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Abstract. When designing password-authenticated key exchange pro-
tocols (as opposed to key exchange protocols authenticated using crypto-
graphically secure keys), one must not allow any information to be leaked
that would allow verification of the password (a weak shared key), since
an attacker who obtains this information may be able to run an off-line
dictionary attack to determine the correct password. We present a new
protocol called PAK which is the first Diffie-Hellman-based password-
authenticated key exchange protocol to provide a formal proof of secu-
rity (in the random oracle model) against both passive and active ad-
versaries. In addition to the PAK protocol that provides mutual explicit
authentication, we also show a more efficient protocol called PPK that
is provably secure in the implicit-authentication model. We then extend
PAK to a protocol called PAK-X, in which one side (the client) stores a
plaintext version of the password, while the other side (the server) only
stores a verifier for the password. We formally prove security of PAK-X,
even when the server is compromised. Our formal model for password-
authenticated key exchange is new, and may be of independent interest.

1 Introduction

Two entities, who only share a password, and who are communicating over an
insecure network, want to authenticate each other and agree on a large session
key to be used for protecting their subsequent communication. This is called the
password-authenticated key exchange problem. If one of the entities is a user and
the other is a server, then this can be seen as a problem in the area of remote user
access. Many solutions for remote user access rely on cryptographically secure
keys, and consequently have to deal with issues like key management, public-key
infrastructure, or secure hardware. Many solutions that are password-based, like
telnet or Kerberos, have problems that range from being totally insecure (telnet
sends passwords in the clear) to being susceptible to certain types of attacks
(Kerberos is vulnerable to off-line dictionary attacks [30]).
Over the past decade, many password-authenticated key exchange protocols

that promised increased security have been developed, e.g., [8, 9, 19, 18, 28, 21, 22,
24, 29]. Some of these have been broken [26], and, in fact, only two very recent
ones have been formally proven secure. The SNAPI protocol in [25] is proven
secure in the random oracle model [5, 6, 14], assuming the security of RSA (and
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also Decision Diffie-Hellman [11], when perfect forward secrecy is desired). The
simple and elegant protocol in [3] is proven as secure as Decision Diffie-Hellman
in a model that includes random oracles and ideal block ciphers. (Our protocol
and the protocol of [3] were developed independently.)
We present a new password-authenticated key exchange protocol called PAK

(Password Authenticated Key exchange), which provides perfect forward secrecy
and is proven to be as secure as Decision Diffie-Hellman in the random oracle
model. Compared to the protocol of [25], PAK (1) does not require the RSA
assumption, (2) has fewer rounds, and (3) is conceptually simpler, with a simpler
proof. Compared to the protocol of [3], PAK does not require an ideal block
cipher assumption for security, but has a more complicated proof. (We note that
the ideal block cipher assumption is used much less often in the literature than
the random oracle assumption.) In the full paper [13], we also show how the
security of PAK can be related to the Computational Diffie-Hellman problem.
In addition to PAK, we also show a more efficient 2 round protocol called

PPK (Password-Protected Key exchange) that is provably secure in the implicit-
authentication model. We then extend PAK to a protocol called PAK-X, in
which one side (the client) stores a plaintext version of the password, while the
other side (the server) only stores a verifier for the password. We formally prove
security of PAK-X, even when the server is compromised. Security in this case
refers to an attacker not being able to pose as a client after compromising the
server; naturally, it would be trivial to pose as the server.
Our formal model for password-authenticated key exchange is new, and may

be of independent interest. It is based on the formal model for secure key ex-
change by Shoup [27] (which follows the work of [2]), enhanced with notions of
password authentication security from [20, 25]. This model is based on the multi-
party simulatability tradition (e.g. [1]), in which one first defines an ideal system
that models, using a trusted center, the service to be performed (in this case,
password-authenticated key exchange), and then one proves that the protocol
running in the real world is essentially equivalent to that ideal system.

2 Background

User Authentication: Techniques for user authentication are broadly based
on one or more of the following categories: (1) what a user knows, (2) what a
user is, or (3) what a user has. The least expensive and most convenient solutions
for user authentication have been based on the first category, of “what a user
knows,” and that is what we will focus on in this paper.
In fact, we will focus on the harder problem of remote user authentication.

