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Abstract. The Diffie-Hellman (DH) transform is a basic cryptographic primitive used
in innumerable cryptographic applications, most prominently in discrete-log based en-
cryption schemes and in the Diffie-Hellman key exchange. In many of these applications
it has been recognized that the direct use of the DH output, even over groups that sat-
isfy the strong Decisional Diffie-Hellman (DDH) assumption, may be insecure. This
is the case when the application invoking the DH transform requires a value that is
pseudo-randomly distributed over a set of strings of some length rather than over the
DH group in use. A well-known and general solution is to hash (using a universal hash
family) the DH output; we refer to this practice as the “hashed DH transform”.

The question that we investigate in this paper is to what extent the DDH assump-
tion is required when applying the hashed DH transform. We show that one can obtain
a secure hashed DH transform over a non-DDH group G (i.e., a group in which the
DDH assumption does not hold); indeed, we prove that for the hashed DH transform
to be secure it suffices that G contain a sufficiently large DDH subgroup. As an ap-
plication of this result, we show that the hashed DH transform is secure over Z, for
random prime p, provided that the DDH assumption holds over the large prime-order
subgroups of Z;. In particular, we obtain the same security working directly over Z,
as working over prime-order subgroups, without requiring any knowledge of the prime
factorization of p — 1 and without even having to find a generator of Z,.

Further contributions of the paper to the study of the DDH assumption include:
the introduction of a DDH relaxation, via computational entropy, which we call the
“t-DDH assumption” and which plays a central role in obtaining the above results; a
characterization of DDH groups in terms of their DDH subgroups; and the analysis of
of the DDH (and ¢-DDH) assumptions when using short exponents.

1 Introduction

The Diffie-Hellman Transform and DDH Assumption. The Diffie-Hellman
transform is one of the best-known and fundamental cryptographic primitives.
Its discovery by Whitfield Diffie and Martin Hellman [DH76] revolutionized the
science of cryptography and marked the birth of Modern Cryptography. Even
today, almost 30 years later, the DH transform remains the basis of some of the
most widely used cryptographic techniques. In particular, it underlies the Diffie-
Hellman key exchange and the ElGamal encryption scheme [E1G85], and is used
over a large variety of mathematical groups. In its basic form the Diffie-Hellman



(or DH for short) transform maps a pair of elements g%, g® drawn from a cyclic
group G generated by the element g into the group element! g%*. The usefulness
of this transform was originally envisioned under the conjecture, known as the
Computational Diffie-Hellman (CDH) assumption, that states the infeasibility
of computing the value g2 given only the exponentials g% and g°. Namely, the
value g should be computable only by those knowing one of the exponents
a or b. Note that the CDH assumption implies the difficulty of computing dis-
crete logarithms over the group G (the converse, however, is unknown for most
practical groups).

Over time it was realized that the CDH assumption is insufficient to guaran-
tee the security of most DH applications (in particular those mentioned above).
For this reason a much stronger assumption was introduced: the Decisional
Diffie-Hellman (DDH) assumption postulates that given the values g and g° not
only it is computationally hard to derive the value g?® but even the seemingly
much easier task of distinguishing g®® from random group elements is infeasible
[Bra93] (see [Bon98] for a survey on the DDH assumption). On the basis of this
assumption one can consider the DH transform as a good generator of pseu-
dorandomness as required in key-exchange, encryption and other cryptographic
applications. Hereafter we refer to groups in which the DDH assumption holds
as DDH groups. The need to rely on the DDH disqualifies many natural groups
where the assumption does not hold. For example, any group whose order is di-
visible by small factors, such as the classic groups Z; of residues modulo a large
prime p; in this case the group’s order, p — 1, is always divisible by 2 and thus
the DDH assumption does not hold. Moreover, for randomly generated primes
p, p — 1 has (with very high probability) additional small factors. Due to the
perceived need to work over DDH groups it is often recommended in the crypto-
graphic literature that one work over subgroups of large prime order where no
attacks are known on the DDH assumption.

The Need for Hashing the Diffie-Hellman Result. Interestingly, the DDH
assumption, while apparently necessary, turns out to be insufficient for guaran-
teeing the security of some of the most basic applications of the DH transform.
Consider for example the ElGamal encryption scheme: Given a public key y = g*
(for secret a), a message m € G is encrypted by the pair (g°, my®) where the
value b is chosen randomly anew for each encryption. In this case, the DDH
assumption guarantees the semantic security ([GM84]) of the scheme (against
chosen-plaintext attacks) provided that the plaintexts m are elements of the group
G. However, if the message space is different, e.g. the set of strings of some length
smaller than log(|G|)), then the above encryption scheme becomes problematic.
First of all, you need to encode messages m as group elements in G and that
could be cumbersome. If G is a subgroup of prime order of Z}, a naive (and
common) approach would be to trivially encode m as an integer and perform
the multiplication my® modulo p. But now the scheme is insecure even if the

! Here we use the exponential notation that originates with multiplicative groups but
our treatment applies equally to additive groups such as Elliptic Curves.



group G does satisfy the DDH assumption. A good illustration of the potential
weaknesses of this straightforward (or “textbook”) application of ElGamal is
presented in [BJNOO]. It is shown that if the space of plaintexts consists of ran-
dom strings of length shorter than |G| (e.g., when using public key encryption to
encrypt symmetric keys) the above scheme turns out to be insecure even under
a ciphertext-only attack and, as said, even if the group G is DDH. For example,
if the plaintexts to be encrypted are keys of length 64, an attacker that sees
a ciphertext has a significant probability of finding the plaintext with a work
factor in the order of 232 operations and comparable memory; for encrypted keys
of length 128 the complexity of finding the key is reduced to 264.

A general and practical approach to solving these serious security weaknesses
is to avoid using the DH value itself to “mask” m via multiplication, but rather
to hash the DH value g° to obtain a pseudorandom key K of suitable length
which can then be used to encrypt the message m under a particular encryption
function (in particular, K can be used as a one-time pad). In this case the hash
function is used to extract the (pseudo) randomness present in the DH value.
Suitable hash functions with provable extraction properties are known, for ex-
ample universal hash functions [CWT79,HILL99]. The above considerations are
common to many other applications of the DH transform, including encryption
schemes secure against chosen-ciphertext attacks [CS98] and, most prominently,
the Diffie-Hellman key-exchange protocol (in the latter case one should not use
the DH output as a cryptographic key but rather derive the agreed shared keys
via a hashing of the DH result); see Section 3.2 for a discussion on how these
applications choose a random hash function out of a given family. For addi-
tional examples and justification of the need for hashing the DH output see
[Bon98,NR97,CS98,ABRO1]. In the sequel we refer to the combination of the
DH transform with a (universal) hash function as the hashed DH transform.

