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Abstract. The security of many recently proposed cryptosystems is
based on the difficulty of solving large systems of quadratic multivariate
polynomial equations. This problem is NP-hard over any field. When
the number of equations m is the same as the number of unknowns n
the best known algorithms are exhaustive search for small fields, and a
Grobner base algorithm for large fields. Grobner base algorithms have
large exponential complexity and cannot solve in practice systems with
n > 15. Kipnis and Shamir [9] have recently introduced a new algorithm
called “relinearization”. The exact complexity of this algorithm is not
known, but for sufficiently overdefined systems it was expected to run in
polynomial time.

In this paper we analyze the theoretical and practical aspects of relin-
earization. We ran a large number of experiments for various values of n
and m, and analysed which systems of equations were actually solvable.
We show that many of the equations generated by relinearization are lin-
early dependent, and thus relinearization is less efficient that one could
expect. We then develop an improved algorithm called XL, which is both
simpler and more powerful than relinearization. For all 0 < e < 1/2, and
m > en?, XL and relinearization are expected to run in polynomial time
of approximately n®/v®) . Moreover, we provide strong evidence that
relinearization and XL can solve randomly generated systems of polyno-
mial equations in subexponential time when m exceeds n by a number
that increases slowly with n.

1 Introduction

In this paper we consider the problem of solving systems of multivariate poly-
nomial equations. This problem is NP-complete even if all the equations are
quadratic and the field is GF'(2). It has many applications in cryptography, since

* An extended version of this paper is available from the authors.
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a large number of multivariate schemes had been proposed (and cryptanalysed)
over the last few years. In addition, the problem arises naturally in other subar-
eas of Mathematics and Computer Science, such as optimization, combinatorics,
coding theory, and computer algebra.

The classical algorithm for solving such a system is Buchberger’s algorithm
for constructing Grobner bases, and its many variants (see, e.g., [1]). The algo-
rithm orders the monomials (typically in lexicographic order), and eliminates the
top monomial by combining two equations with appropriate polynomial coeffi-
cients. This process is repeated until all but one of the variables are eliminated,
and then solves the remaining univariate polynomial equation (e.g., by using
Berlekamp’s algorithm over the original or an extension field). Unfortunately,
the degrees of the remaining monomials increase rapidly during the elimination
process, and thus the time complexity of the algorithm makes it often imprac-
tical even for a modest number of variables. In the worst case Buchberger’s al-
gorithm is known to run in double exponential time, and on average its running
time seems to be single exponential. The most efficient variant of this algorithm
which we are aware of is due to Jean-Charles Faugere (private communication
[5,6]) whose complexity in the case of m = n quadratic equations is:

— If K is big, the complexity is proved to be O(23") and is O(227") in practice.
— When K =GF(2), the complexity is about O(22") (which is worse than the
O(2™) complexity of exhaustive search).

In practice, even this efficient variant cannot handle systems of quadratic equa-
tions with more than about n = 15 variables.

In this paper we are interested in the problem of solving overdefined systems
of multivariate polynomial equations in which the number of equations m exceeds
the number of variables n. Random systems of equations of this type are not
expected to have any solutions, and if we choose them in such a way that one
solution is known to exist, we do not expect other interference solutions to occur.
We are interested in this type of systems since they often occur in multivariate
cryptographic schemes: if the variables represent the cleartext then we want the
decryption process to lead to a unique cleartext, and if the variables represent
the secret key we can typically write a large number of polynomial equations
which relate it to the known public key, to the cleartexts, and to the ciphertexts.

