
Computing Inverses

over a Shared Secret Modulus ?

Dario Catalano1, Rosario Gennaro2, and Shai Halevi2

1 Dipartimento di Matematica e Informatica,
Università di Catania. Viale A. Doria 6, 95125 Catania.

Email: catalano@dmi.unict.it.
2 IBM T.J.Watson Research Center,

PO Box 704, Yorktown Heights, New York 10598, USA.
Email: {rosario,shaih}@watson.ibm.com

Abstract. We discuss the following problem: Given an integer φ shared
secretly among n players and a prime number e, how can the play-
ers efficiently compute a sharing of e−1 mod φ. The most interesting
case is when φ is the Euler function of a known RSA modulus N ,
φ = φ(N). The problem has several applications, among which the con-
struction of threshold variants for two recent signature schemes proposed
by Gennaro-Halevi-Rabin and Cramer-Shoup.

We present new and efficient protocols to solve this problem, improving
over previous solutions by Boneh-Franklin and Frankel et al. Our basic
protocol (secure against honest but curious players) requires only two
rounds of communication and a single GCD computation. The robust
protocol (secure against malicious players) adds only a couple of rounds
and a few modular exponentiations to the computation.

1 Introduction

In this paper we consider the problem of computing a multiplicative inverse of a
known prime number over a shared secret modulus. Specifically, given a known
prime number e, and an integer φ shared secretly among n players, how can
the players compute a sharing of e−1 mod φ, without revealing anything about
φ. The most interesting case is when φ is the Euler function of a known RSA
modulus φ = φ(N), since in this case the security of the RSA cryptosystem [22]
is based on the assumption that φ(N) remains secret.
The most important applications of distributed modular inversion over a

shared modulus are distributed RSA key generation, and distributing the new
signature schemes of Gennaro-Halevi-Rabin [17] and Cramer-Shoup [9]. In par-
ticular, in the latter applications it is very important to have an efficient inversion

? Extended Abstract. A more complete version is available from
http://www.research.ibm.com/security/dist-inv.ps. The first author’s re-
search was carried out while visiting the Computer Science Department of
Columbia University.



192 Dario Catalano, Rosario Gennaro, and Shai Halevi

protocol, since in these signature schemes the inversion operation is performed
with a different exponent e for each message signed.
We present new and efficient protocols to solve the problem of inversion with

a shared modulus. We first present a basic protocol which is only secure against
honest but curious players. This protocol is extremely efficient as it requires only
two rounds of communication and a single GCD computation on the part of the
players. The protocol is also unconditionally secure (given a network of private
channels). We then add robustness to the protocol in order to make it secure
against malicious players. These modifications add only a couple of rounds and
a few modular exponentiations to the computation. To overcome the difficulty
of working over an unknown modulus, the protocols use computations over the
integers. Some of the techniques developed to prove the security of the protocols
may be of independent interest.

Previous work. Although our problem can in principle be solved using generic
multiparty computation protocols [19, 3, 8], the resulting solutions would hardly
be practical.

Boneh-Franklin. The first to address the issue of an efficient solution for
this problem were Boneh and Franklin, who in a breakthrough result show how
n > 3 parties can jointly generate an RSA key without a trusted dealer [5]. In
particular, as part of their solution they show how the parties jointly compute
d = e−1 mod φ(N), where N, e are the RSA modulus and public exponent,
respectively, and φ(N) is shared among the parties. Our solution improves on
some of the features of the Boneh-Franklin protocol. In particular:

1. We only use a single invocation of the BGW [3] multiplication protocol,
while their protocol needs two of them. Hence the round complexity of our
protocol is half that of the protocol in [5].

2. The Boneh-Franklin protocol is based on an n-out-of-n solution where a
single crash could prevent the protocol from completing.1 To obtain a t-
out-of-n solution, they suggest using the “share-backup” approach of Rabin
[21], but this approach has some known problems. For one thing, it incurs
the overhead of multiple layers of (verifiable) secret-sharing. Moreover, it
requires that the “good parties” recover the secret information of a party
who may simply be temporarily disconnected.
In contrast, our solution achieves directly a t-out-of-n threshold, using poly-
nomial sharings and secret computations over the integers. Some of the most
interesting technical contribution of our work are in the security proofs of
these secret computations over the integers.

3. The Boneh-Franklin results are presented only in the honest-but-curious
model while we are also able to present robust solutions that tolerate mali-
cious players.

1 In their setting, this is the natural solution, since they also generate the modulus so
that it is shared n-out-of-n. Indeed, to use our solution in their setting, one would
have to implement also methods for generating and using the modulus in a t-out-of-n
fashion.



Computing Inverses over a Shared Secret Modulus 193

4. In an updated version of [5], some other solutions are presented. One of
them is particularly efficient since it avoids costly increases in the size of the
shares. However, to achieve this efficiency, the proposed solution leaks a few
bits of information about φ(N). Although this is acceptable for a protocol
that is invoked only once (since those few bits could be guessed anyway by
an adversary), it is not clear what happens when the protocol is invoked
several times with the same φ(N) (as in our signature applications). Hence,
we designed our protocols so that they do not leak any information about
φ(N), in a strong, statistical, sense. (This requires some increase in the size
of the shares, though.)

