
New Attacks on PKCS#1 v1.5 Encryption

Jean-Sébastien Coron1,3, Marc Joye2, David Naccache3, and Pascal Paillier3

1 École Normale Supérieure
45 rue d’Ulm, 75005 Paris, France

coron@clipper.ens.fr
2 Gemplus Card International

Parc d’Activités de Gémenos, B.P.100, 13881 Gémenos, France
marc.joye@gemplus.com

3 Gemplus Card International
34 rue Guynemer, 92447 Issy-les-Moulineaux, France

{jean-sebastien.coron, david.naccache, pascal.paillier}@gemplus.com

Abstract. This paper introduces two new attacks on pkcs#1 v1.5, an
rsa-based encryption standard proposed by RSA Laboratories. As op-
posed to Bleichenbacher’s attack, our attacks are chosen-plaintext only,
i.e. they do not make use of a decryption oracle. The first attack ap-
plies to small public exponents and shows that a plaintext ending by
sufficiently many zeroes can be recovered efficiently when two or more
ciphertexts corresponding to the same plaintext are available. We believe
the technique we employ to be of independent interest, as it extends Cop-
persmith’s low-exponent attack to certain length parameters. Our second
attack is applicable to arbitrary public exponents, provided that most
message bits are zeroes. It seems to constitute the first chosen-plaintext
attack on an rsa-based encryption standard that yields to practical re-
sults for any public exponent.

1 Introduction

Pkcs stands for Public-Key Cryptography Standards. It is a large corpus of
specifications covering rsa encryption [13], Diffie-Hellman key agreement, pass-
word-based encryption, syntax (extended-certificates, cryptographic messages,
private-key information and certification requests) and selected attributes. His-
torically, pkcs was developed by RSA Laboratories, Apple, Digital, Lotus, Mi-
crosoft, MIT, Northern Telecom, Novell and Sun. The standards have been reg-
ularly updated since. Today, pkcs has become a part of several standards and
of a wide range of security products including Internet Privacy-Enhanced Mail.

Amongst the pkcs collection, pkcs#1 v1.5 describes a particular encoding
method for rsa encryption called rsaEncryption. In essence, the enveloped data
is first encrypted under a randomly chosen keyK using a symmetric block-cipher
(e.g. a triple des in cbc mode) then K is rsa-encrypted with the recipient’s
public key.

In 1998, Bleichenbacher [2] published an adaptive chosen-ciphertext attack on
pkcs#1 v1.5 capable of recovering arbitrary plaintexts from a few hundreds of

New Attacks on PKCS#1 v1.5 Encryption 375

thousands of ciphertexts. Although active adversary models are generally viewed
as theoretical issues,1 Bleichenbacher’s attack makes use of an oracle that only
detects conformance with respect to the padding format, a real-life assumption
leading to a practical threat. Pkcs#1 was subsequently updated in the release
2.0 [15] and patches were issued to users wishing to continue using the old version
of the standard.

Independently, there exist several well-known chosen-plaintext attacks on
rsa-based encryption schemes [8, 5]. These typically enable an attacker to de-
crypt ciphertexts at moderate cost without requiring to factor the public mod-
ulus. The most powerful cryptanalytic tool applicable to low exponent rsa is
probably the one based on a theorem due to Coppersmith [6]. As a matter of fact,
one major purpose of imposing a partially random padding form to messages,
besides attempting to achieve a proper security level such as indistinguishability,
is to render the whole encryption scheme resistant against such attacks.

This paper shows that, despite these efforts, chosen-plaintext attacks are
actually sufficient to break pkcs#1 v1.5 even in cases when Coppersmith’s
attack does not apply. We introduce new cryptanalytic techniques allowing an
attacker to retrieve plaintexts belonging to a certain category, namely messages
ending by a required minimum number of zeroes. The first attack requires two
or more ciphertexts corresponding to the same plaintext. Although specific, our
attacks only require a very small amount of ciphertexts (say ten of them), are
completely independent from the public modulus given its size and, moreover,
are fully practical for usual modulus sizes.

