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Abstract. Digital Signatures emerge naturally from Public-Key En-
cryption based on trapdoor permutations, and the “duality” of the two
primitives was noted as early as Diffie-Hellman’s seminal work. The
present work is centered around the crucial observation that two well
known cryptographic primitives whose connection has not been noticed
so far in the literature enjoy an analogous “duality.” The primitives are
Group Signature Schemes and Public-Key Traitor Tracing. Based on the
observed “duality,” we introduce new design methodologies for group
signatures that convert a traitor tracing scheme into its “dual” group
signature scheme.
Our first methodology applies to generic public-key traitor tracing sche-
mes. We demonstrate its power by applying it to the Boneh-Franklin
scheme, and obtaining its “dual” group signature. This scheme is the
first provably secure group signature scheme whose signature size is not
proportional to the size of the group and is based only on DDH and
a random oracle. The existence of such schemes was open. Our second
methodology introduces a generic way of turning any group signature
scheme with signature size linear in the group size into a group signature
scheme with only logarithmic dependency on the group size. To this end
it employs the notion of traceability codes (a central component of com-
binatorial traitor tracing schemes already used in the first such scheme by
Chor, Fiat and Naor). We note that our signatures, obtained by generic
transformations, are proportional to a bound on the anticipated max-
imum malicious coalition size. Without the random oracle assumption
our schemes give rise to provably secure and efficient Identity Escrow
schemes.

1 Introduction.

Drawing equivalences, relationships, and dualities between different and even
seemingly unrelated primitives is at the heart of cryptographic research. Such
discoveries typically lead to new understanding and novel constructions of the
related primitives. For example, digital signatures is an important primitive that
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is naturally implied by the existence of trapdoor-permutation-based public-key
encryption (by associating decryption with signing operation and encryption
with verification). This (by now obvious) “duality” (i.e., analogy which allows
translation of one scheme to the other) was noted by Diffie and Hellman in their
seminal work [DH76]. In this work we look at two primitives whose relation-
ships have not been yet noted in the literature and they are seemingly unrelated
(and perhaps somewhat antagonistic): Group Signatures, which is essentially
an anonymity management system, and Traitor Tracing, which is a broadcast
encryption system for identifying pirates within digital rights management sys-
tems. We make the observation that group signature schemes and public-key
traitor tracing schemes are “dual” in similar ways to the above mentioned “du-
ality” between regular digital signatures and public-key encryption. This new
outlook leads to new design methodologies for group signatures that allow us to
answer an open question in the area and build the first provably secure group
signature scheme whose size is independent of the size of the group (it depends
though on other parameters of the system) and its security is based only on the
Decisional Diffie-Hellman assumption (DDH) and a random oracle.

Group signatures were introduced in [CH91]. In such a scheme, a member of
a group of users is able to sign messages so that it is not possible to distinguish
which member has actually signed. Nevertheless, in the case of a dispute or other
extraordinary occasion, the group manager is capable of “opening” the signa-
ture and revealing the identity of the group member who has signed. Group
signature schemes constitute a very useful primitive in many settings. Addi-
tionally, group signature schemes have applications in the context of identity
escrow [KP98]. Numerous works improved several aspects of group signatures
[CP95,Pet97,CS97,Cam97,AT99,ACJT00,CL01], with the current state of the
art represented by the very elegant scheme of [ACJT00].

Group signatures can be categorized into two main classes: those that have
signature size linear in the group size (where size is defined in terms of number
of encrypted elements) and are based on traditional or generic assumptions, e.g.,
the scheme of [Cam97] that is based on the DDH, and those that have constant
signature size (as a function of the group size) and are based on “more special-
ized” assumptions, e.g., the scheme of Ateniese et al. [ACJT00] that is based
on the strong-RSA assumption as well as the DDH over a group of unknown
order. The specialized assumption (combining strong-RSA and DDH) is elegant
and ingenious in the way it naturally allows many independent keys based on
the same composite modulus. We remark that all these schemes are proved se-
cure in the random-oracle model (their interactive versions however constitute
“identity escrow” schemes without the need of a random oracle assumption).
Even though, from a signature-size point of view the scheme of Ateniese et al.
is optimal (and our goal is not to improve on that achievement), there are still
important questions regarding the understanding and design of group signature
schemes, specifically the following:
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Question. Is it possible to construct a group signature scheme with signature
size smaller than the size of the group whose security is based on the DDH over
a prime order group?

We believe that the above question has also significant relevance to practice.
This is so, since an approach based only on DDH would permit an efficient
Elliptic-Curve based group signature; something not possible using the current
state-of-the-art constant-size signature scheme.

A main algebraic hurdle towards achieving a positive answer to the above
question, and one of the reasons why the existing research resorted to novel
intractability assumptions is that “traditional assumptions” (such as the DDH),
unlike the combined Strong RSA DDH assumption as noted above, do not possess
an inherent property which allows, based on a common group manager key, the
establishment of a compact multi-user keying scheme, where keys of different
users are independent in some sense.