Grobner base techniques do not usually benefit from the fact that the number
of equations exceeds the number of variables, since they proceed by sequentially
eliminating a single monomial from a particular pair of equations. Unfortunately,
this cryptographically important case received very little attention in the vast
literature on Grobner base algorithms. To see that much better algorithms exist
in this case, consider a system of n(n 4+ 1)/2 random homogeneous quadratic
equations in n variables z1, ...x,. The well known linearization technique replaces
each product z;x; by a new independent variable y;;. The quadratic equations
give a system of n(n + 1)/2 linear equations in n(n + 1)/2 variables which can
be solved efficiently by Gauss elimination. Once we find all the y;; values, we
can find two possible values for each x; by extracting the square root of y;; in
the field, and use the values of y;; to combine correctly the roots of y;; and y;;.
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At Crypto 99, Kipnis and Shamir [9] introduced a new method for solving
overdefined systems of polynomial equations, called relinearization. It was de-
signed to handle systems of en? quadratic equations in n variables where € is
smaller than 1/2. The basic idea of relinearization is to add to the given system
of linear equations in the y;; additional nonlinear equations which express the
fact that these variables are related rather than independent. In its simplest
form, relinearization is based on the commutativity of multiplication of 4-tuples
of variables: For any a,b,¢,d, (zqzp)(xcrq) = (xqze)(@prq) = (Xqzq)(xpx,.) and
thus YebYed = YacYbd = YadYbe. There are several generalizations of relineariza-
tion, including higher degree variants and a recursive variant. The relinearization
technique can solve many systems of equations which could not be solved by lin-
earization, but its exact complexity and success rate are not well understood.

In the first part of this paper, we analyse the theoretical and practical aspects
of the relinearization technique. We concentrate in particular on the issue of the
linear independence of the generated equations, and show that many of the
generated equations are provably dependent on other equations, and can thus
be eliminated. This reduces the size of the linearized systems, but also limits the
types of polynomial equations which can be successfully solved by the technique.

In the second part of the paper, we introduce the XL (eXtended Lineariza-
tion) technique which can be viewed as a combination of bounded degree Grébner
bases and linearization. The basic idea of this technique is to generate from each
polynomial equation a large number of higher degree variants by multiplying it
with all the possible monomials of some bounded degree, and then to linearize
the expanded system. This is a very simple technique, but we prove that it is
at least as powerful as relinearization. We analyse the time complexity of the
XL technique, and provide strong theoretical and practical evidence that the
expected running time of this technique is:

— Polynomial when the number m of (random) equations is at least en?, and
this for all € > 0.
— Subexponential if m exceeds n even by a small number.
If the size of the underlying field is not too large, we can sometimes apply this
subexponential technique even to an underdefined (or exactly defined) systems
of equations by guessing the values of some of the variables and simplifying the
resulting equations.

2 Experimental Analysis of the Relinearization technique

In this part we concentrate on systems of randomly generated homogeneous
quadratic equations of the form:

Z ai;kT;iT; = by, k=1...m (1)
1<i<j<n

The general idea of the relinearization method is to first use linearization
in order to solve the system of m linear equations in the n(n 4+ 1)/2 variables
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¥ij = x;x;. The system is typically underdefined, and thus we express each y;;
as a linear combination of | < n(n + 1)/2 new parameters t1,...,%. We then
create additional equations which express the commutativity of the multipli-
cation of x; which can be paired in different orders. Let (a,b,c,d,... e, f) ~
(@', b, d,... ¢, f") denote that the two tuples are permuted versions of each
other. Then:

(xazp)(Tcxa)...(Tes) = (Xarxpy ) (e Xar)...(Terxp) (2)

This can be viewed as an equation in the y;; variables, and thus also as an
equation in the (smaller number of) parameters ts expressing them. The new
system of equations derived from all the possible choices of tuples of indices and
their permutations can be solved either by another linearization or by recursive
relinearization.