The rest of this paper is divided as follows. Section 2 introduces a new low-
exponent attack for which we provide a comparison with Coppersmith’s attack
in Section 3. Section 4 shows how to deal with arbitrary public exponents while
staying within the chosen-plaintext attack model. Counter-measures are dis-
cussed in Section 5. For completeness, Appendix A reports practical experiments
of our technique performed on 1024-bit ciphertexts.

2 Our Low-Exponent Chosen-Plaintext Attack

We briefly recall the pkcs#1 v1.5 encoding procedure [14]. Let {n, e} be an rsa

public key and d be the corresponding secret key. Denoting by k the byte-length
of n, we have 28(k−1) ≤ n < 28k. A message m of size |m| bytes with |m| ≤ k−11
is encrypted as follows. A padding r′ consisting of k− 3− |m| ≥ 8 nonzero bytes
is generated at random. Then the message m gets transformed into:

pkcs(m, r′) = 000216‖r′‖0016‖m,

and encrypted to form the ciphertext:

c = pkcs(m, r′)e mod n .

1 Chosen-ciphertext attacks require the strong assumption that the adversary has a
complete access to a decryption oracle.

376 Jean-Sébastien Coron, Marc Joye, David Naccache, and Pascal Paillier

Letting r = (000216‖r′), we can write pkcs(m, r′) = r 2β + m with β =
8|m| + 8. Now assume that m has its least Z significant bits equal to zero.
Hence, we can write m = m̄ 2Z and subsequently:

pkcs(m, r′) = 2Z(r 2β−Z + m̄) .

From two encryptions of the same message m, (i.e. ci = [2Z(ri2
β−Z +

m̄)]e mod n for i = 1, 2), the attacker evaluates:

∆ :=
c1 − c2
2eZ 2β−Z

mod n

≡ (r1 − r2)
︸ ︷︷ ︸

:=ω

[e−1∑

j=0

(r1 2
β−Z + m̄)e−1−j(r2 2

β−Z + m̄)j
]

︸ ︷︷ ︸

:=v

(mod n) . (1)

The attack consists in the following: assuming that r1 > r2 and the number
of zeroes Z to be large enough so that 0 < ω v < n, relation (1) holds over the
integers, and ω = r1 − r2 must divide ∆. Therefore, by extracting the small
factors of ∆ one expects to reconstruct a candidate for ω. The correct guess for
ω will lead to the message m using the low-exponent attack described in [7].

Letting R the bit-size of random r′ (the standard specifies R ≥ 64), M the
bit size of m̄, and N the bit size of modulus n, the condition w ·v < n is satisfied
whenever:

eR+ (e− 1)× (M + 10) < N . (2)

With N = R+M + Z + 24, equation (2) is equivalent to:

(e− 1)R+ (e− 2)M + 10e− 34 < Z

2.1 Determining the Factors of ∆ Smaller than a Bound B

The first step of our attack consists in computing a set D of divisors of ∆ by
extracting the primes P = {p1, . . . , pi} that divide ∆ and are smaller than a
bound B. If all the prime factors of ω are smaller than B (in this case, ω is said
to be B-smooth), then ω ∈ D. Since only a partial factorization of ∆ is required,
only factoring methods which complexity relies on the size of the prime factors
are of interest here. We briefly recall four of these: trial division, Pollard’s ρ
method, p − 1 method and Lenstra’s elliptic curve method (ECM) and express
for each method the asymptotic complexity C(p) of extracting a factor p from a
number n.

Trial division method: Trial division by primes smaller than a bound B de-
mands a complexity of p+ log n for extracting p.

