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Abstract. Multi-signatures are protocols that allow a group of sign-
ers to jointly produce a single signature on the same message. In re-
cent years, a number of practical multi-signature schemes have been
proposed in the discrete-log setting, such as MuSig2 (CRYPTO’21) and
DWMS (CRYPTO’21). The main technical challenge in constructing a
multi-signature scheme is to achieve a set of several desirable properties,
such as (1) security in the plain public-key (PPK) model, (2) concur-
rent security, (3) low online round complexity, and (4) key aggregation.
However, previous lattice-based, post-quantum counterparts to Schnorr
multi-signatures fail to satisfy these properties.
In this paper, we introduce MuSig-L, a lattice-based multi-signature
scheme simultaneously achieving these design goals for the first time.
Unlike the recent, round-efficient proposal of Damgård et al. (PKC’21),
which had to rely on lattice-based trapdoor commitments, we do not re-
quire any additional primitive in the protocol, while being able to prove
security from the standard module-SIS and LWE assumptions. The re-
sulting output signature of our scheme therefore looks closer to the usual
Fiat–Shamir-with-abort signatures.

1 Introduction

A multi-signature is a primitive that allows a group of signers holding individual
key pairs (sk1, pk1), . . . , (skn, pkn) to jointly produce a signature on a message µ
of their choice. A number of multi-signatures have been proposed in recent years,
mainly motivated by several new real-world applications such as cryptocurren-
cies. Recent developments in the discrete log setting particularly garnered re-
newed attention among practitioners, since some of them even serve as a drop-in
replacement for ordinary signatures already deployed in practice [36].

The main technical challenge when constructing a new multi-signature scheme
is to achieve a set of desirable properties, such as (1) security in the plain public-
key (PPK) model, (2) concurrent security, (3) low online round complexity, and
(4) key aggregation. The PPK model requires that each signer publishes its pub-
lic key in the clear without any dedicated interactive key generation protocol,
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and that no adversaries be able to convince a verifier that an honest party P1
4

participated in signing any messages, unless P1 has ever agreed on it. This is
essentially to prevent the well-known rogue-key attacks (e.g., [32]) in a plain
way (i.e., without requiring proof of possession wherein each party must submit
a proof to prove knowledge of their secret key [39]). Thus proving security under
the PPK model is often considered ideal in the literature.

Several round-efficient Schnorr-based proposals with proof in the PPK model
appeared in the literature. However, the seminal work of Drijvers et al. [18]
pointed out subtle pitfalls of many existing interactive schemes, by presenting
an adversarial strategy that exploits many concurrent sessions. The adversary
in this scenario may launch multiple instances of the signing protocol with an
honest party, and forge a signature on a new message by carefully combining
signature shares from different sessions. Benhamouda et al. [9] recently improved
the attack and proved that those schemes can be broken even in polynomial time.
Given such devastating attacks, it is crucial to prove security of the scheme in
the model where concurrent sign queries are allowed.

Although some previous schemes, such as BN [7], MuSig [31], MuSig-DN [37],
mBCJ [18], and HBMS [6], are indeed provably secure against concurrent at-
tacks, they all require (at least) two rounds of interaction during the online
phase, i.e., after parties receive the message to sign. On the other hand, it
is desirable in practice to preprocess part of the interaction and computation
without knowledge of the message to be signed, so that participants can min-
imize round/communication complexity later. Such an offline-online trick has
become increasingly common in context of general-purpose multi-party compu-
tation (e.g., [17]), and therefore it is also another important design goal when
constructing a multi-signature. Recently, Nick, Ruffing, and Seurin [36], and
Alper and Burdges [4] concurrently proposed near-optimal Schnorr-based multi-
signatures in this paradigm. One remarkable feature of these schemes – MuSig2
and DWMS– is that they only require a single round of interaction in the on-
line phase while retaining security against concurrent attacks. They also support
key aggregation, an additional optimization technique that takes a set of public
keys to produce a single combined Schnorr public key. It is crucial for a multi-
signature scheme to support key aggregation, because it allows verifiers to verify
a signature with an ordinary Schnorr public key and thus makes the scheme
interoperable with the existing verification algorithms.
State-of-the-art in the lattice setting. As Schnorr-based constructions do
not withstand quantum attacks, it is an interesting question how to construct
post-quantum alternatives. Indeed, several lattice-based counterparts to the afore-
mentioned schemes exist in the literature [16,20,21,30]. All of these schemes fol-
low the so-called Fiat-Shamir with aborts (FSwA) paradigm [26], which shares
the basic structure with Schnorr. Hence, it is well-known that many observa-
tions in the DLog setting can be reused to construct similar FSwA-based in-
stantiations, e.g., ES, MJ, and FH follow the ideas of BN three-round Schnorr
4 Note in multi-signature every honest party behaves identically and thinks of them-
selves as “P1” [7]. Other parties P2, . . . , Pn are called co-signers.
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multi-signature, and the most recent scheme due to Damgård et al. [16] closely
follows the mBCJ two-round scheme. There are however several subtle issues that
only arise in the lattice world. For example, one inherent issue with the Fiat-
Shamir “with aborts” multi-signature is simulation of the honest sign oracle. The
basic idea of these schemes is to take the sum of usual FSwA signatures pro-
duced by different parties as follows: party P1 first starts a protocol by sending
“commit” messages w1 of the underlying Σ-protocol, and then upon receiving
w2, . . . ,wn from others, P1 locally derives challenge c by hashing w :=

∑n
i=1 wi,

together with the message µ to be signed. It then performs rejection sampling
on the response z1, and the protocol must restart as long as there exists a party
who rejected their response. This means that w1 is always revealed, whether
P1 aborts or not. However, there is currently no known way to simulate (w1, c)
for rejected instances, and thus publicly available proofs of ES and MJ are in-
complete, and FH had to rely on a non-standard assumption (which they call
“rejected” LWE). Although DOTT managed to circumvent the issue by having
P1 send a [5]-based trapdoor homomorphic commitment Commit(w1) to keep
w1 secret until rejection sampling is successful, their approach inevitably makes
the scheme incompatible with preprocessing: because each w1 must be commit-
ted using message-dependent commitment keys, two rounds of interaction must
always happen online. Moreover, since their scheme has to output combined
commitments or randomness as part of the signature, the verifier also needs to
check an aggregated commitment is opened correctly. These are in fact limita-
tions inherited from mBCJ, and thus it is an interesting open question whether
lattice-based multi-signature can be securely improved while benefiting from the
latest tricks in the DL setting.