Frankel-McKenzie-Yung. Building on the Boneh-Franklin solution, Frankel,
Mc Kenzie and Yung describe in [14] a way to add robustness to the protocols in
[5], and in particular how to add robustness to the inversion protocol. The FMY
protocol follows the structure of [5], so it also needs two invocations of the BGW
multiplication protocol. Moreover in order to achieve a t-out-of-n threshold, the
FMY protocol uses representation changes for the sharing of the secret data.
Namely, data which is shared in a t-out-of-n fashion is converted into a t-out-of-t
fashion in order to perform computations, and then re-converted into a t-out-of-
n sharing to preserve tolerance of crashing or malicious players. The complexity
of the representation change is quite high, making the combined protocol much
less efficient. Although the complexity of this protocol is acceptable for the task
of distributed RSA key generation, where the protocol is only run once, it is too
high for a protocol that must be efficiently run many times, as in the case of the
signature applications. We avoid this efficiency cost, by keeping the data always
in a t-out-of-n representation.

Others. Some of the techniques that we use in this work originated in papers
over robust and proactive RSA. In particular, working over the integers in order
to overcome the difficulty of computing modulo an unknown integer was used in
several previous papers [13, 18, 12, 21]. Finally, the “dual” problem of computing
x−1 mod p where p is known and x is shared was discussed in [2].

2 Preliminaries

The network model. We consider a network of n players, that are connected
by point-to-point private channels and by a broadcast channel.2 We model fail-
ures in the network by an adversary A, who can corrupt at most t of the players.
We distinguish between the following types of “failures”:

– honest but curious: the adversary can just read the memory of the corrupted
players but not modify their behavior;

2 The communication assumptions allow us to focus on a high-level description of
the protocols, and they can be eliminated using standard techniques for privacy,
authentication, commitment and agreement.



194 Dario Catalano, Rosario Gennaro, and Shai Halevi

– halting: an “honest but curious” adversary who may also cause any of the
corrupted players to crash and abort the protocol;

– malicious: the adversary may cause players to deviate arbitrarily from the
protocol.

We assume for simplicity that the adversary is static, i.e. the set of corrupted
players is decided at the beginning of the computation of a protocol.3 We assume
communication is synchronous, except that we allow rushing adversaries (i.e.
adversaries who decide the messages of the bad players at round R after having
seen the messages of the good players at the same round).

2.1 Definitions

Notations. In the following we denote the shared secret modulus by φ, and by
N we denote an approximate bound on φ, which must be known in the protocol
(in the typical RSA application, we can use the public modulus N as a bound
on φ = φ(N)). We also denote by L the factorial of n (the number of players),
i.e. L = n!
A Modular Inversion Protocol is an n-player protocol, where as an input to

the protocol the players share a secret modulus φ (with player Pi having the
share φi), and all the players know public inputs e (a prime number) and N (an
approximate bound on φ). At the end of the protocol, each player Pi has a secret
output di, which would be its share of the modular inverse d = e−1 mod φ.

Correctness. We say that a Modular Inversion Protocol is correct if the
output values d1, . . . , dn constitute a t-out-of-n secret sharing of d = e−1 mod φ

Privacy. We define privacy using the usual simulation approach. That is, we
consider the view of the adversary A during a protocol to be the set of messages
sent and received by the bad players during a run of the protocol. We say that
a Modular Inversion Protocol is private if for any adversary A there exist a
simulator S that runs an execution of the protocol together with A and produces
for it a view that is indistinguishable from the real one.

Security. We say that a Modular Inversion Protocol is secure if it is correct
and private.

Remark 1 (Trusted dealer) In the above definition and in the presentation
of the protocols, we implicitly assume that the modulus φ is already shared
among the players using an appropriate t-out-of-n scheme. Specifically, for our
protocols we always assume that this sharing is done over the integers, with
shares from some appropriately large domain. In some cases we also assume that
commitments to the shares of all the players are publicly known (see Section 5.2).
The exact sharing formats of φ that we need are stated explicitly in the descrip-
tion of the protocols.

3 It is possible to use recent techniques by Canetti et al. [6] to make our protocols
secure against adaptive adversaries who corrupt players at any stage during the
protocol.



Computing Inverses over a Shared Secret Modulus 195

These assumptions can be made formal by including the initialization phase
in the protocol definition, and analyzing the protocols under the assumption
that this initialization is done by a trusted dealer. However, we feel that such a
formulation will only distract attention from the focus of this paper, which is the
inversion protocol. In Section 7 we briefly touch on the subject of eliminating
the trusted dealer and instead having the n players jointly initialize the system.

3 The Basic Idea

We begin with a very simple protocol which, although doesn’t quite solve our
problem, is nonetheless useful for illustrating the basic ideas and techniques
behind our solution. In particular, this protocol only works for n-out-of-n sharing
(i.e. although it tolerates coalitions of n− 1 honest but curious players, it does
not tolerate even a single crashing player).
For this protocol, some multiple of the secret modulus φ is shared additively

between the players. That is, each player Pi holds a value αi such that
∑

i αi =
λφ, where λ is a random integer, much larger than φ (say, of order O(N 2)). In the
inversion protocol, each player Pi chooses a “randomizing integer” ri ∈R [0..N

3],
and broadcasts the value γi = αi + rie, and all the players compute γ =

∑

i γi.
Clearly, we have

γ =
∑

i

γi =
∑

i

αi + rie = λφ+Re

(where R =
∑

i ri). Assuming that GCD(γ, e) = 1, there exist a, b such that
aγ + be = 1 and thus d = aR + b = e−1 mod φ. Additive shares of d can be
easily obtained by having player P1 sets d1 = ar1 + b, and the other players set
di = ari. Clearly d =

∑

i di.
It is not hard to see that the only information leaked by the protocol is the

value γ = λφ+Re. But it is possible to prove that the distribution of γ is (almost)
independent of φ. Specifically, it can be shown that when λ and R follow the
probability distribution described above, then the distributions {γ = λφ + Re}
and {γ′ = λN +Re} are statistically close (up to O(1/N)).
It should be noted that the above protocol is not secure when it is used more

than once with the same λ and different e’s. Indeed, for each input e the protocol
leaks the value λφ mod e, and so after sufficiently many runs with different e’s
we can then recover the integer λφ via the Chinese Remainder Theorem. To
overcome this, it is necessary to use a ”fresh” λ for each input e. In the next
section we show how to do this, and at the same time get a t-out-of-n threshold
solution (but still in the “honest but curious” model).

