures in
[25]. We then implement a scheme based on specific assumptions and prove its
security. The scheme allows adversarial opening of signatures and its signature
size is only about twice the size of the scheme of [1] (that did not allow for
adversarial opening or concurrent join attacks).

From a technical viewpoint we employ a number of complex primitives in-
cluding the digital signature scheme of Boneh and Boyen [7] (hence referred to
as the BB signature) as well as verifiable encryption for discrete-logarithms that
are based on the Paillier encryption function [27, 20, 15, 22].

3 In some recent schemes of group signatures and related primitives based on dynamic
accumulators [28,19], a simple two message join was implemented; nevertheless this
was to be followed by local modifications of keys of all existing users; we do not
consider such a protocol efficient. In our solution, keys of other users are unaffected
when new members are introduced to the group.

x = RSA modulus User Database

(x1,x2) = ; ;
factorization Gsr:gni? <:> H:Z:; i t:g
of x Dialog User 3: x, (s,)

(s,r)=BB(x)

Group signature is
CCA2-Paillier encryption of x
coupled with
1. encryption of s.
2. proof of knowledge of r s.t. (s,r) is valid BB signature on x
3. proof of knowledge of x1 and x2
4. well-formedness

Fig. 1. Overview of our general group signature design. The BB signature can be
substituted by potentially other signatures that are suitable for algebraic encryption
with efficient validity proof.

A novelty of our technical approach (and perhaps an explanation why we
manage to achieve an efficient single-message and signature-response join) is that
we deviate from most of group signature literature by instantiating the one-way
function employed by the prospective user during the join with multiplication
instead of exponentiation. Our general design approach is outlined in figure 1:
users sample an RSA modulus and merely obtain a BB certificate on it. This
modest interaction (which is simply a PKI registration in a domain employing
RSA moduli with a BB signature for certification) allows users to sign as group
members.

Our security proofs follow a modular approach: in a nutshell, a misidentifica-
tion adversary is turned into a BB-forger, a framing adversary is turned into a
factoring algorithm and an anonymity attacker is turned into a CCA2 adversary
against the encryption algorithm we employ. The group signature itself is based
on the Fiat-Shamir paradigm, by essentially turning an identity escrow (anony-
mous identification) system into a signature and employing a random oracle. We
note that the interactive version of our group signature yields an identity escrow
scheme in a straightforward manner that can also have concurrent group signing
by employing general transformation techniques for X-protocols, e.g. [21].

2 Preliminaries

Interactive Turing Machines and Concurrent Executions. A two-party
protocol is a pair of probabilistic polynomial-time bounded Interactive Turing
machines (A,B). Each of A,B has a private input tape, work-tapes, a (joint)
communication tape and a private output tape. An execution of a protocol (A, B)
on inputs z, y for the two players will be denoted by [A(z), B(y)]. For an execution

of a protocol we will consider the following random variables: (i) Trans[A(z), B(y)]
is the contents of the communication tape after the two parties terminate. (ii)
Outa[A(z), B(y)] is the contents of the private output tape of player A after
termination. (iii) Outg[A(z), B(y)] is the contents of the private output tape of
player B after termination.

Now suppose that P = (A, B) is a protocol. An “interface oracle” for concur-
rent simulation of player B, denoted by Z[P,,p(y)], is an oracle that accepts the
following queries:

Q1. Start — Session: The interface oracle Z[P,p(,)] initiates a session for the
protocol P: it selects a session identifier s and if B is the player that goes
first in the protocol P, the interface simulates the first move of B on input
y; the interface returns as answer to the Start — Session query the session
identifier s and the output of the simulation of player B’s first move (if any).
The interface keeps a database with the state of player B for the session
identifier s; the state includes all coin tosses of B, and the contents of all
tapes including the communication tape.

Q2. Advance — Session(s, msg) The interface oracle looks up the table of ses-
sions and recovers the state of player B for the session with identifier s (if
there is no such session the interface returns | as answer to the oracle query).
If session s exists the interface appends msg to the communication tape of
the session and continues the simulation of player B (as if msg is the message
that is written to the communication tape of player B by player A).

We will use the notation MZ[P<8)] to denote any probabilistic Turing ma-
chine M that has access to an interface oracle as defined above. Note that the
interface oracle Z[P,a(z)] (for concurrent executions of player A in the protocol
P) can be defined in the same fashion as above. Frequently protocol executions
are stateful, e.g. there is a database, or state St in general that an instantiation
of the protocol P may consult. This state St will be maintained by the interface
oracle Z. In this case we will write Zs;[P,,g()]- In the case that a TM M has
access to a stateful interface oracle Z we will write MZst[P~8)]. Depending on

the case, Z may modify the state St or even allow read and write access to St
by M.

