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Abstract. Algebraic attacks on LFSR-based stream ciphers recover the
secret key by solving an overdefined system of multivariate algebraic
equations. They exploit multivariate relations involving key bits and out-
put bits and become very efficient if such relations of low degrees may
be found. Low degree relations have been shown to exist for several well
known constructions of stream ciphers immune to all previously known
attacks. Such relations may be derived by multiplying the output func-
tion of a stream cipher by a well chosen low degree function such that the
product function is again of low degree. In view of algebraic attacks, low
degree multiples of Boolean functions are a basic concern in the design
of stream ciphers as well as of block ciphers.
This paper investigates the existence of low degree multiples of Boolean
functions in several directions: The known scenarios under which low
degree multiples exist are reduced and simplified to two scenarios, that
are treated differently in algebraic attacks. A new algorithm is proposed
that allows to successfully decide whether a Boolean function has low
degree multiples. This represents a significant step towards provable se-
curity against algebraic attacks. Furthermore, it is shown that a recently
introduced class of degree optimized Maiorana-McFarland functions im-
manently has low degree multiples. Finally, the probability that a random
Boolean function has a low degree multiple is estimated.

Keywords : Algebraic attacks, Stream ciphers, Boolean functions, Algebraic
degree, Annihilator, Low degree multiple, Resiliency.

1 Introduction

Algebraic attacks on stream ciphers based on linear feedback shift registers
(LFSR’s) have been proposed in [8]. Many stream ciphers consist of a linear
part, producing a sequence with a large period, usually composed of one or sev-
eral LFSR’s, and a nonlinear combining function f that produces the output,
given the state of the linear part. Algebraic attacks recover the secret key by
solving an overdefined system of multivariate algebraic equations. These attacks



exploit multivariate relations involving key/state bits and output bits of f . If
one such relation is found that is of low degree in the key/state bits, algebraic
attacks are very efficient, [6].

In [8] it is demonstrated that low degree relations and thus successful alge-
braic attacks exist for several well known constructions of stream ciphers that
are immune to all previously known attacks. In particular, low degree relations
are proven to exist for ciphers using a combining function f with a small num-
ber of inputs. These low degree relations are obtained by producing low degree
polynomial multiples of f , i.e., by multiplying the Boolean function f by a well
chosen low degree function g such that the product function f ∗ g is again of low
degree.

There have become known alternative methods to attack stream ciphers by
solving overdefined systems of equations using Gröbner bases, [11]. In order to
be efficient, these methods rest on the existence of low degree multiples as well.

To counter algebraic attacks, it is recommended in [8], that the combining
function f should have at least 32 inputs. But even then, by now it cannot be
excluded for certain, that f has low degree multiples that would then make a
fielded or a new design vulnerable to algebraic attacks. This is in strong contrast
to other attacks on stream ciphers: A variety of proposed stream ciphers have
been shown to be provably resistant, e.g., against the Berlekamp-Massey shift
register synthesis algorithm.

In a different direction, in view of algebraic attacks on block ciphers, [7], it
may be desirable to know for certain, e.g., that there are no low degree equations,
relating output bits of a (reduced round) block cipher, plaintext bits and key
bits. We mention also that recently the framework of algebraic attacks has been
extended to combiners with memory [6, 1].

As a consequence, investigation of Boolean functions with regard to existence
of low degree multiples is of both, theoretical and practical interest.

The results of this paper contribute to this problem in four directions: We
reduce and simplify the scenarios found in [8], under which low degree multiples
may exist. As a significant step towards provable resistance against algebraic
attacks we propose an algorithm that allows to successfully decide whether a
Boolean function has low degree multiples. This new algorithm can be efficient
for input sizes of f of 32 bits or larger. Furthermore, we show that for a recently
proposed class of Boolean functions, the degree optimized Maiorana-McFarland
class [18], relatively low degree multiples are immanent. Finally we derive upper
bounds on the probability that a random Boolean function has a low degree
multiple. This is partly done by using results from coding theory. These bounds
are shown to give strong estimates for input sizes of practical interest.

To further explain some of our results, recall that the main cryptographic cri-
teria for Boolean functions f used for stream cipher applications had previously
been a high algebraic degree, to counter linear synthesis by Berlekamp-Massey
algorithm, some order of correlation immunity (resiliency), and large distance
to affine functions (high nonlinearity), to withstand different types of correla-
tion and linear attacks [17, 13, 3]. There are some known tradeoffs between the



criteria, e.g., there is the bound by Siegenthaler [19], that the algebraic degree
of f is upper bounded by n − t − 1, where n is the number of inputs of f and
t < n− 1 is its order of resiliency.

The more recent algebraic attacks impose a new restriction on the combining
function f chosen: f shouldn’t have low degree multiples. In [8], essentially three
different scenarios are described which lead to low degree multiples of a Boolean
function which can be exploited in algebraic attacks. We show that these sce-
narios can be reduced to two, to be treated differently in algebraic attacks. This
simplified description of scenarios leads to a precise measure of algebraic im-
munity of a Boolean function f : The algebraic immunity AI(f) is the minimum
value of d such that f or f +1 admits an annihilating function of degree d. Recall
that an annihilator of f is a non-zero function g such that f ∗ g = 0.

The new criterion that f shouldn’t have a low algebraic immunity, may be
in conflict with some established criteria. This is exemplified for the Maiorana-
McFarland class. These functions can have high resiliency, high nonlinearity, and
optimum algebraic degree [10, 2, 4, 18]. Nevertheless it is shown in this paper that
such functions can have relatively low algebraic immunity (Example 1). This is
done by deriving a useful representation for the complete set of annihilators for
a given function f . Any annihilator can be viewed as a concatenation of annihi-
lators from some smaller variable space. This method when applied to a function
in the standard Maiorana-McFarland class [10, 2] only yields annihilators of de-
gree larger than the degree of the function itself. However, this method may
be successfully applied to the degree optimized Maiorana-McFarland class [18],
showing that relatively low degree annihilators are immanent for this class.

