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Abstract. Memory-hard functions (MHFs) are a useful cryptographic
primitive which can be used to design egalitarian proof of work puzzles
and to protect low entropy secrets like passwords against brute-force
attackers. Intuitively, a memory-hard function is a function whose evalu-
ation costs are dominated by memory costs even if the attacker uses spe-
cialized hardware (FPGAs/ASICs), and several cost metrics have been
proposed to quantify this intuition. For example, space-time cost looks
at the product of running time and the maximum space usage over the
entire execution of an algorithm. Alwen and Serbinenko (STOC 2015)
observed that the space-time cost of evaluating a function multiple times
may not scale linearly in the number of instances being evaluated and
introduced the stricter requirement that a memory-hard function has
high cumulative memory complexity (CMC) to ensure that an attacker's
amortized space-time costs remain large even if the attacker evaluates
the function on multiple di�erent inputs in parallel. Alwen et al. (EURO-
CRYPT 2018) observed that the notion of CMC still gives the attacker
undesirable �exibility in selecting space-time tradeo�s e.g., while the
MHF Scrypt has maximal CMC Ω(N2), an attacker could evaluate the
function with constant O(1) memory in time O(N2). Alwen et al. intro-
duced an even stricter notion of Sustained Space complexity and designed
an MHF which has s = Ω(N/ logN) sustained complexity t = Ω(N)
i.e., any algorithm evaluating the function in the parallel random oracle
model must have at least t = Ω(N) steps where the memory usage is
at least Ω(N/ logN). In this work, we use dynamic pebbling games and
dynamic graphs to explore tradeo�s between sustained space complexity
and cumulative memory complexity for data-dependent memory-hard
functions such as Argon2id and Scrypt. We design our own dynamic
graph (dMHF) with the property that any dynamic pebbling strategy
either (1) has Ω(N) rounds with Ω(N) space, or (2) has CMC Ω(N3−ϵ)
� substantially larger than N2. For Argon2id we show that any dynamic
pebbling strategy either(1) has Ω(N) rounds with Ω(N1−ϵ) space, or (2)
has CMC ω(N2). We also present a dynamic version of DRSample (Al-
wen et al. 2017) for which any dynamic pebbling strategy either (1) has
Ω(N) rounds with Ω(N/ logN) space, or (2) has CMC Ω(N3/ logN).

Keywords: Data-Dependent Memory Hard Function · Dynamic Peb-
bling Game · Sustained Space Complexity · Cumulative Memory Com-
plexity
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1 Introduction

Memory-hard functions (MHFs) are an important cryptographic primitive which
have been used to design egalitarian proof of work puzzles [16] and to protect low
entropy secrets against brute-force attacks e.g., password hashing. Intuitively, a
function is �memory-hard� if for any algorithm the costs associated with evalu-
ating this function are dominated by memory costs � even if the attacker uses
specialized hardware such as Field Programmable Gate Arrays (FPGAs) or Ap-
plication Speci�c Integrated Circuits (ASICs). Several complexity measures have
been proposed to capture this intuition including space-time complexity, cumu-
lative memory complexity (CMC) [7], and sustained space complexity (SSC)
[5].

Intuitively, space-time cost considers the product of running time and the
maximum space usage across the entire execution trace. For example, suppose we
are given an execution trace σ1, . . . , σt where σi denotes the state of our program
at time i. The space-time costs associated with this execution trace would be
t ·maxi≤t |σi|. Alwen and Serbinenko [7] observed that space-time complexity is
not well suited in situations where an attacker wants to evaluate the function on
multiple di�erent inputs in parallel. In particular, the amortized space-time costs
associated with multiple parallel computations can be signi�cantly lower than
the space-time costs associated with a single execution. Alwen and Blocki [2] later
gave pebbling attacks on practical MHF candidates such as Catena and Argon2i
demonstrating that this concern is not merely a theoretical issue. Alwen and
Serbinenko [7] proposed the notion of cumulative memory complexity (CMC) to
address this concern by modeling amortized space-time complexity. Intuitively,
the cumulative memory cost of our execution trace σ1, . . . , σt would be given
by
∑t

i=1 |σi|. Observe that the cumulative memory cost is a lower bound for

the space-time costs since
∑t

i=1 |σi| ≤ t × maxi≤t |σi|. Thus, requiring that a
MHF has high CMC is a strictly stronger requirement than than space-time
complexity.

If we adopt high CMC as our goal then we want to �nd a function f which
satis�es the requirements that (1) the function can be evaluated in O(N) steps
on a sequential machine, and (2) any parallel algorithm evaluating the function
has CMC at least Ω(N2). We note that because the function can be evaluated
in O(N) sequential steps the CMC cannot be larger than O(N2). In fact, the
Scrypt MHF [18] has been shown to satisfy both properties in the parallel
random oracle model [6]. However, while Scrypt has maximal CMC the MHF
also allows the attacker undesirable �exibility when selecting space-time trade-
o�s. For example, an attacker could evaluate Scrypt using constant space O(1)
in time O(N2) or the attacker could evaluate the function using space O(

√
N)

and time O(N
√
N).

Motivated by this observation, Alwen et al. [5] introduced the stricter require-
ment of sustained space complexity (SSC). Returning to our example execution
trace σ1, . . . , σt we would say that this execution trace has s-Sustained Space
complexity t′ if |{i : |σi| ≥ s}| ≥ t′ i.e., there are at least t′ steps where the
memory usage exceeds s. We remark that st′ ≤

∑
i |σi| is a lower bound on the
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cumulative memory costs so the requirement that a MHF have high SSC is even
stricter than requiring high CMC.

Broadly speaking there are two types of MHFs: data-independent memory-
hard functions (iMHFs) and data-dependent memory-hard functions (dMHFs)
1. In an iMHF, the memory access pattern induced by evaluating the function
is not allowed to depend on the (potentially sensitive) input. By contrast, a
dMHF places no restrictions on the memory access pattern. While iMHFs pro-
vide natural resistance to side-channel attacks, this comes at the cost of memory
hardness. For example, Scrypt is a dMHF with CMC at least Ω(N2) while any
iMHF has CMC at most O(N2 log logN/ logN) [2]. In the context of password
hashing hybrid �id� modes have been proposed to balance side-channel resistance
with memory hardness. For example, the MHF Argon2id runs Argon2i (data-
independent mode) for N/2 steps before switching to Argon2d (data-dependent
mode). Optimistically, if there are no side-channel attacks we achieve stronger
memory hardness. In the worst case, if there is a side-channel attack, the se-
curity of the hybrid mode (e.g., Argon2id) is downgraded to that of the data-
independent mode (e.g., Argon2i).

Alwen et al. [5] gave a construction of an iMHF with s = Ω(N/ logN)-
sustained space complexity Ω(N) i.e., any algorithm evaluating this function in
the parallel random oracle model requires at least t′ = Ω(N) steps in which the
space usage is at least s = Ω(N/ logN). We remark that this result is (essen-
tially) optimal due to a pebbling result of Hopcroft [15] showing that any directed
acyclic graph with N nodes and constant indegree can be pebbled using space at
most s = O(N/ logN). Thus, if s = ω(N/ logN) we cannot guarantee that there
are any steps in which the space usage is at least s and this observation can be
extended to dMHFs as well. However, the general O(N/ logN)-space pebbling
strategy of Hopcroft [15] also requires exponential time so the cumulative cost
of this pebbling strategy would be exponentially large. While the construction
of Alwen et al. [5] was primarily theoretical, Blocki et al. [12] gave a practical
iMHF construction with the following trade-o� guarantee: any evaluation algo-
rithm either (1) has CMC Ω(N2) or (2) has Ω(N) rounds in which the space
usage is at least Ω(N/ logN) space.

The construction of Blocki et al. [12] achieves (essentially) optimal trade-o�s
between CMC and SSC. While it is possible that the attacker's s = Ω(N/ logN)
sustained space-complexity is lower than Ω(N) any such attack would incur a
higher penalty on CMC costs. Similarly, general pebbling attacks of Alwen and
Blocki [2] against any iMHF simultaneously achieve CMCO(N2 log logN/ logN)
and there are also o(N) rounds where the space usage exceedsO(N log logN/ logN).
However, trade-o�s between CMC and SSC have not been explored for dMHFs
where the general pebbling attacks of Alwen and Blocki [2] no longer apply.
Thus, for a dMHF we might hope to achieve even stronger trade-o�s e.g., it may

1 Ameri et al. [9] also introduced the notion of a computationally data-independent
memory-hard function where the memory access pattern is allowed to depend on
the input, but should be computationally bounded adversary should not be able to
detect or exploit this dependence.
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be possible to �nd a dMHF with the property that any evaluation algorithm
either (1) has Ω(N) rounds in which the space usage is at least Ω(N), or (2)
has CMC at least ω(N2).

In this paper, our focus will be on understanding and quantifying SSC and
CMC trade-o�s for data-dependent memory-hard Functions using dynamic graphs
and dynamic pebbling games.

1.1 Our Results

Any attempt to solely analyze the SSC of a (dynamic or otherwise) pebbling
graph will lead to weaker lower bounds. In fact, any DAG G with N nodes and

constant indegree can be pebbled using at most s = O
(

N
logN

)
pebbles during

any pebbling round [5,15]. We observe that the pebbling strategy of Hopcroft [15]
easily extends to dynamic graphs. In particular, we can use Hopcroft's strategy
[15] to place a pebble on node i using at most i/ log i pebbles. We can then remove
pebbles from all nodes except i and repeat this method to pebble node i+1 etc..
Thus, if G is a distribution over DAGs G with constant indegree we can't hope to

prove that pebbling G requires ω
(

N
logN

)
pebbles for some number of steps, since

its ω
(

N
logN

)
-SSC is zero. However, while Hopcroft's general pebbling strategy

uses minimal space O(N/ logN) the pebbling also runs in exponential time.
Thus, we can still hope to establish stronger CMC/SSC trade-o�s for dMHFs.