2.1 Degree 4 relinearization

We have applied the degree 4 relinearization technique to a large number of sys-
tems of randomly generated homogeneous quadratic equations of various sizes.
We always got linearly independent equations (except when the field was very
small). For several small values of n, the critical number of equations which make
the system (barely) solvable is summarized in the following table: Assuming the

Table 1. Fourth degree relinearization

nlm|i| n | m
68|13 104 | 105
8112(24| 324 | 336
10]16|39| 819 | 825
15|30({90|4185|4200

n Number of variables in original quadratic system

m Number of equations in original quadratic system

1 Number of parameters in the representation of the y;;
n’ Number of variables in the final linear system

m’ Number of equations in the final linear system

linear independence of the derived equations (which was experimentally verified),
we can easily derive the asymptotic performance of degree 4 relinearization for
large n: The method is expected to find the solution (in polynomial time) when-
ever the number of equations exceeds en? for € > 1/2 —1/1/6 ~ 0.1. This case is
thus well understood.
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2.2 Higher degree relinearization

The problem becomes much more complicated when we consider degree 6 relin-
earizations, which are based on all the equations of the form:

Yab¥YcdlYef = Ygh¥ijYki, where (aa ba & dvevf) ~ (gvhvivja kvl) (3)

Note that these equations are cubic in the free parameters ¢, (even if the orig-
inal equations are quadratic), so we need many more equations to relinearize it
successfully.

Unlike the case of degree 4 relinearizations, many of these equations were ex-
perimentally found to be linearly dependent. We have identified several distinct
causes of linear dependence, but its complete characterization is still an open
research problem.

We first have to eliminate trivial sources of linear dependence. We only have
to consider 6-tuples of indices (a, b, ¢, d, e, f) which are sorted into non-decreasing
order within each successive pair (a,b), (¢, d), (e, f), and then into non-decreasing
lexicographic order on these pairs. For 6-tuples which contain 6 distinct indices
such as (0,1,2,3,4,5), we get 15 (rather than 6! = 720) legal permutations:

~

(0,1, 2,3, 4,5) (0,1, 2,4, 3,5) (0,1, 2,5, 3,4)
(0,2, 1,3, 4,5) (0,2, 1,4, 3,5) (0,2, 1,5, 3,4)
(0,3, 1,2, 4,5) (0,3, 1,4, 2,5) (0,3, 1,5, 2,4)
(0,4, 1,2, 3,5) (0,4, 1,3, 2,5) (0,4, 1,5, 2,3)
(0,5, 1,2, 3,4) (0,5, 1,3, 2,4) (0,5, 1,4, 2,3)

so we can create 14 possible equations. But for the 6-tuple (0,1,1,1,1,2), there
are only 2 legal permutations (0,1, 1,1, 1,2) and (0,2, 1,1, 1,1) and thus we
get only one equation. In general, there are 32 types of repetition of values in the
given 6-tuple, and each one of them gives rise to a different number of equations.
Table (2) summarizes the number of non-trivial equations which can actually be
formed using 6-tuples for small values of n.

Table 2. Number of non trivial equations defined by 6-tuples

n |equations
4 136
5 470
6| 1309
7] 3136
8] 6720
9| 13212
10| 24255
11| 42108
12| 69784
20| 1388520
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2.3 Eliminating redundant linear equations

In this section we show that most of the non-trivial equations defined so far are
redundant, since they can be linearly derived from other equations. Consider a
typical non-trivial equation generated by degree r relinearization:

YirioYigia - - - Yirvir = YjujaYjsja - - - Yjr—rjr (4)
with (i1,...,%) ~ (J1,-- -y Jr)

We call such an equation special if the lists of y’s are the same on both
sides of the equation, except for exactly two y’s whose indices are permuted. For
example, the non-trivial equation

Yo01Y23Y45Y67Y89 = Yo1Y27Y36Y45Y89 (5>

is special since 3 out of the 5 terms are common in the two expressions. For
large n only a small fraction of the equations are special, but we can prove:

Lemma: The set of special equations linearly span the set of all the non-
trivial equations for the same relinearization degree.

Proof (sketch): Consider two particular permutations A and B of the same
r-tuple of indices, which define one of the possible equations. A basic property
of permutation groups is that any permutation can be derived by a sequence
of transpositions which affect only adjacent elements. Consider the pairing of
consecutive indices which defines the sequence of y’s. Applying a single transpo-
sition of adjacent indices can permute the indices of at most two y’s, and thus
we can derive the equality of the product of y’s for any two permuted versions of
some subset of indices from the transitivity of the equality in special equations.