New Attacks on PKCS#1 v1.5 Encryption 377

Pollard’s ρ-method [4]: Let p be a factor of n. Pollard’s ρ-method consists in
iterating a polynomial with integer coefficients f (i.e. computing f(x) mod n,
f(f(x)) mod n, and so on) until a collision modulo p is found (i.e. x ≡ x′

(mod p)). Then with high probability gcd(x − x′(mod n), n) yields p. The
complexity of extracting a factor p is O(

√
p). In practice, prime factors up

to approximately 60 bits can be extracted in reasonable time (less than a
few hours on a workstation).

p− 1 method: If p− 1 is B-smooth then p− 1 divides the product `(B) of all
primes smaller than B. Since ap−1 mod p = 1, we have a`(B) mod p = 1 and
thus gcd(a`(B) − 1 mod n, n) gives p.

Lenstra’s elliptic curve method (ECM) [11]: ECM is a generalization of
the p − 1 factoring method. Briefly, a point P of a random elliptic curve
E modulo n is generated. If #E/(p) (i.e. the order of the curve modulo p)
is B-smooth, then [`(B)]P = O, the point at infinity. This means that an
illegal inversion modulo n has occurred and p is revealed. ECM extracts a
factor p of n in exp((

√
2 + o(1))

√
log p log log p) expected running time. In

practice, prime factors up to 80 bits can be pulled out in reasonable time
(less than a few hours on a workstation).

Traditionally, ψ(x, y) denotes the number of integers z ≤ x such that z is
smooth with respect to the bound y. The theorem that follows gives an estimate
for ψ(x, y).

Theorem 1 ([9]). For any non-negative real u, we have:

lim
x→∞

ψ(x, x1/u)/x = ρ(u) ,

where ρ(u) is the so-called Dickman’s function and is defined as:

ρ(t) =







1 if 0 ≤ t < 1

ρ(n)−
∫ t

n

ρ(v − 1)

v
dv if n ≤ t < n+ 1

.

Theorem 1 shows that a uniformly distributed random integer z between 1
and x is x1/u-smooth with probability ρ(u). However, the integers referred to
in the sequel are not uniformly distributed. Consequently, the probability and
complexity estimates must be considered to be heuristic.

The probability that ω is B-smooth is approximately ρ(R/ log2B). Thus us-
ing two ciphertexts, the probability of finding all factors of ω is ρ(R/ log2B).
When using k ciphertexts, k×(k−1)/2 paired combinations can be obtained. As-
suming statistical independence between the factorization of the corresponding
w, approximately

k =
√

2/ρ(R/ log2B)

ciphertexts are required to compute the factorization of at least one ω in com-
plexity:

378 Jean-Sébastien Coron, Marc Joye, David Naccache, and Pascal Paillier

C(B)/ρ(R/ log2B) .

In practice, a factorization algorithm starts with trial division up to some bound
B′ (we took B′ = 15000), then Pollard’s ρ-method and the p − 1 method are
applied, and eventually the ECM. In Table 1 we give the running times obtained
on a Pentium 233-MHz to extract a prime factor of size L bits with the ECM,
using the arithmetic library MIRACL [12].

Table 1. Running times for extracting a prime factor of L bits using the ECM

L 32 40 48 56 64 72

time in seconds 6 15 50 90 291 730

This clearly shows that for R ≤ 72, the factors of ω can be recovered effi-
ciently. For R > 72 we estimate in Table 2 the execution time and the number
of required ciphertexts, when only factors up to 72 bits are to be extracted.

Table 2. Running time and approximate number of ciphertexts needed to recover the
factorization of at least one ω

L 128 160 192 224 256

time in seconds 1719 3440 7654 19010 51127

number of ciphertexts 3 4 5 8 12

2.2 Identifying the Candidates for ω

From the previous section we obtain a set of primes P = {p1, . . . , pi} dividing
∆, such that the primes dividing ω are in P. From P we derive a set D = {∆j}
of divisors of ∆, which contains ω. Denoting by d(k) the number of divisors of
an integer k, the following theorem [10] provides an estimate of the number of
divisors of a random integer. We say that an arithmetical function f(k) is of the
average order of g(k) if

f(1) + f(2) + . . .+ f(k) ∼ g(1) + . . .+ g(k) .