Bilinear Maps. Let G1, G2 two groups of prime order p so that (i) G; = (g1)
and Gz = (go); (ii) 7 : G2 — Gy is an isomorphism with 7(g2) = ¢1 and (iii)
e : Gy x G3 = Gr is a bilinear map. We remark that in many cases it can
be that G; = Gy (and in this case ¥ would be the identity mapping). Let
G1 = {g1),G2 = (g2) groups as above with |G;| = |Gz2| = p; a bilinear map
is a map e s.t. for all (u,v) € Gy x Gy it holds that e(u®,v¥) = e(u,v)* and
e(g1,92) # 1.

Intractability Assumptions. We will employ the following four intractability
assumptions:

The Strong Diffie Hellman Assumption (SDH) was put forth by Boneh and
Boyen [7]. The ¢-SDH problem over two groups G;, Gy is defined as follows:

1
given a (¢+2)-tuple (g1, 92,93, - - ,ggY)q> as input, output a pair (g;**,) where

x € Zy,. The ¢-SDH assumption suggests that any probabilistic polynomial-time
(PPT) algorithm solving the ¢-SDH problem has negligible success probability.
When q is any polynomial-time function on the security parameter we will write
simply SDH.

The Strong-RSA problem [4] is as follows: given n,z € QR(n), where QR(n)
is the group of quadratic residues of Z; asks for two integers u,e > 1 so that
u® =, z. The Strong-RSA assumption suggests that any PPT algorithm solving
the Strong-RSA problem has negligible success probability.

The Linear Decisional Diffie Hellman assumption (Linear-DDH) [8] is as fol-
lows: the distribution of tuples of the form (u, v, h, u®, v®, h%+#) where u, v, h g
G and a,B <r Z,, is computationally indistinguishable from the distribu-
tion of tuples of the form (u,v, h, ua,vﬁ,n) where where u,v,h,n <r G; and
o, B <R Zy. The Linear-DDH is assumed to be true, even in groups where DDH
fails (e.g., groups G; for which we have a bilinear mapping).

The Decisional Composite Residuosity (DCR) assumption [27] is defined as
follows: it is computationally hard to distinguish between the distributions of
tuples of the form (IV,u" mod N?) where N is an RSA safe composite modulus
and u <—g Zj}. and the distribution of tuples of the form (V,v) where N is an
RSA safe composite modulus and v <—g Z}.

3 Group Signatures with Concurrent Join : Modeling

In this section we give the formal definition of group signatures with concurrent
join. First we start with the syntax of the signature. The parties that are involved
in the scheme include the Group Manager (GM), the Users and the Verifiers.

Definition 1. A group signature scheme with concurrent joins is a digital sig-
nature scheme that is comprised of the following five procedures:

SETUP: it is a probabilistic algorithm that on input a security parameter 17,
it outputs the group public key Y (including all system parameters) and
the secret key S for the GM. SETUP initializes a public state string St =
(Stuser87Stjoin—trans) with two Components Stusers =€ and Stjoin—trans =
€. The public state string St will hold the user identity database and the
database of the Join protocol transcripts. This information will be publicly
available and will grow as more users are introduced into the system.

JOIN: A protocol between the GM and a user that results in the user becoming
a new group member. The user’s output is a membership certificate and a
membership secret. We will denote the i-th user’s membership certificate by
cert; and the corresponding membership secret by sec;.

Since JOIN is a two-party protocol, its specification includes the description
of two interactive Turing Machines (ITM) Juser, Jom- Only Juser will have a
private output.

According to the notations of section 2 an execution of the protocol is denoted
as [Juser(St, V) > Jem(St, Y, S)] and has two “output” components:

1. the user private output, (i,cert;,sec;) < User[Juser(St, V) <> Jam(St, Y, S)],
and

2. the public transcript, transcript; < Trans[Juser(St, V) <> Jam(St, YV, S)]-

After a successful execution of JOIN the following updates are made: Stygers =

Stusers||(i) and Stjoin—trans = Stjoin—trans|| (i, transcript;). The identity-tag

1 will be selected from a space of possible identity tags denoted by ID.

SIGN: A probabilistic algorithm that given the group’s public-key, a member-
ship certificate, a membership secret and a message m, it oulputs a group
signature for the message m. We write SIGN(), cert;, sec;,m) to denote the
application of the signing algorithm on the message m.

VERIFY: An algorithm for establishing the validity of an alleged group signature
on a message with respect to a group public-key. If o is a signature on a
message m, then we have VERIFY(Y,m,0) € {T, L}.

OPEN: An algorithm that, given a message, a valid group signature on it, a
group public-key, the GM’s secret-key and the public-state it determines the
identity of the signer. In particular OPEN(m, 0,St,Y,S) € Stysers U {L}.