The need for remote user authentication is greatly increasing, due mainly to the
explosive growth of the Internet and other types of networks, such as wireless
communication networks. In any of these environments, it is safest to assume
that the underlying links or networks are insecure, and we should expect that
a powerful adversary would be capable of eavesdropping, deleting and inserting
messages, and also initiating sessions.
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Now we consider the question, “What can a user know?” It is common knowl-
edge that users cannot remember long random numbers, hence if the user is
required to know a large secret key (either symmetric or private/public) then
these keys will have to be stored on the user’s system. Furthermore, keeping
these secret requires an extra security assumption and introduces a new point of
weakness. Even if a user is required to know some public but non-generic data,
like the server’s public key, this must be stored on the user’s system and requires
an extra assumption that the public key cannot be modified. In either case, (1)
there is a significant increase in administration overhead because both secret and
public keys have to be generated and securely distributed to the user’s system
and the server, and (2) this would not allow for users to walk up to a generic
station that runs the authentication protocol and be able to perform secure re-
mote authentication to a system that was previously unknown to that station
(such as, perhaps, the user’s home system).

To solve these problems one may wish to use a trusted third party, either
on-line (as in Kerberos) or off-line (i.e., a certification authority). However, the
fact that the third party is “trusted” implies another security requirement. Also,
the users or servers must at some point interact with the third party before they
can communicate remotely, which increases the overhead of the whole system.
Naturally, if an organized and comprehensive PKI emerges, this may be less of
a problem. Still, password-only protocols seem very inviting because they are
based on direct trust between a user and a server, and do not require the user
to store long secrets or data on the user’s system. They are thus cheaper, more
flexible, and less administration-intensive. They also allow for a generic protocol
which can be pre-loaded onto users’ systems.

Password-Authentication Protocols: Traditional password protocols are sus-
ceptible to off-line dictionary attacks: Many users choose passwords of relatively
low entropy, so it is possible for the adversary to compile a dictionary of likely
passwords. Obviously, we can’t prevent the adversary from trying the passwords
on-line, but such an attack can be made infeasible by simply placing a limit on
the number of unsuccessful authentication attempts. On the other hand, an off-
line search through the dictionary is quite doable. Here is an example an attack
against a simple challenge-response protocol: The adversary overhears a chal-
lenge R and the associated response f(P,R) that involves the password. Now
she can go off-line and run through all the passwords P ′ from a dictionary of
likely passwords, comparing the value f(P ′, R) with f(P,R). If one of the values
matches the response, then the true password has been discovered.

A decade ago, Lomas et.al. [23] presented the first protocols which were
resistant to these types of off-line dictionary attacks. The protocols assumed
that the client had the server’s public key and thus were not strictly password-
only protocols. Other protocols for this scenario were developed in [19, 20, 12].

The EKE protocol [8] was the first password authenticated key exchange
protocol that did not require the user to know the server’s public key. The idea
of EKE was to use the password to symmetrically encrypt the protocol mes-
sages of a standard key exchange (e.g., Diffie-Hellman [15]). Then an attacker
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making a password guess could decrypt the symmetric encryption, but could
not break the asymmetric encryption in the messages, and thus could not verify
the guess. Following EKE, many password authenticated key exchange proto-
cols were proposed [9, 19, 18, 28, 21, 22, 24, 29]. Some of these protocols were, in
addition, designed to protect against server compromise, so that an attacker
that was able to steal data from a server could not later masquerade as a user
without having performed a dictionary attack.1 All of these protocol proposals
contained informal arguments for security. However, the fact that some versions
of these protocols were subsequently shown to be insecure [26] should emphasize
the importance of formal proofs of security.

Models for Secure Authentication and Key Exchange: Bellare and Ro-
gaway [4] presented the first formal model of security for entity authentication
and key exchange, for the symmetric two party case. In [7] they extend it to the
three party case. Blake-Wilson et.al. [10] further extend the model to cover the
asymmetric setting. Independently, [25] and [3] present extensions to the model
to allow for password authentication. Halevi and Krawczyk [20] and Boyarsky
[12] present models which include both passwords and asymmetric keys (since
they deal with password-based protocols that also rely on server public keys).
Bellare, Canetti, and Krawczyk [2] present a different model for security of

entity authentication and key exchange, based on the multi-party simulatability
tradition [1]. Shoup [27] refines and extends their model. We present a further
extension of [27] that includes password authentication.