To further reduce the number of equations, recall that each y;; variable is a
linear combination of a smaller number of parameters ¢,. Instead of having all
the possible common products of y;; variables on both sides of the equation, it
suffices to consider only common products of ¢5 parameters, since each product
of the first type is expressible as a linear combination of products of the second
type. We can thus consider only the smaller number of equations of the form:

yabycdtetf T tg = yacybdtetf T tg = yadybctetf T tg (6>

The common t’s on both sides of the equation seem to be cancellable, and
thus we are led to believe that degree r relinearization is just a wasteful repre-
sentation of degree 4 relinearization, which can solve exactly the same instances.
However, division by a variable is an algebraic rather than linear operation, and
thus we cannot prove this claim. The surprising fact is that these seemingly un-
necessary common variables are very powerful, and in fact, they form the basis
for the XL technique described in the second part of this paper. As a concrete
example, consider a slightly overdefined system of 10 quadratic equations in 8
variables. Experiments have shown that it can be solved by degree 6 relineariza-
tion, whereas degree 4 relinearizations need at least 12 quadratic equations in 8
variables. Other combinations of solvable cases are summarized in table 3.
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As indicated in this table, even the equations derived from special equations
are still somewhat dependent, since we need more equations than variables in the
final linear system. We have found several other sources of linear dependence,
but due to space limitations we cannot describe them in this extended abstract.

Table 3. Experimental data for degree 6 relinearization

n m 1 n’ m”
4 8 2 9 9

4 7 3 19 19
4 6 4 34 40
4 5 5 55 86
5 9 6 83 83
5 8 7 119 129
5 7 8 164 215
5 6 9 219 443
6 10 11 363 394
6 9 12 454 548
6 8 13 559 806
6 7 14 679 1541
7 11 17 1139 | 1363
7 10 18 1329 | 1744
7 9 19 1539 | 2318
8 12 24 2924 | 3794
8 11 25 3275 | 4584
8 10 26 3653 | 5721
9 13 32 6544 | 9080
9 12 33 7139 10567
9 11 34 7769 |12716

n Number of variables in the original quadratic system

m Number of equations in the original quadratic system

1 Number of parameters in the representation of the y;;

n’ Number of variables in the final linear system

m” number of equations which were required to solve the final linear system

3 The XL Algorithm

We present another algorithm for solving systems of multivariate polynomial
equations called XL (which stands for eXtended Linearizations, or for multipli-
cation and linearization). As we will see, each independent equation obtained by
relinearization exists (in a different form) in XL, and thus XL can be seen as a
simplified and improved version of relinearization.
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Let K be a field, and let A be a system of multivariate quadratic equa-

tions I, = 0 (1 < k < m) where each [ is the multivariate polynomial
fk(flfl, e ,xn) — bk.
The problem is to find at least one solution z = (z1,...,z,) € K", for a

given b = (by,...,b,) € K™.

We say that the equations of the form H?:l zi; x l; = 0 are of type xl,
and we call 2*1 the set of all these equations. For example the initial equations
Zy = A are of type I.

We also denote by ¥ the set of all terms of degree k, H§:1 x;;. It is a slightly
modified extension of the usual convention z = (z1,...,Zy,).

Let D € IN. We consider all the polynomials Hj x;; * l; of total degree < D.

Let Zp be the set of equations they span. Zp is the linear space generated
by all the 21, 0 <k <D — 2.

Ip C Z, 7 being the ideal spanned by the I; (could be called Z,).

The idea of the XL algorithm is to find in some Zp a set of equations which
is easier to solve than the initial set of equations Zy = A. As we show later, the
XL algorithm with maximal degree D completely contains the relinearization
technique of degree D.

Definition 1 (The XL algorithm) Execute the following steps:

1. Multiply: Generate all the products Hle xi; *l; € Ip with k < D — 2.

2. Linearize: Consider each monomial in x; of degree < D as a new variable
and perform Gaussian elimination on the equations obtained in 1.