Notation. Below we will introduce a helpful notation for describing the rela-
tionship between transcripts and membership certificates and secrets. Given
(¥,8) < SETUP(1”) we define the following relations over strings based on Y
and some public state St,

(i, cert,sec) =y, sy transcript if there exist coin tosses p for Jeum and Jyser sO
that
(1, cert, sec) = User[Juser(St, V) <> Jam(St, Y, S)](p)

and
transcript = Trans[Jyser (St, V) <> Jam(St, Y, S)](p)

Similarly we will define cert =y sec, if there exist coin tosses p for Jom and
Juser and a state St so that

(1, cert, sec) = User[Jyser (St, V) < Jam(St, Y, S)](p)

Finally we define the set of all valid public states Valid as follows: Sty € Valid
if there exists a PPT Turing machine M and (Y, S) <+ SETUP(1”) so that when
MZTst[I0IN G m(se,v,5),READs:] terminates it holds that St = St, and the interface
oracle Z given to M initializes St = (¢, €) and allows M to have read access to
St through READ queries (that Zg; allowes to M in addition to Start — Session
and Advance — Session queries). If Zg, initializes St to some Sty € Valid that is
not (e, €) then this defines the set of all valid extensions of the public-state Stg
that will be denoted by Valids;,. Obviously Valid = Valid(c).

Correctness. Below we define the correctness of a group signature scheme that
satisfies the above syntax. Note that a group signature is a tuple (SETUP, JOIN,
SIGN, VERIFY, OPEN) with JOIN = (Jyser, Jom)-

Definition 2. A group signature with concurrent join is correct if the following
are true:

C1. (users are assigned unique names) For any St € Valid it holds that Stysers
contains no multiply defined identity-tags, i.e., if Stysers = (i1)||--.||(ix) it
holds that j # j' = i; # ijr.

C2. (signing is correct) For any (),S) < SETUP(1¥), any strings cert =y sec
and any m € {0,1}*, it holds that VERIFY(), m, SIGN(Y, cert,sec,m)) = T.

C3. (open is correct) For any (Y,S) + SETUP(1”), any St € Valid, any m €
{0,1}*, and any (i, cert, sec) =y g transcript it holds that OPEN(m, SIGN(D,
cert,sec, m), St",V,8) = i, where St” € Validgy and St' is defined as fol-
lows: St! = Stusers|| (i) and St = Stjoin—trans|| (i, transcript).

users join—trans

Property C1 requires that the JOIN protocol assigns a different identity tag
to all users. Property C2 ensures the correctness of the underlying signing and
verification for any valid signing key (that includes a membership secret and a
membership certificate). Finally, property C8 ensures that the OPEN algorithm
correctly identifies all signers: in particular it says that if a user is introduced at
some moment in the system’s operation and the public-state St is updated with
the user’s identity tag resulting to state St' then it holds that whenever this
user issues a group signature the user will be correctly identified for every public
state St that succeeds the public-state St' of the system. We note that it may
be viable to collapse C1 and C3 but, given the intuitiveness of the formulation,
we keep them as separate properties.

Definition of Security. Security against group signatures with concurrent
join, will be broken into three basic properties following the model designs of
[23,25]. The properties are formalized as games between the adversary and an
entity called the interface, denoted by Z that represents the uncorrupted aspect
of the system in each attack.

Misidentification. In a misidentification attack, the adversary joins the system
through possibly many concurrent sessions of the JOIN protocol and it attempts
to produce a signature that cannot be opened to any of the users that are
adversarially controlled. We note that without loss of generality we will assume
that all users introduced in the system are adversarially controlled; this means
that the goal of the adversary is to simply make the OPEN algorithm to fail. We
remark that adversaries that make the OPEN algorithm to point to an innocent
user will be handled in the framing attack (next paragraph).

Below, Zs:[JOIN,gar] will denote the interface oracle for concurrent simula-
tion of the GM party in the protocol JOIN (refer to section 2 for the definition).
Note that the interface Z has access to the public state string St and it updates
it accordingly whenever a new user (the adversary that is) successfully completes
the JOIN dialog. Also, an oracle READg; is provided to the adversary that allows
him to read the contents of the public state database that contains the identifi-
cation transcripts and user identity tags. Finally, an oracle OPEN is provided to
the adversary that allows him to submit signatures and obtain the output of the
opening algorithm.

The Misidentification-Attack Game G5 (denoted by Gz (1¥)):
1. <y78> <~ SETUP(]-V)v St = (Stusers, Stjoi'nftra'n.s) - (67 6)7
2. <m, 0-) «— AISt[JDINHGM(St,y,S)7READSt:UPEN] (y)
3.

I

If (VERIFY(Y, m,0) = T) A (OPEN(m, 0,),S, St) = L) then return T else L;

We will say that a group signature is secure against misidentification attacks
with concurrent join provided that for all A it holds that Prob[G (1Y) = T| =
1 — negl(v).

Framing. In a framing attack the adversary plays the role of the system where
the interface represents a handful of innocent users. A framing attack is meant
to capture any adversarial behavior that allows the adversary to make the open
algorithm point to an innocent user. We remark that this captures the notion of
exculpability as well as any other adversarial behavior that frames an innocent
user. In the concurrent setting, we allow the adversary to initiate many concur-
rent executions of the JOIN dialog playing the role of a malicious GM. The goal
of the adversary now is to produce a signature that opens to one of the innocent
users.