3 Model

For our proofs, we extend the formal notion of security for key exchange protocols
from Shoup [27] to password-authenticated key exchange. We assume that the
adversary totally controls the network, a la [4].
Security for key exchange in [27] is defined using an ideal system, which

describes the service (of key exchange) that is to be provided, and a real system,
which describes the world in which the protocol participants and adversaries
work. The ideal system should be defined such that an “ideal world adversary”
cannot (by definition) break the security. Then, intuitively, a proof of security
would show that anything an adversary can do in the real system can also be
done in the ideal system, and thus it would follow that the protocol is secure in
the real system.

3.1 Ideal system

Our ideal system follows [27], except for the addition of password authentication
and a slight modification to explicitly handle mutual authentication. We assume
that there is a set of (honest) users, indexed i = 1, 2, . . .. Each user i may have

1 Naturally, given the data from a server, an attacker could perform an off-line dictio-
nary attack, since the server must know something to verify a user’s password.
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several instances j = 1, 2, . . .. Then (i, j) refers to a given user instance. A user
instance (i, j) is told the identity of its partner, i.e., the user it is supposed to
connect to (or receive a connection from). An instance is also told its role in the
session, i.e., whether it is going to open itself for connection, or whether it is
going to connect to another instance.
There is also an adversary that may perform certain operations, and a ring

master that handles these operations by generating certain random variables
and enforcing certain global consistency constraints. Some operations result in
a record being placed in a transcript.
The ring master keeps track of session keys {Kij} that are set up among

user instances (as will be explained below, the key of an instance is set when
that instance starts a session). In addition, the ring master has access to a
random bit string R of some agreed-upon length (this string is not revealed
to the adversary). We will refer to R as the environment. The purpose of the
environment is to model information shared by users in higher-level protocols.
Since we deal with password authentication, and since passwords are not

cryptographically secure, our system must somehow allow a non-negligible prob-
ability of an adversary successfully impersonating an honest user. We do this
by including passwords explicitly in our model. We let π denote the function
assigning passwords to pairs of users. To simplify notation, we will write π[A,B]
to mean π[{A,B}] (i.e., π[A,B] is by definition equivalent to π[B,A]).
The adversary may perform the following types of operations:

initialize user [Transcript: ("initialize user", i, IDi)]
The adversary assigns identity string IDi to (new) user i. In addition, a ran-
dom password π[IDi, IDi′ ] is chosen by the ring master for each existing user
i′ (see the discussion below on the distribution from which these passwords
are generated). The passwords are not placed in the transcript. This models
the out-of-band communication required to set up passwords between users.

set password [Transcript: ("set password", i, ID′, π)]
The identity ID′ is required to be new, i.e., not assigned to any user. This
sets π[IDi, ID

′] to π and places a record in the transcript.
After ID′ has been specified in a set password operation, it cannot be used
in a subsequent initialize user operation.

initialize user instance [Transcript: ("initialize user instance", i, j,
role(i, j),PIDij)]
The adversary assigns a user instance (i, j) a role (one of {open, connect})
and a user PIDij that is supposed to be its partner. If PIDij is not set to an
identity of an initialized user, then we require that a set password operation
has been previously performed for i and PIDij (and hence there can be no
future initialize user operation with PIDij as the user ID).

terminate user instance [Transcript: ("terminate user instance",i,j)]
The adversary specifies a user instance (i, j) to terminate.

test instance password

This is called with an instance (i, j) and a password guess π. The returned
result is either true or false, depending on whether π = π[IDi,PIDij ]. If
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the result is true, then this query is called a successful guess on {IDi,PIDij}
(note that a successful guess on {A,B} is also a successful guess on {B,A}).
This query may only be asked once per user instance. The instance has to be
initialized and not yet engaged in a session (i.e., no start session operation
has been performed for that instance). Note that the adversary is allowed to
ask a test instance password query on an instance that has been terminated.
This query does not leave any records in the transcript.

start session [Transcript: ("start session", i, j)]
The adversary specifies that a session key Kij for user instance (i, j) should
be constructed. The adversary specifies which connection assignment should
be used. There are three possible connection assignments:

open for connection from (i′, j′). This requires that role(i, j) is “open,”
(i′, j′) has been initialized and has not been terminated, role(i′, j′) is
“connect,” PIDij = IDi′ , PIDi′j′ = IDi, no other instance is open for
connection from (i′, j′), and no test instance password operation has been
performed on (i, j). The ring master generates Kij randomly. We now
say that (i, j) is open for connection from (i′, j′).