In this work, we answer the above question in the affirmative, by employing
novel design methodologies for constructing group signatures that are based on
the “duality” that we have observed between this primitive and the primitive of
traitor tracing. Note that the signature size obtained using our first methodol-
ogy is O(w1+εk) where w is a cryptographic security parameter, k is a bound on
the anticipated maximum malicious coalition size and ε depends on the length
of the non-interactive zero-knowledge string. This reduces the signature size to
be linearly dependent only on the anticipated malicious coalition size which is
typically much smaller than the size of the entire group’s size (recall that the
scheme of [ACJT00] has a signature of size O(w) where w is a security param-
eter related to the Strong-RSA problem; this size is optimal up to a constant
multiplicative factor).

Traitor-Tracing, introduced by Chor, Fiat and Naor in [CFN94] is based on a
“multicast encryption scheme” where a sender can distribute encrypted messages
to a group of users. Each user decrypts a ciphertext to get the same message.
Users may sell their keys or share them with pirates. In order to deter this prac-
tice, traitor tracing enables an authority to trace the identities of users whose
keys were used by a pirate decoder (such users are called traitors). A public-key
traitor tracing scheme allows the encryption to be done by any interested third
party (e.g., any pay-T.V. station) using a public-key issued by the authority.
Public-key traitor tracing schemes were presented in [KD98,BF99,NP00,KY02a].
Other works that further enhanced the understanding of traitor tracing schemes
are [SW98a,SW98b,NP98,FT99,GSY99,SW00,CFNP00,GSW00,KY01,NNL01],
[DF02,DF03]. The “asymmetric” setting where the authority needs to provide
a non-repudiable proof of the involvement of a user in piracy was considered
in [Pfi96,WHI01,KY02b]. Essentially, in viewing the schemes in the literature,
we can distinguish two families: combinatorial (following that of [CFN94]) and
algebraic (following that of [KD98,BF99]).

The “duality” (i.e., analogy) we observed between public-key traitor tracing
and group signatures is present in several levels (a graphical demonstration of
the analogy is given in figure 1):



634 Aggelos Kiayias and Moti Yung

Public Key

Secret 1 Secret 2 Secret n
Secret 1 Secret 2 Secret n

Users:
Users:

Verification

Encryption

Ciphertext

Plaintext Public Key

Message

Signed Message

Public-Key Traitor Tracing Scheme Group Signature Scheme

Authority:
Traitor
Tracing

Authority:
"Opens"
a Signature

Fig. 1. Schematic Representation of the “Duality” of the two Primitives.

– In both primitives there is an underlying structure of a single public-key
(used for encryption or verification, respectively) that corresponds to many
different secret-keys (used for decryption or signing, respectively).

– In both primitives an authority should be able to reveal the identity of
the decrypting/signing entity (traitor tracing or “opening the signature,”
respectively). Note that in traitor tracing schemes, a bound on the number
of collaborating traitors is imposed, thus we deal with group signatures with
similarly bounded coalitions.

– In both primitives it is desirable that the authority (when not trusted) should
not be able to frame a user of being a traitor or of producing a signature
that it did not sign, respectively.

– Both primitives share common efficiency measures: how large are the public-
key size, the secret-key size and the ciphertext/signature-size as a function
of the group size.

We note that the individual primitives possess additional specialized (en-
hanced) properties which are not directly comparable. For example, “black-box
tracing” in traitor tracing schemes (which is a stronger notion than the notion of
“tracing” which by itself is analogous to “opening” in group signature schemes).
Our results, which exploit the observed “duality,” are as follows:

1. First we introduce the new design methodology (Methodology 1) for extract-
ing a group signature from a given public-key traitor tracing scheme.

2. Second, we provide a formal security model for group signatures based on
an adversary model, and we apply methodology 1 to the scheme of Boneh-
Franklin [BF99] to obtain the corresponding “dual” group signature (or
identity escrow) scheme whose properties and assumptions have been dis-
cussed above. We discuss the generality of the approach and how to use the
methodology with other schemes to get group signatures with enhanced sets
of properties.
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3. Finally, we present Methodology 2, which is a generic transformation of
a group signature scheme with signature/key size linear in the size of the
group to one with merely polylog dependency assuming polylog bound on
collaborating traitors. (Again, using this generic method, our goal is not
to compete with the most efficient schemes available, in terms of signature
size). The methodology employs Traceability Codes, the fundamental combi-
natorial construct that is central in the construction of many traitor tracing
schemes. Again, opening a signature is achieved by employing the traceabil-
ity property.

2 The Group Signature Model

A group signature scheme is made of five procedures 〈Setup, Join,Sign,Verify,
Open〉 that are executed by the active participants of the system, which are: (1)
the Group Manager (GM), and (2) the users.