In the design of stream ciphers, this property needs to be avoided. There-
fore, it is desirable to have an efficient algorithm for deciding whether a given
Boolean function has no low degree annihilator. Such an algorithm is derived in
this paper (Algorithm 2). A refined version allows to decide whether a Boolean
function with n inputs has no annihilator of degree d at most 5, in about

(
n

d−1

)3
operations, which e.g. for n = 32 is certainly feasible. If for a stream cipher a
degree d annihilator with d = 4 (say) of its combining function f (or f + 1) is
found by our algorithm, we can break this cipher. On the other hand, if f and
f + 1 are shown to have no annihilator of degree d ≤ 5, this cipher has some
amount of immunity against algebraic attacks, as for d = 6 and for a size of
the initial state of 128 bits, the computational complexity of the basic algebraic
attack in [8] is already about 296.
The paper is organized as follows. In Section 2 the basic definitions and notions
regarding Boolean functions are introduced. Section 3 recalls and simplifies the
various scenarios of algebraic attacks. Algebraic properties of annihilators for
an arbitrary function f are addressed in Section 4, where an alternative repre-
sentation of annihilators is given which is useful for the analysis of some well
known classes of Boolean functions. Section 5 deals with the fundamental prob-
lem of efficiently deciding whether the combining function in a stream cipher
has annihilators of low degrees. In Section 6 we estimate an upper bound on the
probability that a random function has annihilators of certain degree.



2 Preliminaries

A Boolean function on n variables may be viewed as a mapping from {0, 1}n

into {0, 1}. A Boolean function f(x1, . . . , xn) is also interpreted as the output
column of its truth table f , i.e., a binary string of length 2n,

f = [f(0, 0, · · · , 0), f(1, 0, · · · , 0), f(0, 1, · · · , 0), . . . , f(1, 1, · · · , 1)].

The Hamming distance between n-variable functions f, g, denoted by d(f, g),
is

d(f, g) = #{x ∈ Fn
2 | f(x) 6= g(x)}.

Also the Hamming weight or simply the weight of f is the number of ones in
f . This is denoted by wt(f). An n-variable function f is said to be balanced if
its output column in the truth table contains equal number of 0’s and 1’s (i.e.,
wt(f) = 2n−1).

The Galois field of order 2n will be denoted by F2n and the corresponding
vector space by Fn

2 . Addition operator over F2 is denoted by ⊕, and if no con-
fusion is to arise we use the usual addition operator +. An n-variable Boolean
function f(x1, . . . , xn) can be considered to be a multivariate polynomial over
F2. This polynomial can be expressed as a sum of products representation of
all distinct r-th order products (0 ≤ r ≤ n) of the variables. More precisely,
f(x1, . . . , xn) can be written as

f(x1, . . . , xn) =
∑

u∈Fn
2

λu

(
n∏

i=1

xui
i

)
, λu ∈ F2 , u = (u1, . . . , un). (1)

This representation of f is called the algebraic normal form (ANF) of f . The
algebraic degree of f , denoted by deg(f) or sometimes simply d, is the maximal
value of the Hamming weight of u such that λu 6= 0. There is a one-to-one
correspondence between the truth table and the ANF via so called inversion
formulae. The set of x values for which f(x) = 1 respectively f(x) = 0 is called
the on-set respectively the off-set, denoted by S1(f) and S0(f). The ANF of f
is fully specified by its on-set using the following expansion,

f(x1, . . . , xn) =
∑

τ∈S1(f)

(
n∏

i=1

(xi + τi + 1)

)
, τ = (τ1, . . . , τn). (2)

The set of all Boolean functions in n variables is denoted by Rn. For any
0 ≤ b ≤ n an n-variable function is called non degenerate on b variables if its
ANF contains exactly b distinct input variables. Functions of degree at most one
are called affine functions. An affine function with constant term equal to zero
is called a linear function. The set of all n-variable affine (respectively linear)
functions is denoted by An (respectively Ln). The concatenation, denoted by ′′||′′
simply means that the truth tables of the functions are merged. For instance,
for f1, f2 ∈ Rn−1 one may construct f = f1||f2 (where f ∈ Rn), meaning that
the upper half part of the truth table of f correspond to f1 and the lower part
to f2. The ANF of f is then given by f(x1, . . . , xn) = (1+xn)f1(x1, . . . , xn−1)+
xnf2(x1, . . . , xn−1).



3 Algebraic attacks: Scenarios revisited

In [8], three different scenarios (S3a, S3b, S3c) are described under which low
degree relations (that hold with probability 1) may exist and how they can be
exploited in algebraic attacks. The aim of this section is to show that these can
be reduced to essentially two scenarios, and to clarify how to use them in an
attack.
To recall the scenarios in [8], let the Boolean function f have high degree.

S3a Assume that there exists a function g of low degree such that the product
function is of low degree, i.e., f ∗ g = h, where h is a nonzero function of low
degree.

S3b Assume there exists a function g of low degree such that f ∗ g = 0.
S3c Assume there exists a function g of high degree such that f ∗ g = h where h

is nonzero and of low degree.

