Cryptanalysis of the Hash Functions
MD4 and RIPEMD

Xiaoyun Wang!, Xuejia Lai?, Dengguo Feng?, Hui Chen'®, Xiuyuan Yu®

! Shandong University, Jinan250100, China,
xywang@sdu.edu.cn
2 Shanghai Jiaotong University, Shanghai200052, China
3 Chinese Academy of Science China, Beijing100080, China
4 Huangzhou Teacher College, Hangzhou310012, China

Abstract. MD4 is a hash function developed by Rivest in 1990. It serves
as the basis for most of the dedicated hash functions such as MD5, SHAx,
RIPEMD, and HAVAL. In 1996, Dobbertin showed how to find collisions
of MD4 with complexity equivalent to 22° MD4 hash computations. In
this paper, we present a new attack on MD4 which can find a collision
with probability 272 to 27% and the complexity of finding a collision
doesn’t exceed 28 MD4 hash operations. Built upon the collision search
attack, we present a chosen-message pre-image attack on MD4 with com-
plexity below 28. Furthermore, we show that for a weak message, we can
find another message that produces the same hash value. The complex-
ity is only a single MD4 computation, and a random message is a weak
message with probability 27122,

The attack on MD4 can be directly applied to RIPEMD which has two
parallel copies of MD4, and the complexity of finding a collision is about
2'8 RIPEMD hash operations.

1 Introduction

MD4 [14] is an early-appeared hash function that is designed using basic arith-
metic and Boolean operations that are readily available on modern computers.
Such type of hash functions are often referred to as dedicated hash functions,
and they are quite different from hash functions based on block ciphers. After the
publication of MD4, several dedicated hash functions are successively designed,
including MD5 [15], HAVAL [18], RIPEMD [13], RIPEMD-160 [9], SHA-1 [10],
SHA-256 [11], etc. These hash functions, although more complex, all follow the
same design philosophy as MD4 and have similar structures as MD4. In partic-
ular, RIPEMD consists of two parallel copies of MD4, and each copy is identical
to MD4 except for some internal constants.

There have been several important cryptanalytical results for both MD4
and RIPEMD. In 1996, H. Dobbertin [5] gave a collision attack on MD4 which
finds a collision with probability 2722. He also showed how to find collisions of
meaningful messages. In 1998, H. Dobbertin [8] showed that the first two (out of
the total three) rounds of MD4 is not one-way, and this means that there is an

efficient attack for finding a preimage and a second preimage. For RIPEMD, H.
Dobbertin [7] gave an attack that finds a collision of RIPEMD reduced to two
rounds with 23! hash operations.

Along with the development of the MD4-family of hash functions, there have
also been security analysis on these functions. For example, B. den Boer and
A. Bosselaers [3] found pseudo-collisions (same message with two different ini-
tial values) for MD5. In Eurocrypto’96, H. Dobbertin [6] presented a collisions of
MD5, under another initial value. In Crypto’98, F. Chabaud and A. Joux [4] pre-
sented a differential attack on SHA-0 with probability 276!, At Asiacrypt 2003,
B.V. Rompay etc. [16] gave a collision attack on HAVAL-128 with probability
2729

Some very interesting results on hash functions came out simultaneously in
Crypto 2004. Eli Biham and Rafi Chen [2] presented a near-collision attack
on SHA-0, and described their improved results on SHA-0 and SHA-1 in the
rump session. Then, A. Joux [12] presented a real collision of SHA-0 with four
message blocks. X.Y. Wang etc. [17] also announced real collisions of a series of
hash functions including MD4, MD5, HAVAL-128, and RIPEMD in the rump
session. All these research work were done independently.

The purpose of this paper is to analyze the security of MD4 and RIPEMD
and present more efficient attacks. The main results are summarized below.

1. Collision search attack on MD4: we can find collisions with probability 22
to 276 and with complexity less than 28 MD4 hash operations.

2. A theoretical second pre-image attack on MD4 for weak messages: For a weak
message, we can find another message that produces the same hash value.
The complexity is only a single MD4 computation and a random selected
message is a weak message with probability 27122

3. Collision search attack on RIPEMD: we can find collisions with probability
2716 and with complexity less than 2'® RIPEMD hash operations.

In addition to presenting the new attacks on MD4 and RIPEMD, we also
introduce a set of new analytical techniques that are applicable to all the hash
functions in the MD4-family. More specifically, we show how to derive a set of the
sufficient conditions on the chaining values to ensure the differential path to hold,
and how to use message modification techniques to greatly improve the success
probability of the attack. Such techniques have proved to be very effective in
cryptanalyzing other dedicated hash functions such as MD5, RIPEMD, HAVAL-
128, HAVAL-160, SHAO, and especially SHA-1.

All the existing attacks on dedicated hash functions belong to differential
attacks [1], since a collision can be regarded as a special differential which has
non-zero input difference and zero output difference. We remark that unlike
other existing attacks on hash functions, our attack presented in this paper is
a “precise” differential attack in which the differential path is more restrictive
since it depends on both the difference as well as the specific value of the bit
involved.

The paper is organized as follows. In Section 2 we provide a description
of MD4 and RIPEMD. In Section 3, we summarize some useful properties of

the Boolean functions in two hash functions and introduce the notation used
in the paper. As our main result, the collision attack on MD4 is presented in
Section 4, the collision attack on RIPEMD is presented in Section 5. In Section 6,
we describe a theoretical second pre-image attack on MD4. In Section 7, we
summarize our work together with some remarks, especially on the implication
for the analysis of the hash function SHA-0.