Setup (invoked by the GM), is the initialization of the group signature system.
For a given security parameter w, this p.p.t. TM (probabilistic polynomial-time
Turing Machine) produces a publicly-known string pk (the “public-key” of the
system) and some private string sk to be used for user key generation.
Join (a protocol between the GM and the user that introduces the user to the
system). The GM employs the private key sk in the course of the protocol, and
the user obtains the private key skU that is needed in order to issue valid digital
signatures.
Sign (invoked by the user). A p.p.t. TM that given the private key skU of a user
and a message, generates a signature on the given message.
Verify (invoked by any recipient). A deterministic polynomial-time TM that veri-
fies the validity of a signature generated by Sign, given the public-key information
pk.
Open (invoked by the GM) A p.p.t. TM that given a signature, and the internal
key-generation string sk and all transcripts of the Join protocols, outputs the
identity of the signer U .

Definition 1. (Correctness for group signature schemes) A group signa-
ture scheme with security parameter w is correct if the following two conditions
are satisfied (with overwhelming probability in w):
(1) Sign-Correctness: Suppose U is a user of the system that obtained skU
from the Join protocol. Then it should hold that for all M , Verify(M, pk,
SignU (M)) = true.
(2) Open-Correctness: Suppose U is a user of the system that obtained
skU from the Join protocol. Then it should that for all M , if Verify(M, pk,
SignU (M)) = true then Open(sk,SignU (M)) = U .

2.1 Security

In this section we give the formal specifications for a secure group signature. This
has some interest in its own right since in most of the previous work on group
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signatures such formal security model is omitted. An exception is [CL01], where
an “ideal world” security model is introduced and employed. In the present work
we opt for a direct model where an adversary is postulated by its capabilities
and goals.
In particular, we will employ a signature adversarial model that is stronger

than the one typically employed in the context of digital signatures, which we
call an “adaptive chosen message attacker with user-selection capability”: i.e.,
an adversary prior to launching an attack against a certain security property is
allowed to obtain signatures of messages of his choice from group members he also
selects (note that for the purpose of the security definition, we assume that the
set of group members is publicly known and identifiable). Further, we allow this
to be done in an adaptive manner. User selection capability is more appropriate
in the formulation of security in the context of group signatures since, in reality,
an adversary might be capable of actually obtaining some signatures from group
members he knows. An interesting feature of this formulation is the following:
against an adversary with user selection capability the notions of anonymity
(hardness of extracting the identity of a signer) and unlinkability (hardness of
linking signatures of the same signer) collapse.

Definition 2. (Secure group signature scheme) A group signature scheme
with security parameter w is secure, if it satisfies the following conditions:
(1) Unforgeability: Let M be a p.p.t. TM that given the public-key pk of
the system is allowed to adaptively select tuples of the form 〈U ,M〉 and
obtain signU (M). We say that a group signature scheme is unforgeable (under
adaptive chosen message attacks with user selection) if the probability that
M outputs a tuple 〈M, s〉 such that Verify(M, pk, s) = true is negligible in w.
(2) Anonymity/Unlinkability: LetM be a p.p.t. TM that given the public-
key pk of the system is allowed to adaptively select tuples of the form 〈U ,M〉
and obtain the corresponding signature signUt

(M); additionally, M is al-
lowed to invoke the Join procedure a certain number of times k to introduce
new users in the system; let U1,U2 be two users of the system which were not
introduced by the adversary; finally,M is required to submit a final message
M and receive signUb

(M) where b ∈U {1, 2}. We say that a group- signature
scheme satisfies anonymity/unlinkability (under adaptive chosen message at-
tacks with user selection) if the success probability ofM in predicting b differs
from 1/2 by a fraction that is at most negligible in w.
(3) Coalition-Resistance/Traceability: LetM be a p.p.t. TM that given
the public-key pk of the system it is allowed to invoke the Join procedure a
number of times k to introduce the users U1, . . . ,Uk in the system. Addition-
allyM is allowed to submit tuples of the form 〈U ,M〉, and obtain the corre-
sponding signU (M). We say that a group signature scheme satisfies coalition-
resistance/traceability if the probability that M outputs a tuple 〈M, s〉 with
the property Verify(M, pk, s) = true and Open(sk, s) 6∈ {U1, . . . ,Uk} is negli-
gible in w.

We remark that in the above formulation the GM is trusted. When this is
not the case, an additional property needs to be satisfied that is called “exculpa-
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bility”, see section 4.6. In the exculpability setting it is of interest to strengthen
the Open procedure to also provide a proof of correct opening.

3 Methodology #1: Group Signatures from Public-Key

Traitor-Tracing Schemes

3.1 Description of a Public-Key Traitor Tracing Scheme

A PK-traitor-tracing scheme involves three types of participants: the authority,
the users of the system, and the senders that utilize the public encryption func-
tion to transmit encrypted messages to the users. The authority is responsible for
initializing the system and distributing the decryption keys, and then the users
of the system are capable of inverting ciphertexts that are encrypted under the
public-key of the group. The scheme is comprised of five basic procedures. To
serve the purpose of our work, we formalize them below so that they are as close
as possible to the group signature definition.