Consider scenario S3c. Then f∗g = h 6= 0. Multiply this equation by f . As f2 = f
does hold over F2, we get f2∗g = f ∗h = f ∗g = h. Hence f ∗h = h. As h is of low
degree, we are in scenario S3a. Therefore, scenario S3c is redundant. Further,
one might consider another scenario (not contained in [8]): Factorizations of the
form f = g ∗ h, where g and/or h are of low degree. However, g ∗ (1 + g) = 0
over F2. Hence by multiplying f = g ∗ h by 1 + g, we get f ∗ (1 + g) = 0, i.e., we
are back in scenario S3b. These considerations suggest that in algebraic attacks
one can always restrict to scenarios S3a and S3b. There is an interesting relation
between the two:

Proposition 1 Assume that f ∗ g = h 6= 0, does hold for some functions g and
h of degrees at most d (scenario S3a). Suppose in addition that g 6= h. Then
there is a function g

′
of degree at most d such that f ∗ g′ = 0 (scenario S3b).

Proof. As above, we have f2 ∗ g = f ∗ g = f ∗ h = h. Hence f ∗ (g + h) = 0.

The argument just given shows that we can reduce ourselves to scenario S3a in
case where g = h, and scenario S3b. However, S3a with g = h is equivalent to
scenario S3b for the function f + 1.

The existence of algebraic attacks will impose that neither f nor f + 1 does
admit an annihilating function of low degree. This motivates the notion “alge-
braic immunity” of f , denoted by AI(f), which is the minimum value of d such
that f or f + 1 admits an annihilating function of degree d.

In [8], low degree relations according to scenarios S3a or S3b are proven to
exist for any Boolean function f with a small number of inputs:

Theorem 6.0.1 [8, 9] Let f be any Boolean function with n inputs. Then there
is a Boolean function g 6= 0 of degree at most dn/2e such that f ∗ g is of degree
at most dn/2e.



Remark 1 Without restricting the form of the function, the upper bound given
above cannot be improved for the case of annihilators, i.e. f ∗g = 0. For instance
one example of a function not admitting annihilators of degree lower than n/2
is given in [11]. Namely the function in 6 variables, denoted there CanFil 8, has
annihilators of degree d ≥ 3 only. Moreover, [9, Table 3] gives experimental evi-
dence that a random function with 10 variables is not likely to have an annhilator
of degree lower than 5.

To exploit low degree relations as in scenarios S3a and S3b, assume that Nd

linearly independent functions h with f ∗ g = h have been found, where h and
g have low degree d. Similarly, assume that N

′

d linearly independent functions g
of low degree d have been found such that f ∗ g = 0.

In an algebraic attack on an LFSR-based stream cipher, it is assumed that
the feedback connections are known. Let (s0, ..., sk−1) be the initial state of the
driving LFSR’s. Then the output of the cipher is given by:

b0 = f(s0, ..., sk−1)
b1 = f(L(s0, ..., sk−1))
b2 = f(L2(s0, ...sk−1))
... = ...

Here L denotes the linear update function to the next state of the LFSR’s
involved. The problem is to recover the k-bit key (s0, ..., sk−1). Let x equal
Li(s0, ..., sk−1).

If the output bit bi = 1, we use scenario S3b, i.e., f ∗ g = 0, and get an
equation g(x) = 0. Alternatively, we can use scenario S3a, f ∗ g = h, and take
g(x) = h(x). However, either g = h, which gives nothing, or g 6= h, which gives
g + h = 0, i.e. we are back in scenario S3b.

If bi = 0, use scenario S3a: h(x) = 0. Hence for any known output bit bi we
get Nd equations, if bi = 0, and N

′

d equations, if bi = 1.

If we get at least one such equation for each of sufficiently many output bits,
we obtain a very overdefined system of multivariate equations of low degree d,
that can be solved efficiently: There are about T ≈

(
n
d

)
monomials of degree at

most d in the k variables si, i = 0, . . . , k− 1 (assuming d � n/2). Consider each
of these monomials as a new variable Vj . Given R ≥

(
n
d

)
equations, we get a

system of R ≥ T linear equations in the Vj ’s that can be solved by Gaussian
elimination. If more than one equation holds per output bit, the output stream
needed reduces accordingly.

4 Properties of the annihilator set

As set out in the introductory part, in the realm of algebraic attacks there is one
major concern: Given a Boolean function f used in a stream cipher, the task is
to determine whether this function has low algebraic immunity, i.e., whether f
or f + 1 has a low degree annihilator. In this section we specify the structure of



the set of annihilators for a given f , and also give an alternative representation
of their ANF. Let An(f) = {g | f ∗ g = 0} denotes the annihilator set for the
function f in the Boolean ring Rn = F2[x1, . . . , xn]/I, I being an ideal generated
by the polynomials x2

i − xi, i = 1, . . . , n. Since in this ring f(1 + f) = 0 for any
f ∈ Rn the set An(f) is nonempty.

Theorem 1. Let f be any Boolean function in Rn. Then An(f) is a principal
ideal in Rn generated by (1 + f), i.e. An(f) = {(1 + f)r | r ∈ Rn} =< 1 + f >.
Its cardinality equals to |An(f)| = 22n−|S1(f)|. In particular when f is balanced
|An(f)| = 22n−1

.

Proof. In order to show that An(f) is a principal ideal in the Boolean ring Rn

generated by (1 + f), we prove firstly that An(f) is a subring of Rn, then an
ideal which is principal.

To prove that An(f) is a subring of Rn it is enough to demonstrate that
An(f) is closed under the operations ′+′ and ′∗′. Clearly An(f) is nonempty
since (1 + f) ∈ An(f). Let g, h ∈ An(f). Then f ∗ (g + h) = f ∗ g + f ∗ h = 0,
and f ∗ (g ∗ h) = (f ∗ g) ∗ h = 0. Hence An(f) is closed under ′+′ and ′∗′ and
therefore a subring of Rn.