connect to (i′, j′). This requires that role(i, j) is “connect,” (i′, j′) has
been initialized and has not been terminated, role(i′, j′) is “open,” PIDij =
IDi′ , PIDi′j′ = IDi, (i

′, j′) was open for connection from (i, j) after (i, j)
was initialized and is still open for connection from (i, j), and no test in-
stance password operation has been performed on (i, j). The ring master
setsKij = Ki′j′ . We now say that (i

′, j′) is no longer open for connection.
expose. This requires that either PIDij has not been assigned to an identity

of an initialized user, or there has been a successful guess on {IDi,PIDij}.
The ring master sets Kij to the value specified by the adversary.

Note that the connection assignment is not recorded in the transcript.
application [Transcript: ("application", f, f(R, {Kij}))]

The adversary is allowed to obtain any information she wishes about the
environment and the session keys. (This models leakage of session key in-
formation in a real protocol through the use of the key in, for example,
encryptions of messages.) The function f is specified by the adversary and
is assumed to be efficiently computable.

implementation [Transcript: ("impl", cmnt)]
The adversary is allowed to put in an “implementation comment” which does
not affect anything else in the ideal world. This will be needed for generating
ideal world views that are equivalent to real world views, as will be discussed
later.

For an adversary A∗, IdealWorld(A∗) is the random variable denoting the
transcript of the adversary’s operations.

Discussion (password authentication): Our system correctly describes the ideal
world of password authenticated key exchange. If two users successfully complete
a key exchange, then the adversary cannot obtain the key or the password. This
is modeled by the adversary not being allowed any test instance password queries
on an instance after a successful key exchange. Our ideal model explicitly uses
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(ring master generated) passwords, and an adversary can only obtain information
about a password by issuing a test instance password query for an instance,
signifying an impersonation attempt by the adversary against the key exchange
protocol run by that instance. (One may think of this as modeling an adversary
who attempts to log in to a server by sending a guessed password.)
We did not specify how the ring master chooses passwords for pairs of users.

The simplest model would be to have a dictionary D, which is a set of strings, and
let all passwords be chosen uniformly and independently from that dictionary.
To achieve the strongest notion of security, though, we can give the adversary
all the power, and simply let her specify the distribution of the passwords as an
argument to the initialize user operation (the specification of the distribution
would be recorded in the transcript). The passwords of a user could even be
dependent on the passwords of other users. We note that our proofs of security
do not rely on any specific distribution of passwords, and would thus be correct
even in the stronger model.
We also model the ability of the adversary to set up passwords between any

users and herself, using the set password query. This can be thought of as letting
the adversary set up rogue accounts on any computer she wishes, as long as
those rogue accounts have different user IDs from all the valid users.

3.2 Real System with Passwords

Now we describe the real system in which we assume a password-authenticated
key exchange protocol runs. Again, this is basically from [27], except that we
do not concern ourselves with public keys and certification authorities, since all
authentication is performed using shared passwords.
Users and user instances are denoted as in the ideal system. User instances

are defined as state machines with implicit access to the user’s ID, PID, and
password (i.e., user instance (i, j) is given access to π[IDi,PIDij ]). User instances
also have access to private random inputs (i.e., they may be randomized). A
user instance starts in some initial state, and may transform its state only when
it receives a message. At that point it updates its state, generates a response
message, and reports its status, either “continue”, “accept”, or “reject”,
with the following meanings:

– “continue”: the user instance is prepared to receive another message.
– “accept”: the user instance (say (i, j)) is finished and has generated a ses-
sion key Kij .

– “reject”: the user instance is finished, but has not generated a session key.