Setup (invoked by the authority) is the initialization of the system. For a given
security parameter w, this p.p.t. TM produces a publicly-known string pk (the
“public-key” of the system) and some internal string sk to be used for user key
generation.
Join (a protocol between the authority and the user that introduces the user
to the system). The authority employs the private key sk in the course of the
protocol, and the user obtains the private key skU that will be employed for
decryption.
Encrypt (invoked by the sender). A p.p.t. TM that given a message M and the
public-key pk, produces an encryption of M .
Decrypt (invoked by the user). A deterministic TM that given the private key
skU of a user and some ciphertext, returns the corresponding plaintext.
Tracing. An algorithm that given the contents of a pirate-decoder and secret-key
information sk, returns a set of identities. (It is used by the authority to reveal
identities of users that participated in the construction of the decoder by leaking
their keys.)

It is also desirable to support Revocation/Suspension where the authority is
able to toggle a user’s capability to decrypt messages in an efficient way, and
Black-Box Traitor Tracing which suggests that the traitor tracing procedure can
be executed with merely black-box access to the pirate-decoder.

3.2 Design Methodologies for Group Signature Schemes

In the literature we can identify two basic design methodologies for group signa-
ture schemes. In the first one, introduced by Chaum and van Heyst in [CH91],
each user’s signature is essentially a proof of knowledge of a public commitment.
Schemes in this category, typically designed using OR-proofs (e.g., [Cam97])
produce signatures whose size is linear in the number of participants.
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The second design methodology, put forth by Camenisch and Stadler [CS97],
is based on two “layers” of regular signature schemes. It has the potential of
allowing constant key-sizes (that are independent of the size of the group) and
constant signature sizes. In this approach each signature is essentially a seman-
tically secure encryption of a valid certificate that is issued to the user by the
GM. The shortcoming of the approach is that one has to devise an efficient
way of proving that the ciphertext actually contains a valid certificate. It is
possible of course to employ generic zero-knowledge proofs but these are not
suitable for a practical implementation (in this case we merely have a plausibil-
ity argument). Camenisch and Stadler [CS97] discussed this issue and described
a specific efficient instantiation of the above model that employed several in-
tractability assumptions (some customized to their design). Subsequent work
on group signatures [CM99,ACJT00] was based on the same design principle,
and employed the Strong-RSA assumption as well as the DDH over a group of
unknown oder to prove security. At present it is not known, and in fact seems
quite unlikely, that it is possible to employ this design methodology to produce
an efficient group-signature with security based on a cryptographic assumption
such as the DDH (or the regular RSA assumption).

3.3 The New Design Methodology based on PK-Traitor Tracing

Our new design methodology can be summarized by the following crucial ob-
servation: Given a public-key traitor tracing scheme comprised of the proce-
dures 〈Setup, Join,Encrypt, Decrypt,Tracing〉 we design a group signature scheme
〈Setup, Join,Sign,Verify,Open〉 as follows: we keep the procedures Setup and Join

identical to the case of the pk-traitor tracing scheme. Let pk be the public-key
information of the scheme as generated by the Setup procedure. Now we need to
translate the property of “the ability to trace a box” into an “ability to open a
signature” and in some sense lift the key from the user’s box into the signature.
To this end, assume that we can construct a variant of non-interactive proof
of knowledge PK that given a secret key of a user skU shows: (i) the prover is
capable of inverting the public-key pk; (ii) the key skU that is used in the proof
is recoverable by the GM from the transcript.

Observe that property (i) is the standard method that is used to transform
public-key encryption into a digital signature. Property (ii) is intrinsic to the
setting of group signatures: it convinces the verifier that the prover has em-
bedded sufficient information into the signature so that the GM will be able to
recover the key used by the signer. Now observe that the Open procedure for the
derived group signature scheme is implemented by employing the traitor tracing
algorithm Tracing on the recovered key from a signature.

We will call the derived group signature, the “dual” of the public-key traitor
tracing scheme. We remark that the derived group signature will inherit the
same collusion-resistance/traceability of the parent public-key traitor tracing
scheme, and additionally it will inherit directly properties such as revocation
and suspension.



Extracting Group Signatures from Traitor Tracing Schemes 639

Generality of our Approach. Note that a proof of knowledge achieving prop-
erties (i)-(ii) above can be achieved using generic zero-knowledge proofs. As a
result it is possible to obtain a correct and secure group signature according
to definitions 1, 2 for any given pk-traitor-tracing scheme. Due to lack of space
we omit a formal description of this result which constitutes only a plausibility
result. Instead, we will focus on specific pk-traitor-tracing schemes where such
proofs can be achieved efficiently.