Obviously for any r ∈ Rn, g ∈ An(f), we have r ∗ g ∈ An(f). Thus An(f)
is an ideal. Let us prove that An(f) is a principal ideal. For if h ∈ An(f) and
h 6∈< 1 + f >, then f ∗ h = 0 implying h ∗ (1 + f) = h, so h ∈< 1 + f >.

Next we prove the assertion on the cardinality of An(f). Note that the con-
dition f(x) ∗ g(x) = 0 implies that

f(x) = 1 ⇒ g(x) = 0 ∀x ∈ Fn
2 .

Then at any position τ ∈ Fn
2 for which f(τ) = 0, g(τ) may be selected arbi-

trary, i.e. there are 22n−|S1(f)| possibilities for g. Hence |An(f)| = 22n−|S1(f)|. In
particular if f is balanced then |An(f)| = 22n−1

.

Henceforth we restrict our discussion to balanced functions having much wider
cryptographic applications (at least in the case of stream ciphers). For a balanced
function f the quotient ring Rn/An(f) has 22n−1

elements. As noticed, there is
a strong symmetry between the two different attacks based on the annihilators
f ∗ g = 0 and the multiples of low degree f ∗ r = h. Indeed, the cardinality
of nonzero annihilators #{An(f) \ 0} = 22n−1 − 1 is the same as the number
of distinct h when considering f ∗ r = h. This is confirmed by noting that any
function r in the coset a+An(f) gives f ∗ r = f ∗ a = h, and there are 22n−1 − 1
such cosets for a 6= 0. In other words, finding low degree annihilators is equivalent
to designing a low degree function g defined on some subset of S0(f). Similarly,
as any g defined on the subset of S0(f) gives f ∗g = 0, the existence of low degree
multiples of the form f ∗r = h may always be viewed as design of the low degree
h on the subset of S1(f) due to the deccomposition of the form r = g + h. We
attempt to deduce some properties of the cosets of An(f) regarding its minimum
degree.



Proposition 2 Let f ∈ Rn be a nonaffine balanced function. Then An(f) con-
tains exactly one balanced function, namely the function 1 + f .
In particular, there are no nonzero affine functions in An(f).

Proof. In order that f ∗ g = 0 the function g must satisfy g(x) = 0 whenever
f(x) = 1. Since f is balanced S0(g) ≥ 2n−1. Then if g is to be balanced it must
be that g = 1 + f . In particular, since any affine function is balanced and 1 + f
is nonlinear by assumption, there are no nonzero affine functions in An(f).

Corollary 1 There is exactly one nonzero annihilator of degree one for any
affine function a ∈ An given by (1 + a).

Proof. Since a is affine the only balanced annihilator is of the form 1 + a which
is an affine function.

4.1 Concatenating annihilators with application to
Maiorana-McFarland class

We know that M = {1, x1, . . . , xn, x1x2, . . . , xn−1xn, . . . , x1x2 · · ·xn}, the set of
2n monomials, constitutes the basis of Rn which we call the monomial basis.
An alternative basis may be derived by considering all the products of the form∏n

i=1(xi + τi + 1) when τ runs through Fn
2 . It is clear that any such product∏n

i=1(xi+τi+1) specifies the function defined to be nonzero exactly for x = τ and
zero otherwise. Hence the set En = {

∏n
i=1(xi + τi + 1) | τ ∈ Fn

2} constitutes the
basis of Rn which will be called polynomial basis. In fact distinct basis elements
are orthogonal to each other, that is e ∗ e′ = 0 for e 6= e′ ∈ En with exception
that for any e ∈ En we have e ∗ e = e which is in accordance to the property
that any element in the Boolean ring Rn is idempotent.

An important application of these ideas is a general result on the set of
annihilators.

Theorem 2. Let f be a balanced Boolean function in Rn. In general, for a
positive integer m, 1 ≤ m ≤ n− 1, write f as

f(y, x) =
⊕

τ∈Fn−m
2

( n−m∏
i=1

(yi + τi + 1)
)
rτ (x),

for (y, x) ∈ Fn−m
2 × Fm

2 , and not necessarily distinct functions rτ in Rm. Then
any annihilator of f can be written in the form,

g(y, x) =
⊕

τ∈Fn−m
2

( n−m∏
i=1

(yi + τi + 1)
)
gτ (x), (3)

where gτ is any annihilator of rτ .



Proof. Due to the orthogonality of distinct products
∏n−m

i=1 (yi + τi + 1) and
the fact that gτ is annihilator of rτ for any τ ∈ Fn−m

2 , it is easily verified that
fg = 0. By Theorem 1 for a function rτ ∈ Rm there are 22m−S1(rτ ) distinct
annihilators. Let G = {g | gτ ∈ A(rτ ), τ ∈ Fn−m

2 } and denote by r0, . . . , r2n−m−1

the subfunctions of f when τ runs through Fn−m
2 . Then,

|G| = 22m−|S1(r0)| · · · 22m−|S1(r2n−m−1)| = 22n−m·2m−
∑2n−m−1

i=0 |S1(ri)| = 22n−1
,

which is in accordance with Theorem 1, that is |G| = |An(f)|. It is obvious that
the functions in G are two-by-two distinct, hence all annihilators are in G.

This approach is a very efficient method for annihilating the functions which
have a subfunction of low degree on some (n−m)-dimensional flat.

Example 1 The functions in the standard Maiorana-McFarland class may be
viewed as a concatenation of affine functions from some smaller variable space.
That is f(y, x) =

⊕
τ∈Fn−m

2

(∏n−m
i=1 (yi + τi + 1)

)
aτ (x), where aτ (x) ∈ Am are

affine functions in m variables for all τ . Then the annihilators of degree n−m+1
are for instance obtained by choosing gτc(x) = 1 + aτc(x) in (3) for a fixed
τ c ∈ Fn−m

2 and otherwise gτ (x) = 0. But the degree of such an annihilator is
n−m+1 which equals to the maximum degree of the Maiorana-McFarland class
of functions and therefore not of practical use.