The adversary may perform the following types of operations:

initialize user [Transcript: ("initialize user", i, IDi)]
initialize user instance [Transcript: ("initialize user instance", i, j,
role(i, j),PIDij)]

set password [Transcript: ("set password", i, ID′, π)]
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application [Transcript: ("application", f, f(R, {Kij}))]
All above as in the ideal system.

deliver message [Transcript: ("impl", "message", i, j, InMsg,OutMsg, status)]
The adversary delivers InMsg to user instance (i, j). The user instance up-
dates its state, and replies with OutMsg and reports status. If status is
“accept”, the record ("start session", i, j) is added to the transcript, and
if status is “reject”, the record ("terminate instance", i, j) is added to the
transcript.

random oracle [Transcript: ("impl", "random oracle", i, x,Hi(x))]
The adversary queries random oracle i on a binary string x and receives
the result of the random oracle query Hi(x). Note that we do not allow
application operations to query random oracles Hi. In other words, we do
not give higher-level protocols access to the random oracles used by the
key exchange scheme (although a higher-level protocol could have its own
random oracles). The adversary, however, does have access to all the random
oracles.

For an adversary A, RealWorld(A) denotes the transcript of the adver-
sary’s operations. In addition to records made by the operations, the transcript
will include the random coins of the adversary in an implementation record
("impl", "coins", coins).

3.3 Definition of Security

The definition of security for key exchange given in [27] requires

1. completeness: for any real world adversary that faithfully delivers messages
between two user instances with complimentary roles and identities, both
user instances accept; and

2. simulatability: for every efficient real world adversary A, there exists an ef-
ficient ideal world adversaryA∗ such that RealWorld(A) and IdealWorld(A∗)
are computationally indistinguishable.

We will use this definition for password-authenticated key exchange as well.2

4 Explicit Authentication: The PAK Protocol

4.1 Preliminaries

Let κ and ` denote our security parameters, where κ is the “main” security pa-
rameter and can be thought of as a general security parameter for hash functions
and secret keys (say 128 or 160 bits), and ` > κ can be thought of as a security

2 We can do this because our ideal model includes passwords explicitly. If it did not, we
would have to somehow explicitly state the probability of distinguishing real world
from ideal world transcripts, given how many impersonation attempts the real world
adversary has made.
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A B

x ∈R Zq

m = gx · (H1(A,B, π))
r m

- Test m
?

6≡ 0 mod p
y ∈R Zq
µ = gy

σ = ( m
(H1(A,B,π))r

)y

σ = µx
µ, k

¾ k = H2a(A,B,m, µ, σ, π)

Test k
?
= H2a(A,B,m, µ, σ, π)

k′ = H2b(A,B,m, µ, σ, π)

K = H3(A,B,m, µ, σ, π)
k′

- Test k′ ?
= H2b(A,B,m, µ, σ, π)

K = H3(A,B,m, µ, σ, π)

Fig. 1. PAK protocol, with π = π[A,B]. The resulting session key is K. If a “Test”
returns false, the protocol is aborted.

parameter for discrete-log-based public keys (say 1024 or 2048 bits). Let {0, 1}∗

denote the set of finite binary strings and {0, 1}n the set of binary strings of
length n. A real-valued function ε(n) is negligible if for every c > 0, there exists
nc > 0 such that ε(n) < 1/n

c for all n > nc.
Let q of size at least κ and p of size ` be primes such that p = rq + 1 for

some value r co-prime to q. Let g be a generator of a subgroup of Z∗
p of size q.

Call this subgroup Gp,q. We will often omit “ mod p” from expressions when it
is obvious that we are working in Z∗

p .
Let DH(X,Y ) denote the Diffie-Hellman value gxy ofX = gx and Y = gy. We

assume the hardness of the Decision Diffie-Hellman problem (DDH) in Gp,q. One
formulation is that given g,X, Y, Z in Gp,q, where X = gx and Y = gy are chosen
randomly, and Z is either DH(X,Y ) or random, each with half probability,
determine if Z = DH(X,Y ). Breaking DDH implies a constructing a polynomial-
time adversary that distinguishes Z = DH(X,Y ) from a random Z with non-
negligible advantage over a random guess.

4.2 The Protocol

Define hash functions H2a, H2b, H3 : {0, 1}
∗ → {0, 1}κ and H1 : {0, 1}

∗ →
{0, 1}η (where η ≥ ` + κ). We will assume that H1, H2a, H2b, and H3 are
independent random functions. Note that while H1 is described as returning a
bit string, we will operate on its output as a number modulo p.
The PAK protocol is given in Figure 1.

Theorem 1. The PAK protocol is a secure password-authenticated key exchange
protocol in the explicit-authentication model.