2 Description of MD4 and RIPEMD

2.1 MD4 Algorithm

The message digest algorithm MD4 compresses any arbitrary bit-length message
into a 128-bit hash value. Given any message, the algorithm first pads it into a
message with a length that is a multiple of 512 bits We omit the padding method
here since it is irrelevant to our attack.

For each 512-bit message block, MD4 compresses it into a 128-bit hash value
using a compression function. The MD4 compression function has three rounds.
Each round uses a different nonlinear Boolean function defined as follows:

F(X,Y,Z)=(XAY)V(-X A Z)
G(X,)Y,Z)=(XAY)V(XAZ)V (Y AZ)
HX)Y.Z)=XoYaZ

Here XY, Z are 32-bit words. The operations of three functions are all bitwise.
=X is the bitwise complement of X, A, & and V are respectively the bitwise
AND, XOR and OR.

Each round of the compression function repeats 16 similar step operations,
and in each step one the four chaining variables a, b, ¢, d is updated.

do(a,b,c,d,my,s) = ((a+ F(b,c,d) + my) mod 23?) <« s
é1(a,b,c,d,my,s) = ((a + G(b, ¢, d) + my, + 0x5a827999) mod 23?) <« s
ba(a,b,c,d,my,s) = ((a+ H(b,c,d) +my, + 0x6ed9ebal) mod 2%?) <« s

The initial value for MD4 is defined as:

(a,b,c,d) = (067452301, Oxefcdab89, 0x98badcfe, 0x10325476)

MD4 Compression Function. For one 512-bit block M of the padded message
M, M = (mg,my,...,m15), the compression function is defined as follows:

1. Let (aa,bb,cc,dd) be input chaining variables for M. If M is the first mes-
sage block to be hashed, then (aa,bb, cc,dd) are set to be the initial value.
Otherwise they are the output from compressing the previous message block.

2. Perform the following 48 steps (three rounds):

For j=0,1,2and i =0,1,2,3

oi(a,b,c,d, wjai,55.45)

4(
¢j(c,d,a,b,wjaitr2,554i+2)
¢;(b,¢,d,a,wjai13, 5] 4i+3)

d,a,b, ¢, wjait1,554i41)

a
d
c
b

Here sj4i+x (k = 0, 1, 2, 3) are step-dependent constants, wj 4,1 is a
message word and << s; 4,1 is circularly left-shift by s; 44k bit positions.
The specific message order and shift positions are given in Table 5.

3. Add the chaining variables a, b, ¢ and d respectively to the input chaining
variables to produce the final chaining variables for the current message
block.

aa = (a + aa) mod 232

bb = (b+ bb) mod 232

cc = (¢ + cc) mod 232

dd = (d + dd) mod 232
If M is the last message block, H(M) = aal|bb|cc|dd is the hash value for the
message M. Otherwise repeat the above process with the next 512-bit message
block and (aa, bb, cc, dd) as the input chaining variables.

2.2 RIPEMD Algorithm

RIPEMD employs the same nonlinear round functions as MD4 and they are
used in the following six operations:

wola,b,c,d, my, s) = ((a + F(b,c,d) + my) mod 2%?) <« s
o1(a,b,c,d,my, s) = ((a+ G(b,c,d) + my + 0x5a827999) mod 2°?) « s
wo(a,b,c,d, my, s) = ((a + H(b,c,d) + my + 0x6ed9ebal) mod 2°?) < s
Yo(a,b,c,d,my, s) = ((a + F(b,c,d) + my + 0x50a28be6) mod 23?) « s
¥1(a,b,c,d,my, s) = ((a + G(b, ¢, d) + my) mod 2%?) <« s
Pa(a,b,c,d,my,s) = ((a + H(b,c,d) + my + 0x5c4dd124) mod 2%?) <« s

In order to easily describe the RIPEMD compression function, we denote MD4
compression function with three operations ¢, ¢1 and ¢o as MD4(¢g, ¢1, 2, M).

RIPEMD Compression Function. The RIPEMD compression function em-
ploys two copies of MD4 compression function: the left copy is MD4 (o, ¢1, @2, M),
and the right copy is MD4 (v, 11, 92, M). Both copies have the same initial value
as MD4. The details of the message order and shift positions are given in Table 7.

1. Let (a,b,c,d) be the input chaining variables for M which is the same as
MD4.

2. Perform two copies of the MD4 operation

(a’aa dd7 cC, bb7) — MD4(§507 ®1, P2, M)7
(aaa, ddd, cce, bbb) «— MD4 (1o, 11, 12, M).

3. The output (a,b, ¢,d) for compressing M is the following:

a = (b + cc + ddd) mod 232
b= (c+ dd + aaa) mod 2*?
¢ = (d + aa + bbb) mod 2%?
d = (a + bb + ccc) mod 232

3 Preliminaries

3.1 Basic Properties of the Boolean functions

Some properties of three nonlinear Boolean functions are very helpful for de-
termining sufficient conditions for the differential paths that are used in our
collision search attack on MD4 and RIPEMD. In what follows, we summarize
some well-known properties of these functions.