1.1 Our Results

The Security of the Hashed DH Transform over non-DDH Groups.
In light of the need to hash the DH value, some natural questions arise: when
applying the hashed DH transform, is it still necessary to work over groups where
the DDH assumption holds, or can this requirement be relaxed? Can one obtain
a secure (hashed) DH transform over a non-DDH group, and specifically, is doing
hashed DH over Z; secure? In this paper we provide answers to these questions.
Our main result can be informally stated as follows: For any cyclic group G,
applying the hashed DH transform over G has the same security as applying
the hashed DH transform directly over the mazimal DDH subgroup of G. In
particular, one can obtain secure applications of the hashed DH transform over
non-DDH groups; the only requirement is that G contain a (sufficiently large)
DDH subgroup (see below for the exact meaning of “sufficiently large” and other
parameter size considerations). A significant point is that we are only concerned
with the ezistence of such a subgroup; there is no need to know the exact size
or structural properties of, nor to be able to construct, this specific (maximal)
DDH subgroup.



A particularly interesting consequence of the above result is that assuming
that DDH holds on large subgroups of Z; (we will see later that it is sufficient
to assume that DDH holds on large prime-order subgroups of Z7), one can build
secure (hashed) DH applications working directly over Z;, where p is an uncon-
strained random prime. Only the length of the prime is specified, while other
common requirements such as the knowledge of the partial or full factorization of
p— 1, insisting that p — 1 has a prime factor of a particular size, or disqualifying
primes for which (p — 1)/2 has a smooth part, are all avoided here. Moreover,
we show that there is no need to find a generator of Z7; instead we prove that
a randomly chosen element from Z will span a (probably non-DDH) subgroup
with a large enough DDH subgroup. In particular, the DH security is preserved
even if the order of the chosen element has small factors or if it misses some
prime divisors of p — 1. Note that avoiding the need to find a generator for Z;
allows us to work with primes p with unknown factorization of p — 1 (which is
otherwise required to find a Z; generator).

The t-DDH Assumption. In order to prove our main result (i.e., that the
hashed DH transform is secure over any group G, not necessarily a DDH group,
that contains a large enough DDH subgroup), we introduce a relaxation of the
DDH assumption which we call the t-DDH assumption. Informally, a group G
satisfies the +-DDH assumption (where 0 < t < |G]) if given the pair (g2, g?)
(where g is a generator of G) the value g°® contains t bits of computational en-
tropy. The notion of computational entropy, introduced in [HILL99], captures
the amount of computational hardness present in a probability distribution. In
other words, we relax the “full hardness” requirement at the core of the DDH
assumption, and assume partial hardness only. Moreover, we do not care about
the exact subsets of bits or group elements where this hardness is contained, but
only assume their existence. On this basis, and using the entropy-smoothing the-
orem from [HILL99] (also known as the leftover hash lemma), we obtain a way to
efficiently transform (via universal hashing) DH values over groups in which the
t-DDH assumption holds into shorter outputs that are computationally indistin-
guishable from the uniform distribution. The maximal length of (pseudorandom)
strings that one can obtain as output from the hashed DH transform depends
on the maximum value of ¢ for which the t+-DDH holds in G. In particular, in
order to be 2~ *-computationally close to uniform one can output up to t — 2k
pseudorandom bits (e.g., to produce 128-bit keys with a security parameter of
k = 80 the group G should be 288-DDH, while for £ = 128, G is to be 384-DDH).

After defining the ¢-DDH assumption and showing its usefulness in extracting
random bits from ¢t-DDH groups, we show that if G contains a DDH subgroup of
order m then G is |m|-DDH. This forms the basis for our main result as stated
above. Indeed, it suffices that G has a suitably large-order DDH subgroup to
ensure that hashing the DH output results in pseudorandom outputs of the
required length. Again, it is important to stress that we do not need to know
the specific DDH subgroup or its order, only (assume) its existence.

A Direct Product Characterization of the DDH Assumption. A further
contribution of our work is in providing a characterization of the DDH assump-



tion in a given group in terms of its DDH subgroups. Specifically, we show that
a group is DDH if and only if it is the direct product of (disjoint) prime power
DDH groups. In other words, a group G is DDH if and only if all its prime
power subgroups are DDH. Moreover, for any cyclic group G, the maximal DDH
group in G is obtained as the product of all prime power DDH subgroups in
G. Beyond its independent interest, this result plays a central role in our proof
that the hashed DH transform over Z} is secure as long as the DDH assumption
holds in the subgroups of Z; of large prime order. In particular, this allows us to
expand significantly the groups in which one can work securely with the hashed
DH transform without having to strengthen the usual assumption that DDH
holds in large prime order subgroups.

Some Practical Considerations. Beyond the theoretical interest in under-
standing the role of the DDH assumption and proving the usefulness of relaxed
assumptions, our results point out some practical issues that are worth dis-
cussing. In this respect, one significant contribution is the justification of the use
of non-DDH groups in applications of DH that hash their output. It needs to be
noted that in spite of an extensive crypto literature regarding the use of prime
order subgroups for performing DH, many real-world instantiations of this primi-
tive work over non-DDH groups (e.g. Z;). Examples include the widespread SSH
and IPsec standards. Interestingly, the latter has standardized a set of groups
for use with the IKE Diffie-Hellman key-exchange protocols [RFC2409], none of
which constitute a DDH group. However, since the IKE protocol takes care of
hashing the output of the DH transform before generating the cryptographic keys
(see [Kra03]), then our results serve to justify the security of this mechanism?.

In addition, and as pointed out before, our results also show that under the
sole assumption that the DDH holds in groups of large prime order one can work
directly over Z; for a random prime p, without having to know the factorization
of p— 1 and without having to find a generator of Z;. Moreover, the ability to
work over non-prime order groups has the benefit of eliminating the attacks on
the DH transform described in [LL97], without having to search for primes of a
special form (and without necessitating special parameter checks when certifying
public keys [LLI7]).