The ordering on the monomials must be such that all the terms containing
one variable (say x1) are eliminated last.

3. Solve: Assume that step 2 yields at least one univariate equation in the
powers of x1. Solve this equation over the finite fields (e.g., with Berlekamp’s
algorithm).

4. Repeat: Simplify the equations and repeat the process to find the values of
the other variables.

The XL algorithm is very simple, but it is not clear for which values of n and
m it ends successfully, what is its asymptotic complexity, and what is its rela-
tionship to relinearization and Grobner base techniques. As we will see, despite
it’s simplicity XL may be one of the best algorithms for randomly generated
overdefined systems of multivariate equations.

Note 1: The equations generated in XL are in x*] and belong to Z, the
ideal generated by the [;. There is no need to consider more general equations
such as [? since they are in Z; and are thus in the linear space generated by the
equations of type x2l Uzl U 1.

Note 2: Sometimes it is more efficient to work only with a subset of all
the possible monomials. For example, when all the equations are homogeneous
quadratic equations, it suffices to use only monomials of odd (or even) degrees.

Note 3: A related technique was used by Don Coppersmith to find small
roots of univariate modular equations [2]. However, in that application he used
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LLL rather than Gauss elimination to handle the generated relations, and re-
lied heavily on the fact that the solution is small (which plays no role in our
application).

4 A toy example of XL

Let u # 0. Consider the problem of solving:

3+ prze = o (4.1)
T34 vrixe = (4.2)

For D = 4 and even degree monomials, the equations we generate in step 1
of the XL algorithm are [ U 22l. Those are the 2 initial equations and 6 = 2 * 3
additional equations generated by multiplying the initial 2 equations [; by the 3
possible terms of degree 2: x2, x179, 73 € x2.

1+ prize = ax?  (4.3)
2223 + vtz = B2 (4.4)
2323 + pryws = axd  (4.5)
T3+ vrias = pfzi (4.6)
379 + prizrd = aziry (4.7)
(48)

175 + vzl = Brixg

In step 2 we eliminate and compute:

From (4.1): 120 = & — =L;

From (4.2): 23 = (3 o) + ﬁxf’

3 a2 zy
From (4.3): 329 = agt— o,
From (4.4): 2222 = (8 — %)x% + ﬁx‘ll’

« V2 v2
From (48): ;12 = 7 + (% — v — Dot — oot
afv v, av? 3

From (4.6): 25 = (8% — 242) + (57 + fv* — &)t + £al;

Finally from (4.5) we get one equation with only one variable x1:

o + 23 (apy — Bu® — 2a) + 231 — ) = 0.

5 Experimental results on XL

5.1 Experimental results with m = n over GF(127)

When m = n our simulation has shown that we need D = 2" in order to be able
to solve the equations (so the algorithm works only for very small n).
An explanation of this is given in the Sect. 6.2.
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3 variables and 3 homogenous quadratic equations, GF(127)

XL equations A B | XL unknowns (B degrees)
type| Free/All |@reets-r-1) T |type
I 3/3 3 |16 |2

zlUl]  12/12 -5 31 19 |[z3ux?ux

23Uzl 30/39 -2 3| 34 [pPurtux
2lUadlUuxl] 66/102 -1 41 70 |zTuxtuzduz
2luztlux?lul] 91/150 0 41 94 [28uabuatuUa?

U z’luxlUzl] 121/210 0 51 5 [1252°ux”"Uzburiun
pTTuaBluzBlu.. .| 821/1845 4 9| 825 |z uzlTuat®u...

| 4 variables and 4 homogenous quadratic equations, GF(127) |

XL equations A B | XL unknowns (B degrees)
type| Free/All |(Freetn-11) T [|type
l 4/4 -6 1] 10 |22
rHUzllul] 122/184 -5 3] 129 |z Ut Ua?
28lUzbluatl Uzl ul| 573/1180 -3 51 580 |z0uauzburtua?
2P2luztiu 2Oy, . .| 3044/7280 -2 143059 [z U...
M uz?luztOlu. .. 2677/6864 0 82684 [z uaxttuat?uU...