4 The honest-but-curious case

The protocol in this section achieves t-out-of-n sharing. It assumes the “honest
but curious” model, in which players do not deviate from the protocol but simply
pool together their data to try to gain information (in this model we need n > 2t).



196 Dario Catalano, Rosario Gennaro, and Shai Halevi

It also tolerates crashing faults, i.e. players who suspend their participation in
the protocol (in this case we need n > 3t). In the next section we show how to
add robustness to this protocol (i.e. tolerance of maliciously faulty players).
The difference between this protocol and the one in the previous section

is that all the secrets are shared via polynomials (rather than sums), and the
multiple λ is chosen afresh with each execution. The rest of the protocol is similar
to the basic case. The protocol is described in detail in Figure 1. On a high-level
the protocol goes as follows:

– Each player starts with input a share of the secret modulus φ (multiplied
by a factor of L = n! for technical reasons), via a t-degree polynomial f(z)
with free term Lφ.

– In the first round of the protocol, the players jointly generate two random
t-degree polynomials g(z) and h(z) with free terms Lλ and LR, respectively,
and a random 2t-degree polynomial ρ(z) with free term 0.

– In the second round they reconstruct the 2t-degree polynomial F (z) =
f(z)g(z) + e · h(z) + ρ(z) and recover its free term γ = F (0) = L2λφ+LRe.

– Finally, they use the GCD algorithm to compute a, b such that aγ + be = 1
and set d = aLR + b = e−1 mod φ. Each player Pi computes its share of d
by setting di = ah(i) + b.

Theorem 1. If all the players carry out the prescribed protocol and n > 2t
(n > 3t for the case of crashing faults) then the protocol in Figure 1 is a secure
Modular Inversion Protocol according to the Definition in Section 2.1.

The proof follows a standard simulation argument, and is described in the full
version of this paper. The crucial part of the proof is to prove that λφ+Re can
be statistically approximated by the simulator without knowing φ.

Remark 2 (Size of shares) Note that the shares di of d = e−1 mod φ have
order O(N5). If the di’s are used as exponents (as in the threshold signature
applications we discuss in Section 6), this results in a factor of five slowdown
during the generation of the signature. However, the shares do not have to be this
large. We chose these bounds to make the presentation and the proof simpler.
It is possible to improve (a lot) on those bounds as we discuss in Section 7.

5 A Robust Solution

We show how to deal with a malicious adversary who may corrupt up to t
players and make them behave in any arbitrary manner. We use some standard
techniques like:

– Replace the simple secret-sharing of the first round with Verifiable Secret
Sharing (VSS) a-la-Pedersen [20], to make sure that the players perform
correct sharings;



Computing Inverses over a Shared Secret Modulus 197

Inversion Protocol for Honest-but-Curious players

Private inputs: Sharing of Lφ using a t-degree polynomial over the integers.
Player Pi has private input fi = f(i), where f(z) = Lφ+ a1z + . . .+ atz

t,
and ∀j, aj ∈ [−L2N,L2N ].

Public input: prime number e > n, an approximate bound N on φ.

[Round 1] Each player Pi does the following:

1. Choose λi ∈R [0 . . . N2], and bi,1, . . . , bi,t ∈R [−L2N3 . . . L2N3],
Choose ri ∈R [0 . . . N3], and ci,1, . . . , ci,t ∈R [−L2N4 . . . L2N4]
Choose ρi,1, . . . , ρi,2t ∈R [−L2N5 . . . L2N5]

2. Set gi(z) = Lλi+ bi,1z+ . . .+ bi,tz
t, hi(z) = Lri+ ci,1z+ . . .+ ci,tz

t, and
ρi(z) = 0 + ρi,1z + . . .+ ρi,2tz

2t.
3. Send to each player Pj the values gi(j), hi(j), ρi(j), computed over the

integers.

[Round 2] Each player Pj does the following:

1. Set gj =
∑n

i=1 gi(j), hj =
∑n

i=1 hi(j), and ρj =
∑n

i=1 ρi(j).
(These are its shares of the polynomials g(z) =

∑

i gi(z), h(z) =
∑

i hi(z),
and ρ(z) =

∑

i ρi(z).)
2. Broadcast the value Fi = figi + ehi + ρi

[Output] Each player Pi does the following:

1. From the broadcast values interpolate the 2t-degree polynomial F (z) =
f(z)g(z) + e · h(z) + ρ(z).

2. Using the GCD algorithm, find a, b such that aF (0) + be = 1. If no such
a, b exist, go to Round 1.

3. The inverse of e is d = ah(0)+b. Privately output the share of the inverse,
di = ah(i) + b.

Fig. 1. Computing inverses in the all-honest case



198 Dario Catalano, Rosario Gennaro, and Shai Halevi

– Use error-correcting codes or zero-knowledge proofs to combat malicious
players who may contribute incorrect shares for the reconstruction of the
polynomial F (z) in Round 2.