Proposition 1. For the nonlinear function F(X,Y,Z) = (X AY)V (-X A Z)
in the first round, there are the following properties:

1. F(z,y,2) = F(-x,y,2) if and only if y = z.
2. F(z,y,z) = F(z,~y, z) if and only if x = 0.
3. F(x,y,z) = F(z,y,—z) if and only if x = 1.

Proposition 2. For the nonlinear function G(X,Y,Z) = (X ANY)V(XANZ)V
(Y A Z) in the second round, there are the following properties:

1. G(x,y,2z) = G(—x,y,2) if and only if y = z.
2. G(z,y,2) = G(x,~y, z) if and only if x = z.
3. G(z,y,2) = G(x,y,~z) if and only if x = y.

Proposition 3. For the nonlinear function H(X,Y,Z) = X @Y & Z in the
third round, there are the following properties:

1. H($,y,Z) = ﬂH(—w,y,z) = —\H(x,ﬂy,z) = _|H($, _‘yaz)

2. H(iC,y,Z) = H(_‘ZL',ﬁy,Z) = H(xa Y, _‘Z) = H("ﬁ[,y, _'Z)

3.2 Notation

Here we introduce the notation used in our analysis. Since our attack is a “pre-
cise” differential attack, we need to keep track of both the difference as well as
the specific value of the bit involved. Therefore, the notation may seem quite
complex at a first glance, but the intuition behind these notation will become
more clear as we proceed in describing the attacks.

1. M = (mg,m1,...,m15) and M’ = (m{, m},...,mi5) represent two 512-bit
messages.

2. a;, d;, ¢;, b; respectively denote the outputs of the (4i — 3)-th, (4i — 2)-th,
(4i — 1)-th and 4é-th steps for compressing M, for 1 <14 < 16.

3. al, b, ¢, d. respectively denote the outputs of the (4i — 3)-th, (47 — 2)-th,
(4i — 1)-th and 4é-th steps for compressing M’.

4. Am; = m} —m; denotes the difference between two message words m; and
m}.

5. aij, bij, cij, di; represent respectively the j — th bit of a;, b;, ¢;, d;, where
the least significant bit is the 1-st bit, and the most significant bit is 32-th
bit.

6. x;[j], zi[—7] (x can be a, b, ¢, d) is the resulting values by only changing the
j —th bit of the word ;. x;[j] is obtained by changing the j-th bit of x; from
0 to 1. z;[—7] is obtained by changing the j-th bit of x; from 1 to 0.

7. xi[+j1, £j2, ..., £Ji] is the value by change j; — th, jo — th, ..., j; — th bits
of ;. The 74”7 sign means that the bit is changed from 0 to 1, and the 7"
sign means that the bit is changed from 1 to 0.

Note that we use integer modular subtraction difference as the measure of dif-
ference, not the exclusive-or difference. In addition, we also need to specify the
precise values of each bit when considering the carry effect in the differential
path. This is better understood using an example. Let us consider step 7 in
Table 5. The output difference is

Acy = chy — cg = =218 4221,

Using our notation, ¢, = c3[—19,22]. For the specific differential path, we need
to expand the one-bit subtraction difference in bit 19 into a three-bit difference
in bits 19,20,21. That is, we expand c2[19] as ¢2[19, 20, —21]. Hence, the output
¢ is represented as

cy = ¢3[19,20,—21,22),

as showed in the last column of Table 5.

4 The Collision Attack on MD4

In this section, we will describe a collision attack on MD4 with a success prob-
ability 272 to 276. The complexity is below 28 MD4 computations. The attack
includes three parts:

1. Find a collision differential in which M and M’ produces a collision.

2. Derive a set of sufficient conditions which ensure the collision differential to
hold.

3. For any random message M, make some modification to M such that almost
all the sufficient conditions hold.

4.1 The Collision Differential for MD4

We select a collision differential for MD4 as follows:
AHy =0 MM A — 0

such that
AM = M/ - M = (Amg,Aml,

Amy =231 Amgy =231 — 2% Amyy = 216
Am; =0, 0<i<15, i#1,2,12.

All the characteristics in the collision differential can be found in Table 5.
The first column denotes the step, the second column is the chaining variable
in each step for M, the third is the message word for M in each step, the
fourth is shift rotation, the fifth and the sixth are respectively the message word
difference and chaining variable difference for M and M’, and the seventh is
the chaining variable for M’. Especially, the empty items both in fifth and sixth
columns denote zero differences, and steps those aren’t listed in the table have
zero differences both for message words and chaining variables.

It is clear that the collision differential consists of two internal collisions
respectively from 2-25 steps and 36-41 steps.

The sufficient conditions (Table 6) that ensure all the characteristics to hold
can be easily verified by the properties of the Boolean functions given in Sec-
tion 3. This further means that if M satisfies all the conditions in Table 6, M
and M’ consists of a collision.

The following is the derivation for the sufficient conditions in the step 9 of
Table 5. The differential characteristic in step 9 is:

(by[—13, —14,15], ¢5[19, 20, —21, 22], d»[14], a2)
— (as[17], ba[—13, —14, 15], ¢[19, 20, —21, 22], d5[14])

1. According to (1) of Proposition 1, the conditions ¢33 = d2,13 and c215 =
d2,15 ensure that the changes in 13-th and 15-th bits in b, result in no change
in as.