Short-Exponent Diffie-Hellman. One important practical consideration is
the length of exponents used when applying the DH transform. Full exponents
when working over Z; are, typically, of size 1024 or more. Even if one works over
a prime-order subgroup, one still needs to use relatively large orders (e.g. 288-
bit long primes), with their correspondingly large exponents, to ensure a hashed
output (say of 128 bits) that is indistinguishable from uniform. (This requirement
for large computational entropy is often overlooked; indeed, the usual practice

2 In IKE, the family of hash functions used for extracting a pseudorandom key from
the DH value are implemented using common pseudorandom function families keyed
with random, but known, keys. The randomness extraction properties of the latter
families are studied in [GHKRO04].



of using 160-bit prime-order groups, which originates with Schnorr’s signatures,
is inappropriate for hashed DH-type applications.)

Motivated by the significant cost of exponentiation using long exponents,
we investigate whether one can use short exponents (e.g. as in [RFC2409]) and
still preserve the security of the hashed DH transform. An obviously necessary
requirement for the short exponent practice to be secure is the assumption that
the discrete log problem is hard when exponents are restricted to a short length
(say of s bits). We show that this requirement (called the s-DLSE assumption) is
sufficient for the secure use of short exponents in the setting of the DH transform;
more precisely, we prove (based on [Gen00]) that if the s-DLSE assumption holds
in a group G, then the hashed DH transform in G is as secure with full exponents
as with s-bit exponents. As a consequence, one can analyze the security of the
hashed DH transform in the group G with full exponents and later replace the
full exponents with much shorter ones without sacrificing security. In this case
the important parameter is s; we note that the appropriate value of s depends
on the underlying group. See [vOW96] for an extensive study of the plausible
value of s for different groups.

Paper’s Organization. In Section 2 we recall the DDH Assumption and
prove the DDH Characterization Theorem. In Section 3 we introduce the t-
DDH Assumption and its application to the hashed DH transform, and prove
the central Max-Subgroup Theorem. In Section 4 we investigate the security of
the hashed DH transform when using short exponents. We conclude in Section
5 by describing the applicability of our results to the hashed DH transform over
non-DDH groups.

Notation. The formal treatment in this paper often involves sequences of
probability distributions {Dj}nen to which we refer as probability ensembles
(or simply as “ensembles”). We adopt the convention that by the “probability
distribution D,,” we mean the specific element (distribution) D,, in the above
sequence, while the term “probability ensemble D,,” is short for “probability
ensemble {D, },en”. We also assume that each distribution D,, is taken over a
set A, C {0,1}" where n' is polynomial in n (i.e., each ensemble has a fixed
polynomial in n that determines the value n'). The notation z €p, A, is to be
read as x chosen in A, according to the distribution D,,, and x €g S means
choosing = with uniform distribution over the set S. Finally if m is an integer,
we denote with |m/| its binary length.

2 A Direct-Product DDH Characterization

We consider a (infinite) family of cyclic groups G = {G, }»- Denote with g, and
m, a generator and the order of G, respectively, where |m,| is bounded by a
polynomial in n.

Consider the following problem: Given a pair g2, g% compute the value g2°.
If this problem is intractable over a family G then we say that the Computational
Diffie-Hellman (CDH) assumption holds (over G).



A much stronger, but also more useful, assumption is the following. Consider
the family of sets G2 = G, xG,, x G, and the following two probability ensembles
over it:

R = {(g%, g%, g°) for a,b,c €g [0..my]}

and
DH, = (gg, gfw ggb) for aab €R [Omn]}

Definition 1. We say that the Decisional Diffie-Hellman (DDH) Assumption holds
over G if the ensembles R,, and DH,, are computationally indistinguishable (with

respect to non-uniform distinguishers)®. If G satisfies the DDH assumption, we
call G o DDH group (family).

Informally what the above assumption requires is that no polynomial time judge
can decide if the third element of the triple (g2, g2, g¢) is the result of the Diffie-
Hellman transform applied to g2, g% or a randomly chosen group element. Clearly
this is a much weaker requirement from the attacker than computing the value
9% from g2, g% . And therefore, as a general hardness assumption, DDH is (much)
stronger than the CDH.

The group family G over which the two distributions R,, and DH,, are de-
fined is very important and indeed it makes a difference for the validity of the
assumption.

Example 1: A group where the DDH assumption does not hold. Consider the
following group family; for each n take an n-bit prime p,, and the group G,, =
Z, . Since testing for quadratic residuosity over Z; is easy, by computing (p—n)
(the Legendre symbol), then we immediately get a distinguisher against DDH in
this group: by mapping the Legendre symbol of 1 (i.e. quadratic residues) to 0,

and the Legendre symbol of -1 to 1, we can simply check that (f)—i)(}’;—i) = (f)—i),
and output “D#H,,” if it holds and “R,,” otherwise. Clearly, if the triple is a legal
DH triple then the distinguisher outputs D#H,, with probability 1, while in the

other case the probability is only 1/2.

Example 2: A group where the DDH is conjectured to hold. For each integer n
consider an n-bit prime ¢, and poly(n)-bit prime p,, such that ¢, divides p, — 1.
The group G, is the subgroup of prime order g, in Z; . In this case no efficient
distinguisher against the DDH is known.

An important remark about our formalism. We assume a notion of com-
putational indistinguishability under non-uniform distinguishers. In particular,
such a distinguisher may be given an “auxiliary input” for each group G, in the
family G. This approach allows us to keep the simplicity of arguments in the
asymptotic polynomial-time model while capturing the fact that we are inter-
ested in the security of individual groups for which the attacker may have some
side information. A particularly important example of such “side information” is

3 The notion of computational indistinguishability is recalled in Appendix A; see also
the remark below regarding our non-uniform formalism.



the possible knowledge by the attacker of the group order and its factorization.
Our results do assume that such factorization may be given to the attacker (as
part of the non-uniform auxiliary input). In particular, this assumption plays an
important role in the proof of the following theorem, which does not necessarily
hold when the factorization of ord(G) is unknown (as it may be the case when
working over Z}, where N = pq is a modulus of unknown factorization).
Due to our focus on the security of specific groups we will often omit the sub-
script n in the notation of groups, generators, etc.