A few technical complications arise from the fact that we use secret sharing over
the integers. Some are solved using known techniques that were developed for
robust and proactive RSA [15, 12, 21, 7], others require some new machinery.

5.1 Pedersen’s VSS revisited

The problems that we need to tackle is how to ensure that the secrets are shared
correctly in Round 1 and recovered correctly in Round 2. For the first problem,
we use a variant of Pedersen’s Verifiable-Secret-Sharing protocol [20], adjusted
to account for the fact that we share these secrets over the integers.
In Pedersen’s scheme the secret and the shares are viewed as “indices” for

some cyclic group 〈g〉. Hence, there is an efficient mapping between shares and
group elements x 7→ gx, and the players use the group operation to verify vari-
ous properties of the shares. There are, however, two problems with using this
approach in our setting:

– In our setting, it is imperative that the secrets satisfy some equations over
the integers, and not just modulo the order of g. (For example, it would be
useless if the shares of d = e−1 mod φ would interpolate to d + ord(g) over
the integers.)

– Pedersen’s protocol does not provide tools to prove that the shared secret is
“small enough”, whereas the secrecy of our protocol relies on the fact that
we know some bound on the size of the secrets. (For example, if the size of
λ in γ = λφ + Re is much larger than other terms, then clearly γ reveals
information about φ.)

Overcoming the second problem is easy. Each player simply checks that its shares
are bounded in some interval, and then we show that the secret must also be
bounded in some (slightly larger) interval. Solving the first problem is a little
harder. We propose two solutions to this problem, each with its own advantages
and drawbacks:

– Work with a group of unknown order. If the order of g is not known, then it
would be potentially hard for the dealer to arrange that some relations hold
modulo ord(g) but not over the integers. More specifically, we show that
when Pedersen’s protocol is executed over an RSA modulus M = pq, which
is a product of two safe primes (p = 2p′ + 1, q = 2q′ + 1 with p, p′, q, q′ all
primes), then it is indeed a secure VSS under the strong-RSA assumption
(see below).
An advantage of this solution is that the modulus M is independent of the
bound on the size of the secrets and shares, and so a smaller M can be
used. The drawback is that we must work in a system where such an RSA
modulus of unknown factorization is available, and that we use the strong-
RSA assumption, which is stronger than, say, plain RSA or discrete-log. Still,



Computing Inverses over a Shared Secret Modulus 199

for the main applications of our result (constructing threshold versions of the
signature schemes described in [17, 9]), these drawbacks do not matter, since
those signature schemes already use these special-form RSA moduli and are
based on the strong-RSA assumption.

– Work with a very large group. Another option would be to make the order
of g much larger than all the other parameters of the system. This way, if
the players verify that the size of their shares is “small enough” then any
relation that holds modulo ord(g) must also hold over the integers, simply
because the numbers involved can never be large enough to “wrap around”
ord(g).
It is therefore possible to use Pedersen’s original protocol modulo a large
prime, provided that all the players check the size of their shares4 and the
prime is large enough. Specifically, if there are n players, and each player ver-
ifies that its share is smaller than some known bound B, then it is sufficient
to work over a prime p > tntn!B.

The second solution above is pretty straightforward, and will be described in the
full version of the paper. Below we only describe the details of the first solution.
For this solution, we have a public modulus M of unknown factorization, which
is a product of two safe primes (M = pq, p = 2p′ + 1, q = 2q′ + 1). For such
a modulus, the squares form a cyclic subgroup of Z∗

M of order p′q′. We let
G,H ∈ Z∗

N to be two random squares which generate the squares subgroup and
we assume that nobody knows the discrete log of H with respect to G. The
protocol is spelled out in Figure 2.

The Strong-RSA Assumption. This assumption was introduced in [1] and
subsequently used in several other works [15, 17, 9]. It conjectures that given a
random square G ∈ Z∗

M there exists no polynomial time algorithm that can
compute H ∈ Z∗

M and an integer x 6= 1 such that Hx = G modM .

Lemma 1. Under the Strong-RSA assumption, the protocol PedVSS is a VSS
against an adversary who corrupts at most t players when n > 2t.

The reduction from the security of PedVSS (over the integers) to Strong-RSA
follows an approach presented first in [15].

Remark 3 (Share size check) The security proof of PedVSS does not require
that players check the size of their shares in Step 4. This check however guar-
antees the good players that the shared secret is bounded by t2ntL3Mβ (since
the Lagrange interpolation formula tells us that the secret can be written as the
linear combination of t+ 1 shares with coefficients all smaller than L).

Remark 4 (Sharing a known value) In the robust protocol we use the pro-
tocol PedVSS to share either a secret unknown value, or the value 0. The latter
is used to randomize the product polynomial in the multiplication step.

4 Note that in Pedersen’s protocol, the shares and secrets are committed to by setting
C(x) = gxhr mod P for a random r. In our setting, the players would have to check
that the “real share” x is in the allowed interval, but the randomizing element r can
be any element in Zp−1.



200 Dario Catalano, Rosario Gennaro, and Shai Halevi

PedVSS

Dealing Phase

Public Input: RSA modulus M (product of two safe primes), two random
squares G,H ∈ Z∗

M , and a bound β.
Input for the dealer: A secret λ ∈ [0..β].

1. The dealer chooses λ̂ ∈R [0..β] and b1, . . . , bt, b̂1, . . . , b̂t ∈R

[−L2Mβ..L2Mβ].
Sets h(z) = Lλ+ b1z + . . .+ btz

t and ĥ(z) = Lλ̂+ b̂1z + . . .+ b̂tz
t.