Proof: (Sketch) The completeness requirement follows directly by inspection.
Here we sketch the proof that the simulatability requirement holds. Complete
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details are presented in the full paper [13]. The basic technique is essentially that
of Shoup [27]. The idea is to create an ideal world adversary A∗ by running the
real world adversary A against a simulated real system, which is built on top of
the underlying ideal system. In particular, A∗ (i.e., the simulator combined with
A) will behave in the ideal world just like A behaves in the real world, except
that idealized session keys will be used in the real world simulation instead of
the actual session keys computed in the real system.
Thus, our proof consists of constructing a simulator (that is built on top

of an ideal system) for a real system so that the transcript of an adversary
attacking the simulator is computationally indistinguishable from the transcript
of an adversary attacking the real system.

Simulator The general idea of our simulator is to try to detect guesses on the
password (by examining the adversary’s random oracle queries) and turn them
into test instance password queries. If the simulator does not detect a password
guess, then it either sets up a connection between two instances (if all the mes-
sages between them have been correctly relayed), or rejects (otherwise). The
main difficulty in constructing the simulator is that we need to respond to the
adversary’s requests without knowing the actual passwords. This causes us to
use random values in place of the results of those random oracle calls that take
the password as an argument. We can think of these as “implicit” oracle calls.
In handling the adversary’s explicit random oracle queries, as well as those pro-
tocol operations that use random oracles, we need to make sure that we don’t
use inconsistent values for the result of a random oracle on a certain input.
Specifically, we must make sure the random oracle queries to H2a and H2b are
consistent with the k and k′ values sent or received by the user instances. This is
relatively straightforward (using test instance password queries) except when the
adversary sends a µ value back to an initiator instance. To be able to determine
the password being tested by the adversary in this case, we will make sure the
simulator has answered each H1(A,B, π) query using a random value for which
it knows the discrete log (after that value is raised to the r).

Indistinguishability The simulation described above is indistinguishable from
the real world as long as the simulator does not need to perform a test instance
password query that is disallowed in the ideal world. Specifically, by the rules of
the ideal world, (1) only one of these queries can be made for each user instance,
and (2) the query cannot be made at all for any instance that performs a start
session operation (previously or in the future). So to finish our proof, we need to
show that if the adversary can break either rule with non-negligible probability,
then we can break the DDH Assumption with non-negligible probability.
The idea of the proof of (2) goes as follows. Say that the offending query is

made within the first T queries. (T is bounded by the adversary’s running time
and must be polynomial.) Take a DDH challenge (X,Y, Z). Run the simulation
(playing the ringmaster also, i.e., choosing our own passwords) with the following
changes: Choose a random d ∈ [0, T ]. On the dth deliver message query to initiate
a protocol, say for users A and B, set m = X. For any B instance that receives
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m = X, set µ = Y gy for some random y. If the adversary makes a query to H2a,
H2b, orH3 with A,B,m, a µ as calculated above, σ, and π, where σ = ZXy/µrαπ

for απ the discrete log of (H1(A,B, π))
r, guess that the DDH challenge is a true

DH instance. All other queries are answered in a straightforward way, except
that the adversary may make a valid password guess using its own µ and σ,
for which the simulator cannot verify the σ value (because the simulator does
not know the discrete log of X). In this case we flip a coin to decide whether to
accept or not, and continue the simulation. It can be shown that if the adversary
is able to break this ideal world rule with probability ε, then we will give a correct
response to the DDH challenge with probability roughly 1

2 +
ε

4T . (The 4 in the
denominator comes from the half probability of the DDH challenge being a true
DH instance and the half probability of a correct coin flip.)
The idea of the proof of (1) goes as follows. Say that the offending queries

occur within the first T queries. Let the DDH challenge be (X,Y, Z). Run the
simulation (playing the ringmaster also) with the following changes: Choose a
random d ∈ [0, T ]. Assume the bad event will occur for the dth pair of users
mentioned (either in an H1(A,B, ·) query or an initialize user instance with A
and partner B) Each time H1(A,B, π) is queried for some π, flip a coin to decide
whether to include a factor of X in the return value. For any first message to
a B instance with partner A, set µ = Y gy for some random y. Note that the
σ values used in any pair of H2a, H2b, and H3 queries for the same A,B,m, µ
(where µ was calculated as Y gy), and using two different password guesses (π1

and π2) can be tested against the Z value if exactly one of H1(A,B, π1) and
H1(A,B, π2) included a factor of X in its calculation. If any of these pairs tests
positively for the Z value, guess that the DDH challenge is a true DH instance.
All other queries are answered in a straightforward way. It can be shown that
if the adversary is able to break this ideal world rule with probability ε, then
we will give a correct response to the DDH challenge with probability roughly
1
2 +