Ideally, we want to construct a dynamic pebbling graph in which any strategy
must sustain Ω(N) nodes for Ω(N) steps, or incurs CC Ω(N3). This is the best
possible trade-o� one could hope to achieve for dynamic graphs with constant
indegree. To see this we observe that Lengauer and Tarjan [17] gave a general
sequential pebbling strategy for any (static) DAG G with maximum indegree
δ = O(1) and any space parameter S = Ω(N/ logN). In particular, pebbling

strategy at most S pebbles and takes time at most using time t ≤ S · 22cδN/S

where δ denotes the indegree of the DAG G and c > 0 is some �xed constant.
The strategy can be extended to dynamic graphs i.e., once we have place a
pebble on node i we can apply the strategy of Lengauer and Tarjan [17] to place

a pebble on node i + 1 using time at most ti+1 ≤ S · 22cδ(i+1)/S ≤ S22
cδN/S

. In
this way we obtain a dynamic pebbling strategy which uses space at most S

and the total pebbling time is at most
∑

i ti ≤ S · N · 22cδN/S

� the CC is at

most S2 ·N · 22cδN/S

. Assume that G is a distribution over DAGs with constant
indegree (δ = O(1)). Now for any constant ϵ > 0 if we plugin S = ϵN then we
obtain a dynamic pebbling strategy which uses space at most ϵN and the CC is
at most O(N3). Similarly, if we set S = cδN/ log logN then we obtain a pebbling

which uses space at most O(N/ log logN) and the CC is at most O
(

N3 logN
(log logN)2

)
.

See more details in the full version of the paper.
We analyze CMC/SSC trado�s for four dMHFs. The �rst dMHF that we

analyze is based on a constant indegree dynamic graph that we construct. While
the construction is primarily of theoretical interest it achieves (essentially) op-
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timal CMC/SSC tradeo�s � either there are Ω(N) steps with Ω(N) pebbles
or the cumulative memory complexity is Ω(N3−ϵ). The second dMHF that we
analyze is based on a family of depth-robust graphs [14] with indegree O(logN).
We introduce dynamic edges and prove that (whp) either there are Ω(N) steps
with Ω(N) pebbles or the cumulative memory complexity is Ω(N3). While the
�rst two dMHFs are primarily of theoretical interest we also analyze CMC/SSC
tradeo�s for two practical dMHF candidates including Argon2id [10] (winner of
the password hashing competition) and DRSample [3]. Our results are summa-
rized in table 1 below.

Dynamic Graph Space Sustained for Ω(N) steps CC

Scrypt [6] O(1) O(N2)

Dynamic EGS (Sec 4) Ω(N) Ω(N3)

Dynamic DRSample (Sec 5) Ω
(

N
logN

)
Ω

(
N3

logN

)
Argon2id (Sec 6) e ≤ N Ω̃(N4e−2)

Argon2id (Example) Ω(N1−ϵ) Ω̃(N2+2ϵ)

Our Construction (Sec 3) Ω(N) Ω(N3−ϵ)
Table 1. Lower Bounds: SSC vs CC Tradeo�s

Before we elaborate on each of these results, we �rst describe dynamic peb-
bling graphs and pebbling strategies in more detail.

1.2 Dynamic Graphs and Dynamic Pebbling Games

Review: Black Pebbling Games and iMHFs Before introducing dynamic
graphs and dynamic pebbling games we �rst review the parallel black pebbling
game for regular (static) graphs. The (parallel) black pebbling game is a power-
ful abstraction that has been used to analyze the cumulative memory complex-
ity (or sustained space complexity) of iMHFs in the random oracle model. In
the parallel black pebbling game we are given a directed acyclic graph (DAG)
G which initially contains no pebbles P0 = {} and the goal of the pebbling
game is to eventually pebble the sink node(s) of G. A legal black pebbling is
a sequence P0, . . . , Pt ⊆ V of pebbling con�gurations such that (0) P0 = {}
(1) V ⊆

⋃
i Pi, and (2) for all i < t and for each v ∈ Pi+1 \ Pi we have

parents(v)
.
= {u : (u, v) ∈ E} ⊆ Pi. Intuitively, each node in G corresponds to

an intermediate data label, and placing a pebbling on the graph corresponds to
computing the corresponding data label and placing it in memory. We initially
start with no data labels in memory (rule 0) and are not �nished until we have
computed all of the output labels (rule 1). We also cannot compute a new data
label unless all of the dependent data labels are already available in memory
(rule 2). In the sequential black pebbling game, we also require that we place at
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most one new pebble on the graph in each round (i.e., |Pi+1 \ Pi| ≤ 1 ), while
no such constraint applies in the parallel black pebbling game.

An iMHF fG,H(x) can be viewed as a mode of operation over a DAG G
and a hash function H (typically modeled as a random oracle). The source
label L1 = H(x) is typically obtained by hashing the input x and the label
of a node v > 1 is obtained by hashing the labels of v's parents in G e.g., if
parents(v) = {v − 1, r(v)} then we might set Lv = H(Lv−1, Lr(v)). The output
of the function fG,H is simply the label LN of the �nal sink node N � if
there are multiple sink nodes the output can be obtained by concatenating all
of these labels together. Alwen and Serbinenko [7] proved that in the parallel
random oracle model the cumulative memory complexity of the function fG,H

is completely captured by the pebbling complexity of the graph G, and Alwen
et al. [5] later observed that essentially the same pebbling reduction extends to
the notion of sustained space complexity. Here, the cumulative pebbling cost
of a pebbling P = (P1, . . . , Pt) is

∑t
i=1 |Pi| and the s-sustained space cost is

|{i : |Pi| ≥ s}| i.e., the number of pebbling rounds with at least s pebbles on the
graph. The cumulative pebbling complexity (resp. s-sustained space complexity)
of a graph G is the minimum cumulative pebbling cost (resp. s-sustained space
cost) taken over all legal black pebblings of G.

dMHFs and Dynamic Graphs For an iMHF fG,H the data-dependency graph
G is completely independent of the input x. By contrast, for a dMHF we might
get a di�erent data-dependency graph for each di�erent input x. For example, in
Scrypt there are 2N internal labels and the label for nodeN+i is computed using
the rule LN+i = H

(
LN+i−1 ⊕ L1+(LN+i−1 mod N)

)
. Thus, the data-dependence

graph will contain a directed edge from node r(N + i) = 1 + (LN+i−1 mod N)
to node N + i where the value r(N + i) depends on the label LN+i−1 and, by
extension, the input x. We call this edge (r(N+i), N+i) a dynamic edge since it
is not �xed a priori and the value r(N+ i) will remain hidden until label LN+i−1

is computed i.e., until we place a pebble on node N + i− 1.
In this paper we will use the notion of a dynamic pebbling game to model

the complexity of a dMHF. We begin by de�ning a dynamic pebbling graph
following the notation of [9].

De�nition 1 (Dynamic Pebbling Graph [9]). A dynamic pebbling graph
G is a distribution over DAGs G = (V,E) with nodes V = [N ] and edges E ⊆
{(i, j) : 1 ≤ i < j ≤ N}. We say that an edge (i, j) is static if for all DAGs
G = (V,E) in the support of G we have (i, j) ∈ E and we let Estatic ⊆ {(i, j) :
1 ≤ i < j ≤ N} denote the set of all static edges. Similarly, we use Edynamic =
E \ Estatic to refer to the set of dynamic edges which are not �xed a priori and
for each node j ∈ V we use Ej

dynamic = {(i, j) : (i, j) ∈ Edynamic} to denote the
set of incoming dynamic edges. In the dynamic pebbling game each dynamic edge
(i, j) ∈ Ej

dynamic is not revealed until node j − 1 is pebbled.
All of the dynamic pebbling graphs G considered in this paper have the addi-

tional property that for each DAG G = (V,E) in the support of G and each node

j ∈ V we have
∣∣∣Ej

dynamic

∣∣∣ ≤ 1 i.e., j has at most one incoming dynamic edge.
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Whenever
∣∣∣Ej

dynamic

∣∣∣ = 1 it will be convenient to use r(j) to denote the randomly

chosen parent of node j i.e., Ej
dynamic = {(r(j), j)}.

Strategies for pebbling such graphs can simply be thought of as algorithms,
which place pebbles according to some set of instructions, possibly reacting to
the dynamic edges as they are discovered. More formally, strategies are functions
that output legal pebbling steps when given a partial graph.

De�nition 2 (Dynamic Pebbling Strategy). A dynamic pebbling strategy
S is a function that takes as input

1. an integer i ≤ N ,
2. an initial pebbling con�guration P i

0 ⊆ [i] with i ∈ P i
0, and

3. a partial graph G≤i+1,

where the partial graph G≤i is the subgraph of G induced by the nodes 1, . . . , i.
The output of S(i, P i

0, G≤i+1) is a legal sequence of pebbling moves P i
1, . . . , P

i
r

that will be used in the next phase to place a pebble on node i+1, so that i+1 ∈
P i
ri ⊆ [i+ 1]. Given G ∼ G, we let S(G) denote the sequence of pebbling moves〈
P 0
1 , . . . , P

0
r0, P

1
1 , . . . , P

N−1
r1 , . . . , PN−1

rN−1

〉
. Here, P i

1, . . . , P
i
ri = S

(
i, P i

0, G≤i+1

)
,

P i
0 = P i−1

ri−1
, and P 0

0 = ∅. We call S(G) a pebbling (for G.)

We note that even after a the pebbling strategy S is �xed the �nal pebbling
S(G) is not determined until the graph G ∼ G has been chosen i.e., all of the
dynamic edges have been revealed. In particular, this means that the cumulative
(resp. sustained-space) cost associated with S can also vary depending on which
dynamic edges are sampled. However, once S and G are �xed we can de�ne the
cumulative pebbling cost of P = S(G) = ⟨P1, . . . , PT ⟩ as

∑T
i=1 |Pi|. Similarly, the

s-sustained space cost is |{i : |Pi| ≥ s}|. Our dynamic pebbling dMHF lower-
bounds will take the following form for any dynamic pebbling strategy S with
high probability (over the sampling of G ∼ G) when P = (P1, . . . , PT ) = S(G)

we either have (1)
∑T

i=1 |Pi| ≥ LB1(N), or (2) |{i : |Pi| ≥ s}| ≥ LB2(N).
Where the value s and the exact functions LB1 and LB2 will depend on the
particular dMHF we are analyzing.