Sends privately to player Pi the values h(i) and ĥ(i) computed over the
integers.

Broadcasts publicly the values C0 = GλH λ̂ mod M and Cj =

GbjH b̂j mod M for j = 1, . . . , t.
2. Player Pi checks that

G
h(i)

H
ĥ(i) =

t
∏

j=0

(Cj)
ij mod N (1)

If the check fails, Pi complains publicly. If more than t players complain
the dealer is disqualified.

3. If the dealer is not disqualified, it reveals the values h(i), ĥ(i) satisfying
Equation (1) for the players Pi who complained at the previous step. If
the dealer does not perform this step correctly it is disqualified.

4. Player Pi checks that the values it received and the values broadcasted
by the dealer in the previous steps are integers bounded in absolute value
by tntL2Mβ. If the check fails, Pi exposes its share. If an exposed share
is larger than tntL2Mβ and matches Equation (1) then the dealer is dis-
qualified.a

Reconstruction Phase

1. Each player Pi reveals h(i), ĥ(i). Only the values satisfying Equation 1
will be accepted.
Interpolate t+1 of those values to reconstruct h(z) over the rationals and
output the secret λ = h(0).

a This step is not needed for this protocol to be a “secure VSS protocol”, see
Remark 3.

Fig. 2. Pedersen’s VSS



Computing Inverses over a Shared Secret Modulus 201

5.2 The robust solution

The main change from the honest-but-curious to the robust solution is that all
the secrets are now shared using our variant of Pedersen’s VSS. The full protocol
is described in Figure 3. In this description we distinguish between two cases:
n > 4t or 3t < n ≤ 4t.
When n > 4t we can use error-correcting codes to interpolate the polyno-

mial F (z) (e.g., using the Berlekamp-Welch algorithm [4] or see for example the
appendix in [24]).
For the case of 3t < n ≤ 4t we do not have enough points to do error-

correction, so we identify and sieve out the bad shares by having each player Pi

proves in zero knowledge that its value F (i) is the correct one. In the latter case,
we need the players to have as public input commitments to the coefficients of
the polynomial f(z) (that is used to share Lφ), and we use these commitments
in the zero-knowledge proofs. The ZK proof (described in detail in Appendix
A) is a 3-round, public-coin, honest-verifier statistical ZK proof. When this ZK
proof is executed in the distributed protocol above, each player will run it once
as the prover. The verifier’s challenge will be jointly generated by the other n−1
servers. It is shown by Canetti et.al. [6] that it is sufficient that the protocol is
only honest-verifier ZK since each prover runs the protocol against a “virtual”
verifier which is implemented by the other n−1 players. This virtual verifier will
be forced to act honestly because a majority of the other players is honest.

Remark 5 (N versus M) If the value N is already an RSA modulus, product
of two strong primes, then in Robust Protocol it is possible to set M = N . This
is indeed the case in most of our applications.

Theorem 2. Under the Strong-RSA assumption, if the dealer is honest and n >
3t, then Robust Protocol is a secure Modular Inversion Protocol (according
to the Definition in Section 2.1) in the presence of a malicious adversary who
corrupts at most t players.

6 Applications

The main application of our result is the construction of threshold variants for
two recently proposed signature schemes [17, 9]. Let us briefly recall the concept
of threshold cryptography (which originates in a paper by Desmedt [10]). In a
threshold signature scheme n parties hold a t-out-of-n sharing of the secret key
SK for a signature scheme. Only when at least t + 1 of them cooperate they
can sign a given message. It is very important however that the computation of
such signature is performed without exposing any other information about the
secret key; in particular the players cannot reconstruct SK and use the signing
algorithm, but must use their shares implicitly in a communication protocol
which outputs the signature. A large body of research has been done on threshold
signature schemes: for lack of space we refer the reader only to two literature
surveys [11, 16].



202 Dario Catalano, Rosario Gennaro, and Shai Halevi

Robust Protocol

Private inputs: Sharing of the number Lφ using a t-degree polynomial over
the integers. Player Pi has private input fi = f(i), where f(z) = Lφ + a1z +
. . .+atz

t, and ∀j, aj ∈ [−L2N,L2N ]. If 3t < n ≤ 4t then Pi also has f̂i = f̂(i),
where f(z) = â0 + â1z + . . .+ âtz

t, and ∀j, âj ∈R ZM .

Public input: prime number e > n, and an approximate bound N on φ.
An RSA modulus M (product of two safe primes), and two random squares
G,H ∈ Z∗

M . If 3t < n ≤ 4t then also commitments GajH âj .

[Part 1] Each player Pi chooses λi ∈R [0 . . . N2], and ri ∈ [0..N4], and does
the following:

1. Use PedVSS to share λi with bound N2 and t-degree polys gi(z) and ĝi(z).
2. Use PedVSS to share ri with bound N4 and t-degree polys hi(z) and ĥi(z).
3. Use PedVSS to share 0 with bound N 6 and 2t-degree polys ρi(z) and ρ̂i(z).

Let A be the set of players who were not disqualified in Round 1, denote
λ =

∑

i∈A λi, R =
∑

i∈A ri. Also denote

g(z) =
∑

i∈A

gi(z), h(z) =
∑

i∈A

hi(z), ρ(z) =
∑

i∈A

ρi(z)

ĝ(z) =
∑

i∈A

ĝi(z), ĥ(z) =
∑

i∈A

ĥi(z), ρ̂(z) =
∑

i∈A

ρ̂i(z)

[Part 2] Each player Pj does the following

1. Generates its shares of the polynomials h(z), g(z), ρ(z) by summing the
shares that were received in Part 1 from players in A.
If 3t < n ≤ 4t, also generates its shares of the polynomials ĥ, ĝ, ρ̂ similarly.