The result above is more successfully applied to the degree optimized Maiorana-
McFarland class that has been introduced in [18]. Here some affine functions
in Am (at least one) are replaced by suitably chosen nonlinear function(s) hi

of degree m − t − 1, t being the order of resiliency. Then the degree of f is
optimized, i.e. deg(f) = n − t − 1. Still, multiplying this function by g(y, x) =(∏n−m

i=1 (yi + τi + 1)
)
(1 + aτ (x)) (for τ ∈ Fn−m

2 chosen such that f is affine on
that m-dimensional flat) the degree of f is decreased from n− t−1 to n−m+1.
As m > n/2 when t > 0 for this class, in many cases one obtains annihilators of
degree < n/2.

5 How to decide the (non-) existence of annihilators

In this section we derive an efficient algorithm to decide whether a given boolean
function f in n variables x = (x1, ..., xn) has low algebraic immunity, i.e., whether
f or f +1 has an an annihilator of low degree. From ([9], proof of Theorem C.0.1)
one deduces the following algorithm for determining annihilating functions for
f , i.e., functions g such that f(x) ∗ g(x) = 0 for all x:

A necessary and sufficient condition for f ∗ g = 0 is that the function g
vanishes for all arguments x for which f(x) = 1. The algebraic normal form
ANF of a function g in n variables of degree d is a sum of a constant and
monomials ai1,i2,...,im

xi1xi2 · · · xim , 1 ≤ m ≤ d, determined by its coefficients
ai1,i2,...,im , whose number equals to

∑d
i=0

(
n
i

)
. In some complexity estimates, we



approximate this number by the summand
(
n
d

)
, which is dominant for d < n/2.

In order to determine the unknown coefficients of an annihilating function g,
substitute all arguments x in g(x) with f(x) = 1. For balanced f these are 2n−1

arguments. We thus get 2n−1 linear equations for the coefficients of g, which can
be solved by Gaussian elimination. This method immediately allows to decide
whether there is an annihilator g of degree at most d, and if so, to determine a set
of linearly independent annihilators (of degree at most d). In view of Theorem
C.0.1 in [9] we assume d ≤ dn/2e.

Algorithm 1

1. Substitute all N arguments x with f(x) = 1 in the ANF of a general boolean
function g(x) of degree d. This gives a system of N linear equations for the
coefficients of g(x).

2. Solve this linear system.
3. If there is no (nontrivial) solution, output no annihilator of degree d,

else determine sets of coefficients for linearly independent annihilators.

For n not much larger than about 10, solving this system of linear equations
is quite easy. However, in [12] it is recommended that the combining function
f in a stream cipher should have more than 10 (e.g. 32) arguments, to prevent
algebraic attacks.

For such numbers of inputs, Algorithm 1 becomes infeasible, as the number
of equations is on the order of 2n−1, and the complexity of Gaussian elimination
already for n = 20 inputs is about 257. In [11] there are given two alternative
algorithms for determining low degree annihilators and low degree multiples of
functions, both of which are based on Gröbner bases. The examples of functions
given in [11] have at most n = 10 variables. No complexity estimates are given in
[11] for determining the necessary Gröbner bases for general n, however it seems
that these methods become infeasible as well for larger numbers of variables.

Here we propose an accelerated method for deciding whether a Boolean func-
tion has an annihilator of low degree d. As in Algorithm 1, let the (candidate)
annihilators g of degree d of f be described as ANF with unknown coefficients.

We assume that f behaves roughly like a random function, i.e., the coefficients
in the ANF of f are roughly chosen at random. If this is not the case, e.g., if
the nonzero coefficients are sparse, the algorithm may be adapted to be even
more efficient. (However, for cipher design, we do not advocate sparse functions.)
Suppose f is (close to) balanced. Then the number of arguments x with weight
w ≤ d and f(x) = 1 is about half the number of coefficients of g(x).

The idea is to exploit some specific structure of the system of equations
occurring in Algorithm 1. To see this, start with arguments x with Hamming
weight w = 1. Suppose the only value 1 in x is at position i. Then substituting
this x in g(x) = 0 gives ai + a0 = 0. Thus ai = a0. There are about n/2
arguments x of weight 1 with f(x) = 1. Assume d ≥ 2. Consider all arguments
x of weight 2 with f(x) = 1, and with value 1 in positions i and j. Then one
gets aij + ai + aj + a0 = 0. Hence aij for these indices can be expressed by
coefficients of monomials of degrees 0 and 1. In general, for any argument x of



weight w, 1 ≤ w ≤ d, the resulting linear equation in the coefficients of g(x)
has a similar structure: There is exactly one coefficient of a monomial of degree
w, (we term this a coefficient of weight w) which can immediately be expressed
by coefficients of lower weight. By iterating this process for increasing weight
w, until w = d, we can eliminate roughly half of the coefficients in g(x) almost
for free. We describe a basic version of an algorithm which for low degree d will
later be considerably improved.

Algorithm 2

1. Let weight w = 1.
2. For all x of weight w with f(x) = 1 substitute x in g(x) = 0 to derive a

linear equation in the coefficients of g, with a single coefficient of weight
w. Use this equation to express this coefficient iteratively by coefficients of
lower weight.

3. If w < d, increment w by 1 and go to step 2.
4. Choose random arguments x of arbitrary weight such that f(x) = 1 and

substitute in g(x) = 0, until there are the same number of equations as
unknowns.