Open Research Challenge: Dynamic Pebbling Reductions For iMHFs
it is known that, in the parallel random oracle model, the cumulative memory
complexity of the function fG,H is fully characterized by the cumulative peb-
bling cost of the corresponding data-dependency graph G similar for sustained
space complexity [5]. By contrast, there is no formal reduction proving that the
cumulative memory complexity (resp. sustained space complexity) of a dMHF
is captured by the dynamic pebbling game. In this sense a dynamic pebbling
lower bound would not absolutely rule out the possibility of a more e�cient
attack � unless one can establish a dynamic pebbling reduction. Establishing a
formal reduction between dynamic pebbling costs and the cumulative memory
complexity of the associated dMHF is a major open research challenge. In the
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meantime, we can still interpret a dynamic pebbling lower bound as ruling out
�natural" attacks and providing compelling evidence that the associated dMHF
is secure.

1.3 Trade-O�s for dMHFs

Now we elaborate on the results shown in Table 1.

Our Construction We construct a dMHF (dynamic graph) with constant inde-
gree and prove that for any pebbling strategy S that, except with negligible prob-
ability over the sampled graph G ∼ G, the pebbling P = (P1, . . . , PT ) = S(G)

satis�es either (1) |{i ∈ [T ] : |Pi| ≥ c1N}| ≥ c2N , or (2)
∑T

i=1 |Pi| ≥ c3N
3−ϵ.

Here, ϵ > 0 can be arbitrary and the constants c1, c2, c3 > 0 depend only on ϵ.
We remark that the naive sequential pebbling strategy (i.e., set Pi = {1, . . . , i}
for each i = 1, . . . , N) has s = N/2-sustained space complexity N/2 and cu-
mulative memory cost O(N2). Our results tell us that any pebbling strategy
with lower sustained space complexity must pay a massive penalty in terms of a
higher CMC cost.

Dynamic EGS The second graph we examine is based on a family of depth-
robust graphs constructed by Erd®s et al., which we call EGS [14]. While the
indegree O(logN) of these graphs is a bit larger than we might desire, the
cumulative pebbling cost of the graph G is Ω(N2) [4]. However, the sustained
space-complexity of EGS has not been studied previously. We add dynamic edges
to EGS to obtain a dynamic graph and show that, for suitable choices of the
constants c1, c2, c3 > 0, (whp) the pebbling (P1, . . . , PT ) = S(G) produced by
any dynamic pebbling strategy satis�es either (1) |{i : |Pi| ≥ c1N}| ≥ c2N or

(2)
∑T

i=1 |Pi| ≥ c3N
3. In particular, either there are Ω(N) rounds where the

space usage is Ω(N) or the cumulative pebbling cost is massive Ω(N3).

Dynamic DRSample We next consider DRSample, a randomized algorithm
that, except with negligible probability, outputs a DAG G with cumulative peb-

bling cost Ω
(

N2

logN

)
and maximum indegree 2 [3]. Alwen et al. [3] implemented

the corresponding iMHF and demonstrated that it is practical i.e., the execution
time for a graph onN nodes is equivalent to Argon2i. While the intended use case
for DRSample was to generate a static DAG G for an iMHF fG,H we can eas-
ily modify the de�nition to include dynamic (data-dependent) edges. We prove
that the dynamic version G of DRSample achieves the following CMC/SMC
trade-o�s: for any dynamic pebbling strategy S with high probability (over
the selection of G ∼ G) the pebbling (P1, . . . , PT ) = S(g) either satis�es (1)

|{i : |Pi| ≥ c1N/ logN}| ≥ c2N , or (2)
∑T

i=1 |Pi| ≥ c3N
3/ logN . In particular,

either there are Ω(N) rounds with Ω(N/ logN) pebbles on the graph or we pay
a massive penalty in our cumulative pebbling costs.
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Argon2id Argon2 is a collection MHFs that won the Password Hashing Compe-
tition in 2015 [1]. There are three modes of Argon2: Argon2i, Argon2d, and Ar-
gon2id. The Argon2 designers initially recommended Argon2i (data-independent
mode) for password hashing to protect against side-channel attacks. This rec-
ommendation was later changed to Argon2id (hybrid mode) after Alwen and
Blocki [2,8] found pebbling attacks on Argon2i which reduced the cumulative
memory complexity � the pebbling attacks do no extend to data-dependent
modes such as Argon2id. While Argon2i has weaker theoretical guarantees than
DRSample [13,3], Argon2 is available in cryptographic libraries such as libsodium
and has seen wider use in practice. In particular, the cumulative complexity of
Argon2i is at most O(N1.768) and at least Ω̃(N1.75). We are able to establish
stronger tradeo�s for Argon2id. In particular, for any parameter e and any peb-
bling strategy S we can show that (except with negligible probability over the
selection of the graph G ∼ G) the pebbling (P1, . . . , Pt) = S(G) satis�es either

(1) |{i : |Pi| ≥ e}| ≥ c1N , or (2)
∑T

i=1 |Pi| ≥ c2N
4e−2 log−c3 N for suitable

constants c1, c2, c3 > 0. As a concrete example if we set e = N1−ϵ there are
Ω(N) rounds with at least e pebbles or the cumulative memory cost is at least
Ω̃(N2+2ϵ) = ω(N2). We remark that one can separately prove an absolute lower
bound of Ω(N2) for the cumulative pebbling complexity of Argon2id.

1.4 Technical Overview

We develop two techniques for proving CMC/SSC trade-o�s for dynamic graphs.
The �rst general technique is to de�ne an indicator random variable unluckyi for
each dynamic edge (r(i), i). Intuitively, we de�ne unluckyi = 1 to be the event
that either (1) the dynamic pebbling strategy already had a lot of pebbles (say
s = Ω(N)) on the graph when the edge (r(i), i) was revealed, or (2) the particular
choice edge (r(i), i) will require us to re-pebble a lot of previously pebbled nodes.
Our general strategy is to argue that the following:

1. For any sequence of bits b1, . . . , bi−1 ∈ {0, 1} we have Pr[unluckyi | ∀j <
i, unluckyj = bj ] ≥ p. While the events unluckyi do not need to be indepen-
dent, the conditional probability that unluckyi is always ≥ p for any prior
outcomes unlucky1, . . . , unluckyi−1.

2. For some suitable constant c ∈ (0, 1) and any i ∈ [cN,N ] with unluckyi = 1
either we had s = Ω(N) pebbles on the graph when r(i) was revealed or the
cumulative pebbling cost to place a pebble on node i will be high (say M)

3. We apply generalized concentration bounds to argue that (whp) we have∑N
i=cN unluckyi ≥ p(1− c)N/2.

4. Assuming there are at least p(1 − c)N/2 unlucky rounds i > cN we either
(1) have s = Ω(N) pebbles on the graph for p(1 − c)N/4 pebbling rounds,
or (2) we pay CMC cost at least M at least p(1− c)N/4 separate times for
a total cost of p(1− c)NM/4.

To prove our SSC/CMC trade-o�s for Argon2id we generalize and a technique
introduced in [6] to analyze Scrypt. In particular, [6] observed that if we start
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with e pebbles on a line graph and are challenged to re-pebble a random node
r(i) on the line graph then it will take us at least N

4e steps in expectation to
place a pebble on a random node r(i). Suppose that r(i) is revealed at time
t1 and a pebble is placed on node r(i) at time t2 ≥ t1. The challenge r(i) is
called "easy" if for some t ≤ t2 there were fewer than |Pt2−t| < N

8t pebbles on
the graph at time t2 − t � in this case even if r(i) had been revealed at time
t2 − t we would have expected that it takes at least N

4N
8t

= 2t rounds to place a

pebble on node r(i). Thus, there is a good chance (at least 1
2 ) that the challenge

r(i) is �hard" meaning that |Pt2−t| ≥ N
8t for every t ≤ t2. Alwen et al. [6] then

apply concentration bounds to argue that there are a lot of �hard" rounds which
allowed them to prove that (whp) the cumulative pebbling cost for Scrypt is at
least Ω(N2).

We can generalize the argument of Alwen et al. [6] by exploiting the fact
that Argon2i provides stronger (fractional) depth-robustness guarantees than
the line graph [13]. In particular, if we start with with e pebbles on Argon2i
and are challenged to place a pebble on a random node r(i) we can argue that
it will take us at least Ω̃

(
(N/e)3

)
steps to re-pebble node r(i) in expectation.

With this observation in mind we can rede�ne �hard" challenges to require that
|Pt2−t| = Ω̃((N/t)3) for every t ≤ t2 � where t2 is the time when we actually
placed a pebble on node r(i). Fixing e = N1−ϵ we can argue that either (1)
there are Ω(N) rounds with at least e pebbles on the graph, or (2) there are
a lot of �hard� rounds where we started with at most e pebbles on the graph.
In the second case we can argue that the cumulative pebbling cost is at least
Ω̃(N2+2ϵ).