2. Calculates Fj = f(j)h(j) + eg(j) + ρ(j), and broadcasts Fj as its share of
the 2t-degree polynomial F (z) = f(z)h(z) + eg(z) + ρ(z).

Notice that the free term of F (z) is the integer F (0) = L2λφ+ LRe.

[Part 3] We distinguish two cases:

1. If n > 4t then the players interpolate over the rationals, using error-
correction, the unique polynomial F (z) of degree 2t passing through n− t
of the broadcasted points, and set γ = F (0).

2. If 3t < n ≤ 4t, each player Pi proves that the value Fi is correct using the
subprotocol Prove-Correct described in Appendix A).
The players interpolate the unique polynomial F (z) of degree 2t passing
through the broadcasted points which are proven correct, and set γ =
F (0).

[Output]

1. Using the GCD algorithm, each player computes two values a, b such that
aF (0) + be = 1. If no such a, b exist, return to Part 1.

2. Each player Pi privately compute its share of the inverse, di = ah(i) + b.

Fig. 3. Computing inverses in the malicious case



Computing Inverses over a Shared Secret Modulus 203

Threshold GHR Signatures. In [17] Gennaro, Halevi and Rabin present a
new signature scheme which is secure under the Strong-RSA assumption. The
scheme works as follows. The public key of the signer is an RSA modulus N ,
product of two safe primes p, q, and a random element s ∈ Z∗

N . To sign a message
m, the signer first hashes it using a suitable hash function H to obtain e = H(m)
and then computes σ(m) such that σ(m)e = s mod N . We refer the reader to
[17].
Using our Modular Inversion Protocol, we can create a threshold version

for the GHR scheme as follows. A trusted dealer can initialize the system by
choosing N and sharing φ(N) as needed in our solution(s) (either the honest-
but-curious or the robust one depending on the model). For a reason that will
be soon apparent, the dealer also chooses s as follows: pick a random square
s0 ∈ Z∗

N and compute s = sL
2

0 mod N and make s0, s public.
Then for each message m to be signed, the players publicly compute e =

H(m) and perform an execution of the inversion protocol, to obtain shares di
of d = e−1 mod φ(N). Recall that each di is the point ah(i) + b on a t-degree
polynomial ah(z) + b whose free term is d. It follows then that for any subset T
of t+ 1 shares we can write

d =
∑

i∈T

µi,T · di

where µi,T are the appropriate Lagrange interpolation coefficients. Notice that
the above equation is taken over the rationals, so µi,T may be fractions. However
because we are always interpolating integer points in the set {1, . . . , n} we have
that L2 · µi,T is always an integer. The protocol is concluded by having each

player reveal si = sdi

0 . Then

σ(m) = sd = s
L2

∑

i∈T µi,T ·di

0 =
∏

i∈T

s
L2·µi,T

i

and the exponents are all integers.
In the case of malicious players, a zero-knowledge proof must be added that

si is the correct value. Notice that if n > 4t we can still use error-correcting codes
inside the inversion protocol, but we do not know how to do error-correction “in
the exponent” for the si’s and thus the ZK proof for this step is required also
when n > 4t. An efficient ZK proof similar to Prove-Correct (see Appendix A)
can be implemented using the public information generated by the inversion
protocol. More specifically, the inversion protocol generates public commitments

Ci = GdiH d̂i to the di’s. When Pi reveals si = sdi

0 it proves that the discrete log
of si in base s0 is the same as the opening he knows of the commitment Ci.
A couple of remarks are in order. Because of the way we generate s it is

obvious that any message m whose hash value is in the set {1, . . . , n} can be
forged, so we need to require that H(m) > n for all messages. This is not a
problem as [17] already assumes that e = Θ(N). Also in one of the variations
presented in [17] the hash function is randomized, i.e. e = H(m, ρ) where ρ is a
random string which is then attached to the signature for verification purpose.



204 Dario Catalano, Rosario Gennaro, and Shai Halevi

In this case the inversion protocol must be preceded by a coin flipping protocol
by the n players to generate ρ.

Threshold Cramer-Shoup Signatures. In [9] Cramer and Shoup presented
the following signature scheme. The signer public key is N (the product of two
safe primes p, q), two random squares h, x ∈ Z∗

N and a random prime e′ suf-
ficiently long (say 160 bits). To sign a message m, the signer generates a new
prime e 6= e′ (also of length 160 bits) and a random square y′ ∈ Z∗

N . Two values
x′, y are then computed as

x′ =
y′

e′

hH(m)
mod N and y =

(

xhH(x′)
)1/e

mod N

where H is a collision-resistant hash function. The signature is (e, y, y′)
A threshold version of the Cramer-Shoup signature scheme is obtained in the

same way as the threshold GHR scheme, since the only part that involves the
secret key is the computation of y (here also, for the same reason as above, the

dealer must choose h, x as h = hL
2

0 mod N x = xL
2

0 mod N , and make public
the values h0, x0). The only difference is that here the prime e must be gener-
ated by the players instead of being publicly computed via a hash function, and
the requirement is that the signers never use the same prime e for two different
messages. This can be done either by having the players together generate ran-
domness and use it for prime generation, or by having one player choose e, and
the others just check that it was never used before. (For the latter solution the
players need to keep state, and there must be some protocol to keep this state
“synchronized” between different players).