We state:

Theorem 2. The average order of d(k) is log k. More precisely, we have:

d(1) + d(2) + · · ·+ d(k) = k log k + (2γ − 1)k +O(
√
k) ,

where γ is Euler’s constant.

New Attacks on PKCS#1 v1.5 Encryption 379

Theorem 2 shows that if ∆ was uniformly distributed between 1 and n then
its number of divisors and consequently the average number of candidates for ω
would be roughly log n. Since ∆ is not uniformly distributed this only provides
an heuristic argument to show that the average number of candidates for ω
should be polynomially bounded by log n.

In practice, not all divisors ∆j need to be tested since only divisors of length
close to or smaller than R are likely to be equal to ω. Moreover, from Eq. (1)
and letting m̄2 = r2 2

β−Z + m̄, we have:

∆ = ω

e−1∑

j=0

(ω 2β−Z + m̄2)
e−1−j m̄j

2

= ω

e−1∑

j=0

e−1−j
∑

k=0

(
e− 1− j

k

)

(ω 2β−Z)e−1−j−k m̄j+k
2

= ω
e−1∑

h=0

[
h∑

i=0

(
e− 1− i
h− i

)]

(ω 2β−Z)e−1−h m̄h
2 ,

whence, noting that
∑h

i=0

(
e−1−i
h−i

)
≡ 0 (mod e) for 1 ≤ h ≤ e− 1,

∆ ≡ ω (ω 2β−Z)e−1 (mod e) .

In particular, when e is prime, this simplifies to

∆ ≡ ωe 2(β−Z)(e−1) ≡ ω (mod e) .

This means that only a ∆j satisfying ∆ ≡ ∆j (∆j 2
β−Z)e−1 (mod e) (or ∆ ≡ ∆j

(mod e) if e is prime) is a valid candidate for ω.

2.3 Recovering m Using the Low-Exponent RSA with Related
Messages Attack

The low-exponent attack on rsa with related messages described in [7] consists
in the following: assume that two messages m1, m2 verify a known polynomial
relation P of the form

m2 = P(m1) with P ∈ ZZn[z] and deg(P) = δ ,

and suppose further that the two corresponding ciphertexts c1 and c2 are known.
Then z = m1 is a common root of polynomials Q1,Q2 ∈ ZZn[z] given by

Q1(z) = ze − c1 and Q2(z) = (P(z))e − c2 ,
so that with high probability one recovers m1 by

gcd(Q1,Q2) = z −m1 (mod n) .

380 Jean-Sébastien Coron, Marc Joye, David Naccache, and Pascal Paillier

From the previous section we obtain a set of divisors ∆j of ∆, among which
one is equal to ω. Letting m1 = pkcs(m, r1) and m2 = pkcs(m, r2) we have:

c1 = me
1 (mod n), c2 = me

2 (mod n), and m2 = m1 − 2β ω .

For a divisor ∆j of ∆, the attacker computes:

Rj(z) = gcd(ze − c1, (z − 2β∆j)
e − c2) .

If ∆j = ω then, with high probability, Rj(z) = z −m1 (mod n), which yields
the value of message m, as announced.

3 Comparison with Coppersmith’s Attacks on

Low-exponent RSA

Coppersmith’s method is based on the following theorem [6]:

Theorem 3 (Coppersmith). Let P ∈ ZZn[x] be a univariate polynomial of

degree δ modulo an integer n of unknown factorization. Let X be the bound on

the desired solution. If X < 1
2 n

1/δ−ε, one can find all integers x0 with P(x0) = 0
(mod n) and |x0| ≤ X in time polynomial in (log n, δ, 1/ε).

Corollary 1 (Coppersmith). Under the same hypothesis and provided that

X < n1/δ, one can find all integers x0 such that P(x0) = 0 (mod n) and |x0| ≤
X in time polynomial in (log n, δ)

Theorem 3 applies in the following situations:

Stereotyped messages: Assume that the plaintextm consists of a known part
B = 2kb and an unknown part x. The ciphertext is c = me = (B + x)e

(mod n). Using Theorem 3 with the polynomial P(x) = (B + x)e − c, one
can recover x from c if |x| < n1/e.