The next theorem provides a full characterization of DDH groups in terms
of their prime order subgroups (as remarked above, the proof of this theorem
assumes that the distinguisher is given the factorization of ord(G)).

Theorem 1 (Direct Product Characterization Theorem.). A cyclic group
G is DDH if and only if all its prime power subgroups are DDH.

The proof follows from Lemmas 1 and 2.

Lemma 1. If the DDH assumptions holds in a group G then it holds in all the
subgroups of G.

Proof. Let G be a DDH (cyclic) group of order order m = myma, and let G1 be a
subgroup of G of order m; . Let g be a generator of G and g; = ¢™2 be a generator
of G;. Assume by contradiction that the DDH does not hold in Gy, i.e. there is
a distinguisher D; that upon receiving a triple (4; = g*, B; = g'*,C; = ¢*) €
G3, can distinguish whether it came from the distribution Rg, or DHg, with
non-negligible advantage e. We build a distinguisher D for G which distinguishes
between the distributions DHg and Rg with the same probability e.

Upon receiving a triple (4 = g%, B = ¢*,C = ¢°), where a,b €r Zm,m,
and c is either the product of ab or picked uniformly at random in Z,,,,,, the
distinguisher D :

1. Computes (A, By, Cy) by setting 43 = A™2 B; = B™2 and C; = C™=.
2. Passes the triple (A;, By, C1) to Dy
3. Outputs the same output bit as D;.

Note that by construction the values A;, By, C; equal gi*, g%, g, respectively,
where a; = amod m;,by = bmod my,¢c1 = c¢mod my. Since a,b €Er Zpyim,
then a1,b1 € Zp,,. Also, if ¢ = abmod myms then ¢; = a1b; mod my, while
if ¢ €r Zimym, then ¢ €r Zy,,. In other words, whenever the triple (4, B,C)
is distributed according to DHg then the triple (Ay, By, Cy) is distributed ac-
cording to DHg,, while if (A, B,C) is distributed according to R¢g then the
triple (A1, B1,C1) is distributed according to R, . Therefore, D distinguishes
between the distributions DHg and Rg with the same probability € that D,
distinguishes between DH¢, and R, - O

Lemma 2. Let G be a cyclic group of order m = mymaz, where (my,mz) = 1,
and let G1 and G2 be the subgroups of G of orders mq,mo resp. If DDH holds
i G1 and Go then DDH holds in G.



Proof. Let g,91,92> be generators of G,G1, and G», respectively; in particular,
91 = g™ and g2 = g™*. Given a triple t; = (4; = ¢{*,B1 = gi’l,Cl =g eGs
and a triple to = (Ay = ¢g92,By = 932,02 = ¢5?) € G3 we define the following
transformation 7' which “lifts” this pair of triples into a triple in G3. (T is the
standard isomorphism between the group G and its product group representation
as determined by the Chinese Reminder Theorem.) On input ¢1,t2, T(t1,t2)
outputs a triple (4 = g%, B = g°,C = g°) € G? defined as follows:

1. Let rq,r2 be such that rymy + rams =1 (ie., ry = mfl mod moy and r, =

m;l mod my)

Set A = AT2ATY = guimerataxmur ¢ (7 je. a = aymars + aamyr; mod m

Set B = B]?Bj = ghimeratberuri ¢ G e, b = bymars + bamyr mod m

4. Set C = C{“’“gcg’”’"f = germaratemit! ¢ G ie. ¢ = cym2r? + cam?r? mod
m

©L N

Note the following facts about the triple (A4, B, C) which result from the above
transformation:

Fact 1 If a1,b1 €gr Zps,, and az,b2 €R Zpy,, then a,b €g Z,,.

Fact 2 ¢ —ab=¢; — a;by mod my and ¢ — ab = ¢y — asbs mod ms

Fact 3 Following Facts 1 and 2, if the triple ¢; is chosen according to distribution
DHe, and t2 according to distribution DHg,, then the triple (4, B, C) is dis-
tributed according to the distribution DH . Similarly, if ¢1, t2 are distributed
according to Rg, and Rg,, respectively, then (A, B, C) is distributed accord-
ing to Rg.

For probability distributions Py, P2 we denote by T (P, P2) the probability dis-
tribution induced by the random variable T'(x1,z2) where z1,x2 are random
variables distributed according to P1, P2, respectively, and T is the above de-
fined transform. Using this notation and Fact 3 we get: DHg = T(DHa,, DHa,)
and RG = T('RG“RG2).

Let us now consider the “hybrid” probability distribution T'(Rg,, DHa,)-
Note that this distribution is computationally indistinguishable from T(DH¢,,
DHe,)- Indeed, since the distribution DHg, is efficiently samplable and the
transformation T is efficiently computable, then one can transform any efficient
distinguisher between the above two distributions into an efficient distinguisher
between Rg, and DHg,, in contradiction to the Lemma’s premise that the
distributions R¢, and DH, are indistinguishable. Similarly, we have that the
hybrid distribution T'(Rg, , DHg,) is indistinguishable from T(Rq, , Ra,)- Sum-
marizing, we have that:

DHe = T(DHGUDHGz) & T(RG17DHG2) é T(RGURGz) =Ra

where & denotes computational indistinguishability. Therefore by a standard hy-
brid argument (or the triangle inequality for computational indistinguishability)
we get that, provided that the DDH assumption holds in Gy and G2, then DHg
and R¢ are computationally indistinguishable, i.e. G is DDH. O



3 The t-DDH Assumption and the Hashed DH Transform

In this section we introduce an intractability assumption that is, in general,
weaker than the DDH assumption, yet it suffices for ensuring DH outputs from
which a large number of pseudorandom bits can be extracted. We start by re-
calling the notions of computational entropy and entropy smoothing. We use the
notations introduced at the end of Section 1.