T: number of monomials A > 0 when XL solves the equations, (A = Free+B-T-1)

B: nb. of monomials in one variable e.g. z; Free/All: numbers of free/all equations of given type

5.2 Experimental results with m = n + 1 over GF(127)

When m = n + 1 our simulations show that we have to take D = n in order to
obtain A > 0 and be able to solve the equations.

4 variables and 5 homogenous quadratic equations, GF(127)]

XL equations A B | XL unknowns (B degrees)
type| Free/All |(mreetn-r-1) T |type
I 5/5 4 110 [a?
zlUl| 25/25 -8 3] 34 |[z*ux?Uz
z?lUl] 45/55 1 2 45 |ztua?

| 8 variables and 9 homogenous quadratic equations, GF(127) |

XL equations A B |XL unknowns (B degrees)
type| Free/All |reetn-o1) T |type
l 9/9 =27 1] 36 |22
2201 297/333 | -68 | 2| 366 |otUa?
MU U] 2055/3303 | -25 | 3| 2082 |26 Uzt U2
2SlU a3l U xl| 4344/8280 -5 414352 |[zTUzPUzd U
201Ut Ul Ul 8517/18747 3 4 [ 8517 |28 U2® U2t U 22
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T: number of monomials A > 0 when XL solves the equations, (A = Free4+B-T-1)

B: nb. of monomials in one variable e.g. 1 Free/All: numbers of free/all equations of given type

5.3 Experimental results with m = n + 2 over GF(127)

In case m = n + 2 it may be possible to take D = /n + C but the data is
still inconclusive. We are currently working on larger simulations, which will be
reported in the final version of this paper.

8 variables and 10 homogenous quadratic equations, GF(127)]

XL equations A B | XL unknowns (B degrees)
type| Free/All |(rroetn-T-1) T [|type
I 10/10 26 |1 36 |22
22U1] 325/370 | -40 |2 366 |x*Ua?
31U zl| 919/1280 1 31920 [2Puxdux

| 9 variables and 11 homogenous quadratic equations, GF(127) |

XL equations A B |XL unknowns (B degrees)
type| Free/All |(ree+n-11) T [|type
Il 11/11 -34 1| 45 [z°

3l U x| 1419/1914 |  -40 3| 1461 2P UadUx
U z?l U] 3543 /5951 2 3 [ 3543 2% U 2t U 22

T: number of monomials A > 0 when XL solves the equations, (A = Free4+B-T-1)

B: nb. of monomials in one variable e.g. x Free/All: numbers of free/all equations of given type

6 Complexity evaluation of XL

Given m quadratic equations with n variables, we multiply each equation by all

the possible x;, -...-;,_,. The number of generated equations (of type z”~2])
is about a = % -m while we have about G = %DI linear variables of type

xPuP—2
If most of the equations are linearly independent in XL (we will comment on
this critical hypothesis below), we expect to succeed when a > 3, i.e. when

’/l2

> 7
"=DD-1) (™)

We get the following evaluation
D > about (8)

m
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6.1 Casem=n

If m =~ n, and if we expect most of the equations to be independent, we expect
the attack to succeed when D = y/n. The complexity of the algorithm is thus
lower bounded by the complexity of a Gaussian reduction on about %DI variables,
D = /n. Its working factor is thus at least

wes (20

>

— \ n!

where w = 3 in the usual Gaussian reduction algorithm, and w = 2.3766 in

improved algorithms. By simplifying this expression, we get the subexponential
complexity bound of approximately:

WE > eV 4D (9)
Notes:

— When n is fixed the XL algorithm is expected to run in polynomial time
(in the size of K).

— When K is fixed and n — oo, the formula indicates that XL may run in
sub-exponential time. We will see however that this is likely to be true only
when m — n is “sufficiently” big while still m ~ n. This point is the object
of the study below.