Our Construction We construct a family of dynamic graphs GN
D with O(N)

nodes and indegree 2 which has essentially optimal CMC/SSC tradeo�s. We rely
on several building blocks to construct our dynamic graphs. The �rst building
block is the notion of a maximally ST-robust graph which was recently intro-
duced by Blocki and Cinkoske [11]. Intuitively, a maximally ST-robust graph is
a DAG G with has N inputs (sources) and N outputs (sinks) with the following
property: for any k ≤ N we can delete any subset S of k nodes from the graph
and there will remain subsets A of |A| ≥ N − k inputs and B of |B| ≥ N − k
outputs such that for every pair u ∈ A, v ∈ B the graph G − S still contains
a directed path from u to v. Blocki and Cinkoske [11] gave a construction of a
maximally ST-robust graph with linear size O(N) and constant indegree. The
second building block is a family of depth-robust graphs which we overlay on
top of the source nodes of our maximally ST-robust graph. Finally, we add our
data-dependent layer such that each dynamic edge (r(i), i) uses a uniformly ran-
dom output node r(i) from our maximally ST-robust graph. Intuitively, when
r(i) is revealed we will get �unlucky� if either we have more than k pebbles on
the graph or r(i) ∈ B, which happens with probability at least 1 − k/N . Then
whenever we get unlucky, we either have many pebbles on the graph or we will
need to repebble the entire set A of N − k inputs before node r(i) can be peb-
bled. By overlaying a depth-robust graph over the input nodes we can ensure
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that either (1) k = Ω(N), or (2) we get unlucky with constant probability and
repebbling A requires cumulative cost Ω(N2−ϵ). If we get unlucky a linear num-
ber of times with respect to N (which happens with overwhelming probability)
then we either sustained Ω(N) pebbles for Ω(N) steps or incurred CC Ω(N3−ϵ)

Dynamic EGS To prove our CMC/SSC trade-o� for EGS we primarily rely on
the known observation that these graphsG = (V = [N ], E) satisfy a key property
called δ-local expansion. If G is a δ-local expander, then for any S ⊆ [N ], the
graph G − S contains a directed path of length N − O(|S|). Intuitively, if we
started with pebbles on S and we were challenged to place a pebble on one
of the last cN nodes on this directed path then we would need to repebble
(1− c)N − O(|S|) nodes beforehand. For a suitable constant 0 < c < 1 if |S| =
o(N) we can argue that the cumulative memory cost associated with repebbling
r(i) would be at least Ω(N2) in this case. Observing that the probability of
getting an unlucky challenge is at least cN/N = c it follows that there are
at least Ω(N) unlucky challenges. Thus, we either have Ω(N) challenge rounds
where our initial space usage was Ω(N) or we have Ω(N) challenge rounds where
we pay CMC cost Ω(N2) � in the later case our total CMC cost is Ω(N3).

Dynamic DRSample Our argument follows a similar pattern as our dynamic
pebbling analysis of EGS. One key di�erence is that the DRSample graph G is
less depth-robust than EGS due to the fact that DRSample has constant inde-
gree. Instead we rely on the notion of a �metagraph� where groups of O(logN)
nodes in DRSample are �merged� into a single metanode. Alwen et al. [3] showed
that the metagraph G′ for DRSample had N ′ = O(N/ logN) nodes and satis�ed
the key-property that for every subset S′ ⊆ [N ′] of metanodes that the graph
G′ − S′ still had a path of length (1 − η)N ′ − O(|S′|) for some suitably small
constant η > 0. A path in the metagraph extrapolates back to a path of length
O(N) in the original graph. At this point our argument is similar to EGS with
the di�erence that repebbling the graph will be expensive when we begin the
challenge with more than N ′ = O(N/ logN) pebbles on the graph. Thus, we
can argue that either (1) we have Ω(N) challenge rounds where we start with
Ω(N/ logN) pebbles on the graph or (2) there are at leastΩ(N) challenge rounds
where we start with fewer than O(N/ logN) pebbles on the graph and we pay
CMC costs Ω(N2/ logN) to repebble nodes while responding to the challenge
complete the challenge. In the latter case the total CMC cost over all challenge
rounds is Ω(N3/ logN).

2 Preliminaries

We let [N ] = {1, 2, . . . , N} and [i : j] = {i, i + 1, . . . , j − 1, j}. For any list
A = ⟨a1, . . . , an⟩, we let Ai denote the ith entry of A. For a DAG G = (V,E) and
any set S, we let G−S denote the graph G′ = (V ′, E′) such that V ′ = V \S and
E′ = {(u, v) | (u, v) ∈ E, u, v ∈ V ′}. We use indeg(G, v) = |{u : (u, v) ∈ E}| to
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denote the indegree of a node v ∈ V and indeg(G) = maxv∈V |{u : (u, v) ∈ E}|
to denote the maximum indegree of the DAG. For a dynamic pebbling graph G
we use indeg(G) = maxG∈sup(G) indeg(G) to denote the maximum indegree of
any DAG in the support of G. Whenever we implicitly refer to some x ∈ R as
an integer, we always mean ⌊x⌋. For example, [x] = {1, 2, . . . , ⌊x⌋}. For some set
S, we use the notation y ∈R S to indicate that y is sampled from S uniformly
at random.

2.1 Dynamic Pebbling Notation

We formalize some convenient pebbling notation. Fix some dynamic pebbling
strategy S, G = ([N ], E), and let P = S(G) = ⟨P1, . . . , PT ⟩ be the peb-
bling that is produced when G = (V,E) ∼ G is sampled. For each v ∈ V let
parentsG(i) = {j | (j, i) ∈ E} denote the parents of node v. When the graph G is
clear from context we will omit G from the subscript and simply write parents(i).
For i ∈ [N ] in which there exists a dynamic edge (r(i), i), let P (i) denote the
pebbling con�guration during the round s(i) when r(i) was �rst discovered. That
is, P (i) = Ps(i), where

s(i) =

{
1 if i = 1, and

min{j ∈ [T ] | i− 1 ∈ Pj} otherwise.

Similarly, we let t(i) = mink≥s(i)∈[T ]{k | r(i) ∈ Pk} denotes the �rst round
in which r(i) is pebbled after r(i) is revealed in round s(i).

2.2 Generalized Hoe�ding Inequality

the pebbling P = S(G) and its associated costs will depend on the particular
graph G ∼ G. Thus, when analyzing the cumulative memory complexity and/or
sustained space complexity of a dynamic graph we are inherently making a
probabilistic claim. In particular, we would like to argue that a particular lower
bound on the pebbling cost of S(G) holds with high probability � over the
selection of G ∼ G. We use the Generalized Hoe�ding's Inequality to lowerbound
these values [6].

Lemma 1 (Generalized Hoe�ding's Inequality [6]). If V1, . . . , VQ are bi-
nary random variables such that for any i (0 ≤ i ≤ Q) and any values v1, v2, . . . , vi,

Pr[Vi+1 = 1 | V1 = v1, . . . , Vi = vi] ≥ ρ, (1)

then for any ϵ > 0, with probability at least 1− e−2ϵ2Q,
∑Q

i=1 Vi ≥ Q(p− ϵ).

2.3 Useful Graphs and Their Pebbling Complexity

Naturally, we de�ne notions of measuring the time-space requirements for peb-
bling dynamic graphs. Cumulative complexity refers to the total number of
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pebbles used at each step to pebble a graph, while sustained space complex-
ity describes how many steps a certain amount of pebbles were on the graph.

De�nition 3 (Pebbling Complexity). Let G be a dynamic pebbling graph, G
be a graph in the sample space of G, P be the set of legal pebblings of G, and S
be the set of pebbling strategies for G. We de�ne the cumulative complexity of a

� pebbling P = ⟨P1, . . . , PT ⟩ ∈ P as cc(P ) =
∑T

i=1|Pi|,
� a sequence of pebbling moves ⟨Pi, . . . , Pj⟩ as cc(P, i, j) =

∑j
k=i|Pk|

� graph G as cc(G) = minP∈P{cc(P )}, and
� dynamic pebbling graph G as cc(G)minS∈S{EG∼G[cc(S(G))]}.

Likewise, we de�ne the s-sustained space complexity of a

� pebbling P as ss(P, s) = |{i | |Pi| ≥ s, i ∈ [T ]}|,
� graph G as ss(G, s) = minP∈P{ss(P, s)}, and
� dynamic pebbling graph G as minS∈S{EG∼G[ss(S(G), s)]}.

For notational purposes, we also de�ne the opposite of s-sustained space
complexity called (p, ℓ)-low memory.

De�nition 4 (Low Memory Pebbling). Let S be a pebbling strategy for a
graph distribution G and G be any graph in the sample space of G. We say that
P = S(G) is a (p, ℓ)-low memory pebbling for G if

1. there exists A ⊆ [T ] such that |A| ≤ ℓN , and

2. for all i ∈ A \ [T ] we have |Pi| ≤ pN .

The cumulative complexity of a graph is tightly correlated with the notion
of depth robustness, the property of a graph having long paths even when many
nodes are removed from the graph.

De�nition 5 (Depth Robustness). A DAG G = (V,E) is (e, d)-depth robust
if for any S ⊆ V of size at most e, there exists a path of length d in G− S.

Throughout this paper we make use of the following remark on node-deletion.

Remark 1 ( of [4]). Let G be an (e, d)-depth robust graph. Then for any S ⊆
V (G) of size k ≤ e, the graph G− S is (e− k, d)-depth robust.

We rely heavily on a lowerbound for the cumulative complexity of graphs
according to their depth-robustness.

Theorem 1 (of [4]). Let G be an (e, d)-depth-robust DAG, then cc(G) > ed.
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3 A Theoretical MHF with Ideal Trade-O�

In this section we use an (e = Ω(N), d)-depth robust graph D with constant
indegree and a maximally ST-robust graph to construct a dynamic graph GN

D

with the property that for any pebbling strategy S with high probability either
there are at least Ω(N) rounds with at least Ω(N) pebbles on the graph) or
cc(S(G)) ≥ Ω(N2d). Furthermore, if D has constant indegree than any graph
G in the support of GN

D also has constant indegree.

Theorem 2. Let D be an (e = 2pN, d)-depth robust graph. There exist constants
0 < c, c1, p, ℓ < 1, such that for any strategy S, except with probability at most
exp(−2(1− p− c1)

2N), either ss(S(G), pN) > ℓN or cc(S(G)) ≥ cN2d, where
the probability is taken over the choice of G ∼ GN

D .

For every constant ϵ > 0 and every N ≥ 1 Schnitger [19] gave a construction
of a DAG GratesN,ϵ which is (Ω(N), Ω(N1−ϵ))-depth robust and has constant
indegree. Speci�cally, for all ϵ > 0, there exist constants γ, c > 0, depending only
on ϵ such that the graph GratesN,ϵ on N nodes is (γN, cN1−ϵ)-depth robust and
has constant indegree.

In our construction GN
D if we instantiate D = GratesN,ϵ using GratesN,ϵ (or

any other (Ω(N), Ω(N1−ϵ))-depth robust graph) we obtain the Corollary 1 which
says that (whp) either our cc cost is at least Ω(N3−ϵ) or we will have Ω(N)
rounds with Ω(N) pebbles.