3.1 Computational Entropy and Entropy Smoothing

Definition 2. Let X,, be a probability ensemble over A,. The min-entropy of
X, is the value

min-ent(X,,) = minyea,.Proba, [2]20(— log(Probx, [z]))

Note that if X, has min-entropy t(n) then for all € A,,, Proby, [z] < 274",

The notion of min-entropy provides a measurement of the amount of ran-
domness present in a probability distribution. Indeed, the Entropy Smoothing
Theorem (see below) shows that if X, has min-entropy #(n) it is possible to
construct from X, an (almost) uniform distribution over (almost) ¢(n) bits, by
simply hashing elements chosen according to X),. The basic hashing tool to do
this uses the following notion of universal hashing.

Definition 3. Let H,, be a family of functions, where each H € H,, is defined
as H : A, = {0,1}™"), We say that H,, is a family of (pairwise-independent)
universal hash functions if, for all z,z' € A,, x # «', and for all a,a’ € {0,1}™(™)
we have

Probey, [H(z) = a and H(z') = a'] = 272,

That is, a randomly chosen H will map any pair of distinct elements indepen-
dently and uniformly.

Our techniques use as a central tool the following Entropy Smoothing Theorem
from [HILL99] (see also [Lub96]). The definition of statistical distance used below
is recalled in Appendix A.

Theorem 2 (Entropy Smoothing Theorem [HILL99].). Let t be a positive
integer and let X be a random variable defined on {0,1}™ such that min-ent(X) >
t. Let k > 0 be an integer parameter. Let H be a family of universal hash
functions such that h € H, h :{0,1}" — {0,1}*=2k. Let U be the uniform
distribution over {0,1}t=2k. Then, the distributions [< h(X),h >]hepn and
[< U, h >]hepn have statistical distance at most 2~ (1),

Thus, the Entropy Smoothing Theorem guarantees that if &), is a probability
ensemble over A,, with min-entropy of at least ¢(n), and H,, a family of universal
hash functions from A, to {0, 1}*(")=2k(") then the random variable H (z), where
H € H, and z is chosen according to the distribution X),, is “almost” uniformly



distributed over {0,1}*(")~2k(") even when the hash function H is given. Here,
“almost” means a statistical distance of at most 27%(") Therefore, if one sets
k(n) = w(logn), then the statistical distance of H(z) from uniform becomes
negligible.

The following notion represents a computational analogue of the notion of
min-entropy; it is due to [HILL99].

Definition 4. A probability ensemble YV, has computational entropy t(n) if there
exists a probability ensemble X, such that

— min-ent(X,,) > t(n)
— X, and Y, are computationally indistinguishable

Using a standard hybrid argument it is easy to show that the Entropy Smoothing
Theorem, as discussed above, can be generalized to probability ensembles A,
that have computational entropy ¢(n). In this case, applying a (randomly chosen)
universal hash function with k(n) = w(logn) to X, results in a pseudorandom
ensemble, namely, an ensemble which is computationally indistinguishable from
the uniform distribution.

3.2 t-DDH: A Relaxed DDH Assumption

We proceed to define the t-DDH assumption. The intuition behind this assump-
tion is that if the Computational Diffie-Hellman Assumption holds in a group G
generated by a generator g, then the DH value ¢g® must have some degree of un-
predictability (or “partial hardness”) even when g® and g° are given. Specifically,
we say that the -DDH Assumption holds in the group G if the Diffie-Hellman
output g% has t bits of computational entropy (here 0 < t < log(G)). Formally:

Definition 5. We say that the t(n)-DDH Assumption holds over a group family
G = {G}n if for all n there exists a family of probability distributions X,, (92, g)
over G, (one distribution for each pair g2,g%) such that

— min-ent(X, (g7, 97)) > t(n)
— The probability ensemble DH.,, (see Section 2) is computationally indistin-
guishable from the ensemble

R = {(gg,gz,C) for a,b €g ord(G,) and C €, (g2,9°) G}

It is important to note that the distributions X, (g2, ¢®) in the above definition
may be different for each pair of values g2, g°. Requiring instead a single distri-
bution X for all pairs g2, g® (as may seem more natural at first glance) results
in a significantly stronger, and consequently less useful, assumption.

Consider Example 1 from Section 2: over Z; one can break the DDH by

detecting if the quadratic residuosity character of C is consistent with the one
induced by g%, g°. Yet, Z, can satisfy the t-DDH assumption even for high values



of t. For example, if for all a, b for which one of a,b is even we define X, (g2, g%)
to be the set of quadratic residues in Z;, and for all other pairs g%, g° we define
X, (g% ¢°) to be the set of quadratic non-residues in Zy, then the trivial break
of DDH in the above example does not hold against these distributions. More
generally, if we consider a prime p of the form 2%q+ 1 where ¢ is a prime then we
can get that (given current knowledge) the +-DDH assumption holds for Z; for

t = |p| — u, while clearly the DDH assumptions does not hold over this group.

Note that the DDH assumption can also be stated in terms of computational
entropy. Indeed the DDH assumption over a group G is equivalent to the --DDH
assumption over G for t = log(ord(G)).

Sampling X, (g%, ¢%). The --DDH Assumption as stated above makes no re-
quirement, of efficient samplability for X, (g%, g%). It is possible to strengthen the
assumption by requiring that X, (g2, g®) be efficiently samplable. We say that
the samplable [resp. semi-samplable] t-DDH Assumption holds over G, if the ¢-
DDH Assumption holds over G and the underlying distributions X;,(g%, ¢°) are
polynomial-time samplable [resp. polynomial-time samplable when either expo-
nent a or b is known).

As a direct consequence of the Entropy Smoothing Theorem and the defini-
tion of t-DDH we have:

Lemma 3. Let G = {G,}, be a group family in which the t(n)-DDH Assump-
tion holds, and let {H,}n be a family of universal hash functions such that for
allh € Hp, h:Gn — {0,1}™ where t'(n) = t(n) —w(logn). Then the induced
distribution of h(g2%), for a,b €g [1..ord(G,,)] and h €r H.,,, is computationally
indistinguishable from the uniform distribution over {0, 1}tl(") even when h, g2
and g° are given to the distinguisher.

Notice that the above lemma requires the hash function h to be chosen at
random for each application. This is the case in several practical protocols (such
as the case of IKE [RFC2409], mentioned in the Introduction, in which a key
to the hash function is chosen by the communicating parties anew with each
run of the protocol). However, it is also possible to fix a randomly chosen hash
function and apply it repeatedly to different DH values. An example of such an
application would be its use in the context of the Cramer-Shoup CCA-secure
cryptosystem [CS98] (also discussed in the Introduction) in which the specific
hash function A would be chosen at random from the family H by the owner of
the decryption key, and published as part of the public key parameters. In this
case, the security of the repeated use of the same hash function A can be proved
via a standard simulation argument.