1.1 Our contributions

In this paper, we introduce MuSig-L, a lattice-based multi-signature scheme si-
multaneously achieving the aforementioned design goals for the first time: con-
current security in the PPK model, single-round online phase, and key aggre-
gation. In Table 1 we compare ours to previous schemes following the same
paradigm. Just as MuSig2 and DWMS, our MuSig-L allows parties to preprocess
the first-round “commit” messages before receiving the message to be signed.
Thus all they have to communicate during the online phase is the final response
value zi. Although the protocol must abort if there is one party that fails in
rejection sampling (which is also the case with other FSwA distributed/multi-
signatures), we can mitigate by executing sufficiently many parallel instances of
the protocol at once. Since security against concurrent attackers is crucial in this
setting, we provide detailed security proofs in a suitable model.

Our scheme does not require any additional primitive for instantiating the
protocol, unlike the two-round, provably secure scheme of Damgård et al. This
was made possible by our generalized rejection sampling lemma in combination
with trapdoor preimage sampling of [34] and several technical lemmas, as we
sketch below. The resulting output signature of our scheme therefore looks much
closer to the usual Fiat–Shamir-with-abort signatures.

3



Table 1: Comparison with previous DLog/FSwA-based multi-signatures with
concurrent security in the plain-public key model. The column “#Off” indicates
the number of rounds that can be preprocessed in the offline phase.5 “#On”
indicates the number of rounds that must occur online after receiving a signature
to sign. The total number of rounds is thus given as “#Off + #On”. The column
“Agg.” indicates whether a scheme supports key aggregation or not.

Assumption #Off #On Agg. Note

BN [7] DL 1 2 N
MuSig [31] DL 1 2 Y
mBCJ [18] DL 0 2 Y
MuSig-DN [37] DL & DDH 0 2 Y
MuSig2 [36] AOMDL 1 1 Y
DWMS [4] AGM 1 1 Y
HBMS [6] DL 0 2 Y
ES [20] DCK 1 2 N Proof incomplete
MJ [30] RSIS 1 2 Y Proof incomplete
FH [21] MLWE & rMLWE 1 2 N Proof in QROM
DOTT [16] MLWE & MSIS 0 2 N TD Commitment
Our MuSig-L MLWE & MSIS 1 1 Y L must be a set6

Although our MuSig-L partially follows tricks present in MuSig2 and DWMS,
the resulting scheme and our new proof techniques (outlined below) are signif-
icantly different from theirs. As a consequence, we are able to prove security
solely based on the standard SIS and LWE assumptions in the ring setting and
in the (classical) random oracle model, while MuSig2 and DWMS are proven
secure either under the “one-more” DL assumption or in the algebraic group
model.

1.2 Our techniques

Scheme overview Fig. 1 describes overview of our scheme, executed by P1. In
Section 3.1 we will provide more formal algorithm specifications. In MuSig-L, a
key pair is the same as in the usual FSwA: ski = si and pki = ti = Āsi, where
si consists of small elements in a ring Rq = Zq[X]/(F (X)). On receiving public
keys from the other parties, P1 derives “aggregation coefficients” by hashing a set
of keys and each public key held by Pi. Here the hash function is instantiated by
6 Although ES, MJ, and FH do not explicitly support offline-online paradigm, we
conjecture the first round of these schemes can be securely preprocessed since they
all follow the same blueprint of BN.

6 This is because in our scheme each signer explicitly prohibits duplicate keys in the
key list L so that the security proof goes through in the offline-online security model.
The rationale behind this choice will be detailed in Section 4.5.
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the random oracle Hagg : {0, 1}∗ → C, where C is the same as the challenge space
used by the underlying FSwA Σ-protocol. It then constructs an aggregated key t̃
by taking the linear combination of all keys. This is similar to the key aggregation
technique introduced in MuSig [31] (where they choose ai to be uniform in Zq),
but we must carefully choose the size of aggregation coefficients so that it enables
security reduction to the Module-SIS assumption.

In the offline phase, parties exchange a bunch of “commit” messages w(1)
i , . . . ,

w(m)
i . We then use the “random linear combination” trick similar to MuSig2 and

DWMS, to aggregate the “commit” messages coming from the offline phase. That
is, we force everyone to derive the “nonce” coefficients b(j)’s through another
random oracle Hnon, and these nonces are used for computing a single aggregate
commit w̃. This operation essentially prevents malicious parties from adaptively
influencing inputs to the next random oracle Hsig deriving “joint challenge” c ∈ C
that all parties must agree on. Finally, P1 locally performs rejection sampling on
a potential response value z1, such that the distribution of revealed z1 is always
independent of the secret s1.
Generalized rejection sampling. Not relying on a commitment scheme has a
major drawback: we need to deal with possible leakage, due to both sending the
first messages in the clear, and with aggregating them using random coefficients.

As the w(j)
i are sent in the clear, the adversary A knows before receiv-

ing zi that the response will be sampled from the coset Λ⊥ũ (Ā), where ũ :=∑
j b

(j)w(j)
1 + c · a1 · t1. This information does not give A any advantage in

case the signing protocol succeeds. However, in case of abort A has gained some
information on z1, that is, it knows that some element of Λ⊥ũ (Ā) has been re-
jected. This could potentially leak information about the secret key, a subtle
issue avoided in [16] by opening the commitment to the first message only in
case of a success.