4 The Group Signature “Dual” of the Boneh-Franklin

Scheme

4.1 Preliminaries

Assume a large multiplicative cyclic group G of prime order over which DDH is
assumed to be hard. For example G can be the subgroup of order q of Z∗p, where
q | p− 1 and p, q are large primes. In the following g will denote a generator of
G. Note that arithmetic in the exponents is performed in the finite field Zq.

4.2 Discrete-Log Representations

Let h0, h1, . . . , hv be random elements of G so that hj := grj for j = 0, . . . , v.
For a certain element y := gb of G a representation of y with respect to the
base h0, . . . , hv is a (v + 1)-vector δ := 〈δ0, . . . , δv〉 such that y = hr0

0 . . . hrv
v , or

equivalently δ ·r = b where · denotes the inner product between two vectors. It is
easy to see that obtaining representations of a given y w.r.t. some base h0, . . . , hv

is as hard as the discrete-log problem over G. Furthermore, it was shown in [BF99]
that if some adversary is given m representations of some y with respect to some
base, with m < v then any additional representation that can be obtained has to
be a “convex combination” of the given representations (a convex combination
of the vectors δ1, . . . δm is a vector

∑m
`=1 µ`δ` with

∑m
`=1 µ` = 1):

Proposition 1. [BF99] if there is an algorithm that given y, h0, . . . , hv and m <
v representations of y denoted by δ1, . . . δm, it computes a representation of y
that is not a convex combination of δ1, . . . δm then the discrete-log problem over
G is solvable.

4.3 Description of the PK-Traitor Tracing Scheme of [BF99]

In the [BF99] public-key traitor tracing scheme each user obtains a carefully de-
signed discrete-log representation that can be used for decryption. Any bounded
coalition of malicious users (traitors) can only produce alternative keys (discrete-
log representations) that have a specific structure (according to proposition 1);
further, given the initial design of user keys it is actually possible to recover the
identities of the traitors, as long as they form coalitions of size at most v/2.
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4.4 Proof of Knowledge of a Recoverable Discrete-Log
Representation

At the heart of the transformation of a pk-traitor tracing scheme into its “dual”
group signature is a proof of knowledge that allows a user to show in zero-
knowledge that he is capable of inverting the public-key of the traitor tracing
scheme, and at the same time this proof includes sufficient information to reveal
the user-key during the opening procedure. In the case of the Boneh-Franklin
scheme the required tool is a proof of knowledge of a recoverable discrete-log
representation. A proof of knowledge of a recoverable representation convinces
the verifier that the prover possesses a discrete-log representation, but in addition
it shows that the GM can recover such representation if necessary.
We remark that the opening of a signature can be separated from the GM

if desired and can even become a distributed task to allow for robustness and
security against some malicious authorities. In our exposition below let enc :
R× P → D be a public probabilistic encryption function, with R the random-
ness space, and P the plaintext space; note that we assume that Zq can be
embedded into P; enc can be initialized by the GM or a designated set of “au-
dit” authorities that will be responsible for opening signatures. Let us denote
the decryption function by dec; note that decryption should be robust (i.e., done
with a proof of correctness). The encryption function can be any semantically
secure scheme, e.g., ElGamal encryption (which is semantically secure under the
DDH assumption).
The proof of knowledge of a recoverable discrete-log representation is pre-

sented in figure 2. This proof of knowledge is a generalization of proof techniques
employed by [YY99,CD00,YY01].

Theorem 1. The 3-round proof of knowledge presented in figure 2 satisfies (i)
completeness, (ii) soundness with cheating probability 2−l, (iii) honest verifier
zero knowledge, provided that the encryption function enc is semantically secure.

Using the Fiat-Shamir Heuristics [FS87], we can turn the proof of knowledge

of figure 2 into a signature: the challenge c computed as H(m||a1|| . . . ||al||C
(0)
1,0 ||

C
(1)
1,0 || . . . C

(0)
l,v ||C

(1)
l,v ) where m is the message. When the challenge is defined as

above, the tuple 〈{ai}i, {C
(b)
i,j }b,i,j , c, {〈si,j , ρi,j〉}i,j〉 will be denoted as SIGenc(δ0,

. . . , δv : h
δ0
0 . . . hδv

v = y)(m).
Recovering a Representation. It is easy to see that a signature SIGenc(δ0,
. . . , δv : h

δ0
0 . . . hδv

v = y)(m) yields a representation δ := 〈δ0, . . . , δv〉 to the entity
who is capable of inverting enc. Indeed, recovering can be done by finding an
i ∈ {1, . . . , l}, such that the vector

〈

dec(C
(0)
i,0 )− dec(C

(1)
i,0 )(modq), . . . , dec(C

(0)
i,v )− dec(C

(1)
i,v )(modq)