Finally we point out that for groups of prime order, the t-DDH Assumption is
equivalent to the full DDH. The proof of this fact can be obtained by a standard
random self-reducibility argument.

Lemma 4. Let G be a group of prime order q. If the t-DDH Assumption holds
in G for t > 0 then the DDH Assumption holds in G as well.



This yields an interesting 0-1 law for prime order groups, in which either the DDH
Assumption holds, and thus the DH output has log(q) bits of computational
entropy, or we cannot claim that the DH output has any bits of computational
entropy.

3.3 The Max-Subgroup Theorem

We now proceed to prove our main theorem concerning the t-DDH assumption.
The significance of the theorem below is that we can claim that a cyclic group
is t-DDH if ¢ is the order of the maximal subgroup of G where the DDH holds.

Theorem 3. Let G be a cyclic group of order m = myms where (my,m2) =1,
and G1 be a sub-group of order my in G. If the DDH Assumption holds over G
then the |m1|-DDH Assumption holds in G.

Proof. An initial intuition behind the correctness of the theorem is that the
hardness hidden in G; could be “sampled” when applying a hash function to
the DH values over G. This however is incorrect: the size of G; may be negligible
in relation to |G| and as such the probability to sample a triple (g%, g°, g%°) from
(G is negligible too. The actual argument, presented next, uses the observation
that the “hardness” present in G; can be extended to its cosets in G.

Let g be a generator of G and g1 = ¢™> be a generator of order m; of
Gi. Given ¢%,¢" € G, we define the distribution X(g?,g%) to be the uniform
distribution over {C = ¢g° € G such that ¢ € Z,, and ¢ = ab mod ms} Thus, it
is easy to see that X' (g2, g*) has |m;| bits of min-entropy (since the above set has
m, elements). Let R* denote the probability distribution {(g92,¢% C) : a,b €r
Zm and C €x(ge,g%) G}

We assume by contradiction that the |m4|-DDH assumption does not hold in
G, and thus we have a distinguisher D between the distributions DHg and R*.
Using D we build a distinguisher D; that distinguishes between the distributions
DHg, and Ra, -

Given a triple (A;, B1,C1) where A; = gi*,B; = g’l’l, and C either equals
gflbl or gi* for ¢y €g Zyy,, the distinguisher D; does the following:

1. Chooses i,j €r Zm ,

. Sets A= A19",B= B¢’ and C = C["* A} Big¥ computed in G
. Hands D the triple (4, B,C)

. Outputs the same output bit as D.

[ENUCR ]

Let’s examine the distribution of the triple (A4, B, C). Consider first A. This
value is set to A = A;g¢ = g{*g* = g™2*1H thus a = maay + i. Since i €g Zp,
then also a €g Z,. Similarly for B = g we get b €g Z,,. In the case of C' we have
C=CMAIBigi = garmatmaarjtmabiitij thyg ¢ = c1m3 +maay j + mabyi +ij.
In addition, we have that ab = (maay +14)(mabi +7) = m2a1b1 +maarj+mabri+
ij. Thus

c—ab = m%cl+m2a1j+m2b1i+ij—(m§a1b1+m2a1j+m2b1i+ij) = m%cl—mgalbl



which implies ¢ = m3(c1 — a1b1) + ab mod m. Therefore, if ¢; = ai1b; then
¢ = ab, while if ¢; €g Z,,, then ¢1 — a1by €r Z,,,, and consequently C is
distributed according to the distribution X' (g%, g¢%). In other words, the triple
(A, B,C) is distributed according to DH¢g if (41, B1,C1) came from DHg,,
and it is distributed according to R* if (41, By, C1) came from R, . Therefore,
D, distinguishes between DHg, and R, with the same probability that D
distinguishes between DHg and R*. Since we assumed the latter probability to
be non-negligible we reached a contradiction with the premise that G is a DDH
group. O

Remark on samplability. The distributions X' (g%, g°) defined in the above
proof are efficiently samplable given mj,ms and at least one of a,b. Indeed
given, say, a, B = g® we can sample X (g2, g°) by choosing k €g Z,,,, and setting
C = gk™2B°. In other words, provided that m;,my are given, Theorem 3 (and
its corollary below) can be strengthened to claim that the semi-samplable |m4|-
DDH Assumption holds in G. We will use this stronger version of the theorem
in Section 5.

From the above theorem and the Characterization Theorem we get:

Corollary 1. For any cyclic group G, G is |m|-DDH where m is the order of
the maximal DDH subgroup of G.

4 DDH and t-DDH with Short Exponents

In this section we investigate the use of the DDH and +~DDH assumptions in
conjunction with the so called “short-exponent discrete-log” assumption.

The Short-Exponent Discrete-Log Assumption. A common practice for
increasing the efficiency of exponentiation in cryptographic applications based
on the hardness of computing discrete logarithms, and in particular those using
the Diffie-Hellman transform, is to replace full-length exponents (i.e. of length
logarithmic in the group order) with (significantly) shorter exponents. The secu-
rity of this practice cannot be justified by the usual assumption that computing
discrete logarithms (with full-length exponents) is hard, but rather requires a
specific assumption first analyzed in [vOW96] and formalized (as follows) in
[PS98].

Assumption 4 (s-DLSE [PS98]) Let G = {Gy}» be a family of cyclic groups
where each Gy, has a generator g, and ord(Gy) = m(n) > 2". We say that the
s-DLSE Assumption holds in G if for every probabilistic polynomial time Turing
machine I, for every polynomial P(-) and for all sufficiently large n we have that

Probyecn1..291(I(gn,m(n), s,g5) = z) < 1/P(n).