The second issue is related to efficiency. Aggregating the “commit” messages
using some random coefficients implies that the distribution of the response z1
depends on those coefficients. In particular, the distributions of z1 is a Gaussian
with parameter Σ that changes with different choices of the b(j)’s. This is not just
a nuisance: Σ leaks information about the b(j)’s. It is not immediate to see why
this is concerning, as it only becomes an issue when simulating honest signers
in the security proof. Essentially, this requires to generate z1 after generating
w(1)

1 , . . . ,w(m)
1 with a trapdoor and sampling the b(j)’s using such a trapdoor.

Thus, the distribution of z1 has to be independent of the b(j)’s.
Perhaps unsurprisingly, rejection sampling can take care of all the leakage.

In particular, we show that the rejection sampling technique is secure even if:
(1) A knows the lattice coset, (2) the secret and public Gaussian distributions
have different centers, and covariance matrices (obviously, for this to make sense
neither difference can be too large). In fact, we prove a more general result than
what the security of MuSig-L needs, allowing not only spherical, but ellipsoidal
discrete Gaussians (i.e., Gaussians whose covariance matrix Σ is not diagonal).
The proof of this result required quite the effort: while we could follow the
structure of the proof of the original rejection sampling theorem, the intermediate
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steps required to extend many existing results, either to the case of ellipsoidal
Gaussians, or to sampling from lattice cosets, or both. Proofs were simplified by
relying on the canonical representation of ring elements, even though the rest
of the algorithms will use the coefficient representation. This is not an issue per
se, as these embeddings are isometric in power-of-2 cyclotomics. The result is a
rather powerful extension of the rejection sampling technique, that we believe of
independent interest.
Exploiting trapdoor sampling for simulation. As usual, the main technical
challenge in proving security of multi-signature is to simulate the behaviors of
an honest party P1 without knowledge of the actual secret key. Although our
rejection sampling lemma allows to simulate the distribution of z1 and thus the
aggregated offline outputs w̃1 = Āz1− c · a1 · t1, it is not immediately clear how
one can make sure w̃1 is consistent with the offline messages w(j)

1 and nonces
b(j). One naive approach would be to mimic the security proof for MuSig2: they
essentially avoid the issue with simulation by relying on hardness of the one-
more DL problem, a stronger assumption that solving DL is still hard even after
making a limited number of queries to a DL solver oracle. Although a similar
lattice-based problem was recently introduced by Agrawal et al. [2] and it might
make an interesting alternative approach to proving our scheme, it is not a well-
studied assumption yet and we’re thus motivated to propose an entirely different
proof strategy.

One crucial observation in this work is that, in the lattice world, a simula-
tor can secretly produce a trapdoor when creating the offline messages W :=
[w(1)

1 , . . . ,w(m)
1 ], using the gadget-based trapdoor generation algorithm of Mic-

ciancio and Peikert [34] withm = O(k log q). Once the corresponding trapdoor is
known, the simulator can now sample b = [b(1), . . . , b(m)] from a coset Λ⊥w̃1

(W)
using a Gaussian preimage sampling for the SIS function fW. In this way, our
simulator can successfully output a simulated signature, offline messages, and
nonces b(j) that are all statistically indistinguishable with actual outputs of the
honest party. In Section 4.4 we realize this idea in the form of oracle simula-
tion lemma, which is proven by combining the utility lemma in Section 4.2 and
instantiation of the trapdoor in Section 4.3. Finally, Section 4.5 formally states
CMA security of our scheme.
Supporting technical lemmas. Our analysis and the security proof of our
protocol rely on a number of technical facts related to discrete Gaussian distri-
butions over module lattices, sometimes with general covariance matrices. Most
of those facts are simple extensions and generalizations of well-known results in
the literature, while others are less easy to come up with. Since a number of
them may be of independent interest, we have tried to state them in a relatively
high level of generality, and to provide relatively self-contained proofs either way.

1.3 Other related work

Multi-signatures belong to a larger family of signatures that support aggregation,
its closest relatives being aggregate signatures and threshold signatures.
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P1(Ā = [A|Ik], sk1 = s1, pk1 = t1 = Ā · s1, µ)

// Key aggregation phase

t1

(ti)i∈[2,n]

//Derive aggregation coefficients
For i ∈ [n] : ai := Hagg((ti)i∈[n], ti)

t̃ :=
n∑
i=1

aiti mod q

// Offline phase

y(1)
1 ← D`+k

σ1

For j ∈ [2,m] : y(j)
1 ← D`+k

σy

For j ∈ [1,m] : w(j)
1 := Āy(j)

1 mod q

com1 := (w(j)
1 )j∈[m]

pk1||com1

(pki||comi)i∈[2,n]

// Online phase
If ∃i ≥ 2 : pki = pk1: Abort

(r(j))j∈[2,m] := Hnon((pki||comi)i∈[n], µ, t̃)

b(1) := 1

For j ∈ [2,m]: sample b(j) ∼ Dσb using randomness r(j)

w̃ :=
m∑
j=1

b(j) ·

(
n∑
i=1

w(j)
i

)
mod q

ỹ1 :=
m∑
j=1

b(j) · y(j)
1

c := Hsig(w̃, µ, t̃)
z1 := c · a1 · s1 + ỹ1

If RejSamp(c · a1 · s1, z1, (b(j))j∈[m]) = 0 :
z1 := ⊥

z1

If zi = ⊥ for some i, abort (zi)i∈[2,n]

Otherwise, compute z̃ :=
n∑
i=1

zi

Output (w̃, z̃)

Fig. 1: Stylized overview of our two-round lattice-based multi-signature



There have been a number of results on threshold Schnorr-style signatures [22,
23, 38, 40]. However, to the best of our knowledge the most recent two-round
schemes all rely on non-standard assumptions. For example, the modular ap-
proach to proving security of threshold and multi-signatures based on Schnorr
signatures in [15] strongly relies on the AGM, while the threshold signature
FROST [25] is proven secure in a non-standard heuristic which models the hash
function (a public primitive) used for deriving the coefficients for the linear com-
bination as a one-time VRF (a primitive with a secret key) in the security proof.