Random padding: Assume that two messages m and m′ satisfy an affine re-
lation m′ = m + r with a small but unknown r. From the rsa-encryptions
of the two messages:

c = me mod n and c′ = (m+ r)e mod n ,

we eliminatem from the two above equations by taking their resultant, which
gives a univariate polynomial in r modulo n of degree e2. Thus, if |r| < n1/e2 ,
r can be recovered, wherefrom we derive m as in Section 2.3.

In our case of interest, for a message ending with Z zeroes, the stereotyped
messages attack works for e(M +R) < N and the random padding attack works
for e2R < N . Neglecting constant terms, our method of Section 2 is effective for

eR+ (e− 1)M < N .

New Attacks on PKCS#1 v1.5 Encryption 381

M

R

N

N/3

N/2 N

N/9

(1)

(2)

(3)

N/3

Fig. 1. Domains of validity for e = 3 of Coppersmith’s stereotyped attack (1), Cop-
persmith’s random padding attack (2) and our attack (3).

Consequently, as illustrated in Figure 1, for e = 3, our method improves Cop-
persmith’s method whenever







N

e2
<R<

N

e
and

N

e
−R <M<

N

e− 1
− e

e− 1
R

.

4 A Chosen Plaintext Attack for Arbitrary Exponents

4.1 Description

In this section we describe a chosen plaintext attack against pkcs#1 v1.5 en-
cryption for an arbitrary exponent e. The attack makes use of a known flaw in
ElGamal encryption [3] and works for very short messages only. As in Section 2
we only consider messages ending by Z zeroes:

m = m̄‖0 . . . 02 .

For a random r′ consisting of nonzero bytes, the message m is transformed
using pkcs#1 v1.5 into:

pkcs(m, r′) = 000216‖r′‖0016‖m̄‖0 . . . 02
and encrypted into c = pkcs(m, r′)e mod n. Letting x = 000216‖r′‖0016‖m̄, we
can write

pkcs(m, r′) = x 2Z .

382 Jean-Sébastien Coron, Marc Joye, David Naccache, and Pascal Paillier

We define y = c/2eZ = xe (mod n), M the bit-size of m̄, and X the bit-size of
x. Hence, we have X =M +R+ 10. Assuming that x = x1 x2 where x1 and x2

are integers smaller than a bound B, we construct the table:

y

ie
mod n for i = 1, . . . , B

and for each j = 0, . . . , B we check whether je mod n belongs to the table, in
which case we have y/ie = je mod n. Hence, from {i, j} we recover x = i · j,
which leads to the message m.

4.2 Analysis

The attack requires O
(
B(log n)((log n)3+logB)

)
operations. Let φ(x, y) denote

the number of integers v < x such that v can be written as v = v1 v2 with v1 < y
and v2 < y. The following theorem gives a lower bound for φ(x, y).

Theorem 4. For x→∞ and 1/2 < α < 1,

lim inf φ(x, xα)/x ≥ log
α

1− α . (3)

Proof: For y > d√xe, we note:

T (x, y) = {v < x, such that v is y-smooth and not dx/ye-smooth} .

Any integer v ∈ T (x, y) has a prime factor p standing between dx/ye and y, and
so v = p r with p < y and r < y. Consequently,

φ(x, y) ≥ #T (x, y) . (4)

From Theorem 1 and ρ(t) = 1− log t for 1 ≤ t ≤ 2, we have:

lim
x→∞

#T (x, xα)/x = log
α

1− α ,

which, using Eq. (4) gives (3). ut
Since x is not uniformly distributed between zero and 2X , Theorem 4 only

provides a heuristic argument to show that when taking B = 2αX with α > 1/2,
then with probability greater than

log
α

1− α ,

the attack recovers x in complexity 2αX+o(1).
Thus, an eight-bit message encrypted with pkcs#1 v1.5 with a 64-bit ran-

dom padding string can be recovered with probability ' 0.16 in time and space
complexity approximately 244 (with α = 0.54).