〉

is a representation of y w.r.t. the base h0, . . . , hv. For a valid proof such an
i will exist with probability 1− 2−l. Finally it is easy to see that,
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Prover Verifier
δ := 〈δ0, . . . , δv〉

for i = 1, . . . , l
ri,0, ri,1, . . . , ri,v ∈R Zq

ai := h
ri,0

0 . . . h
ri,v
v

〈ρ
(0)
i,0ρ

(1)
i,0 〉, . . . , 〈ρ

(0)
i,vρ

(1)
i,v 〉 ∈R R

2

C
(0)
i,j := enc(ρ

(0)
i,j , ri,j) for j ∈ {0, . . . , v}

C
(1)
i,j := enc(ρ

(1)
i,j , ri,j − δj) for j ∈ {0, . . . , v}

{ai}i,{C
(b)
i,j
}b,i,j

−→

let c[i] be the i-th bit of c c

←−
c ∈R {0, 1}

l

for i = 1, . . . , l, j = 0, . . . , v
si,j := ri,j − c[i]δj(modq)

ρi,j := ρ
(c[i])
i,j

{〈si,j ,ρi,j〉}i,j

−→
Verify for i = 1, . . . , l,

j = 0, . . . , v

enc(ρi,j , si,j) =
? C

(c[i])
i,j

h
si,0

0 . . . h
si,v
v =? ai/y

c[i]

Fig. 2. Proving the knowledge of a representation δ of y w.r.t. h0, . . . , hv and at the
same time the fact that δ is recoverable by anyone who can invert enc.

Proposition 2. The signature SIGenc(δ0, . . . , δv : h
δ0
0 . . . hδv

v = y)(m), has length
O(lv) ciphertexts of enc (l = wε, where w := log#G).

Using the signature SIGenc, as we will see, it is possible to design a group
signature scheme (and then the security will be based on the random oracle
model). If the proof of knowledge is treated as an interactive protocol then
using the same methodology we present for group signatures one can design a
secure identity escrow scheme [KP98] (and then security does not require the
employment of a random oracle); we omit details.

4.5 The “Dual” Group Signature Scheme

The Setup and Join procedures are identical to the ones used in the Boneh-
Franklin scheme [BF99]. Additionally the GM (or the set of designated author-
ities) publish the encryption function enc, as specified in section 4.4.

– Sign. Given a messageM , a user that possesses a representation 〈δ1, . . . , δ2k〉
of y w.r.t. h1, . . . , h2k, publishes the signature SIGenc(δ1, . . . , δ2k : h

δ1
1 . . . hδ2k

2k

= y)(M).
– Verify. Given a signature SIGenc(δ1, . . . , δ2k : h

δ1
1 . . . hδ2k

2k = y)(M) it can be
verified as described in figure 2 using the public-key y, h1, . . . , h2k and the
public encryption function enc.

– Open. GM recovers the discrete-log representation of a signature SIGenc

(δ1, . . . , δ2k : h
δ1
1 . . . hδ2k

2k = y)(M) as described in section 4.4. Subsequently,
it employs the traitor tracing algorithm of [BF99] to recover the identities
of the users that collaborated in the construction of the signature.
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The correctness of the group signature scheme (as in definition 1) follows
easily from the description above.
Parameters. The group signature scheme uses the following parameters: the
parameter k which is the maximum traitor collusion size, the parameter l which
is a security parameter that relates to the probability of producing a fraudulent
group signature that passes the verification step (the cheating probability is 2−l),
and finally the parameter n which is the number of users. It is immediate from
proposition 2 that the size of a signature is O(kl) ciphertexts/ group elements
(there is no direct dependency on n).
Efficiency. Observe that the size of the public-key of the system is O(k), the
size of a signature is O(kl), and the size of each user key is O(1). As noted above
this size depends on the size of the maximal coalition (and is related to the same
property in traitor tracing schemes); the scheme in [ACJT00] has constant size
O(1) independent of the size of the coalition.

Security Based on the properties of the proof of knowledge of figure 2 one can
show the following:

Theorem 2. Assuming the DDH, and that the underlying encryption function
enc is semantically secure, the “dual” group signature of the [BF99]-scheme is
unforgeable and satisfies anonymity/ unlinkability (as in definition 2) in the
random oracle model.

Coalition-Resistance/Traceability. The coalition-resistance and traceability
of our group signature relies on on proposition 1 and the recoverability properties
of the signature proof of knowledge of figure 2.
First, proposition 1 suggests that under the assumption that the discrete-

logarithm problem is hard, the discrete-log representations that can be obtained
by an adversary controlling a number of users up to k, is only vector convex
combinations of the users’ discrete-log representations.
Second, the recoverability properties of the signature proof of knowledge of

figure 2 suggest that every signature will reveal to the GM some representation
that was used in the generation of the signature.
By combining these two facts we argue that any set of up to k malicious

users that attempt to conceal their identity collectively by avoiding the use
of their assigned representation(s), can only use convex combinations of the
representations that are available to them. But in this case it is possible to
recover all their identities by running the traitor tracing procedure of Boneh
and Franklin [BF99].