Threshold signatures can be instantiated from lattices, but the existing t-out-
of-n constructions require either to threshold secret share the signing key of GPV
signature [8], or FHE [3,11]. The multi-signature of [16] also gives rise to the n-
out-of-n threshold signature, and they in fact showed that essentially the same
tricks work under both security models. We therefore highlight adapting our
techniques in the threshold setting as an interesting direction for future work.
The panorama of aggregate signature from lattices is similar. A three-round
construction by Boneh and Kim [12] requires interactive aggregation, which again
closely follows the BN Schnorr-based scheme. The recent aggregate signature
by Boudgoust and Roux-Langlois [13] requires no interaction between signers
although the asymptotic signature size grows linearly in the number of signers.

2 Preliminaries

Notations For positive integers a and b such that a < b we use the integer
interval notation [a, b] to denote {a, a+ 1, . . . , b}. We also use [b] as shorthand
for [1, b]. We denote by y[j] the j-th component of vector y, and by In the identity
matrix of dimension n. If S is a set we write s←$ S to indicate sampling s from
the uniform distribution defined over S; if D is a probability distribution we write
s← D to indicate sampling s from D ; if A is a randomized (resp. deterministic)
algorithm we write s ← A (resp. s := A) to indicate assigning an output from
A to s. For a set S, 〈S〉 denotes a unique encoding of S (e.g., the sequence of
strings in lexicographic order). Throughout, the security parameter is denoted
by λ.

Power-of-two cyclotomics and normsWe instantiate the scheme over power-
of-two cyclotomics. Let N be a power of two and ζ be a primitive 2Nth root of
unity. The 2Nth cyclotomic number field is denoted byK := Q(ζ) ∼= Q[X]/(XN+
1) and the corresponding ring of algebraic integers is R := Z[ζ] ∼= Z[X]/(XN+1).
Both are contained in KR := K ⊗ R ∼= R[X]/(XN + 1). Throughout the paper,
we fix q to be a prime satisfying q = 5 mod 8 and let Rq := Zq[X]/(XN + 1). An
Lp-norm for a module element v ∈ Rm is given by the coefficient embedding:
for v = (

∑N−1
i=0 vi,1X

i, . . . ,
∑N−1
i=0 vi,mX

i)T , we define

‖v‖p :=
∥∥(v0,1, . . . , vN−1,1, . . . , v0,m, . . . , vN−1,m)T

∥∥
p
.
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The Euclidean norm of a vector v = (v1, . . . , vm)T ∈ Rm in the canonical
representation is defined as

‖ϕ(v)‖2 := 1√
N
·
√ ∑
i∈[n],j∈Z∗2N

|ϕj(vi)|2,

where the scaling factor is needed to ensure that ‖ϕ(1)‖ = 1. For power-of-2
cyclotomics, this choice of norm yields that the coefficient embedding and the
canonical embedding are isometric, thus we denote the L2-norm by ‖ · ‖ for both
representations.

We will need the following results on invertibility.

Lemma 1 ( [29, Corollary 1.2]). Let N ≥ k > 1 be powers of 2 and q = 2k+1
mod 4k be a prime. Then any y in Rq that satisfies either 0 < ‖y‖∞ < 1√

k
· q1/k

or 0 < ‖y‖ < q1/k has an inverse in Rq.

Lemma 2 ( [27, Lemma 2.2]). Let N > 1 be a power of 2 and q a prime
congruent to 5 mod 8. The ring Rq has exactly 2qN/2 − 1 elements without an
inverse. Moreover, every non-zero polynomial a in Rq with ‖a‖∞ <

√
q/2 has

an inverse.

Singular Values. Given a matrix B ∈ Kn×m
R , let s1(B) (resp., sm(B)) be

the largest (resp., least) singular value of B, i.e., s1(B) = sup{‖Bv‖ : v ∈
Km

R ∧ ‖v‖ = 1} (resp., sm(B) = inf{‖Bv‖ : v ∈ Km
R ∧ ‖v‖ = 1}). For all

v, sm(B)‖v‖ ≤ ‖Bv‖ ≤ s1(B)‖v‖ . If B is a diagonal matrix, i.e., B = σiIm
for some σi ∈ KR, we have that s1(B) = maxi ‖σi‖ and sm(B) ≤ mini ‖σi‖ (the
proof trivially follows from standard bounds, cf. [33]).

Lemma 3. Given a symmetric positive definite matrix B ∈ Km×m
R , and a non-

singular matrix
√
B ∈ Km×m

R such that B =
√
B
√
B
∗, it holds that si(B) =

(si(
√
B))2 for i = 1,m, and s1(B−1) = (sm(B))−1.

Discrete Gaussian Distribution. Let Σ ∈ Km×m
R be a symmetric positive

definite matrix, and let
√
Σ ∈ Km×m

R be a nonsingular matrix such that Σ =√
Σ
√
Σ
∗. The discrete Gaussian distribution DΣ,c,Λ over a lattice Λ ⊆ Rm with

parameters c and Σ is defined as

ρ√Σ,c(z) := exp
(
−π‖
√
Σ
−1

(z− c)‖2
)

and Dm√
Σ,c,Λ(z) :=

ρ√Σ,c(z)∑
x∈Λ ρ

√
Σ(x) .