Naturally in modeling such an attack we cannot allow to the adversary to do
all the bookkeeping for the user database himself (otherwise an OPEN operation
would be without meaning). Every time the adversary successfully terminates a
JOIN dialog with an innocent user that is controlled by the interface Z, the inter-
face will add the user identity into the St,sers and will append the whole com-
munication transcript to Stjoin—trans- Moreover it will keep a private database
containing the secrets of the innocent users that will have the format (i,sec;)
(these will not be accessible to the adversary). In addition to the above, we will
allow the adversary to submit queries to a SIGN oracle that will be handled by
the interface oracle Z and accepts the identity of one of the innocent users and
a message and returns a signature of this message with the signing mechanism
of the named user.

We allow the adversary to have appropriately restricted modify access to the
public-state St; this access will be handled by Z in the form of the MODIFYg,
oracle query. As mentioned already we will not give to the adversary full write
capability to the public state St since if he is allowed to this, opening any signa-
ture correctly would be meaningless (e.g., if the adversary erases the database of
JOIN transcripts it is straightforward that the opening capability is cancelled).
The restrictions are as follows: MODIFYg; will not permit the adversary to insert
a join transcript that reuses an identity tag (this restriction is essential to main-
tain the semantics of the OPEN unambiguous) and will not allow the adversary
to modify any of the identity tags or join transcripts of the innocent users (to
these the adversary will have read-only access). Any other modification of the
public-state will be allowed by Z (in particular the adversary is allowed to in-
troduce users to the public-state as well as erase them — for this reason there
is no need for a “corrupt” oracle).

We will use the notation StZ,_, . to denote all innocent users in the system
that are introduced by the execution of the concurrent JOIN oracle and are
managed by the interface oracle Z.

The Framing-Attack Game G7, (denoted by G7, (1)):

fra fra
1. (), S) < SETUP(1"); St = (Stusers, Stjoin—trans) = (€ €);
2. (m, o) + ATPOING User(y),STGN,RED s HODIFYs:] () G)
3.1 = 0PEN(m, 0, St, Y, S);
4. If (VERIFY(Y,m,0) = T) A (i € StZ

USETS

) then return T else return L;

We say that a group signature satisfies security against framing attacks with
concurrent join provided that for all A it holds that Prob[G (1Y) = T] =
1 — negl(v).

Anonymity. Finally, anonymity is modeled as a sort of CCA2 attack against
the identity encryption embedding mechanism of the group signature.

The Anonymity-attack Game G, (denoted by G4, (1¥)):
. (Y,8) « SETUP(1¥); St = (Stusers, Stjoin—trans) = (€,€);
. (auzx, m, certy, sec;, certy, secy,) < ATOMNwanm(st,v,5) REDS:,0PEN] (|5 7))
. if =((cert; =y secy) A (certa =y secq)) or cert; = certy then stop; return L;
. Choose b +g {1,2};
. 9 < SIGN(Y, certy, secy, m);
bt AI[JIJINHGM(St,y,S),READSt,UPEN_”’b](guess, auw)
.if b =b* return T else return L;

)

N O Ok W N

We note that the OPEN™ oracle operates as the OPEN oracle with the usual
restriction that it should return L if the adversary submits i as the signature
to be opened.

A group signature is said to be secure against anonymity attacks with con-
current join provided that for all A it holds that 2Prob[GZ,, (1) = T] -1 =
negl(v).

Based on all the above we will say that a group signature with concurrent
join is secure provided that it is secure against misidentification, framing and
anonymity attacks.

4 Group Signatures with Efficient Concurrent Join :
Construction

In this section we describe our efficient group signature construction. A num-

ber of primitives proved to be instrumental in our construction, namely: BB

signatures [7], Linear ElGamal encryption [8], and a CCA2 variant of Pailier

encryption [27,22,15]. We first begin by describing the public-parameters our

system will employ.

Public-parameters. The public parameters of the scheme are as follows:

pl two groups of order p where p is a £,-bit prime, p > 2¢p=1 denoted by
Gy = (g1) and Gy = (g2), so that there is e and Gr and e : G; x Gy — Gr
is a bilinear map.

p2 an RSA-modulus n, of £, bits; n is selected so that Strong-RSA will be
infeasible over QR(n).

p3 three integer ranges S, S, S”. We define the integer range S =4¢ S(2¢°1, 2% ~2)
={2¢"1-2%-241 ... 2°142%2_1}. Observe that if z,y € S(2¢71,2%~2)
and * =, y then it holds that = y; indeed, p | * — y means that
x = y + kp; assume without loss of generality that & > 0. Now, since
2fr—1 < p < 2% we have that y > z+2~1; this is a contradiction, since even
if 2 =minS = 2¢~1 —2%=2 1 1 we have that y > 2¢-1 +26—1 26211 >
26=1 1 26p=2 1 1 > max S. It follows that k = 0 and as a result z = y.
Now let k, € > 1 be parameters and select the ranges S’, S as follows: S’ =4¢
S(2¢,20) = §(2¢-1, 2lt=N)/el=k) and §7 =4 S(2¢7,2+") = §(2¢/2,21'/2),
so that §(2¢",2¢#"+k+2) does not contain an integer smaller than 2 and
is disjoint from the range S. The ranges S,S’,S"” are assumed subsets of

p4 asafe RSA-modulus N of £ bits with N = PQ and P = 2P'+1,Q = 2Q'+1,
so that in the group Zj};. it holds that the DCR assumption is hard, and the
value G = (Gp)?" (modN?) is selected with Gy < g Zj.. Note that with
overwhelming probability (G) is the subgroup of quadratic residues modulo
N? that are simultaneously N-th residues; note that #(G) = P'Q’.