Current knowledge points to the plausibility of the above assumption even for
exponents s significantly shorter than log(ord(g)). The exact values of s for
which the assumption seems to hold depends on the group generated by the



element g. An obvious lower bound on s, if one wants to achieve security against
2"-complexity attacks, is s > 2n which is necessary to thwart the usual square-
root attacks such as Shanks and Pollard methods. However, as it was pointed out
in [vOW96], there are cases where s needs to be chosen larger than 2n. Specifi-
cally, they show how to use a Pohlig-Hellman decomposition to obtain some of
the bits of the exponent. The power of the attack depends on the (relatively)
small prime factors of the group order. For example, when working over Z; with
a random prime p, the [vOW96] results indicate the use of s = 4n (e.g., with
a security parameter of 80 one should use s = 320 which is much shorter than
the 1024 or 2048 bits of p, yet twice as much as the bare minimum of s = 160).
If one wants to use s = 2n (i.e. assume the 2n-DLSE), it is necessary to work
in special groups such as those of prime order or Z; with p a safe prime (i-e.
p=2q+1, and ¢ prime).

From Hardness to Indistinguishability. Gennaro [Gen00] proves that if the
s-DLSE assumption holds in G = Z; with p a safe prime then the distribution
over G generated by ¢ for « €g [1..2°] is computationally indistinguishable from
the uniform distribution over G. Here we use a generalization of this result that
we summarize in the following proposition (see the full version of this paper
[GKRO4] for a proof of this Proposition).

Proposition 1. Let G be a cyclic group of order m generated by g, such that m
is odd or m/2 is odd. If the s-DLSE Assumption holds in G, then the following
two distributions S¢ = {¢* : = €r [1..2°]} and Us = {9* : x €r Zn} are
computationally indistinguishable.

Next we show that if in a group G, both the s-DLSE and the t-DDH Assumptions
hold, then performing the Diffie-Hellman transform with short exponents a and
b, yields a DH output with ¢ bits of computational entropy. In other words, the
security of the hashed DH transform over such groups when using s-bit long
exponents is essentially equivalent to that of using full exponents.

Theorem 5. Let G be a cyclic group of order m generated by g, such that m
is odd, or m/2 is odd. Let s,t be such that the s-DLSE and the semi-samplable
t-DDH Assumptions hold in G. Denote with X (g%, g°) the family of distributions
induced by the t-DDH assumption over G (see Def. 5). Then the following two
distributions

SDH = {(¢9%,9",9*") for a,ber [1.2°]}

and
SR* = {(9%,¢°C) for a,b€g[1..2°] and C €x(ge,g%) G}

are computationally indistinguishable.

Proof. Recall that if the t-DDH Assumption holds over the group G of order m,
then there exists a family of probability distributions X' (g%, g°) with min-entropy
t (one distribution for each pair g%, g®) over G such that the distributions

DH = {(¢°,¢°,9*°) for a,b €r Zy}



and
R = {(gaagbac) for a,b €r Z,;, and C €x(ge,9%) G}

are computationally indistinguishable.

The following standard hybrid argument yields the proof of the Theorem.
Consider the intermediate distributions

Do = {(9,¢%,9%) for a,be€r [1.2°]}

Dy = {(g% 9", g for a €g Zpm,bEx [1.2°]}
Dy = {(9%,9%,9°") for a,B €r Zn}
D3 = {(9%,9°,C) for @,B,€R Zm and C Ex(ya 40y G}
Dy ={(9% 9" C) ber[1.2°],a €g Zm and C Ex(ga 4y G}
Ds ={(g%,9",C) : a,b€g [1..2°] and C €Ex (4o gv) G}

Clearly Dy = SDH while D5 = SR*. If there is an efficient distinguisher between
these distributions then, by a standard hybrid argument, there is an efficient
distinguisher between D; and D;y; for some i € {0,1,2,3,4}. But under the
t-DDH Assumption we know that D, is computationally indistinguishable from
Ds3. Also, under the s-DLSE Assumption we know that D; is computationally
indistinguishable from D;1; for i = 0,1, 3,4 by reduction to Proposition 1 (in
the case i = 3,4 one needs X (g%, ¢’) to be semi-samplable). O

Note that, as a particular case, when ¢ = log(m) the theorem states that if G is
a DDH group in which the s-DLSE assumption holds, then performing the DH
transform over G with exponents of size s yields values that are indistinguishable
from random elements in G.

5 Hashed DH over Z; and its Subgroups

Here we discuss the security of the hashed DH transform over groups and sub-
groups of Z7 for prime p. Throughout this section we assume that the DDH
assumption holds over the large prime-order subgroups of Z;. Under this as-
sumption we immediately get that it is secure to use the hashed DH transform
over a subgroup G, of Z; of order g, provided that g is a sufficiently large prime
that divides p—1. By sufficiently large we mean that the DDH assumption (plau-
sibly) holds in G, (for a given security parameter k), and that the computational
entropy of ¢ is sufficient for the application. Specifically, if the application re-
quires a pseudorandom output of ¢ bits then ¢ needs to satisfy |q| > ¢ + 2k.
Similarly, we get that it is secure to work in any subgroup of Z; whose order m
is the product of large primes (each of which divides p — 1); also here it is re-
quired that |m| > £+ 2k, although note that each of the prime factors of m may
be smaller than that bound (one usually assumes the DDH to hold on groups of
prime order ¢ with |g| > 2k).



Moreover, one of the most significant contributions of our work is in showing
the security of the hashed DH transform also over groups (or subgroups) whose
order is divisible by small prime factors (and therefore not satisfying the DDH
assumption). In particular, this is necessarily the case for the group Z; with
prime p (the order m = p — 1 of this group is always divisible by small prime
factors, e.g., 2). Our results show that the hashed DH is secure over Z; provided
that p — 1 has enough prime divisors whose product is larger than the entropy
bound 2¢+2% and for which the subgroups of corresponding prime order are
DDH. (In particular, the fact that p — 1 has additional smaller prime factors
does not invalidate the security of the hashed DDH in Z.)