ε
4T . (The 4 in the denominator comes from the half probability of the DDH

challenge being a true DH instance and the half probability of the adversary
making queries for two passwords in which exactly one included a factor of X
in the H1() calculation.) ut

5 Implicit Authentication: The PPK Protocol

We first describe an Ideal System with Implicit Authentication, and then de-
scribe the PPK protocol. Note that we still use the Real System from Section 3.2.

5.1 Ideal System with Implicit Authentication

Here we consider protocols in which the parties are implicitly authenticated,
meaning that if one of the communicating parties is not who she claims to be,
she simply won’t be able to obtain the session key of the honest party. The
honest party (which could be playing the role of either "open" or "connect")
would still open a session, but no one would be able to actually communicate
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with her on that session.3 Thus, some of the connections may be “dangling.” We
will allow two new connection assignments:

dangling open. This requires role(i, j) to be “open.”

dangling connect. This requires role(i, j) to be “connect.”

In both cases, the ring master generates Kij randomly.

To use implicit authentication with passwords, we will make the following
rules:

– Dangling connection assignments are allowed even for instances on which
the test instance password query has been performed.

– A test instance password query is allowed on an instance, even if it has
already started a session with a dangling connection assignment.

We still restrict the number of test instance password queries to at most one per
instance. The rules relating to other connection assignments do not change.

The reason for this permissiveness is that an instance with a dangling con-
nection assignment can’t be sure that it wasn’t talking to the adversary. All that
is guaranteed is that the adversary won’t be able to get the key of that instance,
unless she correctly guesses the password.

In practice, this means that we can’t rule out an unsuccessful password guess
attempt on an instance until we can confirm that some partner instance has ob-
tained the same key. It follows that if we are trying to count the number of
unsuccessful login attempts (e.g., so that we can lock the account when some
threshold is reached), we can’t consider an attempt successful until we get some
kind of confirmation that the other side has obtained the same key. We thus see
that key confirmation (which, in our model, is equivalent to explicit authentica-
tion) is indeed relevant when we use passwords.

5.2 PPK Protocol

If we don’t require explicit authentication, we can make a much more efficient
protocol. The PPK protocol requires only two rounds of communication. The
protocol is given in Figure 2.

Theorem 2. The PPK protocol is a secure password-authenticated key exchange
protocol in the implicit-authentication model.

The completeness requirement follows directly by inspection. The proof of
simulatability is omitted due to page limits. The basic structure of the proof is
very similar to that of the PAK protocol.

3 In a later version of [27], Shoup also deals with implicit authentication, but in a
different way. We feel our solution is more straightforward and intuitive.
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A B

x ∈R Zq

m = gx · (H1(A,B, π))
r m

- Test m
?

6≡ 0 mod p
y ∈R Zq

µ = gy · (H1(A,B, π))
r

σ = ( m
(H1(A,B,π))r

)y

Test µ
?

6≡ 0 mod p
µ

¾ K = H3(A,B,m, µ, σ, π)
σ = ( µ

(H1(A,B,π))r
)x

K = H3(A,B,m, µ, σ, π)

Fig. 2. PPK protocol, with π = π[A,B]. The resulting session key is K.

6 Resilience to Server Compromise—The PAK-X

Protocol

6.1 Ideal System with Passwords—Resilience to Server Compromise

Now we define a system in which one party is designated as a server, and which
describes the ability of an adversary to obtain information about passwords
stored on the server, along with the resultant security. To accomplish this, one
role (open or connect) is designated as the server role, while the other is desig-
nated as the client role. We add the test password and get verifier operations,
and change the start session operation.

test password

This query takes two users, say i and i′, as arguments, along with a password
guess π. If a get verifier query has been made on {i, i′}, then this returns
whether π = π[IDi, IDi′ ]. If the comparison returns true, this is called a
successful guess on {IDi, IDi′}. If no get verifier has been made on {i, i