6.2 Casem=mn

When m = n our simulation showed that D = 2" (instead of D ~ \/n).

It is possible to give a theoretical explanation of this fact: If we look at the
algebraic closure K" of K we have generally 2™ solutions for a system of n
equations with n variables. So the final univariate equation we can derive should
be generally of degree 2".

6.3 Casem=n-+1

For m = n+1 our simulations show that D = n (instead of y/n). The reason for
this is not clear at present.

6.4 Casem=n+C,C > 2

For m =n+C, C > 2, it seems from our simulations that even for small values
of C' we will have D = /n. This remark will lead to the FXL algorithm below.

In order to know for what value of C' it is reasonable to assume that D ~ \/n
we need more simulations. Many of them will be included in the extended version
of this paper, however given the limitated computing power available, the results
does not give a precise estimation of C'.
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6.5 Casem =en?,e>0

Let 0 < e <1/2 and m = en?. We expect XL to succeed when

D~ [1/Ve. (10)

The working factor is in this case WF ~ % So the algorithm is ex-

pected to be polynomial (in n) with a degree of about w/+/e.

Remark: The fact that solving a system of e-n? equations in n variables was
likely to be polynomial was first suggested in [9]. Despite the fact that the relin-
earization is less efficient than what could have been expected, the complexity
of solving en? equations in n variables is still expected to be polynomial.

7 The FXL algorithm

In our simulations it is clear that when m = n, the smallest working degree
D decreases dramatically when m — n increases. For example, if m = n then
D =2" it m =n+1then D =n, and if m is larger we expect to have D ~ /n.

We are thus led to the following extension of XL called FXL (which stands
for Fixing and XL):

Definition 2 (The FXL algorithm)

1. Fiz p variables (see below for the choice of ).
2. Solve with XL the resultant system of m equations in n — pu variables.

We choose the smallest possible p such that in step 2 we have D ~ /n, in
order to have minimal complexity in step 2.

The complexity of the FXL algorithm is g#ecV™"" as we have ¢* choices for
1 variables in step 1, and XL is e*V™"" for D ~ \/n.

How p increases when m increases is an open question. We can notice that
if u = O(y/n), then the complexity of the FXL algorithm would be about
q@Wm)Cvnlnn which is approximately e€ V7 (nn+ing) Thyg the FXL algorithm
might be sub-exponential, even when m = n, but we have no rigorous proof of
this conjecture.

8 XL and relinearization

We have formally proved that the set of equations defined by a successful relin-
earization of degree D is equivalent to a subset of equations derived from the XL
algorithm with the same D. The proof is not difficult, but due to its length it will
appear only in the extended version of this paper (available from the authors).
It is based on a series of effective syntactic transformations on the system of
equations C derived from the degree D relinearization of a given system of m
quadratic equations in n variables. By eliminating redundant equations we get
another system of equations D, and by replacing each monomial in D by a new
variable, we get a final system of equations denoted by £. We then perform the
following steps:
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1. We replace C by another system C’ that contains the same equations written
in a ‘special form’. We define the ‘special degree’ of such equations, and show
that Special Deg(C') < D.

2. We transform C’ to D’. We show that D’ are the equations of D written in
the special form, with SpecialDeg(D') < D.

3. We transform D’ to €', and show that &' C Ip.

Theorem 1 (Relinearization as a subcase of the XL algorithm.) Let C
be the equations obtained in a successful relinearization of degree D of a sys-
tem of m quadratic equations with n variables. Then we can effectively construct
a set of equations &, that preserves the solvability of the system by Gaussian re-
duction, along with it’s explicit expression £ as a subcase of the XL algorithm:
& c Ip.