Regarding the size of parameters we observe the following: £, can be quite
small, e.g., 170 bits is sufficient to achieve security that is equivalent to security
of 1020 bits in multiplicative groups for the discrete-log problem (cf. also [8]).
On the other hand 4,,¢, ¢ will be selected so that an RSA modulus with this
number of bits is hard to factor and thus ¢,,¢,¢; > 1024 > {,. The above
public parameters will be selected by the setup procedure of the group signature
system as described below.

SETUP. The procedure first generates the public-parameters pl and p2 and p3 as
described above. Then, it executes the following steps:

It selects two values 7,8 g Z, and sets w = g7 and v = gg ; this is the setup
for BB signatures, cf. [7].

It selects two values o, 8 g Z, and u < G; and sets u' = u®/P and h =
u®(u')P; observe that it holds that u® = (u’)?. This is the key-setup for
linear ElGamal encryption, cf. [8].

It selects g, f1, f2, f3 < r QR(n). These will be used for commitments.

(Opening functionality) the public parameters NV, G according to p4 are selected
as well as Hy, Hy, H3 € (G) with H; = G%, a; <~ Z|ny4) for i = 1,2,3
and a hash-key hk for a universal one-way hash function family UOHF. We
remark that this step can be entirely separated from the GM’s setup phase
and executed by an opening authority. Nevertheless for convenience and
simplification of the presentation we do not make further distinction in the
present version of the paper.

The public-key Y is set to (g1, g2, u, v, h, w, v, desc(Gy ||Gz||Gr||e||[UOHF), g,
fyn,N,G, Hy, H2, H3, hk) and the secret key S is set to to (v, J; a1, az, as). Note
that the factorization of n as well as the values a, 8 (the decryption key for the
linear ElGamal encryption) are not needed and thus they are discarded.

JOIN. In the join protocol execution, the user will obtain a BB signature on
an RSA modulus that he selects. A user’s membership certificate is the signa-
ture itself together with the RSA modulus; a user’s membership secret on the
other hand is the factorization of the modulus. The join procedure between a
prospective user and the GM is described in detail below:

e (User—GM) The user initiates the procedure and selects random z € S’ to
be an ¢-bit RSA modulus with z1, 25 its two prime divisors, so that z; € S”.
The User transmits z.

e (GM—User) The GM checks whether z € S’ and whether = was submitted
by another user in a previous JOIN; if the check fails the GM terminates the
JOIN protocol; otherwise (i) it reads the public-state St, selects ¢ € ID so that
1 &€ Stysers and in such a manner that ¢ is distinct from any other concurrent
executions and writes to its communication tape the values (i,0,7) where
r<+grZ,and o = gi/ (7+Z+6T); finally it updates St;oin—trans by appending
to it the tuple (i,0,7) and sets Stysers = Stusers||{)-

e The user verifies that e(o, wgiv") = e(g1,92) and that ¢ & Stysers; if either
test fails the user fails the JOIN dialog. Otherwise, it terminates successfully
by setting his membership certificate to cert = (z,0,r) and his membership
secret to sec = (1, x2).

Observe that the user does not prove that = was selected appropriately; Per-
haps surprisingly, we show that this is still sufficient for security in the concurrent
setting. Naturally if the user chooses z inappropriately two things may happen:
(i) the user may not be able to issue group signatures, e.g., this may happen
when z is a prime; this naturally is of no concern to the GM, (ii) the user selects
= as an integer that is easy to factor; while this is of concern there is nothing
that can be done about it: this case is conceptually the same as the case that
the user just leaks its secret-key; while this possibility is annoying there is little
that can be done to prevent this in any group signature scheme.

As a side-note the reader perhaps would be concerned with the fact that the
BB-signature above (that typically operates over short messages of, say, about
170 bits) will be used to sign RSA moduli that are over 1000 bits. Our scheme
prevents any kind of naive forgery based on the wrap-around by employing range
proofs that ensure that the integers employed by users, while they are large they
all fall within an integer range S’ that contains sufficiently less than 2170 elements
(cf. the parameter selection p3).