2. According to (2) of Proposition 1, the conditions bs 19 = 0, ba.20 = 0, b2 21 =
0, and by 22 = 0 ensure that the changes in 19-th, 20-th, 21-th and 22-th bits
in ¢y result in no change in as.

3. From the property of function f, the conditions by 14 = 1, d214 = 0 and
2,14 = O result in f(bg 14, ¢2,14,d2,14) = 0 and f(—b2,14, 2,14, 7d2,14) = 1. So
Aag = 216.

4. The condition az 17 = 0 ensures that aj = a3[17].

Thus the above 10 conditions consists of a set of sufficient conditions for the
differential characteristic in step 9.

4.2 Message Modification

From the conditions listed in Table 6, we know that the (M, M') is a collision
with probability 2722, This is greatly lower than the birthday attack probability
2764 We can improve the probability to 276 ~ 272 by two types of message
modification techniques, which we term as “single-step modification” and “multi-
step modification.”

Single-Step Modification. It is easy to modify M such that the conditions in
round 1 hold. For example, m; can be modified as :

di —di1 & (di7<K6)B((digPars) KT7) & ((di11®ai,1) K 10)

my < (d1 > 7) *d() - F(athaCO)

After simple-message modification, (M, M') is a collision with probability 272

by Table 6.

Multi-Step Modification. Although the probability 272° is high enough for us
to find many collisions of MD4, we also introduce a multi-message modification to
correct the conditions in second round, and that greatly improves the probability.
This modification technique is very important for analyzing other hash functions
such as MD5, SHA-0, especially SHA-1.

The principle for multi-message modification is that the modifications for
some messages consist of a partial collision in the first round which remains all
the conditions in the first round to hold, but only change a bit of the second
round. The details are as follows:

1. Modify mg, m1, ms, ms, my successively by Table 1 to correct 5 conditions
of a5 in Table 6. For example, if a5 19 = €4,19, modify mg, m1, ma, ms, my
by Table 1 (¢ = 19). The changed message words don’t change any condition
of first round in Table 6, but correct as 19 = C4,19 t0 as,19 = c4,19-

It is noted that, the conditions in step 17 should be corrected from low bit
to high bit, i.e. the order of the bits needed to be changed is:

a5,19 — A5,26 — G527 — 45,29 — G532

2. Similarly, modify my4, ms, mg, my, mg successively to correct 4 conditions
of d5.

ds19 = G5,19, d5,26 = D426, d527 = ba 27, d5 29 = bs 29

Table 1. Message Modification for Correcting as i, i = 19, 26,27, 29, 32

Modify m; Chaining values
after message modification
1 mo 3 mo <— Mo + 21_4 alnew = a1[:|:i}, bo, Co, do
2lma| 7 | my — (d1 > 7) —dy — f(a/th,Co) di, alnew, bo, co
3lmsa|1l|{me «— (Cl > 11) —Co — f(dl,all,bo) c1, dl, alnﬁw, bo
4 ms 19 ms3 <—— (bl > 19) — bo — f(cl,d1,a'1) b17 C1, d17 alnew
5\mal| 3 m4<—(a2>>>3)—a’1—f(b1,cl,d1) az, by, c1, d1

Table 2. The Modification for Correcting cs,i, ¢ = 26, 27, 29, 32

Modify m; Chaining values after| The extra conditions
message modification|in first round

6 |da|ms|T |ms «— ms + =17 dg[i — 9}, az, b1, c1 dz,ifg =0

7 C2 Mg 11 C2, dz[’i — 9], asz, b1 az;—9 = blyi_g
8 bz mr 19 b2, C2, dz[’L — 9], a2 C2,i—9 = O

9

2:—10 as, bz, c2, dg[i — 9] bzﬂi_g =0
10|d3|mg|11|mg +— mg — 2i—10 ds, as, b2, c2

a3m33 mg <— mg —

3. Utilize more precise modification to correct some other conditions. For ex-
ample, we can use the internal collision in Table 2 in which there are three
message words are changed to correct c¢s;, i = 26,27,29,32. The precise
modification should add some extra conditions in the first rounds (see Ta-
ble 2) in advance. There are many other precise modifications. ¢5 3¢ can be
corrected by other modification. By various modifications, besides two con-
ditions in the third round, almost all the conditions in rounds 1-2 will be
corrected. The probability can be among 276 ~ 272,

The complexity of finding a collision doesn’t exceed 28 MD4 computations. To
select a message M is only to change the last two words from the previous se-
lected message M. So, finding (M, M') only needs about one-time single-message
modification for the first 14 words. This time can be neglected. For each selected
message M, it is only needs two-time single-message modifications for the last
two words and about 20 -time advanced modifications for correcting 20 condi-
tions in the second round, and each multi-message modification only needs about
a few step operations, so the total time for both kinds of modifications is about
two MD4 computations for each selected message. According to the probability
of the collision differential, it is easy to know that the complexity of finding
(M, M'") does not exceed 28 MD4 computations. We give two collisions for MD4
in the Table 3.