7 Conclusions

We presented new protocols to compute a sharing of the inverse of a public inte-
ger e modulo a shared secret φ. We also presented applications to construction
of threshold variants for two newly proposed signature schemes. Our result was
constructed with these specific applications in mind, and we focused on proto-
cols which would minimize the round complexity (i.e. the interaction between
servers). This is the main improvement with respect to previous solutions from
[5, 14].
We conclude with some remarks.

A Note on the Assumptions Used. In this extended abstract we focused on
a robust solution to the modular inversion problem which requires the Strong-
RSA assumption and the generation of “safe” primes. This solution is the more
natural one to use for the applications presented in Section 6 which already
have such requirement. We would like to stress however that the Strong RSA
assumption and the generation of safe primes is needed only for this variant
of the protocol. As we mentioned before, by using Pedersen’s VSS over a large
prime field it is possible to construct a robust Modular Inversion Protocol based
only on the Discrete Log assumption. That is, it is possible to state and prove



Computing Inverses over a Shared Secret Modulus 205

an analogous to Theorem 2 assuming only that computing discrete logs is hard.
Details will appear in the final paper.

A Note on Efficiency. To simplify the presentation, we did not focus on
keeping the size of the integers used in our computations as small as possible. It
is however possible to reduce the size of the integers: this is particularly impor-
tant for the share di’s which are used as exponents in our threshold signature
applications.

The main reason for the increase in size of the integers is that our proofs use
logN as our security parameter (i.e. we define a quantity to be negligible if it is
smaller than 1/N). If instead we were to choose a different security parameter
k (and define negligible anything smaller than 2−k), then part of the growth in
the size of the shares would be in multiplicative factors of 2k rather than N . In
particular the real bound on the size of the shares di is O(N

223k) for the honest-
but-curious case, and O(N 224k) for the malicious adversary case. For reasonable
choices of the parameters (say k = 100 and logN = 1000) this is even less that
O(N3), so the threshold signature protocols proposed in Section 6 are slower by
less than a factor of 3 than the centralized one.

It would be interesting to come up with different protocols (or proof tech-
niques for our protocol) that further reduce this size.

On the Trusted Dealer. Throughout the paper we implicitly assumed that
the input for our protocols (i.e., the sharing of φ) was generated by a trusted
dealer. In some cases this assumption can be eliminated by having the players
generate φ cooperatively. For example, for the applications in which φ = φ(N)
for an RSA modulus N we can use the first part of the Boneh-Franklin result
[5] to have the players jointly generate N and share φ(N) among them. Notice
that [5] cannot be used to generate a product of two safe primes, so in this case
we must use the discrete-log based robust solution.

Acknowledgment. We would like to thank Don Coppersmith for helpful dis-
cussions. We also thank the Eurocrypt committee for their suggestions and com-
ments.

References

1. N. Barić, and B. Pfitzmann. Collision-free accumulators and Fail-stop signature
schemes without trees. In Advances in Cryptology - Eurocrypt ’97, LNCS vol. 1233,
Springer, 1997, pages 480-494.

2. J. Bar-Ilan, and D. Beaver. Non-Cryptographic Fault-Tolerant Computing in a
Constant Number of Rounds. In Proceedings of the ACM Symposium on Principles

of Distributed Computation, pp.201–209, 1989.

3. M. Ben-Or, S. Goldwasser, and A. Wigderson. Completeness Theorems for Non-
cryptographic Fault-Tolerant Distributed Computations. 20th ACM Symposium

on the Theory of Computing, pp.1–10, ACM Press, 1988.

4. E. Berlekamp and L. Welch. Error correction of algebraic block codes. US Patent
4,633,470.



206 Dario Catalano, Rosario Gennaro, and Shai Halevi

5. D. Boneh and M. Franklin. Efficient Generation of Shared RSA Keys. In Ad-

vances in Cryptology - Crypto ’97, LNCS vol. 1294, Springer, 1997, pages 425-439.
Extended version available from http://crypto.stanford.edu/~dabo/pubs.html

6. R. Canetti, R. Gennaro, S. Jarecki, H. Krawczyk and T. Rabin. Adaptive Security
for Threshold Cryptosystems. In Advances in Cryptology - Crypto ’99, LNCS vol.
1666, Springer, 1999, pages 98-115.

7. D. Catalano and R. Gennaro. New Efficient and Secure Protocols for Verifiable
Signature Sharing and Other Applications. In Advances in Cryptology - Crypto

’98, LNCS vol. 1462, Springer, 1998, pages 105-120.
8. D. Chaum, C. Crepeau, and I. Damgard. Multiparty Unconditionally Secure Pro-

tocols. 20th ACM Symposium on the Theory of Computing, pp.11–19, ACM Press,
1988.

9. R. Cramer and V. Shoup. Signature Schemes Based on the Strong RSA Assump-
tion. To appear in the Proceedings of the 6th ACM Conference in Computer and

Communication Security, 1999.
10. Y. Desmedt. Society and group oriented cryptography: A new concept. In Carl

Pomerance, editor, Advances in Cryptology–CRYPTO’87, Lecture Notes in Com-
puter Science Vol. 293, pp. 120–127, Springer-Verlag, 1988.