We denote by Dm
Σ,c the discrete Gaussian over Rm, and omit c when c = 0. For

technical reasons, Gaussian sampling will be always be done w.r.t. the canonical
representation, even though the rest of the algorithms will use the coefficient
representation. This is not an issue per se, as the canonical and coefficient em-
beddings are isometric, and our generalized rejection sampling technique holds
for the canonical representation. One should only be careful to use the canonical
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embedding whenever sampling from a Gaussian, and to immediately convert a
fresh sample to the coefficient embedding.

The smoothing parameter ηε(Λ) of a lattice for ε > 0 is the smallest s > 0
such that ρ1/sIm(Λ∗ \ {0}) ≤ ε. For a positive definite matrix

√
Σ, we say that

Σ ≥ ηε(Λ) (i.e., sm(Σ) ≥ ηε(Λ)) if ηε(
√
Σ
−1
Λ) ≤ 1, i.e., if ρ√

Σ
−1(Λ) ≤ ε. The

full version of the paper contains an upper bound on the smoothing parameter
of a uniformly random lattice. Throughout the paper we assume ε = 2−N .

The next lemma extends the classical bound on the norm of a sample from a
discrete ellipsoid Gaussian over the cosets. Its proof is analogous to the original; it
essentially follows observing that DΛ+u,

√
Σ(z) = ρ√Σ(z)/ρ√Σ(Λ+u) ∝ ρ√Σ(z).

Lemma 4 ( [1, Lemma 3] adapted to rings and sampling from cosets).
For any 0 < ε < 1, lattice Λ ⊆ Rm, u ∈ Rm, and symmetric positive definite
matrix Σ ∈ Km×m

R such that sm(Σ) ≥ ηε(Λ),

Pr
[
‖z‖ ≥ s1(

√
Σ)
√
mN : z $←−Dm√

Σ,Λ+u

]
<

1 + ε

1− ε2−mN .

The following result is a direct generalization of [35, Theorem 3.3] to the ring
setting. The proof is identical, but we include it in the full version for the sake
of completeness.

Lemma 5. Let Λ ⊂ Rn be a full-rank module lattice, z1, . . . , zm ∈ R arbitrary
elements, and σ1, . . . , σm ∈ K++

R satisfying σi �
√

2ηε(Λ) ·maxj ‖
√
zjz∗j ‖ for all

i. Pick y1, . . . ,ym ∈ Kn
R independently with distributions yi ∼ DΛ+ci,σi for some

centers ci ∈ Kn
R , and let y =

∑
i zi ·yi. Then, the distribution of y is statistically

close to DI ·Λ+c,σ where I is the ideal generated by the zi’s, c =
∑
i zi · ci and

σ =
√∑

i

ziz∗i · σ2
i .

In particular, if the zi’s are coprime (i.e., I = R), the distribution of y statis-
tically close to DΛ+c,σ.

2.1 Assumptions

We restate the two lattice problems over a module that are standard in the liter-
ature: module short integer solution (MSIS) and learning with errors (MLWE).
Note that the latter k elements of s correspond to the error term of MLWE. The
set Sη is defined in Table 2.

Definition 1 (MSISq,k,`,β assumption). Let λ ∈ N be a security parameter.
For a prime q(λ), a bound β = β(λ) > 0 and positive integers k = k(λ), ` =
`(λ), the MSISq,k,`,β assumption holds if for any probabilistic polynomial-time
algorithm A, the following advantage is negligible in λ.

AdvMSIS
q,k,`,β(A) := Pr

[
0 < ‖x‖ ≤ β ∧ [A|Ik] · x = 0 mod q : A←$ Rk×`q ; x← A(A)

]
.
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Definition 2 (MLWEq,k,`,η assumption). Let λ ∈ N be a security parameter.
For a prime q(λ), and positive integers k = k(λ), ` = `(λ), η = η(λ), the
MLWEq,k,`,η assumption holds if for any probabilistic polynomial-time algorithm
D, the following advantage is negligible in λ.

AdvMLWE
q,k,`,η(D) := |Pr

[
b = 1 : A←$ Rk×`q ; s←$ S`+kη ; t := [A|Ik] · s mod q; b← D(A, t)

]
Pr
[
b = 1 : A←$ Rk×`q ; s←$ S`+kη ; t←$ Rkq ; b← D(A, t)

]
|.

2.2 Offline-online multi-signature

Following [36], we define a two-round multi-signature scheme tailored to the
offline-online paradigm. A multi-signature MS consists of a tuple of algorithms
(Setup,Gen,KAgg,SignOff,SignOn,Agg,Ver).
– Setup(1λ) outputs public parameters pp. Throughout, we assume that pp is

given as implicit input to all other algorithms.
– Gen() outputs a key pair (pk, sk)
– KAgg(L) takes a set of public keys L = {pk1, . . . , pkn} and deterministically

outputs an aggregated public key p̃k.
– SignOff(sk) is an offline signing algorithm that that can be run independently

of the message µ to sign. It outputs an offline message off and some state
information st.

– SignOn(st,msgs, sk, µ, {pk2, . . . , pkn}) is an online signing algorithm that takes
as input the state information passed on to by SignOff, offline messages
msgs = {off2, . . . , offn} from cosigners, a secret key sk, a message to sign
µ, and cosigner’s public keys {pk2, . . . , pkn}. It outputs an online message
on. Following the convention introduced in [7], each signer assign indices
1, . . . , n to the signers, with itself being signer 1. In particular, these indices
are merely local references to each signer and thus they are not identities.

– Agg(on1, . . . , onn) takes online messages as input, and outputs an aggregated
signature σ, which might potentially contain ⊥.

– Ver(p̃k, µ, σ) takes an aggregated key p̃k, a message µ, and a signature σ as
input. It outputs 1 or 0.