Table 3. T'wo collisions for MD4. H is the hash value with little-endian and no message
padding, and H* is the hash value with big-endian and message padding

M714d7a9¢c83 56cb927a b9d5a578 57a7abee de748a3¢c dcc366b3 b683a020 3b2abdof
c69d71b3 £9€99198 d79£805e a63bb2e8 45dd8e31 97e31feb 2794bf08 b9e8c3e9
M7 |4d7a9c83 d6¢cb927a 29d5a578 57a7abee de748a3c dcc366b3 b683a020 3b2a5d9f
c69d71b3 £9€99198 d79£805e a63bb2e8 45dc8e31 97e31feb 2794bf08 b9e8c3e9
H |5f5c1a0d 71b36046 1b5435da 9b0d807a
H™|4d7e6ald efa93d2d de05b45d 864c429b
M5|4d7a9c83 56cb927a b9d5a578 57a7abee de748a3¢c dcc366b3 b683a020 3b2abd9f
c69d71b3 £9e€99198 d79f805e a63bb2e8 45dd8e31 97e31feb £713c240 a7b8cf69
MJ5|4d729¢83 d6cb927a 29d5a578 57a7abee de748a3c dcc366b3 b683a020 3b2a5d9f
c69d71b3 £9e€99198 d79f805e a63bb2e8 45dc8e31 97e31feb £713c240 a7b8cf69
H |e0£76122 c429c56¢c ebb5e256 b809793
H*|c6£3b3fe 1£f4833e0 697340fb 214fbea

5 The Collision Attack on RIPEMD
We select a collision differential for RIPEMD as follows:
AHy =0 MM Afr — g
such that
mpy =msz + 2%, miy = myg + 2" + 231 m)5 = mys + 23,

mh =m;, i # 3,10,15.

The reason for the choice of M’ is that M and M’ can easily collide in round
3 with probability 274.

The differential characteristics and sufficient conditions can be referred to
Table 7 and Table 8.

The following mainly describes the message modification for RIPEMD. Be-
cause RIPEMD has two copies of MD4, the modification is more complicated
than that of MD4.

Message Modification for Correcting Conditions in the First Round.
Select M, we make the modification for M word by word so that both copies
with the modified M satisfy the conditions in the first round.

1. Modify m;_1 such that i-th step conditions in the left copy hold. The mod-
ification is the same as the single-message modification in Section 4.

2. Correct the conditions in the right copy from low bit to high bit. There are
many kinds of modifications. The following gives two kinds of modification
techniques.

For example, we correct aaa; ; = 0 to aaa; ; = 1 by the following methods.

(a) Correct the condition by bit carry. If j —1-bit has no constraint condition
in table 8, and aa; j—1 = A 51, let

m; <— my; + 2]—2—&5.

We select the modification which results in bit carry in the right and no
carry in the left.

(b) Correct the condition by changing (j — s;) — th bit of chaining variables
in the nonlinear round function .

i. Change (j — s;) — th bit of some chaining variables in the nonlinear
round function F' by modifying a previous message word, such that
the changed bit doesn’t occur in Table 8, and the changed bit only
causes one of aa; ; and aaa; ; changes.

ii. If aa;; = aaa; ; = 0, modify the next bit of aaa;.

iii. If aa; ; = aaa; ; =1, let

m; <— m; — 2j—1—s1'7
then modify the next bit of aaa;.

By combining the above two methods, we can get some other methods to correct
aaa; ;. For example, if j — 1-bit has no constraint condition in table 8, and
aa; j—1 = aa; ;_1, the bit-carry correction of (a) isn’t available. We can use (b)
or the lower bit carry to change aa; j_1 or aaa; j—1 such that aa; ;_1 = aaa; ;_1,
and then use the bit carry.

Remarks. For RIPEMD, a non-zero differential in the first round is an im-
possible differential with a very high probability. The reason that results in the
phenomenon is that, the conditions of both copies in some step cannot hold si-
multaneously. Among 30 collision differentials we selected, only one can produce
the real collisions.

Message Modification for Correcting Some Second Round Conditions.
By the multi-message modification in Section 4 to correct the conditions of left
copy in the second round. There are about 16 conditions are left, so the modified
M and M’ is a collision with probability 2716, and the complexity is about 2'®
RIPEMD computations. Two collisions for RIPEMD can be seen in Table 4.

6 Theoretical Pre-image Attack on MD4

For a secure hash function, there are two important security properties, one
property is collision-resistance, another is one-wayness which is to find a second
pre-image or a pre-image. In this section, we will show that we can give a second
pre-image attack on MD4 for a set of weak messages.

For a hash function with [-bit hash value, it’s ideal security strength against
the second pre-image attack is that, for any message M, to find another message
M’ such that h(M) = h(M’) is not higher than the exhaustive search probability
of 271,

Table 4. Two collisions for RIPEMD. H is the hash value with little-endian and no
message padding, and H™ is the hash value with big-endian and message padding

M, |579faf8e 9ecf579 574ababa 78413511 a2b410asd ad2f6c9f b56202c 44757911
bdeaae7 78bc91f2 47bc6d7d 9abddibl a45d2015 817104ff 264758a8 61064eab
M7/ |579faf8e 9ecf579 574ababa 78513511 a2b410ad ad2f6c9f b56202c 4d757911
bdeaae7 78bc91f2 c7c06d7d 9abddibl a45d2015 817104ff 264758a8 e1064eab
H | 1fab152 1654a31b 7a33776a 9e968ba7
H™|dd6478dd 9a7d821c aa018648 e5e792e9
M>|579faf8e 9ecf579 574ababa 78413511 a2b410ad ad2f6c9f b56202c 44757911
bdeaae7 78bc91f2 47bc6d7d 9abddibl a45d2015 a0a504ff b18d58a8 e70c66b6
MJ5|579faf8e 9ecf579 574ababa 78513511 a2b410ad ad2f6c9f b56202c 4d757911
bdeaae7 78bc91f2 c7c06d7d 9abddibl a45d2015 a0a504ff b18d58a8 670c66b6
H |1£2c159f 569b31a6 dfcaabla 25665424
H*|88cea096 c773c29f 04cd9698 4a41d139