′},
then no answer is returned (but see the description of get verifier below).
This query does not place a record in the transcript. It can be asked any
number of times, as long as the next query after every test password is
of type implementation. (The idea of the last requirement is that a test
password query has to be caused by a “real-world” operation, which leaves
an implementation record in the transcript.)

get verifier [Transcript: ("get verifier", i, i′)]
Arguments: users i and i′. For each test password query on {i, i′} that has
previously been asked (if any), returns whether or not it was successful. If
any one of them actually was successful, then this get verifier query is called
a successful guess on {IDi, IDi′}. Note that the information about the success
or failure of test password queries is not placed in the transcript.

start session [Transcript: ("start session", i, j)]
In addition to the rules specified previously, a connection assignment of ex-



170 Victor Boyko, Philip MacKenzie, and Sarvar Patel

pose for client instance (i, j) is allowed at any point after a get verifier query
on users i and i′ has been performed, where IDi′ = PIDij .

The test password query does not affect the legality of open and connect
connection assignments.

6.2 Real System—Resilience to Server Compromise

In a real system that has any resilience to server compromise, the server must
not store the plaintext password. Instead, the server stores a verifier to verify
a user’s password. Thus, the protocol has to specify a PPT verifier generation
algorithm VGen that, given a set of user identities {A,B}, and a password π,
produces a verifier V .
As above for π[A,B], we will write V [A,B] to mean V [{A,B}].
A user instance (i, j) in the server role is given access to V [IDi,PIDij ]. A

user instance (i, j) in the client role is given access to π[IDi,PIDij ].
The changes to the initialize user and set password operations are given here:

initialize user [Transcript: ("initialize user", i, IDi)]
In addition to what is done in the basic real system, V [IDi, IDi′ ] =
VGen({IDi, IDi′}, π[IDi, IDi′ ]) is computed for each i

′.
set password [Transcript: ("set password", i, ID′, π)]

In addition to what is done in basic real system, V [IDi, ID
′] is set to

VGen({IDi, ID
′}, π).

We add the get verifier operation here:

get verifier [Transcript:("get verifier", i, i′), followed by ("impl",
"verifier", i, i′, V [IDi, IDi′ ])]
The adversary performs this query with i and i′ as arguments, with
V [IDi, IDi′ ] being returned.

6.3 PAK-X protocol

In our protocol, we will designate the open role as the client role. We will use A
and B to denote the identities of the client and the server, respectively. In addi-
tion to the random oracles we have used before, we will use additional functions
H0 : {0, 1}

∗ → {0, 1}|q|+κ and H ′
0 : {0, 1}

∗ → {0, 1}|q|+κ, which we will assume
to be random functions. The verifier generation algorithm is

VGen({A,B}, π) = gv[A,B],

where we define v[A,B] = H0(min(A,B),max(A,B), π) (we need to order user
identities, just so that any pair of users has a unique verifier).
The PAK-X protocol is given in Figure 3.

Theorem 3. The PAK-X protocol is a secure password-authenticated key ex-
change protocol in the explicit-authentication model, with resilience to server
compromise.
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The completeness requirement follows directly by inspection. The proof of
simulatability is omitted due to page limits. (The technique that allows us to
perform authentication where the server stores a verifier instead of the password
itself is similar to the technique developed independently in [17] to obtain an
efficient encryption scheme secure against an adaptive chosen-ciphertext attack.)

A B

x ∈R Zq

m = gx · (H1(A,B, V ))
r m

- Test m
?

6≡ 0 mod p
y ∈R Zq
µ = gy

σ = ( m
(H1(A,B,V ))r

)y

c ∈R {0, 1}
κ, a = gH

′
0
(c)

σ = µx
µ, a, k

¾ k = c⊕H2a(A,B,m, µ, σ, V H′
0
(c), V )

c = k ⊕H2a(A,B,m, µ, σ, av, V )

Test a
?
= gH

′
0
(c)

k′ = H2b(A,B,m, µ, σ, a, k, c, V )

K = H3(A,B,m, µ, σ, c, V )
k′

- Test k′ ?
= H2b(A,B,m, µ, σ, a, k, c, V )
K = H3(A,B,m, µ, σ, c, V )

Fig. 3. PAK-X protocol, with π = π[A,B], v = v[A,B], and V = V [A,B]. The resulting
session key is K.
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