In practice, XL is more efficient than relinearization. For example, to solve
11 equations with 9 variables, relinearization requires the solution of a linear
system with 7769 variables (see Table 3), whereas XL requires the solution of a
system with only 3543 variables (see 5.3). Moreover, XL can use any D while
relinearization can only use composite values of D. For example, to solve 10
quadratic equations with 8 variables we had to use the relinearization algorithm
with D = 6, but the XL algorithm could use the smaller value of D = 5.
Consequently, the system of linear equations derived from linearization had 3653
variables, while the system of linear equations derived from XL had only 919
variables (see 5.3).

9 Grobner bases algorithms

One way of implementing the XL algorithm is to combine the equations in an
organised way, rather than to multiply them by all the possible monomials. This
would naturally lead to the classical Grobner-bases algorithms.

We define Z,, ..., as a subspace of all the equations of 7 that can be
written with just the variables x;,,...,x;,. The XL method checks if there are
any (univariate) equations in some (Zp), -

The Grébner bases algorithms construct a basis of a space of (univariate)
equations in Z,, = J,(Zk)s,. However in order to get there, they compute
successively bases of the Z, ., fork=mn...1.

It is not clear what is the best way to use Grobner bases to solve our problem
of overdefined systems of equations. A large number of papers have been written
on Grobner base techniques, but most of them concentrate either on the case of
fields of characteristic 0, or look for solution in an algebraic closure of F”, and
the complexity analysis of these algorithms is in general very difficult.

10 Cryptanalysis of HFE with XL /relinearization attacks

The HFE (Hidden Field Equations) cryptosystem was proposed at Eurocrypt
1996 [11]. Two different attacks were recently developed against it [3,9], but
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they do not compromise the practical security of HFE instances with well cho-
sen parameters. Moreover it does not seem that these attacks can be extended
against variations of the HFE scheme such as HFEv or HFEv~ described in [8].

The first type of attack (such as the affine multiple attack in [11]) tries to
compute the cleartext from a given ciphertext. It is expected to be polynomial
when the degree d of the hidden polynomial is fixed, and not polynomial when
d = O(n). In [3] Nicolas Courtois presented several improved attacks in this
category, with an expected complexity of n@((@) (which is still not polynomial)
instead of the original complexity of n®(@,

A second line of attack tries to recover the secret key from the public key. The
Kipnis-Shamir attack described in [9] was the first attack of this type. It is also
expected to be polynomial when d is fixed but not polynomial when d = O(n).

To test the practicality of these attacks, consider the HFE “challenge 1”
described in the extended version of [11] and in [4]. It is a trapdoor function over
GF(2) with n = 80 variables and d = 96. A direct application of the FXL to
these 80 quadratic equations requires Gaussian reductions on about 809 /9! ~ 238
variables, and thus its time complexity exceeds the 28° complexity of exhaustive
search, in spite of its conjectured subexponential asymptotic complexity. The
best attack on the cleartext (from [3]) is expected to run on “challenge 1”7 in
time 262, The best attack on the secret key (from [9]) is expected to run in time
2152 when XL is used, and to take even longer when relinearization is used. A
possible improvement of this attack (from [3], using sub-matrices) runs in time
282 which is still worse than the 2% complexity of exhaustive search.

11 Conclusion

In this paper we studied the relinearization technique of Kipnis and Shamir,
along with several improvements. We saw that in high degree relinearizations
the derived equations are mostly linearly dependent, and thus the algorithm is
much less efficient than originally expected.

We have related and compared relinearization to more general techniques,
such as XL and Grobner bases. We have proved that XL “contains” relineariza-
tion and demonstrated that it is more efficient in practice. We also concluded
that the complexity of solving systems of multivariate equations drops rapidly
when the number of equations exceeds the number of variables (even by one or
two). Consequently, over a small field the FXL algorithm may be asymptotically
subexponential even when m = n, since it guesses the values of a small num-
ber of variables in order to make the system of equations slightly overdefined.
However in many practical cases with fixed parameters m ~ n, the best known
algorithms are still close to exhaustive search.

Finally, when the number of equations m and the number of variables n are
related by m > en? for any constant 0 < ¢ < 1/2, the asymptotic complexity
seems to be polynomial with an exponent of O(1/4/e).
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