4.6 Adding Exculpability

Exculpability (against the group manager) suggests that the GM cannot frame
an innocent user, blaming him of signing a message he did not sign. In this case,
during the Join protocol the GM does not get to know the whole secret-key
skU of the user which is generated in a joint manner. Instead, it obtains some



Extracting Group Signatures from Traitor Tracing Schemes 643

commitment to this key comU which is signed by the user with some independent
digital signature mechanism. Observe that in this case the Opening procedure
produces comU as an output (which allows the GM to implicate the signing
user presenting a non-repudiable evidence). In the context of the formal security
model, we have:

Definition 3. Exculpability: LetM be a p.p.t. TM that is allowed to initialize
the group signature scheme by running the Setup procedure (possibly modified),
and then execute the Join protocol for a user U (also possibly modified). Then,
M is allowed to submit messages of the form M and obtain the corresponding
signature SignU (M) in an adaptive manner. We say that the group signature
scheme satisfies “online” exculpability if the distribution of signatures 〈M, s〉 ←
M and the distribution of signatures for any valid user are distinguishable given
a witness that is in the possession of the user. On the other hand, a group
signature scheme satisfies “offline” exculpability if the probability thatM outputs
a tuple 〈M, s〉 with the property Verify(M, pk, s) = true and Open(sk, s) = comU

is negligible in w.

Interestingly, constructing group signatures from “asymmetric” pk-traitor-
tracing schemes does not preserve exculpability (“asymmetry” is the “dual”
property of expulpability in the context of traitor tracing schemes, see e.g.,
[Pfi96]). Indeed, as dictated by the design methodology, opening a signature
in the derived scheme will reveal the key (which is essential for employing the
tracing algorithm to satisfy coalition-resistance/traceability), and therefore will
allow the GM to frame a user if it is malicious (even if the traitor tracing scheme
used as a basis is asymmetric).

Nevertheless, it is possible to achieve exculpability by using the modular
strategy explained below. Note that the [BF99]-scheme is not asymmetric and as
a result it cannot be employed for exculpability. However, there exist asymmetric
public-key traitor tracing schemes based on discrete-log representations which
can be turned into group signatures in the exact way as the [BF99]-scheme, using
proofs of recoverable representations. The only presently known such scheme is
the scheme of [KY02a] which we will now employ. Exculpability can be achieved
as follows: the GM will initialize two instantiations of the traitor tracing scheme
above, and each user will join both. Signing will be performed by issuing two
signatures, the first one using the first scheme is based on a proof of a recoverable
representation (as in figure 2), and the second one using the second scheme is
based on a standard proof of knowledge of a discrete-log representation (that
is non-recoverable). Now observe that GM never learns the key of the second
scheme. Thus, any signature that a malicious GM can generate is distinguishable
from true valid signatures of a certain user given the secret-key of the user
for the second instantiation. This corresponds to online exculpability: the user
can always deny his participation in a certain signature based on the second
component. We remark that previous schemes, e.g., [ACJT00], achieved offline
exculpability.
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5 Methodology # 2: Group Signatures based on

Traceability Codes

In this section we present a generic transformation from any group signature
scheme with linear (in the user population) signature and public-key size to a
group signature scheme with only logarithmic such dependencies on the user
population size (the scheme will depend on other parameters as well). The con-
struction relies on traceability codes, the fundamental combinatorial construct
which was invented by Chor, Fiat and Naor [CFN94] to introduce traitor tracing
schemes and was later formalized by Staddon et al. [SSW00].

5.1 Traceability Codes

We start with some notational conventions about strings over some alphabet
Σ. The j-th symbol of a string s over Σ will be denoted by s[j]; it follows
that if |s| = l, s = s[1]|| . . . ||s[l] and that s[j] ∈ Σ for all j = 1, . . . , l. If I =
{i1, . . . , ik} ⊆ {1, . . . , l} then given a string s of length l, s|I := s[i1]||s[i2]|| . . .
||s[ik]. Given s, s

′ ∈ Σl define EQ(s, s′) := {i | s[i] = s′[i]}. An 〈r, l〉q-code over
an alphabet Σ with |Σ| = q, is a set of strings C = {s1, . . . , sr} ⊆ Σl. Given
a code C, and some subset C ⊆ C, the descendant set desc(C) of the subset
C := {si1 , . . . , sik} is the set of strings {s ∈ Σl | s[j] ∈ {si1 [j], . . . , sik [j]} j =
1, . . . , l}. A traceability (TA) 〈n,L〉q-code C for collusions up to k satisfies the
following “traceability” property: for all x ∈ desc(C) where C ⊆ C with |C| ≤ k
it holds that ∃y ∈ C ∀z ∈ (C − C) |EQ(x, y)| > |EQ(x, z)|. Observe that due
to the traceability property, given x ∈ desc(C) one can recover an element of
C as follows (as long as |C| ≤ k): for all y ∈ C one computes |EQ(x, y)| and
pronounces the string y with maximum |EQ(x, y)| to be an element of C.
Traceability codes can be constructed using a probabilistic argument, as in

[CFN94], or using a concrete construction based on error-correcting codes with
large minimum distance, [SSW00].
The probabilistic construction of [CFN94] yields a traceability code over an

alphabet size of 2k2 that has length O(k2 log n). The concrete constructions
of [SSW00,SSW01] are slightly worse in terms of efficiency, but offer superior
traceability both in terms of efficiency (the tracing algorithm is not required to
take time proportional to |C|), and effectiveness (given an x ∈ desc(C) more than
one members of C can be identified).