A particularly interesting group is Z; for p = 2¢ + 1 and ¢ prime. In this
case, working directly with the hashed DH over Z7 is secure since we are assum-
ing that its subgroup of order ¢ is DDH, and therefore the whole Z} group is

|25 |-DDH. Working over Z in this case has several important advantages: (i)
one can produce a large (actually, largest) number of pseudorandom bits (specif-
ically, |p| — 1 — 2k bits); (ii) p can be chosen such that 2 is a generator of Z
(which speeds up exponentiation); (iii) the 2k-DLSE Assumption (see Section
4) is conjectured to hold in these groups [vOW96] and therefore one can use
minimal-length exponents (i.e., of length 2k) in these groups, obtaining yet an-
other significant exponentiation speedup without sacrificing the security of the
(hashed) DH transform; and (iv) these groups are free from the potentially se-
rious attacks described in [LL97] (that affect subgroups of prime order g where
(p—1)/q has a relatively large smooth factor). Note that items (i) and (iii) follow
essentially from our results. The only drawback working over such a group is the
cost of generating p’s of the above form; this, however is insignificant in typical
applications (e.g., IKE [RFC2409]) in which this generation is very rare, and
usually done at the set-up of the system and used for a large period of time.

Note that in all of the above examples it is assumed that one knows the full or
partial factorization of p — 1; in particular, the knowledge of this factorization is
essential for selecting a generator of the group. It is a theoretically and practically
important question to establish whether the knowledge of the factorization of
p—1is essential for working securely over Z} or over one of its subgroups. In the
rest of this section we show that this knowledge is not essential. Specifically, it
follows from our results that if one chooses a random prime p (of a pre-specified
size such that the Discreet Logarithm Problem is hard in Z}) and a random
element e in Z;, then performing the hashed DH transform over the group
generated by e is secure.*

Let p be a random prime such that p — 1 = p1pa...pp, and p1 < p2 < ... < p, are
all (not necessarily different and possibly unknown) primes. Let e be an element
randomly chosen from Z7, and let G, denote the subgroup of Z7 generated by

4 We stress that while the legitimate users of such a scheme do not need to know the
factorization of p — 1, the scheme remains secure even if this factorization is known
to the attacker.



e. We first claim that with overwhelming probability the large prime factors of
p — 1 divide the order of G,.

Lemma 5. Let Z; and p — 1 = p1..pn be as described above. Then for all 1 <
i <n: Precgpz;[pi [ ord(e)] < 1/pi.

Proof. Let g be a generator of Z. There are at most (p — 1)/p; elements whose
order is not divisible by p;, and they are the elements of the form ¢/ for
1<j < (p—1)/pi. When p?|p — 1 this is a strict upper bound, otherwise this

is an exact bound. Thus, the probability to choose e such that p; [ ord(e) is at

most E=L/pi — 1 O
p—1 pi

Corollary 2. For a given bound B, let p—1 = II]"_, p; where pj,pj41,-..,Pn > B.
Then

n .

1 n— lo
Precpz;[IT7; pi| ord(e)] 21—2521_ B] >1-— gp.
. K]

i=j

Thus, for large values of B, the order of a random element e is divisible, with
overwhelming probability, by all the prime factors of p — 1 which are larger than
B. Or, equivalently, G has as subgroups all the prime-order subgroups of Z;
whose order is larger than B.

Now, if we set our security parameter to k, define B = 22*_ and assume that
the DDH holds in subgroups of prime order larger than B, then we have that,
with overwhelming probability, G, contains all the prime order DDH subgroups
of Z;. In other words, if we denote by P the product of all prime factors of p—1
larger than B, we have that G, contains, by virtue of our DDH Characterization
Theorem (Theorem 1) a DDH subgroup of size P, and then by the Max-Subgroup
Theorem (Theorem 3) we get that G, is |P|-DDH.

All it is left to argue is that |P| is large enough. For this we use the following
Lemma from [vOW96] that provides an upper bound on the expected size of
the product of all prime divisors of p — 1 that are smaller than B (and thus, it
provides a lower bound on the expected size of |P|).

Lemma 6 ([vOW96]). For a random prime p (as above) and a fized bound B,
the expected length of II;p; where p; < B is log B + 1.

In other words, the lemma states that the expected size of |P| is [p| — |B| =
lp| — 2k.

If, for the sake of illustration, we set |p| = 1024 and k = 80 we get that we
expect G, to be 864-DDH. However, note that this expected size may vary for
specific p’s. Yet, note that even if p happens to have a B-smooth part that is
4 times larger than expected (!) we are still left with a 384-DDH subgroup G,
with enough computational entropy for most DH applications (such as deriving
a 128-bit pseudorandom key). If one considers 2048-bits and k& = 160 then the



expected amount of entropy is 2048-320=1728 bits which, again, leaves plenty
room to compensate for “unlucky choices” of p.

Notice that in order to use short exponents in this case (i.e. random prime
p and random generator e), one must make sure that the order m of the group
generated by e is either odd, or m/2 is odd (so that we can invoke Theorem
5). This can be easily achieved by choosing first a random element e in Z; and

then using as the group generator the element ¢’ mod p where f is the maximal
integer such that 2/|(p — 1) (the value f is, of course, trivial to obtain without
requiring of any significant factorization of p — 1).

Remark (semi-samplability). In the above discussion we have justified the
usage of short exponents on the basis of Theorem 5. Note, however, that this
theorem assumes the semi-samplability of the distributions X' (g2, g*). Therefore,
we need to verify that this semi-samplability property holds for the above ap-
plications. This is indeed the case since these applications use the distributions
defined in the proof of Theorem 3, which are semi-samplable when the factoriza-
tion of the group order is known (see the remark following the proof of Theorem
3). Therefore, we obtain that, even though the honest parties can perform the
hashed DH transform securely with short exponents, and without requiring the
knowledge of the factorization of p — 1, the DH transform remains secure even
if such factorization is available to the attacker.
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A Indistinguishability of Probability Distributions

Definition 6. Let X,,,),, be two probability distributions over a support set A,,.
We say that X, and Y, have statistical distance bounded by A(n) if
> sea, |Probx, [z] — Proby, [z]| < A(n). We say that the ensembles X, and
Y are statistically indistinguishable if for every polynomial P(-) and for all suf-
ficiently large n we have that A(n) < ﬁ.

Definition 7. Let X,,,),, be two probability ensembles. Given a family of cir-
cuits D = {Dy},, (called the distinguisher) consider the following quantities

dp,x, = Probycx, [Dn(z) =1] and 0p,y, = Probycy, [Dn(y) = 1]
We say that the probability ensembles X, and Y, are computationally indistin-
guishable (by non-uniform distinguishers) if for every polynomial-size distin-
guisher family D, for every polynomial P(-), and for all sufficiently large n we
have that |6D,Xn — (5D7yn| < %