5. Solve the linear system. If there is no solution, output no annihilator of
degree d.

Algorithm 2 is aimed at showing that f has no annihilator of given degree d.
However, if the system turns out to be solvable, one may try another set of
arguments x in step 5. If the new system is again solvable, one checks whether
the solutions found are consistent. In case the number of variables n of f is
not too large, one may directly verify whether one has found an annihilator, by
formally expanding f(x) ∗ g(x) and by checking whether the result is identically
0.

We estimate the computational and data complexity of Algorithm 2. The
expressions of those coefficients that in step 2 have been replaced by linear
combinations of coefficients of lower weight, need to be memorized for step 4. As
the number of coefficients involved in these expressions is of order 1

2

(
n

d−1

)
, and we

have a number of 1
2

(
n
d

)
memorized coefficients in step 2, the number of memory

bits is of order M = 1
4

(
n
d

)
·
(

n
d−1

)
. In the evaluation of g(x) in step 4, one has to

substitute the linear expressions found in step 2. The complexity of substituting
x depends on its weight, and is at most of order M elementary operations. This
needs to be done for about 1

2

(
n
d

)
values of x, as we have about this number

of remaining unknowns. Hence we get a computational complexity in step 4 of
order 1

2

(
n
d

)
∗ M= 1

8

(
n
d

)2 · ( n
d−1

)
. The computational complexity of step 5, and

hence of Algorithm 2, is of order 1
8

(
n
d

)3, if the exponent for Gaussian elimination
ω = 3. Thus Algorithm 2 does run roughly 8 times faster than Algorithm 1,
when modified for low degree d (i.e., by taking a number of linear equations
equal to the number of unknown coefficients in g(x)). To summarize, Algorithm
2 has the complexities as shown:



Memory 1
4

(
n
d

)
·
(

n
d−1

)
Complexity 1

8

(
n
d

)3
Note that the memory requirement is not stringent when compared to Algorithm
1, where a linear system of equations with about

(
n
d

)2 coefficients needs to be
memorized.

In order to improve efficiency over Algorithm 2, we use arguments x of higher
weight than d: Consider all arguments x with weight d+1 such that f(x) = 1. For
each such x, a linear equation arises where

(
d+1

d

)
= d + 1 coefficients of weight d

(and coefficients of lower weight) are involved. In some fraction of arguments x,
exactly d coefficients of weight d were already expressed by coefficients of lower
weight. Thus the remaining coefficient can be expressed as well by coefficients of
lower weight. This procedure can be iterated for w = d+2, and so on, with higher
number of coefficients of weight d involved, but with higher probability that a
coefficient has already been replaced in an earlier step. The gain of efficiency for
increasing weight is dependent on n and d. The necessary estimates are given in
a Lemma.

Lemma 2. Let f be a random Boolean function with n variables, and let d be
the degree of an annihilator g of f . Then the following statements hold:

a) A fraction

p =
1
2

+ (n− d) · 2−(d+2) (4)

of weight d coefficients can be replaced by lower weight coefficients by substi-
tuting all weight w arguments x with f(x) = 1, and with w ≤ d + 1.

b) Suppose that according to a) a fraction p of coefficients of weight d have
been replaced. Then an additional number A of coefficients can be replaced
by substituting arguments of weight w = d + 2, where

A =
1
2

(
n

d + 2

)
·
(

d + 2
2

)
(1− p)p(d+2

2 )−1 (5)

Proof. a): By following steps 1 to 3 of Algorithm 2, about 1
2

(
n
d

)
coefficients

of weight d have already been replaced by lower weight coefficients. There are
about 1

2

(
n

d+1

)
arguments x of weight w = d + 1 with f(x) = 1. Substitute these

in g(x). Then in the average, for 1
2

(
n

d+1

)
∗ (d+1)∗2−(d+1) of arguments, we have

that amongst the d + 1 weight d coefficients involved, exactly d coefficients have
previously been expressed by coefficients of lower weight. Thus the remaining
coefficient can be expressed by coefficients of lower weight. The average fraction
of coefficients of weight d replaced by now is got by dividing by

(
n
d

)
and is as

claimed.
b) is similar, and is omitted.



The improved algorithm is illustrated for degrees d = 4 and d = 5.

Case d = 4: Let the number of variables of f be n ≥ 20. Search for potential
annihilators of degree d = 4. First assume n = 20. Formula (4) shows that by
using all arguments of weight up to w ≤ 5, a fraction p = 0.75 of the

(
20
4

)
coefficients of weight 4 can be replaced. Thus with n = 20, there remain 1211
coefficients to be replaced. According to Formula (5), an average number A of
new coefficients of weight d can be replaced by using arguments of weight d + 2.
With n = 20, d = 4, and p = 0.75, one gets 1294. Thus with high probability
(almost) all coefficients of weight d = 4 can be replaced. Using formulas (4) and
(5) one can show that this probability quickly increases for increasing n. Hence
the number of remaining unknowns (and equations) is of order 1

2

(
n

d−1

)
. Thus

we are able to reduce deciding the existence of annihilators of degree at most 4
from

(
n
d

)3, when using Algorithm 1, to 1
8

(
n

d−1

)3, when using our refinement of
Algorithm 2.

If n = 32, i.e., one of our target values, this complexity is about 1
8

(
32
3

)3 ≈ 234,

compared to about
(
32
4

)3 ≈ 245, when Algorithm 1 (modified to d = 4) would be
directly applied.