Remark 1. Nick et al. [36] additionally defines “an aggregator node” in their
syntax to further optimize communication complexity of the protocol. We omit
this optimization because as we shall see later, our security proof relies on each
signer’s ability to check individual outputs from co-signers.

In this work, we propose a scheme where cosigners may abort (indicated by
on = ⊥ after running SignOn), which is inherent in the FSwA-based interactive
multi-signature [16] [21] [20]. Hence, a single run of the protocol fails to output
a valid signature with certain probability. To reduce such a correctness error,
we define correctness so that it explicitly handles τ parallel repetitions of the
signing protocol.
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Game 1: MS-CORMS(λ)

1: pp← Setup(1λ)
2: for i ∈ [1, n] do
3: (pki, ski)← Gen()
4: for j ∈ [1, τ ] do
5: (offi,j , sti,j)← SignOff(ski)
6: msgsj := (off1,j , . . . , offn,j)
7: L := {pk1, . . . , pkn}

8: for j ∈ [1, τ ] do
9: for i ∈ [1, n] do
10: oni,j ← SignOn(sti,j ,msgsj \ {offi,j}, ski, µ, L \ {pki})
11: σj ← Agg(on1,j , . . . , onn,j)
12: if ∃j ∈ [1, τ ] : σj 6= ⊥ then
13: return Ver(KAgg(L), µ, σj)
14: else
15: return 0

Definition 3 (MS-COR). A two-round multi-signature scheme MS has correct-
ness error δ if

Pr
[
0← MS-CORMS(λ, n, τ)

]
≤ δ

where the game MS-CORMS is described in Game 1.

The following definition guarantees unforgeability of a multi-signature scheme
with two rounds of interactions. Note that we explicitly allow the adversary to
launch many signing sessions in parallel rather than forcing them to finish every
signing attempt before starting the next one. This models real-world adversarial
behaviors that exploit concurrent attacks as observed in Drijvers et al. [18] It is
also crucial for the offline sign oracle OSignOff to not take any message as inputs,
and instead a pair (µ,L) only gets included in the query set Q once queried to
OSignOn.

Definition 4 (MS-UF-CMA). A two-round multi-signature scheme MS is said
to be MS-UF-CMA secure in the random oracle model, if for any PPT adversary
A

AdvMS-UF-CMA
MS (A, λ) := Pr

[
1← MS-UF-CMAMS(A, λ)

]
≤ negl(λ)

where the game MS-UF-CMAMS is described in Game 2 and H denotes the ran-
dom oracle.

As a special case, if the adversary makes no queries to the sign oracles OSignOff
and OSignOn in Game 2 and its advantage is negligible, a scheme MS is said to
be MS-UF-KOA (unforgeable against key only attacks).

3 Our MuSig-L Scheme

3.1 Definition of the Scheme

See Protocol 1 for detailed specifications. The basic algorithms, such as Setup,Gen
and Ver closely follow non-optimized version of the Dilithium-G signature [19]. In
the offline phase each party outputs m individual “commit” messages, followed
by their own public key.

12



Game 2: MS-UF-CMAMS(A, λ)

1: pp← Setup(1λ)
2: (pk1, sk1)← Gen()
3: ctr := 0
4: S := ∅; Q := ∅
5: (L∗, µ∗, σ∗)← AOSignOn,OSignOff,H(pp, pk1)
6: if (pk1 /∈ L∗) ∨ ((L∗, µ∗) ∈ Q) then
7: return 0
8: return Ver(KAgg(L∗), µ∗, σ∗)

OSignOff
1: ctr := ctr + 1
2: sid := ctr; S := S ∪ {sid}
3: (off, stsid)← SignOff(sk1)
4: return off

OSignOn(sid,msgs, µ, {pk2, . . . , pkn})
1: if sid /∈ S then return ⊥
2: on← SignOn(stsid,msgs, sk1, µ, {pk2, . . . , pkn})
3: L := {pk1, . . . , pkn}
4: Q := Q∪ {(L, µ)}
5: S := S \ {sid}
6: return on

At the beginning of the online phase, a party P1 performs a few sanity checks
on the inputs. First, it checks that the offline messages from other parties do
contain a correct set of co-signer’s public keys. It then checks that its own public
key t1 does not appear in the received messages. As we shall see in the next
section, this is crucial for our security proof to go through, although we are not
aware of any attacks in case duplicates are allowed. Finally, it verifies the sum
of the mth commit messages w(m) has an invertible element. This is to prevent
the adversary from maliciously choosing their shares of commits so that the final
sum w̃ =

∑m
j=1 b

(j) ·w(j) completely cancels out.
If the inputs look reasonable, P1 proceeds by hashing encoded offline mes-

sages to derive randomness used for sampling Gaussian nonces b(j)’s. Since these
are generated from spherical Gaussian, the algorithm Samp can be efficiently in-
stantiated with existing samplers such as [24]. It then performs our generalized
rejection sampling detailed in Section 3.2.

3.1.1 Parameters Each element of the secret signing key is chosen from Sη ⊆
R parameterized by η ≥ 0 consisting of small polynomials: Sη = {x ∈ R : ‖x‖∞ ≤ η}.
As our scheme is defined over a module of dimension ` + k every signing key
belongs to S`+kη .

Moreover the challenge set C ⊆ R parameterized by κ ≥ 0 consists of small
and sparse polynomials, which will be used as the image of random oracles Hsig
and Hagg: C = {c ∈ R : ‖c‖∞ = 1 ∧ ‖c‖1 = κ}. In particular, a set of differ-
ences C̄ :=

{
c− c′ : c, c′ ∈ C ∧ c 6= c′

}
consists of invertible elements thanks to

Lemma 1.
Finally, correctness requires q > 16σ1n (where n is the number of parties,

cf. Theorem 1) and αηκ2 < σ1 (cf. Lemma 6), and 2kdlog2 qe + 1 > ` + k is
required by security (cf. Section 4.3).