Corollary 1 (of Theorem 2). For any ϵ > 0, there exist constants 0 <
c, c′, c′′, p, ℓ < 1 such that for any strategy S, except with probability at most
exp(−2(1− p− c′)2N), either ss(S(P ), pN) > ℓN or cc(P ) ≥ c′′N3−ϵ, where
the probability is taken over the choice of G ∼ GN

GratesN,ϵ
.

We remark it is better to instantiate GN
D with D = GratesN,ϵ instead of

another depth-robust graph like DRSample [3] is (Ω(N/ logN), Ω(N))-depth
robust. This is an interesting observation because if we considered these DAGs
as a standalone iMHF then we would prefer to use DRSample. In particular,
DRSample has cc = Ω(N2/ logN) in comparison to cc = Ω(N2−ϵ) for grates.
The reason why DRSample is not suitable is that we do not have any guarantees
that the graph is (e, d)-depth robust when e = Ω(N). The graph GratesN,ϵ is
ideal for instantiating D in our construction, as it is (Ω(N), Ω(N1−ϵ)-depth
robust.

3.1 The Construction

The dynamic graph GN
D consists of three components. A maximally ST robust

graph with input and output sets of size N , a highly depth-robust graph over-
layed on the input set as seen in Figure 1, and a line graph with each node having
a dynamic edge from a node sampled uniformly at random from the output set
of our ST robust graph. A visualization of the complete construction of GN

D is
shown in Figure 2. We elaborate on each component in further detail below.
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ST-robust graphs play an integral role in our construction [11]. ST-robust
graphs are DAGs that have a high connectivity between the sources and sinks
even when many nodes are removed. We use ST-robust graphs of the strongest
variety�ones that have the maximum possible paths from the inputs to the
outputs given arbitrary node deletion.

De�nition 6 (ST-Robustness [11]). Let G = (V,E) be a DAG with n inputs
denoted by set I and n outputs denoted by set O. Then G is (k1, k2)-ST robust
if for all D ⊂ V (G) with |D| ≤ k1 there exists a subgraph H of G − D with
|I ∩ V (H)| ≥ k2 and |O ∩ V (H)| ≥ k2 such that for all s ∈ I ∩ V (H) and
t ∈ O ∩ V (H), there exists a path from s to t in H. The graph G is maximally
ST-robust if G is (k, n− k)-ST robust for all 0 ≤ k ≤ n.

In particular, Blocki et al. [11] prove the existence of a family of maximally
ST-robust graphs with size linear with respect to the size of the input and output
sets.

Theorem 3 (of [4]). For all N > 0, there exist maximally ST-Robust graphs
on N inputs and N outputs on O(N) nodes and constant indegree.

Intuitively, suppose that when the challenge r(Li) is revealed we had pebbles
on nodes S. By ST-robustness there exists a subset of |A| ≥ N −|S| input nodes
and |B| ≥ N − |S| output nodes such that every a ∈ A and b ∈ B there is
a directed path from a to b which avoids the set S entirely. In particular, this
means that if the challenge r(Li) ∈ B is in the set B (which happens with
probability at least |B|/N ≥ 1 − |S|/N) then we will need to repebble every
node in the set A before we can pebble node r(Li).

Lastly, we de�ne a function overlay, shown in Figure 1, which we use to
combine graphs as part of our construction. Intuitively, we overlay a depth-
robust graph on top of the inputs of our ST-robust graph to ensure that, unless
|S| is su�ciently large, it will be expensive to repebble the entire set A above.

De�nition 7 (Overlay). Let G = (V = [n], E) and G′ = (V ′ = [m], E′) for
m > 2n with sources [n] and sinks [m − n + 1 : m]. Then overlay(G,G′) =
(V ′, E ∪ E′).

De�nition 8 (The Dynamic Graph GN
D). Let D be an (eN , dN )-depth robust

graph on N nodes and ST be a maximally ST-robust graph with N inputs STin

and N outputs STout. Next let G = overlay(D,ST) on M nodes. Let L = ⟨M +
1, . . . ,M +N⟩ and G′ = (V,E) such that V = V (G)∪L and E = E(G)∪{(M +
i− 1,M + i) | i ∈ [1 : N ]}. Finally, let GN

D be the distribution over the set of all
G′ with additional edges {(r(Li), Li) | i ∈ [N ]}, where r(Li) maps Li to some
j ∈ STout chosen uniformly at random.

For each Pi, let STPi
denote a subgraph of G − L − Pi with paths from at

least N − |Pi| inputs STin
Pi

to at least N − |Pi| outputs STout
Pi

. Intuitively, if a
strategy keeps a small number of pebbles on the graph for a large number of
steps, then, upon the discovery of a dynamic edge, a large amount of inputs will
likely have to be repebbled, which is expensive due to its depth robustness.
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ST G

1 2 · · · i · · · N

D

o1 o2 · · · oi · · · oN

• • •

1 2 · · · i · · · N

• • •

•• •
• • •

7→

o1 o2 · · · oi · · · oN

1 2 · · · i · · · N

ST
out

• • •

•• •
• • •

• • •

ST
out

ST
in

ST
in

Fig. 1. Above is the visualization of the mapping overlay applied to D and ST to get
the graph G. The result is an ST-robust graph with a highly depth robust input set.
The red edges from ST

in to STout represent the high connectivity between the sets due
to the maximal ST-robustness.

3.2 Lowerbounding Costly Edges

The �rst step in describing the trade-o� between sustained space and cumulative
complexity of GN

D is describing how often a low-memory pebbling encounters a
costly edge, one that requires a large amount of repebbling. Even if a pebbling
keeps only a small number of pebbles on the graph, it's possible that it gets
�lucky� and avoids costly edges. In this section we show that a pebbling can't
get lucky many times, except with negligible probability.

Fix some parameters 0 < ℓ < 1 − p < 1. Let unlucky1, . . . , unluckyN be
random variables such that unluckyi = 1 if |P (Li)| > pN or r(Li) ∈ STout

P (Li)

i.e., we have at most pN pebbles on the graph when the challenge edge r(Li) is
revealed or we will need to repebble the entire set STin

P (Li) since r(Li) ∈ STout
P (Li).

Let unlucky =
∑

i∈[N ] unluckyi. Getting �lucky� during a round in which some

r(Li) is discovered refers to the event that there are a small amount of pebbles
on the graph, yet r(Li) ̸∈ STout

P (Li) and isn't guaranteed to be costly. Intuitively,

the challenge r(Li) is guaranteed to be costly if it happens to be in STout
P (Li).

The exact penalty for being unlucky will be described later. Here, we �nd that
the probability of getting lucky is simply upperbounded by p, since there are at
most pN nodes of STout that are not in STin

P (Li).

Lemma 2. Let S be any strategy and let P = ⟨P1, . . . , PT ⟩ = S(G), where
G ∼ GN

D . Then for any �xed b1, . . . , bi−1 ∈ {0, 1}we have

q := Pr

unluckyi
∣∣∣∣∣∣
∧

j∈[i−1]

unluckyj = bj

 ≥ 1− p,
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L1 L2 · · · Li · · · LN

O1 O2 · · · Oi · · · ON

1 2 · · · i · · · N

r(i)

GN
D

ST
out

ST
in

Fig. 2. Above is the �nal construction of GN
D , which combines overlay(D,ST) with a

line graph on nodes L. For each Li there is a dynamic edge from r(Li) ∈R ST
out.

where the probability is taken over the selection of G ∼ GN
D .

Proof. If |P (Li)| > pN , then by de�nition unluckyi = 1. If |P (Li)| ≤ pN . Then
regardless of any prior pebbling steps, we have that there are at most pN nodes
in STout \ STout

P (Li) by construction. Since r(Li) is chosen uniformly at random,

it follows by Theorem 1 that r(Li) ̸∈ STout
P (Li) with probability at most∣∣∣STout \ STout
P (Li)

∣∣∣
N

≤ p,

so q ≥ 1− p.

Ultimately, our goal is to show that, with overwhelming probability, any
low-memory pebbling gets unlucky so often that it incurs an unreasonable time
cost, because each time the pebbling gets unlucky it incurs a high cost while
repebbling r(Li). So, we must show that it's very unlikely that such pebblings
get unlucky only a relatively few amount of times. From Lemmas 1 and 2, Lemma
3 immediately follows, and so the proof is left to the full version of this paper.

Lemma 3. Let S be any pebbling strategy, and let P = S(G) for G ∼ GN
D . Then

for all ϵ > 0 Pr
[∑

i∈[N ] unluckyi < N(1− p− ϵ)
]
≤ exp(−2ϵ2N)

3.3 The Trade-o� between Sustained Space and Cumulative
Complexity

We now argue that whenever unluckyi = 1 and we have at most |P (Li)| ≤ pN
pebbles on the graph when the challenge r(Li) is revealed that the cumula-
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tive pebbling cost incurred between rounds s(Li) (when the challenge r(Li)
is revealed) and t(Li) (when we place a pebble on node r(Li)) is at least
cc(P, s(Li), t(Li)) ≥ pNd. We conclude with the proof of our main result from
this section.

If few pebbles are on the graph at step s(Li), then the pebbling can get lucky
in the sense that r(Li) isn't expensive to pebble; otherwise, the con�guration
necessitates some costly pebbling moves from step s(Li) to step t(Li). More
concretely, if unluckyi = 1 and |P (Li)| ≤ pN then r(Li) is in ST

out
P (i) and pebbling

r(Li) requires pebbling at least N(1− p) nodes of STin
P (i), which is (e− pN, d)-

depth robust by Remark 1.

Lemma 4. For any pebbling strategy S and P = S(G) for G ∼ GN
D . If unluckyi =

1, |P (Li)| ≤ pN , and D is (2pN, d)-depth robust, then cc(P, s(Li), t(Li)) ≥ pNd.
We call such (r(Li), Li) costly edges.

Proof. If unluckyi = 1, and |P (Li)| ≤ pN then r(Li) ∈ STout
P (Li). Since STP (Li)

is maximally ST-robust, there are paths from at least N(1− p) inputs to r(Li).
That is, STin

P (Li) must be pebbled by round t(Li). Since ST
in is (2pN, d)-depth

robust, STin
P (Li) is (pN, d)-depth robust by Remark 1. It follows that

cc(P, s(Li), t(Li)) ≥ cc
(
ST

in
P (Li)

)
≥ pNd.