Recall that the final system of linear equations to be solved, is found by sub-
stituting linear relations for coefficients of g(x), for various arguments x. This
should be done in a way such that it doesn’t exceed the cost for solving this sys-
tem. To get a linear system of largest possible rank, one should take arguments
with arbitrary weight, so that all monomials in f contribute to the evaluation
of f . A majority of arguments x have weight about n/2. Hence only about

(
n/2
d

)
monomials in g(x) are nonzero. Thus in this case the complexity of substituting
linear expressions in g(x) to get a linear equation in unknowns has complexity
about

(
n

d−1

)
·
(
n/2
d

)
. Doing this for

(
n

d−1

)
equations, for values n and d under

consideration, the average complexity is not larger than
(

n
d−1

)3. When taking
arguments with weight close to n, one better computes the linear equation got
from the weight n argument x, and then modifies this equation by setting some
components in x to 0.

Case d = 5: Let n ≥ 32. Assume n = 32, (the case n > 32 works even better).
Then according to formula (4), p = 0.7109375. The number of coefficients of
weight d = 5 after using all arguments of weight up to d + 1 = 6 is 58210. After
using weight d + 2 = 7 arguments, we can replace another 22229 coefficients of
weight 5. Hence there remain 35981, which is of the same order as

(
32
4

)
= 35960.

As half of coefficients of weight at most 4 have already been replaced by basic
step 4 of Algorithm 2, and as the case n > 32 is more favorable, we conclude
that the remaining number of unknowns is of order

(
n
4

)
. Hence the complexity of

deciding existence of an annihilator of degree at most 5 is of order
(
n
4

)3, e.g., for
n = 32, it is of order 245 (compared to 253, when modified Algorithm 1 would
be directly applied).

The cases d < 4 work similar as the cases d = 4 and d = 5 just given. However,
for d = 6, and n < 50, formula (4) shows that the probability p is already close



to 0.5, so that in this case by using arguments with weight larger than 6 only
weak refinements over the basic Algorithm 2 may be expected.

6 Bounds on the probability of annihilators’ existence

In the last section we have proposed an algorithm for deciding whether a given
function f admits annihilators of degree ≤ d. However the complexity of the
algorithm is strongly related with the inputs n, d and it turns out that this
task becomes infeasible for n ≥ 32 and d ≥ 6. Hence using more inputs to
the function might be an obvious solution to protect from algebraic attacks. It
cannot be precluded however that finding annihilators for larger n and d may
still be feasible by using methods related to Gröbner basis, although this seems
open. In such a setting it is important to derive bounds on the probability that
a function admits annihilators.

An easy upper bound for the probability that an n-variable balanced function
admits an annihilator of degree at most d, is deduced from the minimum weight
of any nonzero function of degree less or equal to d. As f is assumed to be
balanced, this extends to a statement on the algebraic immunity of f :

Proposition 3 The probability that a random n-variable balanced function f
has algebraic immunity at most d is upper bounded by the number:

Pb{AI(f) ≤ d} ≤
2(21+n+···+(n

d) − 1)
(

2n−2n−d

2n−1−2n−d

)(
2n

2n−1

) . (6)

Proof. The size of the set A of nonzero functions of degrees at most d equals
21+n+···+(n

d) − 1. For every such function g, the number of balanced functions f
such that the support of g is included in S0(f) equals Ng =

( 2n−wt(g)
2n−1−wt(g)

)
, where

wt(g) denotes the Hamming weight of g. Since every such function g has weight
at least 2n−d, we have

( 2n−wt(g)
2n−1−wt(g)

)
≤
(

2n−2n−d

2n−1−2n−d

)
. Thus, the number of balanced

functions admitting an annihilator of degree at most d is smaller than or equal
to
∑

g∈A Ng ≤ (21+n+···+(n
d) − 1)

(
2n−2n−d

2n−1−2n−d

)
; indeed, the size of a union of sets

is smaller than or equal to the sum of the sizes of the sets. Since
(

2n

2n−1

)
is the

number of balanced functions, this completes the proof.

Even though this bound is not tight, it helps us to determine the asymptotic
behavior of the probability of annihilator’s existence.

Theorem 3. Let dn be a sequence of positive integers such that dn ≤ µn where

µ = 1
2 (1 + ln 2

2 −
√

(1 + ln 2
2 )2 − 1) ≈ 0.22. Then

Pb{AI(f) ≤ dn} → 0, n →∞. (7)



Proof. We know that, for every positive integer N and every 0 < λ < 1/2:

∑
0≤i≤λN

(
N

i

)
≤ 2Ne−2N(1/2−λ)2 ,

(e.g., see C. Carlet [5]). We deduce that for every n and every dn < n/2:

1 + n + · · ·+
(

n

dn

)
≤ 2ne−2n(1/2−dn/n)2 ,

and denoting the number 1/2−2−dn

1−2−dn
by λn we have:(

2n − 2n−dn

2n−1 − 2n−dn

)
≤ 22n−2n−dn

e−2(2n−2n−dn )(1/2−λn)2 .

Thus

(21+n+···+( n
dn

) − 1)
(

2n − 2n−dn

2n−1 − 2n−dn

)
≤

22ne−2n(1/2−dn/n)2+2n−2n−dn
e−2(2n−2n−dn )(1/2−λn)2 ,

and therefore

log2

[
(21+n+···+( n

dn
) − 1)

(
2n − 2n−dn

2n−1 − 2n−dn

)]
≤

2ne−2n(1/2−dn/n)2 + 2n − 2n−dn − 2(log2 e)(2n − 2n−dn)(1/2− λn)2.

We have also
(

2n

2n−1

)
∼ k22n−n/2, where k is a constant, according to Stirling

formula. Hence, if n/2 is negligible with respect to

2n−dn − 2ne−2n(1/2−dn/n)2 + 2(log2 e)(2n − 2n−dn)(1/2− λn)2 =

2n
[
2−dn − e−2n(1/2−dn/n)2 + 2(log2 e)(1− 2−dn)(1/2− λn)2

]
then

(2
1+n+···+( n

dn)−1)( 2n−2n−dn

2n−1−2n−dn)
( 2n

2n−1) tends to zero.