11. Y.G. Desmedt. Threshold cryptography. European Transactions on Telecommuni-

cations, 5(4):449–457, July 1994.
12. Y. Frankel, P. Gemmell, P. Mackenzie, and M. Yung. Optimal Resilience Proac-

tive Public-Key Cryptosystems. 38th IEEE Symposium on the Foundations of

Computer Science, pp.384–393, IEEE Computer Society Press, 1997.
13. Y. Frankel, P. Gemmell, and M. Yung. Witness-based Cryptographic Program

Checking and Robust Function Sharing. 28th ACM Symposium on the Theory of

Computing, pp.499–508, ACM Press, 1996.
14. Y. Frankel, P. Mackenzie, and M. Yung. Robust Efficient Distributed RSA-Key

Generation. In STOC 1998, pp.663–672.
15. E. Fujisaki and T. Okamoto. Statistical Zero-Knowledge Protocols to Prove Mod-

ular Polynomial Relations. In Advances in Cryptology - Crypto ’97, LNCS vol.
1294, Springer, 1997, pages 16-30.

16. P. Gemmell. An Introduction to Threshold Cryptography. RSA Laboratories Cryp-

toBytes, Vol.2, No.3, Winter 1997.
17. R. Gennaro, S. Halevi and T. Rabin. Secure Hash-and-Sign Signatures without

the Random Oracle. In Advances in Cryptology - Eurocrypt ’99, LNCS vol. 1592,
Springer, 1999, pages 123-139.

18. R. Gennaro, S. Jarecki, H. Krawczyk, and T. Rabin. Robust and efficient sharing
of RSA functions. Crypto’96, pp.157–172, Lecture Notes in Computer Science
vol.1109, Springer-Verlag, 1996.

19. O. Goldreich, S. Micali, and A. Wigderson. How to play any mental game. 19th

ACM Symposium on Theory of Computing, pp.218–229, ACM Press, 1987.
20. T. Pedersen. Non-interactive and information-theoretic secure verifiable secret

sharing. Crypto’91, pp.129-140, Lecture Notes in Computer Science vol.576,
Springer-Verlag, 1992.

21. T. Rabin. A Simplified Approach to Threshold and Proactive RSA. Crypto’98,
pp.89–104, Lecture Notes in Computer Science vol.1462, Springer-Verlag, 1998.

22. R. Rivest, A. Shamir and L. Adelman. A Method for Obtaining Digital Signature
and Public Key Cryptosystems. Comm. of ACM, 21 (1978), pp. 120–126

23. A. Schrijver. Theory of Linear and Integer Programming. John Wiley & Sons.
1986.



Computing Inverses over a Shared Secret Modulus 207

24. M. Sudan. Efficient Checking of Polynomials and Proofs and the Hardness of
Approximation Problems. Lecture Notes in Computer Science, vol.1001, Springer-
Verlag, 1995.

A The proof of share correctness

The problem facing the players in Part 3, Step 2 of Robust Protocol can be

abstracted as follows. We have public values A = GaH â, B = GbH b̂, C = GcH ĉ

and e. A player P knows a, â, b, b̂, c, ĉ, it publishes a value F , and needs to prove
that F = ab+ec (in Robust Protocol each player Pi has to perform this task with

a = f(i), â = f̂(i), b = g(i), b̂ = ĝ(i), c = g(i), ĉ = ĝ(i); we are not considering
the randomizers ρ(i), ρ̂(i) for simplicity.)

Notice that the problem arises because P has to open a value that contains
the product ab of two committed values. We solve the problem by having P
publish a new commitment D = GabHτ to ab and prove in zero-knowledge that
it is correct, and then open the commitment DCe = Gab+ecHτ+eĉ.

The protocol described in Figure 4 works for the case in which we use the
robust solution based on the Strong-RSA assumption and assumes that M is
the product of two safe primes. For the other version of the robust protocol (the
one based on discrete-log), a similar, simpler, protocol can be used as described
in the final version.

Prove-Correct

Private input for P : a, â, b, b̂, c, ĉ.
Public Input: RSA modulus M , G,H ∈ Z∗

M as above. A = GaH â, B =

GbH b̂, G = GcH ĉ, and F .
Goal: Prove that F = ab+ ec.

1. P chooses a random τ ∈ [−M2,M2] and publishes D = GabHτ .
2. P proves in zero-knowledge (to a verifier V ) that D is correct w.r.t. A,B

as follows

(a) P chooses α, α̂, β, β̂, γ̂ at random in [−M6,M6], and send to V the

values M1 = GαHα̂, M2 = GβH β̂ , M3 = BαH γ̂ .
(b) V chooses a random d in [0,M ] and sends it to P .
(c) P answers with the following values x = α + da, x̂ = α̂ + dâ, z =

γ̂ + d(τ − b̂a), y = β + db, ŷ = β̂ + db̂.
(d) V accepts if GxH x̂ = M1A

d, BxHz = M3D
d, GyH ŷ = M2B

d

3. P reveals f = ab+ ec and f̂ = τ + eĉ. The value is accepted if and only if

GfH f̂ = DCe mod M

Fig. 4. How to prove that F = ab+ ec



208 Dario Catalano, Rosario Gennaro, and Shai Halevi

The protocol in step 2 of Prove-Correct is a honest-verifier, statistical ZK proof
of knowledge of the openings of the commitments A,B,D and simultaneously
proves that the opening of D is the product of the opening of A and B.
The extraction works using a technique due to Fujisaki and Okamoto [15]

and it assumes that the prover is not able to solve the Strong-RSA assumption.
The proof is statistical ZK for the following reason. Notice that in our appli-

cation the product ab is O(N 4). By choosing the original randomizers in the set
[−N6..N6] we make sure that the Prover’s answers in step 2c are statistically
indistinguishable from random numbers in that interval. Details will appear in
the final paper.