Theorem 1 (Second Pre-Image Attack for Weak Messages). For a weak
message, we can find another message such that these two different messages
produce the same hash code. The complexity is only one-time MD4 computation.
A random selected message is weak with probability 27122,

Proof. For any message M, we select M’ such that
M =M+ AM

AM = M/ - M= (Amo, Aml, 7A’I’)’l15)
Aml = 2317Am2 = 231 — 228, Amlg = —216,
Am; =0,0<i<15,i#1,2,12.

From the conditions in Table 6, we know that, if M satisfies all the 122 conditions,
M’ is the second pre-image of h(M).

There are 2512 /2122 = 2391 gne-block messages satisfy all the conditions. This
completes the proof. O

Any message M can be modified with the techniques in Section 4 so that
almost all the conditions in rounds 1-2 hold. For the resulting message, say M,
we then find a second pre-image M" of h(M') with probability 272 to 276.
This fact can be interpreted as a chosen-message 2nd pre-image attack, since
M’ is not chosen freely but “close” to M. One message ”close” to other message
implies that the hamming weight of the difference for two messages is low. For
example, given any random message M, if we only fulfil the the single-message
modification, the chosen message M’ is the 2nd pre-image of other message M"”
with probability 22% (excluding two conditions in 17-step). According to the
conditions in Table 6, we can get M’ by modifying M about 50 bits, so the
difference hamming weight for two messages is 50 on average. When applying
the multi-message modification, although the probability can be improved to

272 to 275, the hamming weight may be greatly increased. The best method
is to fulfil a kind of precise message modification, and correct a condition by
increasing about 3 hamming weights. So, the difference hamming weight can be
controlled within 110 on average.

7 Conclusion

In this paper, we have presented efficient collision search attacks on MD4 and
RIPEMD. We have shown that only about 4 to 64 random selected messages are
needed in order to find a collision of MD4, and only about 2'¢ random selected
messages to for RIPEMD.

We have introduced three important analytical techniques that are very im-
portant for the effectiveness of the attacks:

1. How to find an efficient differential that is composed of one collision.

2. Determine all the conditions under which the collision happens.

3. For any message M, make some modification to M to guarantee that almost
all the conditions hold.

Remarks. Our collision search attack on MD4 implies that for a weak message
a 2nd pre-image can be found with complexity below 28. The probability for a
random messages to be weak with respect to MD4 is 27122, However, this can
be improved significantly. In fact note that Theorem 1 directly come from the
collision differential path in Section 4, where the differential path is chosen to
minimize the complexity of our collision attack. Hence it is not optimal for our
pre-image attack. The number of weak messages is determined by the number of
conditions specified in Table 1. By finding other differential paths with the least
number of conditions, we believe that the probability of weak messages can be
increased significantly. In fact, the latest 2nd pre-image attack can be improved
to 2772 which is found by Hongbo Yu Gaoli Wang et al.

We also note that for SHA-0, given any random message, it is a weak mes-
sage with about probability 271°7 which is a surprising result compared to the
exhaustive search probability 27160,

Acknowledgements

It is a pleasure to acknowledge Hans Dobbertin, Magnus Daum for their impor-
tant advice, corrections, and suggestions, and for spending their precious time
on our research.

Xiaoyun Wang’s research is supported by the National Natural Science Foun-
dation of China (Grant No. 90304009). Dengguo Feng’s research is supported by
973 project (Grant No. G19990358).

References

1.

2.

10.
11.
12.
13.

14.
15.

16.

17.

18.

E. Biham, A. Shamir, Differential Cryptanalysis of the Data Encryption Standard,
Springer-Verlag, 1993.

E. Biham, R. Chen, Near collision for SHA-0, Advances in Cryptology, Crypto’04,
2004, LNCS 3152, pp. 290-305.

. B. den Boer, A. Bosselaers, Collisions for the compression function of MD5, Ad-

vances in Cryptology, Eurocrypt’93.

. F. Chaband, A. Joux, Differential Collisions in SHA-0, Advances in Cryptology,

Crypto’98 Proceedings, 1998.

. H. Dobbertin, Cryptanalysis of MD4, Fast Software Encryption, LNCS 1039, D.

Gollmann, Ed., Springer-Verlag, 1996.

. H. Dobbertin, Cryptanaltysis of MD5 Compress, Presented at the Rump Session

of Eurocrypt’96.

H. Dobbertin, RIPEMD with Two Round Compress Function Is Not Collision-Free,
Journal of Cryptology(1997) 10:51-69, 1997.

H. Dobbertin, The First Two Rounds of MD4 are Not One-Way, Fast Software
Encryption, 1998.

H. Dobbertin, A. Bosselaers, B. Preneel, RIPMEMD-160:A Strengthened Version
of RIPMMD, Fast Software Encryption, LNCS 1039, 1996.