A sufficient condition is that 2−dn ≥ e−2n(1/2−dn/n)2 and that n/2 is negli-
gible with respect to 2n

[
2(log2 e)(1− 2−dn)(1/2− λn)2

]
. We have

2−dn ≥ e−2n(1/2−dn/n)2 ⇔ dn ≤ 2n(log2 e)(1/2− dn/n)2,

that is,
dn/n ≤ 2(log2 e)(1/2− dn/n)2.

The equation x = 2(log2 e)(1/2− x)2 is equivalent to x ln 2/2 = (1/2− x)2, that
is, x2 − x(1 + ln 2

2 ) + 1
4 = 0, which roots are both positive.



Its smallest root is µ. Thus dn ≤ µn implies 2−dn ≥ e−2n(1/2−dn/n)2 . If
dn ≤ µn, then

(1−2−dn)(
1
2
−λn)2 = (1−2−dn)

(
1
2
− 1/2− 2−dn

1− 2−dn

)2

=
2−2dn

4(1− 2−dn)
≥ 2−2µn

4(1− 2−µn)
.

Hence, since 2µ is strictly smaller than 1, then n/2 is negligible with respect to

2n
[
2(log2 e)(1− 2−dn)(1/2− λn)2

]
.

For practical applications we are interested in concrete values of this bound for
moderate n rather than the asymptotical values. For instance, we can compute
the probability that a random balanced function f in n = 32 variables admits
annihilators of degree d ≤ 6. In view of Theorem 3, d = 6 satisfies the inequality
d ≤ 0.22n for n = 32. Then computing (6) for n = 32, d = 6, gives a probability
of order 10−300 which is negligibly small. Notice that in this case, due to the
complexity reasons, we cannot confirm the (non)existence of annihilators through
Algorithm 2.

However the upper bound as derived above is based on the property that
all annihilators have weights at least 2n−d. This bound can be sharpened by
using some known results on the weight distribution and enumeration of the
codewords in the Reed-Muller code R(d, n). Let us denote by Aw the number of
codewords of weight w in R(d, n); then A2n−d equals 2d

∏n−d−1
i=0

2n−i−1
2n−d−i−1

due
to McWilliams-Sloane [16]. Furthermore, Kasami and Tokura [14] have done the
weight enumeration of codewords of weight w in R(d, n) for all 2n−d < w <
2n−d+1. These results are found in [16, pg. 446] and can be used to derive a
tighter upper bound from the following easy improvement of Proposition 3:

Theorem 4. For a random balanced function f ∈ Bn the upper bound on the
probability, denoted Pbd, that AI(f) ≤ d is given by

Pbd ≤
w<2n−d+1∑
w=2n−d

Aw ·
(

2n−w
2n−1−w

)(
2n

2n−1

) +
(
2

∑d
i=0 (n

i) −
w<2n−d+1∑
w=2n−d

Aw) ·
(

2n−2n−d

2n−1−2n−d

)(
2n

2n−1

) . (8)

Note that, for every w, we have ( 2n−w

2n−1−w)
( 2n

2n−1) ≤
(

1
2

)w.

Remark 2 This upper bound can be further tightened by using more values of
w for which the exact number of codewords is known. This has been done in [15]
for the weights w in the range 2n−d ≤ w < 2.5 · 2n−d.

For the bound of Theorem 4, it seems to be much harder to estimate the value of
µ as it has been done in Theorem 3. By computations one can deduce the same
behavior of this bound but with slightly shifted limit value, that is µ′ ≈ 0.27. This



gives a better value than Theorem 3 as for increasing n the sequence dn ≤ µ′n
has a larger range.

The upper bounds above are important tools for estimating the security of
a stream cipher. For instance assuming that the computational complexity of
breaking a cipher whose multiples are of degrees strictly greater than say d = 5,
then Theorem 4 gives n = 18 which is the lowest value of n such that the
probability that there exists annihilators of degree d ≤ 5 is close to zero. Hence
assuming that f has no particular structure that might be exploited, the value of
n = 18 and the key length of k = 128 should guarantee that the known attacks
are infeasible. Assuming the existence of multiples/annihilators of degree d = 6
this would give a computational complexity of order ≈

(
128
6

)ω
= (232)ω, which for

ω = 3 yields 296. If a more secure cipher is preferred then the obvious method is
to increase n. In Table 1 below we list some other interesting cases. Each entry
relates a given degree of annihilators d to the minimum value of n for which
Pb{AI(f) ≤ d} ≈ 0. We apply the results above to the stream cipher LILI-128,

n; Pb d = 5 d = 6 d = 7 d = 8

18; 10−1134 22; 10−6326 26; 10−23138 31; 10−107

Table 1. Upper bound on the probability for the annihilators

for which 14 linearly independent annihilators of degree d = 4 have been found
in [8].

Example 2 In [8], Courtois and Meier (see also [11]) have investigated the
algebraic properties of LILI-128. They have found that the function f in n =
10 variables used in LILI-128 is rather weak, since one could find 14 linearly
independent annihilators of degree 4.

Note that the probability Pb{AI(f) ≤ 5} is equal to 1 due to the Theorem
6.0.1 in [8]. The upper bound is not tight for d = 4, 5 giving a probability greater
than 1. However, applying the upper bound for the case d = 3 one deduces that

Pb{AI(f) ≤ 3} ≤ 0.30 · 10−24.

Example 2 shows that the upper bound in particular for low values of n is not
tight. However, Table 1 illustrates that this bound gives very strong estimates
for larger n of interest.

Acknowledgment We are indebted to Jean-Pierre Tillich for hepful discussions.
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