13



14 Cecilia Boschini1 , Akira Takahashi2 , and Mehdi Tibouchi3

Protocol 1: MuSig-L

The random oracles Hagg : {0, 1}∗ → C, Hsig : {0, 1}∗ → C, Hnon : {0, 1}∗ → {0, 1}l. 〈S〉 denotes
unique encoding of a set S, e.g., lexicographical ordering. || denotes concatenation of two strings.

Setup(1λ)
1: A←$ Rk×`q

2: Ā := [A|Ik]
3: pp := Ā
4: return pp

Gen()
1: s1 ←$ S`+kη

2: t1 := Ās1 mod q
3: (pk, sk) := (t1, s1)
4: return (pk, sk)

Agg(on1, . . . , onn)
1: if ∃i ∈ [1, n] : zi = ⊥ then
2: return ⊥
3: z :=

∑n
i=1 zi

4: σ := (w̃, z)
5: return σ

KAgg(L)
1: {t1, . . . , tn} := L
2: for i ∈ [1, n] do
3: ai := Hagg(〈L〉, ti)
4: t̃ :=

∑n
i=1 aiti mod q

5: return t̃
Ver(pk, σ, µ)

1: (w̃, z) := σ
2: t̃ := pk
3: c := Hsig(w̃, µ, t̃)
4: if Āz − ct̃ = w̃ mod q ∧ ‖z‖2 ≤ Bn

then
5: return 1
6: else
7: return 0

Samp(r)
1: Sample b ∼ Dσb using randomness r
2: return b

RejSamp(v, z, (b(j))j∈[m])
1: Σ := (σ2

1 + σ2
y

∑m
j=2(b(j))∗b(j)) · I`+k

2: ρ←$ [0, 1]

3: if ρ ≥ min

 D`+k√
Σ̂

(z)

M ·D`+k√
Σ,v

(z) , 1

 then

4: return 0
5: return 1

SignOff(sk1)
1: s1 := sk1
2: y(1)

1 ← D`+k
σ1

3: For j ∈ [2,m] : y(j)
1 ← D`+k

σy

4: For j ∈ [1,m] : w(j)
1 := Āy(j)

1 mod q
5: com1 := (w(1)

1 , . . . ,w(m)
1 )

6: off1 := (t1, com1)
7: st1 := (y(1)

1 , . . . ,y(m)
1 , com1)

8: return (off1, st1)
SignOn(st1,msgs, sk1, µ, (pk2, . . . , pkn))

1: (ti, comi)i∈[2,n] := msgs
2: if 〈(ti)i∈[2,n]〉 6= 〈(pki)i∈[2,n]〉 then
3: return ⊥
4: if ∃i ≥ 2 : ti = t1 then
5: return ⊥
6: L := {t1, . . . , tn}
7: a1 := Hagg(〈L〉, t1)
8: t̃ := KAgg(L)
9: W := {ti||comi}i∈[n]

10: (r(j))j∈[2,m] := Hnon(〈W 〉, µ, t̃)
11: b(1) := 1
12: For j ∈ [2,m] : b(j) := Samp(r(j))
13: For j ∈ [1,m] : w(j) :=

∑n
i=1 w(j)

i

14: [w(m)
1 , . . . , w

(m)
k ]T := w(m)

15: if w(m)
1 /∈ R×q then

16: return ⊥
17: w̃ :=

∑m
j=1 b

(j) ·w(j) mod q
18: ỹ1 :=

∑m
j=1 b

(j) · y(j)
1

19: c := Hsig(w̃, µ, t̃)
20: v := c · a1 · s1
21: z1 := v + ỹ1
22: if RejSamp(v, z1, (b(j))j∈[m]) = 0 : then
23: z1 := ⊥
24: on1 := (z1, w̃)
25: return on1
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Table 2: Parameters for our multi-signature. Further details can be found in the
full version.

Parameter Description

n Number of parties
τ Number of parallel repetitions
N = poly(λ) A power of two defining the degree of f(X)

f(X) = XN + 1 The 2N -th cyclotomic polynomial
q = 5 mod 8 Prime modulus
w = dlog2 qe Logarithm of the modulus
R = Z[X]/(f(X)) Cyclotomic ring
Rq = Zq[X]/(f(X)) Ring
k The height of random matrix A
` The width of random matrix A
B = σ1

√
N(`+ k) The maximum L2-norm of signature share zi ∈ R`+k

Bn =
√
nB The maximum L2-norm of combined signature z ∈ R`+k

κ The maximum L1-norm of challenge vector c
C =

{
c ∈ R : ‖c‖∞ = 1 ∧ ‖c‖1 = κ

}
Challenge space where |C| =

(
N
κ

)
2κ

η The maximum L∞-norm of the secret s
Sη =

{
s ∈ R : ‖s‖∞ ≤ η

}
Set of small secrets

T = κ2η
√
N(`+ k) Chosen to satisfy the hypotheses of Lemma 6

σ1 = σbσy
√
N(2kw + 1)(`+ k) Standard deviation of the Gaussian distribution

σy = 29

π
√
π

2 2
Nk q

k
`+kN2

√
(kw + 1) (2 +N + log ((`+ k)N)) Standard deviation of the Gaussian distribution

σb = 25/2
√
π
· 2 2

NkN3/2√kw + 1 Standard deviation of the Gaussian distribution
Σ̂ = diag(σ1, . . . , σ1) Covariance matrix of the target Gaussian distribution
α = σ1−1

T
Parameter defining M

t =
√

N
(π−1) log2 e

Parameter defining M

M = et/α+1/(2α2) The expected number of restarts until a single party can proceed
Mn = Mn The expected number of restarts until all n parties proceed simultaneously
l Output bit lengths of the random oracle Hnon

3.2 Rejection Sampling

We now describe the rejection sampling algorithm used in the generation of
a partial signature. For the sake of exposition, in this section we ignore the
subscript index i indicating which signer generated a given vector or element, as
we consider the view of only one signer.