SIGN. We present the signing algorithm. The user possesses the following: a
membership certificate (z, o, 7) and the corresponding membership secret z;, x2.
The signing algorithm will be obtained by applying the Fiat-Shamir Heuristic
on an appropriately designed proof of knowledge. First, the signer computes the
following values:

T, = u? 24+ R Zpin Gy

’

Ty = (u')? 2+ RrRZyin Gy

Ty = h*+% o in Gy

T, = g¥ i y +r S(1,2»~2) in QR(n)
Ts = g 32 f4 ¥’ < r S(1,2°7?) in QR(n)
Co =Gt t <R 5(1,221\’_2) in Z*N2
Cy = Hi(1+ N)* in Z%,
Cp = ||(HpHy ™7)| in Zy

Note that ||z|| = z if z < N?/2 and ||z|]| = N? — x otherwise. Also re-
call that S(a,b) =4 {@ — b,...,a + b}. Subsequently the signer will construct
the signature “of knowledge” on the given message m by providing a proof of
knowledge for the relations given in figure 2 that involve the fourteen witnesses
oza 02’7 gzv gzza ozz’a 07', g'rza grz’a 911) gzg) g'ya 0’y’7 gyzz) gt-

T, '’ =1 T, (W)’ =1

Ty %= uf== =1 Ty % ()= =1

Ty = =1 Ty 0 ()= =1
e(Ts,v)" e(Ts, g2) " e(h, g2) ~*== = =" e(h, v) ~*r= "%+ e(h, w) ~** "' e(Ts, w) = e(g1, g2)

T, g% fo=1 =1 714*912991,,32 fo= =1
Tsflgeyl fozz f29g -1
Co = G* Ci=HI(1+N)’ (C2)? = (HaHy MO0 01200
0. €8 0, €8"

Fig. 2. The relations defining the signature of knowledge

Given the coin tosses of the signer for the selection of 77, T3, T3, T4, T5, Co, C1,
the witnesses needed in figure 2 are selected as follows: 0, = 2,0, = 2/,0, =
z,0,, = z - z(modp), O, = z - 2'(modp), 6, = r, 6, = 7 - z(modp), b,,, =
r- z'(modp), 0z, = 21,0z, = x2,0y = y’ay’ =v, gyzz =y- 2 in Z, 6; = t. Now,
given a message m, the signature will be constructed as follows:

1. (choose blindings) the values p., p.7, Puz, Pozrs Pry Przs Przt <R Ly and p, < g
+{0, 1}6M’+k, Pz, <R {0, 1}6M”+k and pg,, py, Py’ <R +{0, 1}5(4"_2)4_19’ Pyzz <R
+{0,1}2¢n =24k and p, +p £{0,1}“~=2)+k are selected. Using these values
the following are computed:

Ry = u** Ry = ()P~
Ry = T{=u=r=: Ry = Tf= (u') ="
R5 = T{”uf”” R(; = T2pr (u')f””’

Ry = e(Ts,)" e(Ts, g2) (b, g2) P~ Pe+'e(h,v) P+ Pre'e(h, w)e=+7
Rg = g*v fle Ry = wazg—Pyzzf—pm

Rig = g*v' f3=2 f5"
Ry = G* Ry = HP*(1 + N)P= Rys = (HyH (PG00 20
2. (calculate challenge) using a hash function denoted by HASH the value
¢ < HASH(m/||T1|| . .- ||T4l|T5||Ra]]| - - - || R12, R13)

is computed. The range of HASH is considered to be {0, 1}*.

3. (calculate response) Subsequently the following values are computed:

Sy =p,—cCz in Z,|s, = py — 2’ in Z,
Sgy = Pzz — CTZ in Zp|Sger = pgr — caz’ in Z,
Sp = pr —cr in Zp|Spy = pror — crz’ in Z,
Spyt = Pryr — 2’ in Zy|sy = pg —c(x — 2¢) in Z
Say = Pa, —c(x1 —2%) InZ |sy, = pa, —c(xa —1) in Z
sy =py —cly—1) inZ sy =py —c(y' —1) inZ
Syzy = Py, —C(Y -T2 —2)InZ |5y = py —c(t — 1) inZ

The output of the signing algorithm is the tuple: (T1, T2, T3, T4, T5, Co, C1, Ca, ¢,
S2y82'ySxzy Sxz!y SrySrzsSrz!s Sxy Sx1y Sxay Sy Sy Syxas 3t>-

VERIFY. Signature verification is achieved by the following tests:
? k41 ! "kl ! L N2
sy € {0, 1}# TR A 5, € £{0,1}# T+ A Cy,C1,Cy € Zia A Cy < N?/2

?
¢ ZHASH (m | T3 || T3 1| T || T4 || T

[Jus=T¢ | (')~ T

e’ 2
[T 42" agses || T =2 ()
(1T |T5 (u) =5

l,
[l €(Ts, v)*e(Ts, ga)= =2 e(h, g2) ===
e(h, v)—sN—s”/ 6(h, w)sz+sz/ e(gl’ gg)ce(T;g, w)—c

[Tggeve i ([T “gsums e feete” | Tggru = pira “pe
105G ||CEH (1 + Ny*==e2" || Cy(HF Hy MO0 poue)

C c

OPEN. Given a signature as described above: first the signature is verified as well
as the relation (C2)? = C’g(a”gﬂ(hk’c"’cl) is checked. if the test passes. If any
check fails OPEN returns L. Otherwise, OPEN computes m = C1Cy **; due to
the properties enforced by the proof of knowledge (cf. figure 2) it holds that
x = (m — 1)/N. Then, the OPEN algorithm searches St;oin—trans for transcripts
of the form (j,z;,0;,7;) with z; = = the identity j of the signer is recovered. If

no such z; is found, OPEN returns L.