Now we have the tools to prove Theorem 2, which is a straight-forward con-
sequence of Lemmas 3 and 4.

Proof (Proof of Theorem 2). If P is not (p, ℓ)-low memory, then ss(P, pN) > ℓN .
Suppose P is (p, ℓ)-low memory. By Lemma 3, except with probability at most

e−2(1−p−c1)
2N (for ℓ < c1 < 1 − p), there are at least c1N pebbling moves in

which either |P (Li)| > pN or r(Li) ∈ STout
P (Li), so for c2 = c1−ℓ, there are nodes

i1, . . . ic2N in which unluckyij = 1 and |P (Lij )| ≤ pN . It follows by Lemma 4

that cc(P ) ≥
∑

j∈[c2N ] cc
(
P, s(Lij ), t(Lij )

)
≥ c2pN

2d.

4 Dynamic EGS

The next graph family we hybridize is a construction by Erd®s et al., which we
will call EGS. EGS achieves the maximum possible cumulative complexity of
Ω(N2) [14]. While EGS achieves the highest possible cumulative complexity, it
is the least practical of the graphs we're considering, as it has indegree Ω(logN)
[14]. In this section we construct a simple, dynamic version of this graph and show
that it achieves the maximal sustained space and cumulative memory trade-o�.
The precise details of this construction are unnecessary, as we rely only on the
fact that the graph satis�es the properties of local expansion.

De�nition 9 (Local Expansion [5]). Let Ir and I∗r be de�ned such that
Ir(x) = {x − r − 1, . . . , x} and I∗r (x) = {x + 1, . . . , x + r}. We say that a
DAG G = (V = [N ], E) is a δ-local expander if for all i ∈ V , r ≤ i,N − i, and
A ⊆ I∗r (x) and B ⊆ Ir(x) each of size at least δr, there exists an edge from A to
B.
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Local expansion naturally gives guarantees on connectivity and depth-robustness
after arbitrary node deletion and is a key property of EGS.

Theorem 4 (of [5,14]). For any 0 < δ < 1, there exists a family of graphs
{EGSδN}∞N=1 such that EGSδN is a δ-local expander on N nodes. For some con-

stants c, η, η′ > 0, depending only on δ, each EGSδN has indegree c logN and is
(ηN, η′N)-depth robust. Furthermore, for each i ∈ [N ], EGSδN ([i]) is (ηi, η′i)-
depth robust.

In constructing a hybrid extension of EGS, we want to add dynamic edges
that require the adversary to repebble many nodes. For each node, we simply
select an incoming edge from a prior node chosen uniformly at random. We'll
show that if an adversary doesn't keep su�ciently many pebbles on the graph,
then it will have to repebble maximally depth-robust subgraphs of EGS many
times.

De�nition 10 (Dynamic EGS). The dynamic pebbling graph DEGSδN is the
graph EGSδN with additional dynamic edges {(r(i), i) | i ∈ [3 : N ]} with r(i) ∈R
[i− 2].

We'll show that with overwhelming probability, any dynamic pebbling strat-
egy either maintains pN nodes on the graph for more than ℓN steps, or has
cumulative complexity Ω(N3).

Theorem 5. There exist constants 0 < c, c′, c1, ρ, p, ℓ < 1 such that for any

strategy S, except with probability at most exp(−2
(
ρ− c

1−c1

)2
(1− c1)N), we

either have ss(S(G), pN) > ℓN or cc(S(G)) ≥ c′N3 where the probability is
taken over the selection of G ∼ DEGSδN .

The last tool we'll use to prove Theorem 5 are good nodes. If a pebbling
strategy has pebbles S on a graph, then it's useful to know whether a given
node is surrounded by only relatively few pebbles, since that way the node is
more likely to be a part of a long path.

De�nition 11 (Good Nodes [3]). Let γ > 0, G = ([N ], E) be a DAG, and
S ⊆ V . The node i ∈ [N ] is γ-good with respect to S if (1) for all r ∈ [i]
|Ir(i) ∩ S| ≤ γr and (2) for all r ∈ [m− i+ 1] |I∗r (i) ∩ S| ≤ γr.

We �rst show that if a strategy keeps some su�ciently small amount of pebbles
on the graph, then there will be large paths in the remaining graph. The good
nodes form such paths.

Lemma 5 (Lemma 5 of [5]). Let G = ([N ], E) be a δ-local expander and
x < y ∈ [N ]. For any S ⊆ [N ] and γ such that δ < min{γ/2, 1/4}, the graph
G − S contains a directed path through all nodes in G which are γ-good with
respect to S.

Prior work gave a lowerbound on the number good nodes in arbitrary DAGs
with respect to an arbitrarily-sized subset of nodes. This immediately allows us
to lowerbound the probability that r(i) is a good node.

Lemma 6 (Lemma 6 of [5]). For any DAG G = ([N ], E), γ > 0, and S ⊆ [N ],
there are at least N − 1+γ

1−γ |S| nodes in G which are γ-good with respect to S.
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4.1 Lowerbounds on Getting Unlucky

We de�ne events that are costly for strategies that employ low-memory pebblings
and show that they happen with reasonably large probability. First, we must
characterize events that may lead to high cumulative cost if an adversary has
relatively few pebbles on the graph upon discovering r(i). We know by Lemma
5, there's a good chance that r(i) is a γ-good node. If that's the case, then
there's a long path that includes r(i). Eventually, we show that if r(i) is good
and su�ciently large, then the subgraph of good nodes prior to r(i) is highly
depth robust and must be repebbled.

To quantify what it means for i and r(i) to be �large� enough that pebbling
the subgraph of good nodes is su�ciently costly, we require the assignment of
several constants with various constraints in agreement with Lemma 7.

Lemma 7. Fix any 0 < η < 1 according to Theorem 4. There exists an assign-
ment of p, ℓ, c1, c2, and c3 such that for all 0 < γ < 1,

1. 1− η < c3 < c2 = c1

(
1− p 1+γ

1−γ

)
, 2. 0 < ℓ < c2(c2 − c3)(1− c1), and

3. 0 < c2 < c1 < 1− ℓ.

Proof. To satisfy 1 − η < c2 < 1, we �rst pick 0 < p < η(1−γ)
1+γ . Since c2 =

c1(1− p 1−γ
1+γ ), it follows that c2 < c1. Fix ℓ such that 0 < ℓ < c2(c2− c3)(1− c1).

Then (3) is satis�ed by the fact that 0 < c1, c2, c3 < 1. Finally, �x any c3 such
that 1− η < c3 < c2.

Let 0 < δ < 1, assign 0 < γ < 1 satisfying Lemma 5, and �x p, ℓ, c1, c2,
and c3 according to Lemma 7. Let S be any pebbling strategy for G ∼ DEGSδN
and P = S(P ). Next we de�ne an indicator random variable for the whether
or not r(i) is good. Let goodi be the random variable such that goodi = 1
if r(i) is γ-good with respect to P (i) and goodi = 0 otherwise. The function
ranki determines how far r(i) is along the path of good nodes. The higher the
value of ranki(r(i)), the more expensive it will be to pebble r(i). More formally,
ranki(v) = j if v is topologically the jth γ-good node respect to P (i), and
ranki(v) = 0 otherwise.

Finally we say that an adversary is unlucky at a step s(i) if r(i) is good and
su�ciently far along the path of good nodes. For i ≥ c1N + 2, let unluckyi be
the random variable such that unluckyi = 0 if P (i) ≤ pN and either goodi = 0 or
ranki(v) < c3N and unluckyi = 0 otherwise. Let unlucky =

∑
i∈[c1N+2,N ] unluckyi.

Intuitively, an adversary that has few pebbles on the graph at step s(i) is
unlucky if r(i) is a γ-good node with respect to P (i) and of large depth. We
show that any strategy gets unlucky at step s(i) with some constant probability.

Lemma 8. There exists a constant ρ > 0 such that for each for each i ∈ [c1N +
2 : N ] and bc1N+2, . . . , bi−1 ∈ {0, 1}.

Pr

unluckyi
∣∣∣∣∣∣

∧
j∈[c1N+2:i−1]

unluckyj = bj

 ≥ ρ.
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Proof. If |P (i)| > pN then unluckyi = 1, so assume |P (i)| ≤ pN . Then G([i−2])
is a δ-local expander on at least c1N nodes, and there are at least c2N = c1N −
c1pN

1+γ
1−γ γ-good nodes with respect to P (i) in G([i− 2]) by Theorem 6. So, the

probability that goodi = 1 is at least c2N
i−2 ≥

c2N
N = c2

For c3 assigned according to Lemma 7, we have

Pr[ranki(r(i)) ≥ c3N | goodi] ≥ c2 − c3,

then by conditional probability Pr[ranki(r(i)) ≥ c3N ] ≥ c2(c2 − c3). Then for

ρ = c2(c2 − c3), Pr
[
unluckyi

∣∣∣∧j∈[c1N+2:i−1] unluckyj = bj

]
≥ ρ.

Just as before, combining Lemmas 1 and 8 immediately implies Lemma 9.

Lemma 9. For some constant c > 0,

Pr[unlucky < cN ] ≤ exp

(
−2
(
ρ− c

1− c1

)2

(1− c1)N

)
.

4.2 The Cost of Getting Unlucky

Next we examine the cost associated with unluckyi. Theorem 4 implies that being
unlucky results in high cumulative cost from step s(i) to step t(i).

Lemma 10. If unluckyi = 1 and |P (i)| < pN then cc(P, s(i), t(i)) ≥ c5N
2 for

some constant c5 > 0.