New Attacks on PKCS#1 v1.5 Encryption 383

5 Experiments and Counter-measures

A number of counter-measures against Bleichenbacher’s attack are listed on RSA
Laboratories’ web site (http://www.rsa.com/rsalabs/). A first recommenda-
tion is a rigorous format check of all decrypted messages. This has no effect on
our attack since we never ask the legitimate receiver to decrypt anything. A
second quick fix consists in asking the sender to demonstrate knowledge of m to
the recipient which is done by disclosing some additional piece of information.
This also has no effect on our attack. The same is true for the third correction,
where a hash value is incorporated in m, if the hash value occupies the most
significant part of the plaintext i.e.

pkcs(m, r′) = 000216‖r′‖0016‖SHA(m)‖m .

A good way to thwart our attack is to limit Z. This can be very simply
achieved by forcing a constant pattern τ in pkcs(m, r′):

pkcs(m, r′) = 000216‖r′‖0016‖m‖τ .

This presents the advantage of preserving compatibility with pkcs#1 v1.5 and
being very simple to implement. Unfortunately, the resulting format is insuffi-
ciently protected against [2]. Instead, we suggest to use:

pkcs(m, r′) = 000216‖r′‖0016‖m‖SHA(m, r′) ,

which appears to be an acceptable short-term choice (r′ was added in the hash
function to better resist [2] at virtually no additional cost). For long-term per-
manent solutions, we recommend OAEP (pkcs#1 v2.0) [1].

6 Extensions and Conclusions

We proposed two new chosen-plaintext attacks on the pkcs#1 v1.5 encryp-
tion standard. The first attack applies to small public exponents and shows
how messages ending by sufficiently many zeroes can be recovered from the ci-
phertexts corresponding to the same plaintext. It is worth seeing our technique
as a cryptanalytic tool of independent interest, which provides an extension of
Coppersmith’s low-exponent attack. Our second attack, although remaining of
exponential complexity in a strict sense, shows how to extend the weakness to
any public exponent in a practical way.

The attacks can, of course, be generalized in several ways. For instance, one
can show that the padding format:

µ(m1,m2, r
′) = 000216‖m1‖r′‖0016‖m2

(where the plaintext m = m1‖m2 is spread between two different locations), is
equally vulnerable to the new attack: re-defining r′′ = m1‖r′, we can run the

384 Jean-Sébastien Coron, Marc Joye, David Naccache, and Pascal Paillier

attack (as is) on pkcs(m, r′′) and notice that the size of ω will still be R′ given
that the most significant part of r′′ is always constant.

We believe that such examples illustrate the risk induced by the choice of
ad hoc low-cost treatments as message paddings, and highlights the need for
carefully scrutinized encryption designs, strongly motivating (once again) the
search for provably secure encryption schemes.

7 Acknowledgements

We wish to thank the referees for their valuable remarks and improvements to
this work.

References

1. M. Bellare and P. Rogaway, Optimal Asymmetric Encryption, Advances in Cryp-
tology — Eurocrypt ’94, vol. 950 of Lecture Notes in Computer Science, pp.
92–111, Springer-Verlag, 1994.

2. D. Bleichenbacher, Chosen ciphertext attacks against protocols based on the rsa

encryption standard pkcs#1, Advances in Cryptology — Crypto ’98, vol. 1462
of Lecture Notes in Computer Science, pp. 1–12, Springer-Verlag, 1998.

3. D. Boneh, Personal communication.
4. R. Brent, An improved Monte Carlo factorization algorithm, Nordisk Tidskrift för

Informationsbehandling (bit) vol. 20, pp. 176–184, 1980.
5. D. Coppersmith, Finding a small root of a univariate modular equation, Advances

in Cryptology — Eurocrypt ’96, vol. 1070 of Lecture Notes in Computer Science,
pp. 155–165, Springer-Verlag, 1996.