5.2 The Generic Transformation

Let G := 〈Setup, Join,Sign,Verify,Open〉 be a group signature with signature
and public-key size linear in the size of the group and user-key constant (e.g.,
[Cam97]) that satisfies the security properties of definition 2. Below we describe
the derived group signature scheme:

Setup. A TA 〈n, v〉q-code C := {s1, . . . , sn} for collusions up to k is constructed
(as described in section 5.1). The GM runs v independent instantiations of Setup
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to produce the public-keys pk1, . . . , pkv and the corresponding secret-key infor-
mation sk1, . . . , skv. Then the GM executes the Join protocol of the `-th instanti-
ation of G, q times and records all keys (denoted by sk`,j , j = 1, . . . , q). Observe
that due to the properties of G, a signature for the `-th instantiation of G will
have length q.
Join. The i-th user of the system is assigned the si codeword from the TA
code (publicly), he privately obtains from the GM the secret-keys sk`,si[`] for
` = 1, . . . , v.
Sign. The i-th user signs a message by employing the signing algorithm Sign

for each one of the v instantiations of G onto its sequence of signing keys
〈ski,si[1], . . . , ski,si[v]〉.
Verify. The verification step requires the verification of each one of the underlying
signatures (v executions of the Verify procedure of G, using the corresponding
public-keys pk1, . . . , pkv).
Open. Given a signature 〈σ1, . . . , σv〉, the GM opens each signature using Open of
G and reveals the key used: sk`,a`

, where a` ∈ {1, . . . , q}, ` = 1, . . . , v. Comparing
the recovered keys to the ones that were generated during Setup, the string a :=
a1 . . . av ∈ {1, . . . , q}

v is formed. Observe now that due to the security properties
of G, it follows easily that a ∈ desc(C) where C is the set of codewords assigned
to the group of users that collaborated in forming the signature 〈σ1, . . . , σv〉 (C
is a singleton when users do not form malicious coalitions). Using the traceability
property of C it follows that at least one member of C can be identified.

Theorem 3. The derived group signature scheme based on the secure group
signature G and a TA 〈n, v〉q-code C for collusions up to k, satisfies the following
properties:

1. it satisfies unforgeability.
2. it satisfies anonymity/unlinkability.
3. it satisfies coalition-resistance/traceability provided that at most k members
cooperate to form a signature.

4. it has signature size O(vq), public-key size O(vq), and user-key size O(v).

Example. Using the probabilistic construction of [CFN94] in conjunction with
the group signature of [Cam97], one obtains a group signature with public-key
and signature size O(k4 log n), and user-key size O(k2 log n), with security based
on the DDH over a group of prime order.
Adding Exculpability. Suppose that the underlying group signature scheme
also satisfies exculpability (defined in section 4.6). Even though the resulting
scheme cannot satisfy the same form of exculpability, we can achieve a threshold
variant that depends on a set of servers S1, . . . , Sv.
The scheme is modified as follows: the GM executes the Join procedure of

the `-instantiation of G with server S`, q times. This step results in server S`

obtaining the signing keys sk`,1, . . . , sk`,q, and the GM obtaining the commit-
ments com`,1, . . . , com`,q, which are signed by the GM and published. When
a user wants to join the system he contacts all servers S1, . . . , Sv and obtains
from server S` the secret-key sk`,si[`] for ` = 1, . . . , v (in a private manner). The
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scheme is otherwise as above. One can show that exculpability will be satisfied
provided that at least one of the servers S1, . . . , Sv does not conspire to frame
a user (since one server does not conspire it is impossible for the remaining
malicious entities to generate any valid signature in the scheme above).

A subtlety of the above modification for achieving exculpability is that it
assumes that S1, . . . , Sv honestly keep the correct correspondence between the
published traceability code and the keys they provide to each user. This can be
relaxed in a generic fashion by assuming that each server is replicated e times
and each set of servers Sj

1, . . . , S
j
v, for j = 1, . . . , e executes an independent

instantiation of the derived scheme (for the same traceability code). This method
will increase the efficiency measures of the scheme by a factor e. In this setting
we only need to assume that the dishonest sets of servers are below e/2. More
details will be given in the full version.
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