Proof. If unluckyi = 1 and |P (i)| < pN , then all of the γ-good nodes of G([r(i)])
with respect to P (i) must be repebbled before or on step t(i). It follows by
Theorem 4 that this subgraph is (ηc3N, η′c3N)-depth robust for some constants
η, η′ > 0. Since by Lemma 7 c3 > 1− η, we can apply Theorem 1 to get

cc(i, s(i), t(i)) ≥ (c3 + η − 1)η′c3N
2

≥ (c3 + η − 1)η′c3N
2

= c5N
2,

for c5 = (c3 + η − 1)η′c3

As with Theorem 2, Theorem 5 directly follows from Lemma 10. This is because
Lemma 9 implies that, except with negligible probability, there are Ω(N) steps
in which unluckyi = 1 and |P (i)| ≤ pN . Then Lemma 10 implies that such a
strategy incurs CC Ω(N2) for each of these incidences, resulting in a total CC
of Ω(N3).
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5 Dynamic DRSample

DRSample is a randomized algorithm that, except with negligible probability,

outputs an
(
Ω
(

N
logN

)
, Ω(N)

)
-depth robust graph on N nodes [3]. While losing

a logN factor in depth robustness, output graphs of DRSample contrast EGS
by having indegree 2 and being practical for common applications of MHFs.
To prove this section's main result, Theorem 6, we use a stronger version of
depth-robustness, where we are guaranteed su�ciently long paths even after the
deletion of blocks of consecutive nodes.

De�nition 12 (Block-Depth Robust [3]). Let N ∈ N and G = (V = [n], E)
be a DAG. For a node v, let N(v, b) = {v − b + 1, . . . , v}, and for S ⊆ V , let
N(S, b) =

⋃
v∈S N(v, b). The graph G is (e, d, b)-block-depth robust if for every

set S ⊆ V of size at most e, there exists a path of length d in G−N(S, b).

We also use a more general form of local expansion, which implies high con-
nectivity between the nodes after node deletion.

De�nition 13 (Local Expansion Node [3]). For a graph G = (V = [N ], E),
c > 0 and r∗ ∈ Z+, we say that a node v ∈ V is a (c, r∗)-local expander if for
all r ≥ r∗ we have

� for all A ⊂ I∗v (r) and B ⊆ I∗v+r(r) of size |A|, |B| ≥ cr there exists an edge
from A to B, and

� for all subsets A ⊆ Iv(r) and B ⊆ I∗v−r(r) of size |A|, |B| ≥ cr, there exists
an edge from A to B.

In our analysis of Dynamic DRSample, we will often examine its metagraph.
The metagraph of a DAG G = ([N ], E) with parameter m simply maps each
block [mi + 1 : m(i + 1)] to a node. Two nodes of the metagraph u and v are
connected if in the original graph there's an edge from the �last part� of the u
block to the ��rst part� of the v block.

De�nition 14 (Metagraph [3]). For a graph G = ([N ], E) and m > 0, we
de�ne the metagraph Gm = (Vm, Em) as follows. Let N ′ = ⌊N/m⌋ and Vm =
[N ′]. Let

� Mi = [(i− 1)m+ 1 : im],

� MF
i =

[
(i− 1)m+ 1 : (i− 1)m+

⌊
m 1−1/10

2

⌋]
, and

� ML
i =

[
(i− 1)m+ 1 +

⌈
m 1+1/10

2

⌉
: im

]
.

Then Em = {(i, j) |ML
i ×MF

j ∩ E ̸= ∅}.

There is a natural correspondence between the depth-robustness and block-depth
robustness of graphs and metagraphs.

Remark 2 ( Claim 1 of [3]). Let G be a DAG. If Gm is (e, d)-depth robust, then
G is (e/2,md/10,m)-block depth robust.
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DRSample has a number of tunable parameters. We exclusively refer to DR-
Sample with the recommended parameters from [3].

De�nition 15 (DRSample [3]). The randomized algorithm DRSample on in-
put N outputs a graph DR = (V,E) on N nodes with the following properties.
Fix any 0 < p, ϵ < 1 and let

� a = 160
� m = a logN ,
� N ′ = ⌊N/m⌋
� γ = 0.1,

� σ = 0.125
� x = 0.00861,
� α = 0.2916,
� r∗ = 8,

� c10 = 1− 2p
σ − x− ϵ,

� η = 0.038945, and

� η′ = 0.3.

Except with negligible probability µ(N), for any subset of metanodes S of size
at most pN ′, DRm−S contains at least c10N

′ (α, r∗)-local expanders that are γ-
good with respect to S. Each of the these nodes are connected, and the metagraph
DRm is (ηN ′, η′N ′)-depth robust.

Next we hybridize DRSample by adding dynamic edges for each node. Here,
we make the block parameter m inherent in the construction, as each node has
a random edge to the �end� of a random metanode. For the ease of notation, we
let FromMeta be the function mapping metanodes to nodes in the original graph,
meaning FromMeta(i) = (i − 1)m + 1. Likewise, for v ∈ V , we let ToMeta(v) =
⌊(v − 1)/m⌋+ 1.

De�nition 16 (Dynamic DRSample). Dynamic DRSample is the dynamic
pebbling graph DDRm

N , constructed as follows. Let DR = (V,E)← DRSample(N).
Then DDRm

N is DR with additional dynamic edges {(r(i), i) | i ∈ [FromMeta(3) :
N ]}, where r(i) is chosen from {km | 1 ≤ k ≤ ToMeta(i) − 2} uniformly at
random. That is, for each node i ≥ 2m+ 1 of DDRm

N , there's a dynamic edge to
i from the end of a random metanode.

The main result of this section is that any pebbling strategy, except with
negligible probability, either sustains p N

a logN pebbles for ℓN steps, or has cumu-

lative complexity Ω
(

N3

logN

)
.

Theorem 6. There exists constants 0 < p, ℓ, a, c13, c14 < 1 and negligible func-
tion µ, such that for m = a logN , any strategy S, except with probability at most

µ(N), we have either ss
(
S(G), pN

a logN

)
> ℓN or cc(S(G)) ≥ c14N

3

logN , where the

probability is taken over the selection of G ∼ DDRm
N .

Before we begin proving Theorem 6, we need to setup some useful variables
and notation. LetG ∼ DDRm

N , S be any strategy, and P = S(G), and assign a,m,
N ′, γ, α, r∗, c10, η, and η′ according to De�nition 15. Let rm(i) = ToMeta(r(i))
and Pm(i) = ToMeta(P (i)). When i and P are known, we say that v is a good
expander when v is γ-good with respect to Pm(i) in Gm and is a (δ, r∗)-local
expander inGm. We'll heavily use fact from De�nition 15 that all good expanders
are connected.
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We'll want to show that for some chosen 0 < c11 < 1 and i ≥ c11N + 2,
if |Pm(i)| ≤ pN ′ then the subgraph induced by the good expanders less than

i − 1 is still
(
Ω
(

N
logN , N

)
, Ω(N)

)
-depth robust. While there are c10N

′ good

expanders in Gm−Pm(i), there could be as many as (1−c11)N
′ good expanders

that have never been pebbled (and thus are not candidates for rm(i)). So, we
need to show that c10 can take values greater than 1− η+ (1− c11), yet still be
less than 1. Recall from De�nition 15 that c10 is an implicit function of p, so we
can only achieve this by assigning p and c11 the appropriate values. Namely, we
need

η − (1− c10)− (1− c11) > 0. (2)

It su�ces for c11 = 0.97, p = 2× 10−5, and c10 = 0.99106.
Until the proof of Theorem 6, we assume that G is (ηN ′, η′N ′)-depth robust,

and for any set S of size at most pN ′, G − S contains at least c10N
′ good

expanders.

5.1 Lowerbounds on Getting Unlucky

We want to determine the number of times an adversary could be �unlucky.� For
a step to be unlucky, we need it to be su�ciently large, so that it may be costly
to rectify. Speci�cally, we want the metanode corresponding to this step to be at
least c11N

′+2. Moreover, if |P (i)| ≤ pN ′, we say the adversary is unlucky if r(i)
is a good expander and large. As before, let ranki(v) = j when v is topologically
the jth good expander in G.

These trials consist of the nodes starting from FromMeta(c11N
′ + 2) to N .

There are K ≥ N − FromMeta(c11N
′ + 2) ≥ N(1 − c11) + m − 2 such nodes.

We'll assume that N > 200 and �x κ = 1 − c11 − 1
100 so that 0 < κN ≤

K. For i ∈ [(1 − κ)N : N ], we de�ne the random variable unluckyi such that

unluckyi =


0 if |P (i)| ≤ p, but either rm(i) isn't a good expander

or ranki(rm(i)) < c12N
′, and

1 otherwise,
for some constant c12 such that

1− η < c12 < c10 − (1− c11). (3)

See that c12 can take such values since c10 and c11 satisfy Equation 2. Then when
we take out all nodes but the c12N

′ good expanders that must be repebbled, G
will still be adequately depth-robust since the c12N

′ good expanders account for
almost all nodes of G. Finally, let unlucky =

∑
i∈[(1−κ)N :N ] unluckyi. We show

that such steps are unlucky with constant probability.

Lemma 11. For any i ∈ [(1− κ)N : N ] and b1, . . . , bi−1 ∈ {0, 1},

Pr

unluckyi
∣∣∣∣∣∣
∧

j∈[i−1]

unluckyj = bj

 ≥ ρ,

for some constant ρ > 0.
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Proof. If |Pm(i)| > pN ′ then unluckyi = 1, so assume otherwise. There are at
least (c10 − (1− c11))N

′ good expanders in Gm([i− 2]), so the probability that
rm(i) is a good expander out of at most N ′ total nodes is at least c10− (1− c11).

If rm(i) is a good expander, then ranki(rm(i)) ≥ c12N
′ with probability at

least 1 − c12, so by conditional probability, rm(i) is a good expander and the
c12N

′th or higher good expander with probability at least ρ = (c10−(1−c11))(1−
c12). Finally, ρ > 0 since c10 > 1− η + (1− c11) by Equation 2.

5.2 The Cost of Being Unlucky

Intuitively, we want to show that a costly node requires high cumulative cost to
repebble since all of the good expanders are connected.

Lemma 12. If unluckyi = 1 and |P (i)| < pN ′, then cc(P, s(i), t(i)) ≥ c15N
2

logN for
some c15 > 0.