5 Proof of Security

The proof of security is described here, it relies on the random oracle model (we
prove the group signature rather than the interactive identity escrow scheme).

Theorem 1. The signature of knowledge that specifies the SIGN algorithm sat-
isfies: completeness, special soundness under the Strong-RSA assumption and
statistical honest verifier zero-knowledge.

Theorem 2. Any misidentification attacker in the random oracle model against
our group signature can be transformed to an adaptive chosen message attacker
in the standard model against the BB signature assuming the Strong-RSA as-
sumption.

Theorem 3. Any framing attacker in the random oracle model against our
group signature can be transformed to a factoring algorithm in the standard
model assuming the Strong-RSA assumption.

Theorem 4. Any anonymity adversary against our group signature in the ran-
dom oracle model can be transformed to a CCA2 attacker against the public-key
encryption that is employed in our scheme; this is conditional on the validity of
(i) the Linear-DDH assumption, (ii) the assumption that the digital signature
scheme employed (BB-signature) satisfies strong existential unforgeability. (i)
the DLOG assumption over the subgroup of 2N -th residues inside 7y .

The above three theorems culminate to the following theorem:

Theorem 5. Our group signature is correct and secure in the random oracle
model under the assumptions: SDH, Linear-DDH, Strong-RSA and DCR as-
sumptions.

References

1. G. Ateniese, J. Camenisch, M. Joye, and G. Tsudik. A practical and provably secure
coalition-resistant group signature scheme. In M. Bellare, editor, Advances in
Cryptology — CRYPTO ’ 2000, volume 1880 of Lecture Notes in Computer Science.
International Association for Cryptologic Research, Springer, 2000.

2. G. Ateniese and B. de Medeiros. Efficient group signatures without trapdoors. In
ASIACRYPT: Advances in Cryptology — ASIACRYPT: International Conference
on the Theory and Application of Cryptology, Lecture Notes in Computer Science.
International Association for Cryptologic Research, Springer, 2003.

3. G. Ateniese and G. Tsudik. Some open issues and new directions in group signa-
tures. In M. Franklin, editor, Financial cryptography: Third International Confer-
ence, FC ’99, Anguilla, British West Indies, February 22-25, 1999: proceedings,
volume 1648 of Lecture Notes in Computer Science, pages 196-211. Springer-Ver-
lag, 1999.

10.

11.

12.

13.

14.

15.

16.

17.

N. Bari¢ and B. Pfitzmann. Collision-free accumulators and fail-stop signature
schemes without trees. In W. Fumy, editor, Advances in Cryptology — EURO-
CRYPT 1997, volume 1233 of Lecture Notes in Computer Science, pages 480—
494. International Association for Cryptologic Research, Springer-Verlag, Berlin
Germany, 1997.

M. Bellare, D. Micciancio, and B. Warinschi. Foundations of group signatures: For-
mal definitions, simplified requirements, and a construction based on general as-
sumptions. In E. Biham, editor, Advances in Cryptology — EUROCRYPT 2003, vol-
ume 2656 of Lecture Notes in Computer Science, Warsaw, Poland, 2003. Springer.
M. Bellare, H. Shi, and C. Zhang. Foundations of group signatures: The case
of dynamic groups. Cryptology ePrint Archive, Report 2004/077, 2004. http:
//eprint.iacr.org/.

D. Boneh and X. Boyen. Short signatures without random oracles. In C. Cachin
and J. Camenisch, editors, Advances in Cryptology — EUROCRYPT ’ 2004, volume
3027 of Lecture Notes in Computer Science, pages 56—73, Interlaken, Switzerland,
2004. Springer.

D. Boneh, X. Boyen, and H. Shacham. Short group signatures. In M. Franklin,
editor, Advances in Cryptology — CRYPTO 2004, volume 3152 of Lecture Notes in
Computer Science, pages 41-55. Springer, 2004.

J. Camenisch. Efficient and generalized group signatures. In W. Fumy, editor, Ad-
vances in Cryptology - EUROCRYPT ’97, International Conference on the Theory
and Application of Cryptographic Techniques, Lecture Notes in Computer Science,
pages 465—479. International Association for Cryptologic Research, Springer, 1997.
J. Camenisch and J. Groth. Group signatures: Better efficiency and new theoretical
aspects. In Security in Communication Networks - SCN 2004. Springer, 2003.

J. Camenisch and A. Lysyanskaya. An identity escrow scheme with appointed ver-
ifiers. In J. Kilian, editor, Advances in Cryptology — CRYPTO ’ 2001, volume 2139
of Lecture Notes in Computer Science, pages 388—407. International Association
for Cryptologic Research, Springer-Verlag, Berlin Germany, 2001.