6. D. Coppersmith, Small solutions to polynomial equations, and low exponent rsa

vulnerabilities, J. of Cryptology, 10(4), pp. 233-260, 1997.
7. D. Coppersmith, M. Franklin, J. Patarin and M. Reiter, Low exponent rsa with

related messages, Advances in Cryptology — Eurocrypt ’96, vol. 1070 of Lecture
Notes in Computer Science, pp. 1–9, Springer-Verlag, 1996.

8. Y. Desmedt and A. Odlyzko. A chosen text attack on the rsa cryptosystem and

some discrete logarithm schemes, Advances in Cryptology — Crypto ’85, vol.
218 of Lecture Notes in Computer Science, pp. 516–522, Springer-Verlag, 1986.

9. K. Dickman, On the frequency of numbers containing prime factors of a certain

relative magnitude, Arkiv för matematik, astronomi och fysik, vol. 22A, no. 10,
pp. 1–14, 1930.

10. G.H. Hardy and E.M. Wright, An Introduction to the theory of numbers, Fifth
edition, Oxford University Press, 1979.

11. H. Lenstra, Factoring integers with elliptic curves, Annals of mathematics 126,
1987.

12. Multiprecision Integer and Rational Arithmetic C/C++ Library (MIRACL),
available at ftp://ftp.compapp.dcu.ie/pub/crypto/miracl.zip.

13. R. Rivest, A. Shamir and L. Adleman, A method for obtaining digital signatures

and public-key cryptosystems, Communications of the ACM, vol. 21-2, pp. 120-
126, 1978.

14. rsa Data Security, PKCS #1: rsa Encryption Standard, Nov. 1993. Version 1.5.

New Attacks on PKCS#1 v1.5 Encryption 385

15. rsa Laboratories, PKCS #1: rsa Cryptography Specifications, Sep. 1998, version
2.0.

386 Jean-Sébastien Coron, Marc Joye, David Naccache, and Pascal Paillier

A A Full-scale 1024-bit Attack

To confirm the validity of our attack, we experimented it on RSA Laborato-
ries’ official 1024-bit challenge RSA-309 for the public exponent e = 3. As a
proof of proper generation r′1 and r′2 were chosen to be RSA-100 mod 2128 and
RSA-110 mod 2128. The parameters are N = 1024, M = 280, R = 128, Z = 592
and β = 880. Note that since R > N/9 and R+M > N/3, Coppersmith’s attack
on low-exponent rsa does not apply here.

n = RSA-309

= bdd14965 645e9e42 e7f658c6 fc3e4c73 c69dc246 451c714e b182305b 0fd6ed47

d84bc9a6 10172fb5 6dae2f89 fa40e7c9 521ec3f9 7ea12ff7 c3248181 ceba33b5

5212378b 579ae662 7bcc0821 30955234 e5b26a3e 425bc125 4326173d 5f4e25a6

d2e172fe 62d81ced 2c9f362b 982f3065 0881ce46 b7d52f14 885eecf9 03076ca5

r′1 = RSA-100 mod 2128

= f66489d1 55dc0b77 1c7a50ef 7c5e58fb

r′2 = RSA-110 mod 2128

= e2a5a57d e621eec5 b14ff581 a6368e9b

m = m̄ 2Z

00
I

49

′

27
m

6d 20
a

6120
c

63
i

69
p

70
h

68
e

65
r

72
t

74
e

65
x

78
t

74
,

2c20
p

70
l

6c
e

65
a

61
s

73
e

6520
b

62
r

72
e

65
a

61
k

6b20

m

6d
e

6520
!