Proof. First we have |Pm(i)| ≤ |P (i)| ≤ pN ′. Let im = ToMeta(i) − 2.
If the above assumptions hold, then im ≥ c11N

′ and rm(i) is a good ex-
pander with ranki(rm(i)) ≥ c12N

′. Then there are nodes v1, . . . , vc12N ′ which
are good expanders and connected in Gm[i − 2] − Pm(i). Since c12 and c11
satisfy Equation 3, c12 > 1 − η + (1 − c11) it follows that the subgraph
Gm({v1, . . . , vc12N ′}) is ((η + c12 − 1)N ′, η′N ′)-depth robust. To pebble r(i),
all of the nodes that comprise each metanode vj must be pebbled. By Remarks

1 and 2, G
(⋃

j∈[c12N ′] I
∗
m(FromMeta(vj))

)
is(

(η + c12 − 1)N ′

2
, c11η

′N/10,m

)
-block depth robust.

Since this subgraph has no pebbles on it on step s(i) and must be repebbled by

step t(i), we have cc(P, s(i), t(i)) ≥ c15N
2

log(N) for c15 = η+c12−1
20 c11η

′.

The proof of Theorem 6 closely follows the proof of Theorem 2, and a formal
proof is deferred to the full version of this paper The main di�erence has to do
with arguments on the metagraph Gm, which is covered by the proof of Lemma

16. More closely, if ss
(
S(G), pN

a logN

)
≤ ℓN then with overwhelming probability

there are c13N nodes in which unluckyj = 1 for ℓ < c13 < κρ. Then there
are nodes i1, . . . , i(c13−ℓ)N in which unluckyij = 1 and |P (ij)| ≤ pN ′. Then by

Lemma 16, it follows that cc (S(G)) = Ω
(

N3

logN

)
.

6 Argon2id

Argon2id is a hybrid MHF that's currently deployed in several cryptographic
libraries, so it is necessary to understand its sustained space guarantees [10].
The �rst half of the evaluation is data-independent, while the second half is
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data-dependent. In the pebbling model, this corresponds to the �rst half of the
nodes having �xed edges that are known at the start of Argon2id's evaluation,
while the random edges in the second half are dynamic. Intuitively, the data-
dependent phase induces high cumulative cost, while the data-independent phase
has weaker, yet still signi�cant, cumulative cost to fall back on in the presence
of a side-channel attack.

De�nition 17 (Argon2id [10]). The dynamic pebbling graph Argon2idN con-
sists of the vertex set V = [2N ] and edge set

E = {(i, i+ 1) | i ∈ [2N − 1]} ∪ {(r(i), i) | i ∈ [2N ]},

where r(i) is a random value distributed as follows:

Pr[r(i) = j] = Pr
x∈R[M ]

[
i

(
1− x2

M2

)
∈ (j − 1, j]

]
for some M ≫ N . The edges (r(i), i) are only dynamic when i > N . When
i ≤ N , (r(i), i) is static and known prior to pebbling.

In particular, we show the following results.

Theorem 7. There exists some constants δ, γ < 0 < f, u, ℓ, δ′, γ′ < 1 such that
for any pebbling strategy S, with high probability, either ss(S(G), δ′ logδ Ne) >
ℓN or cc(S(G)) ≥ γ′N4e−2 logγ N , where the probability is taken over the choice
of G ∼ Argon2idN .

Corollary 2. Let S be any strategy and G ∼ Argon2idN . Then there exists
constants δ, γ < 0 < f, u, ℓ, δ′, γ′ < 1 such that for all ϵ > 0 and with high
probability, either ss(S(G), δ′N1−ϵ logδ N) > ℓN or cc(S(G)) = γ′N2+2ϵ logγ N .

The techniques used to prove Theorem 7 are completely di�erent than the
other three trade-o� proofs in this paper. We start by arguing if an strategy has
e pebbles on the graph on step s(i), then with some reasonably large probability
the depth of r(i) is d = Ω̃(N3/e3). For this argument, we use a new graph
property called fractional-depth robustness, which says that if a limited amount
of nodes are deleted from the graph, then there are some fraction of nodes still
with large depth. From then on, the proof of Theorem 7 uses techniques from the
proof that the dynamic pebbling graph ScryptN has CC Ω(N2) [6]. Speci�cally,
if r(i) has depth d in G− P (i), then the minimum required steps to pebble r(i)
is d. For this to happen, e must have been su�ciently large (otherwise d would
necessarily be larger). The argument is repeated for all steps between s(i−1)+1
and s(i) to lowerbound its CC.

6.1 The Trade-O� and Cumulative Complexity

We prove the CC penalty for low-memory pebblings using a graph property
called fractional depth-robustness.
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De�nition 18 (Fractional Depth-Robustness [13]). For a vertex v in a
graph G, let depth(v,G) denote the longest path to v in G. A DAG G = (V =
[N ], E) (e, d, f)-fractionally depth robust if for all S ⊆ V with |S| ≤ e, we have
|{v |, v ∈ V, depth(v,G) ≥ d}| ≥ fN.

Next we'll use the following facts about the graph underlying Argon2id.

Lemma 13 (of [13]). Let G ∼ Argon2idN . There exists 0 < α′, f < 1 and α ≤ 0

such that, with probability 1 − o
(

1
N

)
, G([N ]) is

(
e, α′N3 logα N

e3 , f
)
-fractionally

depth robust.

Let S be a pebbling strategy, G ∼ Argon2idN , and P = S(G). For the ease
of notation, ei = |Pi| and di denote the minimum required steps from s(i) to

pebble r(i). For now we'll assume from Lemma 13 that G is
(
e, α′N3 logα N

e3 , f
)
-

fractionally depth-robust for some 0 < α′, f < 1 and α ≤ 0. Immediately, this

says that if |P (i)| ≤ e then there are fN nodes of depth at least α′N3 logα N
e3

in G − P (i). By De�nition 17 r(i) is not chosen uniformly at random, as the
distribution slightly shifts probability mass to nodes closer to i. However, this
shift isn't signi�cant enough for our arguments. This is formalized by Lemma
14. This claim is inherent by the work of [13], but we include a proof in the full
version of this paper.

Lemma 14 (of [13]). Let G ∼ Argon2idN , i > N , and j ≤ N . Then

Pr[r(i) = j] ≥ 1
8N .

Immediately from Lemma 14, we have

Pr

[
di ≥

α′N3 logα N

e3s(i)

]
≥ f/8. (4)

This is the probability that the adversary, upon discovering r(i) at step s(i),

must take at least α′N3 logα N
e3
s(i)

steps to pebble r(i). From any j ≤ s(i), the

minimum required steps to pebble r(i) is at least s(i) − j + di. Then even
if the adversary knew r(i) on step s(i) − j, it would have to take at least

di+j ≥ α′N3 logα N
e3
s(i)−j

steps with probability at least f/8. Intuitively, this is because

each r(i) is independent of the strategy employed by S, meaning we can take
r(i) to be chosen before the pebbling begins. Then even if f(i) was discovered
on step s(i)− j, Equation 4 applies. Let s(i)− hi be a step that maximizes this

bound on di. Then for all k ≤ s(i), di ≥ α′N3 logα N
e3
s(i)−hi

− hi ≥ α′N3 logα N
e3
s(i)−k

− k, so

es(i)−k ≥ α′1/3N logα/3 N
(di+k)1/3

by the construction of hi. For i ∈ [N + 1 : 2N ], we de-

�ne the random variables hardi = 1 if di ≥ α′N3 logα N
e3
s(i)−hi

− hi, and hardi = 0

otherwise. If hardi = 1, then for all k ≤ s(i), es(i)−k ≥ α′1/3N logα/3 N
(di+k)1/3

by
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the construction of hi. This allows us to lowerbound the cumulative cost as-
sociated with steps s(i − 1) + 1 to s(i). Next we de�ne the random variables

unluckyei =

{
1 if either es(i) > e or both es(i) ≤ e and hardi = 1, and

0 otherwise.

Lemma 15. For any b1, . . . , bi−1 ∈ {0, 1}, Pr
[
unluckyei

∣∣∣∧j∈[i−1] unlucky
e
j = bj

]
≥

f/8.

Proof. If ei > e, then unluckyei = 1, so assume otherwise. By the fractional-depth
robustness of Argon2id, even if r(i) was discovered on round s(i) − hi, r(i) has

depth at least α′N3 logα N
e3
s(i)−hi

−(s(i)−hi)
with probability at least f/8 by Equation 4.

Next we show that there is high cost associated with being unlucky. This argu-
ment closely follows Claim 8 of [6].

Lemma 16. If unluckyei = unluckyej = 1 and |P (i)|, |P (j)| ≤ pe for some j < i,

then cc(s(j) + 1, s(i)) ≥ β′N3e−2 logβ N for some 0 < β′ < 1 and β ≤ 0.

Proof. We have

cc(s(j) + 1, s(i)) ≥ cc(s(i)− dj + 1, s(i))

=

dj−1∑
k=0

ei−k

=

dj−1∑
k=0

α′1/3N logα/3 N

(di + k)1/3
hardi = 1

≥ α′1/3N logα/3 N

∫ di+dji−1

di

1

x1/3
dx

= 3α′1/3N logα/3 N/2((di + dj)
2/3 − di

2/3)

≥ β′N3e−2 logβ N (5)

for some 0 < β′ < 1 and β ≥ 0. Step 5 follows from a simple argument, which is
detailed in the full version of this paper.

Just as with Theorems 5 and 6, Theorem 7 directly follows from Lemma
16, so the proof has been deferred to the full version of this paper. Corollary 2
directly follows.

7 Open Problems

We conclude with several open question for future work. The most pressing
question is whether or not there exists a dynamic pebbling reduction for dMHFs
in an idealized model of computation � similar to the pebbling reduction for



SSC and CMC Trade-O�s for dMHFs 29

iMHFs in parallel random oracle model [7]. Such a pebbling reduction would
greatly simplify the design and analysis of future dMHFs. Another interesting
direction would be to try to �nd direct proofs of CMC/SSC trade-o�s for one or
more of the dMHFs considered in this paper. For example, while [6] used dynamic
pebbling to build intuition about the cumulative memory complexity of Scrypt
the �nal security proof was direct and did not rely on pebbling arguments.
Another natural question is the development of dynamic pebbling attacks. For
example, �xing s = o(N/ logN) we could ask what is the minimum cc pebbling
strategy which is guaranteed to have s-sustained space complexity o(N).
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