J. Camenisch and A. Lysyanskaya. Signature schemes and anonymous credentials
from bilinear maps. In M. Franklin, editor, Advances in Cryptology - CRYPTO
2004, volume 3152 of Lecture Notes in Computer Science. Springer, 2004.

J. Camenisch and M. Michels. A group signature scheme with improved efficiency.
In K. Ohta and D. Pei, editors, ASIACRYPT: Advances in Cryptology — ASI-
ACRYPT: International Conference on the Theory and Application of Cryptology,
volume 1514 of Lecture Notes in Computer Science, pages 160—174. International
Association for Cryptologic Research, Springer-Verlag, 1998.

J. Camenisch and M. Michels. Separability and efficiency for generic group sig-
nature schemes (extended abstract). In M. j. Wiener, editor, 19th International
Advances in Cryptology Conference — CRYPTO ’99, volume 1666 of Lecture Notes
in Computer Science, pages 413-430. Springer, 1999.

J. Camenisch and V. Shoup. Practical verifiable encryption and decryption of
discrete logarithms. In CRYPTO 2003. Springer-Verlag, 2003.

J. Camenisch and M. Stadler. Efficient group signature schemes for large groups.
In B. S. K. Jr., editor, Advances in Cryptology — CRYPTO ’ 1997, volume 1294 of
Lecture Notes in Computer Science, pages 410-424. International Association for
Cryptologic Research, Springer, 1997.

D. Chaum and E. van Heyst. Group signatures. In D. W. Davies, editor, Ad-
vances in Cryptology, EUROCRYPT 1991 (Lecture Notes in Computer Science
547), pages 257—265. Springer-Verlag, April 1991. Brighton, U.K.

18

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

L. Chen and T. P. Pedersen. New group signature schemes (extended abstract).
In A. D. Santis, editor, Advances in Cryptology—EUROCRYPT 94, volume 950
of Lecture Notes in Computer Science, pages 171-181. Springer-Verlag, 1995, 9-
12 May 1994.

Y. Dodis, A. Kiayias, A. Nicolosi, and V. Shoup. Anonymous identification in ad
hoc groups. In C. Cachin and J. Camenisch, editors, Advances in Cryptology —
EUROCRYPT ’ 2004, volume 3027 of Lecture Notes in Computer Science, pages
609-626, Interlaken, Switzerland, 2004. Springer.

P.-A. Fouque and J. Stern. One round threshold discrete-log key generation without
private channels. In K. Kim, editor, Public Key Cryptography — 4th International
Workshop on Practice and Theory in Public Key Cryptosystems, volume 1992 of
Lecture Notes in Computer Science, pages 300-316, Cheju Island, Korea, 2001.
Springer.

J. Garay, P. D. MacKenzie, and K. Yang. Strengthening zero-knowledge protocols
using signatures. In E. Biham, editor, Advances in Cryptology - EUROCRYPT
20083, volume 2656 of Lecture Notes in Computer Science, pages 177-194, Warsaw,
Poland, 2003. Springer.

R. Gennaro and Y. Lindell. A framework for password-based authenticated key
exchange. In E. Biham, editor, Advances in Cryptology — EUROCRYPT 2003, vol-
ume 2656 of Lecture Notes in Computer Science, Warsaw, Poland, 2003. Springer.
A. Kiayias, Y. Tsiounis, and M. Yung. Traceable signatures. In C. Cachin and
J. Camenisch, editors, Advances in Cryptology — EUROCRYPT ’ 2004, volume
3027 of Lecture Notes in Computer Science, pages 571-589, Interlaken, Switzerland,
2004. Springer.

A. Kiayias and M. Yung. Extracting group signatures from traitor tracing schemes.
In E. Biham, editor, Advances in Cryptology — EUROCRYPT 20083, volume 2656
of Lecture Notes in Computer Science, pages 630648, Warsaw, Poland, 2003.
Springer.

A. Kiayias and M. Yung. Group signatures: Provable security, efficient construc-
tions and anonymity from trapdoor-holders. Cryptology ePrint Archive, Report
2004/076, 2004. http://eprint.iacr.org/.

J. Kilian and E. Petrank. Identity escrow. In H. Krawczyk, editor, Advances in
Cryptology — CRYPTO 1998, volume 1462 of Lecture Notes in Computer Science,
pages 169-185. International Association for Cryptologic Research, Springer, 1998.
P. Paillier. Public-key cryptosystems based on composite degree residuosity classes.
In Advances in cryptology—EUROCRYPT 1999, volume 1592 of Lecture Notes in
Computer Science, pages 223-238, 1999.

G. Tsudik and S. Xu. Accumulating composites and improved group signing. In
ASIACRYPT: Advances in Cryptology — ASIACRYPT: International Conference
on the Theory and Application of Cryptology, Lecture Notes in Computer Science,
pages 269-286. International Association for Cryptologic Research, Springer, 2003.