21

µ1 = pkcs(m, r′1)

= 0002f664 89d155dc 0b771c7a 50ef7c5e 58fb0049 276d2061 20636970 68657274

6578742c 20706c65 61736520 62726561 6b206d65 20210000 00000000 00000000

00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000

00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000

µ2 = pkcs(m, r′2)

0002e2a5 a57de621 eec5b14f f581a636 8e9b0049 276d2061 20636970 68657274

6578742c 20706c65 61736520 62726561 6b206d65 20210000 00000000 00000000

6578742c 20706c65 61736520 62726561 6b206d65 20210000 00000000 00000000

00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000

00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000

c1 = µ3
1 mod n

= 2c488b6f cf2e3d4c 01b82776 64790af0 d78f82fd 4605fda2 76b9356d 80e82cfb

8737340f 5a7091b0 38c4bb41 ae6462d9 f751766c c343c87b 54397ca2 647d6a81

3609d876 f29554e0 9efcbf2d b49d8300 5fce9ea8 80fd9cf2 476fbab0 257f1462

d295a4cb 5468bb86 b3151a49 14e51ed1 7cbc083c 9ae0b4da 9c2a7de0 079df4a0

c2 = µ3
2 mod n

= 829da9a7 af2c61ed 7bb16f94 7cb90aa7 df8b99df c06017d7 3afc80fd 64494abb

3c1cb8db 1167eccd d1b6d09e 8ca5a98c c5e19620 b6313eef 495169d7 9ed9a2b1

cb393e7d 45bea586 49e20986 9a2399f7 f70dd819 90183e1a 3c6a971a 33497e57

f0ad9fb9 0c7d331e 7108d661 4c487a85 36cf7750 060811d8 70b8a040 e0c39999

New Attacks on PKCS#1 v1.5 Encryption 387

Using the ECM it took a few hours on a single workstation to find that:

∆ = p5
1 ×

10∏

i=2

pi

where all the pi are primes. Amongst the 3072 = 6 × 29 possible divisors only
663 corresponded to 128-bit candidates {∆1,∆2, . . . ,∆663} where the ∆i are in
decreasing order. Then we computed:

Rj(z) = gcd(ze − c1, (z − 2β∆j)
e − c2) for 1 ≤ j ≤ 663 .

For j 6= 25, Rj(z) = 1 and for j = 25 we obtained:

R25(z) = z −m1 .

One can check that:

∆25 = w = p5
1 p2 p3 p4 p5 p8 ,

and

m1 = µ1 = pkcs(m, r′1) .

∆ = 00000001 fa75bf4e 390bdf4b 7a0524e0 b9ebed20 5758be2e f1685067 1de199af

0f8714f7 077a6c47 6870ea6d 2de9e7fb 3c40b8d2 017c0197 f9533ed1 f4fe3eab

836b6242 aa03181a 56a78001 7c164f7a c54ecfa7 73583ad8 ffeb3a78 eb8bcbe2

8869da15 60be7922 699dc29a 52038f7b 83e73d4e 7082700d 85d3a720

p1 = 00000002, p2 = 00000007, p3 = 00000035, p4 = 000000c5, p5 = 4330e379

p6 = 548063d7, p7 = 001ebf96 ff071021, p8 = 0000021b ac4d83ae 7dedba55

p9 = 0000128a ec52c6ec 096996bf

p10 = 00000022 e3b1a6b0 13829b67 f604074a 5a1135b3 45be0835 ea407ed7 8138a27a

112e78c8 131f3bc3 b6d17dc0 e8a905f1 ca4b6aff 680bc58c 4962309d c7aaccad

2116235c b0d6803e e0a58ca7 55cbea23 e936f189 a76dfbeb

∆25 = 13bee453 6fba1cb1 6b2a5b6d d627ca60

R25(z) = z −m1

m1/2
Z mod 2M 00

I

49

′

27
m

6d 20
a

6120
c

63
i

69
p

70
h

68
e

65
r

72
t

74
e

65
x

78
t

74
,

2c20
p

70
l

6c
e

65
a

61
s

73
e

6520
b

62
r

72
e

65
a

61
k

6b20

m

6d
e

6520
!

21