FIPS 180-1, Secure hash standard, NIST, US Department of Commerce, Washing-
ton D. C.; April 1995. Springer-Verlag, 1996.

FIPS 180-2, Secure Hash Standard, http://csrc.nist.gov/publications/,2002.
Joux, A., Collisions for SHA-0, Rump Session of CRYPTO’04, 2004.
RIPE,Integrity Primitives for Secure Information Systems, Final Report of RACE
Integrity Primitives Evalutiobn(RIPE-RACE 1040), LNCS 1007, 1995.

R. L., Rivest, The MD4 Message Digest Algorithm, Crypo’90 Proceedings, 1991.
R. L. Rivest, The MD5 Message-Digest Algorithm, Request for Comments (RFC
1320), Internet Activities Board, Internet Privacy Task Force, April 1992.

Bart Van Rompay, A. Biryukov, B. Preneel, J. Vandewalle, Cryptanalysis of 3-pass
HAVAL, Asiacrypto’03 Proceedings, pp. 228-245, 2003.

X.Y. Wang, F.D. Guo, X.J. Lai, H.B. Yu, Collisions for Hash Functions MD4,
MD5, HAVAL-128 and RIPEMD, Rump Session of Crypto’04, E-print, 2004.

Y. Zheng, J. Pieprzyk, J. Seberry, HAVAL-A One-way Hashing Algorithm with
Variable Length of Output, Auscrypto’92 Proceedings, pp.83-104.

Appendix

In the appendix, we give the tables for the differential paths and the set of
sufficient conditions that are used in our collision search attacks on MD4 and
RIPEMD.

Table 5. Differential Characteristics in the Collision Differential for MD4

Chaining The i-th step |The i-th output
Step| value |w;,;|Shift Am; difference |for M’
for M

1 a1 mo| 3 ay

2 d1 mi 7 251 26 d1 [7]

3 1 mo | 11 [-2% 4231 27 + 210 [¢[-8,11]

4 bl ms 19 225 bl [26}

5 as myg| 3 as

6 d |ms| 7 213 do[14]

7 c2 me | 11 —2T8 1271 1¢,[19, 20, —21, 22]

8 ba mr | 19 212 ba[—13,—14,15]

9 az |ms| 3 210 a3[17]

10 ds me| 7 219 1220 _9%(43[20, —21, —22, 23, —26]

11 ez |mio| 11 —2%9 c3[—30]

12 bs |mii1] 19 231 b3[32]

13 as |mi2| 3 —216 277 127 [a4[23, 26]

14 ds |mas| 7 —276 1278 14,[-27, —29, 30]

15 C4 mia 11 Cq

16 bye |mas| 19 218 ba[19]

17 as |mo| 3 275 — 2% _ 231q5[-26, 27, —29, —32]

18 d5 m4 5 d5

19 Cs ms 9 Cs

20 bs |mi2| 13 —216 —279 1 2% |b5[-30, 32]

21 as mi| 3 251 278 231 1as[—29, 30, —32]

22 dﬁ ms 5 dﬁ

23 Ce mog 9 Ce

24 b6 mis 13 b6

25 ar |ma| 3 |27 425 ar

36 by |mia| 15 —216 231 bg[—32]

37 | awn |mao| 3 [-2F 2% 271 aio[—32]

38 dio |mio| 9 dio

39 C10 me | 11 C10

40 blo mi4 15 blO

41 aill mi 3 231 aii

Table 6. A Set of Sufficient Conditions for Collisions of MD4

ai |ai,7 = b0,7

di |di,7=0,d18 =ais, di,11 = a1

c1 lear=1,c18 =1, c1,11 =0, c1,26 = d1,26

by |bi,r=1,b1,8=0,b1,11=0,b1,26 =0

as |az;s =1, a211 =1, az,26 =0, a2,14 = b1,14

da |d2,14 = 0, d2,19 = a2,19, d2,20 = a2,20, d2,21 = a2,21, d2,22 = a2,22, d2,26 =1

C2 |C2,13 = d2,13, C2,14 = 0, C2,15 = d2,15, C2,19 = 0, C2,20 = 0, C2,21 = 1, C2,22 = 0

ba |b2,13 =1, b214 =1, ba15 =0, ba,17 = €2,17, b2,19 = 0, ba,20 =0, b2 21 =0
ba,22 =0

a3 |az, i3 =1,a314 =1, a315 =1, az,ir =0, as,10 =0, az,20 =0, a3 21 =0, az,23 = b2 23
as 22 = 17 as 26 = b2,26

ds |dzjiz=1,ds14=1,ds 15 =1,d317 =0, ds20 =0,dso1 =1, d32 =1, ds2s =0,
ds,26 = 1, d3,30 = as,30

c3 |37 =1, ¢320=0, c3,21 =0, 3,200 =0, c323 =0, c3,26 =0, 3,30 = 1, 3,32 = d3,32

bz |bz20 =0, b3o1 =1, b3 22 =1, b3,23 = 3,23, b3,26 = 1, b330 =0, b3 ;32 =0

asq |@123 =0, as26 =0, a4,27 = b3 27, @420 = b3 20, aa30 = 1, a4 32 =0

dy |da23 =0, dae =0, daor =1, dagg =1, da30 =0, daz2 =1

c4 |caig = da19, Ca23 =1, ca26 =1, cao7 =0, ca29 =0, ca30 =0

bsa |baj19 =0, baos =ca6 =1, baor =1, ba29=1,bs430=0

as |as,19 = C4,19, @526 = 1, a527 =0, as20 =1, as 30 = 1

ds |ds,19 = as,19, ds,26 = ba,26, ds,27 = ba 27, d5,29 = ba 29, d5,32 = ba 32

¢s |c5,26 = ds,26, C5,27 = ds,27, C5,20 = d5 29, €530 = d5 30, C5,32 = d5 32

bs |bs,29 = ¢5,29, bs,30 =1, bs 320 =0

ae |a629 =1, ag32 =1

ds |ds,20 = b5 29

ce |c6,29 = de,29, C6,30 = de,30 + 1, c6,32 = dp32 + 1

by |bg,32 =1

aio|aiozz =1

Table 7. Differential Characteristics in a Collision Differential of RIPEMD

Chaining The i-th step |The i-th output
Step| value |wj;|Shift| Am; difference |for M’
for M
0 al mo 11 al
1 di mi| 14 di
2 C1 ma 15 C1
3 by ms | 12 270 1 bi[-1,-2,-3,4]
4 az my 5 26 az 7]
5 d> |ms| 8 2° — 211 dy[10, —12]
6 c2 me| 7 216 218 [ca[17, —19]
7 ba mr| 9 27 + 2% + 277|by[10, —26, 27, 28]
8 as ms | 11 —2° 4217 a3[—6, 18]
9 ds me | 13 —2%3 ds3[24, 25, —26]
10 cz |mao| 14 |28 + 231 —21% 427 [c3[—14,31]
11 by |mi1| 15 210 1277 b3[11, 25)
12 as |miz| 6 —2TT 1975 412,13, —14, 24]
13 d4 mi3 7 d4
14 ca |maa] 9 27 — 273 |c4[8, 24, —25]
15 be |mis| 8 231 —27 4+ 218 " |by[—8, 19]
16 as |mr| 7 —21% as[—19]
17 d5 m4 6 d5
18 cs |mas| 8 237 c5[—32]
19 bs my| 13 —2%0 bs[-21]
20 ag |mio| 11 |2 4231 as
21 d6 me 9 d6
22 Ce mis| 7 251 Ce
23 bs ma| 15 270 bs
24 ar miz| T a7
25 d7 mo 12 d7
26 Ccr mo | 15 C7
27 b7 ms 9 b7
28 as mia| 7 as
29 dg ma 11 dg
30 cs ma1| 13 cs
31 bs ms 12 bg
32 ag ma | 11 270 231 ag[32
33 do |mio| 13 [2"8 + 23T 231 do[32
34 Co mao 14 Cg
35 bg my 7 b9
36 aio mg 14 aio
37 d10 mis 9 251 le

Table 8. A Set of Sufficient Conditions for Collisions of RIPEMD

al

d1 d1’2 =1

c1 lcin=diji,c12=0,c13=di3, cra=dia

bi |bii=1bi2=1,b13=1,b14=0,b17=c1,7

a2 |az2,7=0, a2,1 =0, a22 =1,a23 =1, a24 =0, az,;10 =b1,10 =1, a2, 12 =b1,12 =1
az2,17 =0

de |d21 =1,d22=1,do3z=1,doa=1,do7=0,d210=0,d212=1,d217=1,
d2 19 = 02,10 =0

c2 |c2,17 =0, c2,19 =1, 2,10 =0, c2,7 =1, 2,12 = 0, 2,26 = d2,26, C2,27 = d2,27 = 0,
C2,28 = d2,28

ba |b2,6 = c2,6, b2,10 =0, ba,12 =1, ba,17 = 0, b2,18 = c2,18, b2,19 =0, ba 26 = 1, ba 27 =0,
ba2s =0

a3 |aze =1,a310 =1, a317 =1, az;18 = 0,a3,19 = 1, az 24 = b224, a3 25 = b2 25, a3 26 = 0,
azer =0, azes =0

ds |d3e =0, d310=1, d314 =0a3714,d318 =0, d324=0,d3z25 =0, d326 =1, d3 27 =1,
dsogs =1, d3 31 = asz31

c3 |ca6=1,c311 =d311,¢c314=1,c318=1,¢c324=0,¢c325=0,c326=1,c331 =0

b3 |bs3,11 =0, b3,12 = 3,12, b3,13 = €3,13, 3,14 = 0, bz oa =1, b3.25 =0, b3 26 = 1, b3,31 =0

as |aa,11 =0, ag,12 =0, aa,13 =0, as,14a =1, @424 =0, as25 =0, as31 =1

dy |dag =aas, dai1 =1,da12=0,ds,13 =0,ds14 =1, dg2a =0, da25 =1,

¢ |cag =0, ca12 =1, ca13 =1, ca14 =1, c4,19 = da,19, Ca,24 =0, ca25 = 1,

by |bag =1, bs190 =0, ba2a = da24, ba2s = da 25

as |as,19 =1, as,24 = ba 24, a5,25 = ba 25

ds |ds,;s = @58, ds,32 = as5,32

¢5 |cs,19 = ds,19, €5,21 = d5,21, C5,32 = 1

bs |bs21 =1, bs,320 = ds,32

ae |ae,21 = Cs,21, 46,32 = b5 32

de d6,21 = ae,21

ag |ag 32 =0,

dg |do,32 =0

aio