To understand the distribution of the response z, we start from analyzing
the distribution of the masking vector ỹ =

∑m
j=1 b

(j) ·y(j). The vectors y(j) and
the elements b(j) are sampled according different Gaussian distributions:
– The vectors y(j) ∈ R`+k are sampled from two discrete Gaussians with

parameters σ1 > σy > 0 so that y(1) has higher entropy:

y(1) $←−D`+k
σ1

∧ y(j) $←−D`+k
σy for all 1 < j ≤ m .

– The elements b(j) ∈ R, j = 1, . . . ,m are all sampled from a discrete Gaussian
with parameter σb > 0 but the first, which is constant:

b(1) ← 1, b(j) $←−Dσb for all 1 < j ≤ m .

Applying Lemma 5 with b(j) in the place of the zi and y(j) of yi yields that the
masking vector ỹ = y(1) +

∑m
j=2 b

(j) · y(j) is distributed according to a discrete
Gaussian with parameter

Σ = s · I`+k ∈ K(`+k)×(`+k)
R , where s = σ2

1 + σ2
y ·

m∑
j=2

b(j)
∗
b(j) (1)
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As the products b(j)∗b(j) are small and σ1 � σy, we have that Σ ≈ σ2
1 · I`+k.

Generalizing the rejection sampling lemma to the case of sampling from ellipsoid
discrete Gaussians allows to ensure that the distribution of z does not depend on
the b(j), but it is always statistically close to a spherical Gaussian with parameter
σ1. However, as the first message of the protocol is sent in the clear instead of
being committed to like in [16], we also need to make sure that in case of aborts
this message does not leak information about the secret. In such a case, an
adversary knows that the rejected instance was sampled from the coset Λ⊥ũ (Ā),
where ũ := Ā

(∑
j b

(j)y(j)
)

+ c · a · t. Thus we need to further generalize the
rejection sampling technique, to the case in which the adversary always knows
from which coset the response has beet sampled.

Lemma 6 summarizes the rejection sampling technique used in MuSig-L; the
general result can be found in the full version. Its proof is similar to the proof of
the original rejection sampling lemma, but relies on a new result about the con-
centration of the squared norm of ellipsoidal Gaussians. Essentially, we first show
that the behavior of the two distributions is not that different when restricted
to Gaussian samples from cosets. Finally, we extend the original generalized re-
jection sampling lemma [26, Lemma 4.7] to consider the case of the behavior of
a pair of distributions over a subset of their domain . Observe that the latter
requires that the measure of the coset does not change significantly. All results
are proved w.r.t. the canonical embedding.

Lemma 6 (Rejection Sampling Algorithm). Let Λ ∈ R`+k be a lattice. Let
α, T,m > 0, ε ≤ 1/2. Define σ1, σb, σy > 0 such that σy > ηε(Λ⊥), σb > ηε(R),
and σ1 ≥ max{αT, σyσb

√
Nm(`+ k)}.

Consider a set V ⊆ R1×m × Rk × R`+k. Let h : V → [0, 1] be the compo-
sition of three probability distributions h := Db × Du × Dv, where Db returns
{1, b(2), . . . , b(m)} for b(j) $←−Dσb , Du returns a vector u ∈ Rk, and Dv returns a
vector v ∈ R`+k such that ‖v‖ ≤ T .

Let Σ = (σ2
1 + σ2

y

∑m
j=2 b

(j)∗b(j)) · I`+k, and Σ̂ = diag(σ2
1 , . . . , σ

2
1). Then, for

any t > 0, M := exp(π/α2 + πt/α), and ε := 2(1 + ε)/(1 − ε) exp(−t2(pi − 1))
the distribution of the following algorithm

RejSamp:
– (b(1), . . . , b(m),u,v) $←−h
– z $←−D`+k√

Σ,v,Λ⊥u

– with probability 1−min

1,
D`+k√

Σ̂

(z)

M ·D`+k√
Σ,v

(z)

, set z := ⊥

– output (z, b(1), . . . , b(m),u,v)
is within statistical distance ε

2M + 2ε
M of the distribution of:

SimRS:
– (b(1), . . . , b(m),u,v) $←−h
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– z $←−D`+k√
Σ̂,Λ⊥u

– with probability 1− 1/M , set z := ⊥
– output (z, b(1), . . . , b(m),u,v)

Moreover, RejSamp outputs something with probability larger than 1−ε
M (1− 4ε

(1+ε)2 ).

Observe that efficient sampling from cosets requires a trapdoor for A, which
is not compatible with a reduction from MSIS with the matrix A. However, we
only use this lemma in the security reduction to prove that honest signing can
be simulated, thus this sampling does not have to be efficient.

Lemma 7. The definition of the signing algorithm of MuSig-L in Protocol 1
with the parameters in Table 2 satisfies the hypotheses of Lemma 6.

The proof of Lemma 7 is a routine calculation, thus we defer it to the full
version of the paper. Observe that the statistical distance is negligible, and the
probability of returning something is larger than 1/M(1 − negl(λ)) as ε = 2−N
and t is set so that exp(−t(π − 1) = 2−N = negl(λ).

3.3 Correctness and Efficiency Analysis

Theorem 1. MuSig-L has correctness error δ =
(
1− 1

Mn

)τ (1 + negl(λ)) when
defined with the parameters in Table 2, i.e.,

Pr
[
0← MS-CORMS(λ, n, τ)

]
≤ δ

where the game MS-CORMS is described in Game 1.

Proof. The correctness game MS-CORMS returns 0 if for every j ∈ [1, τ ] one of
the following five events occurs :
1. The public keys have not been encoded correctly:

bad1 := (〈(ti)i∈[2,n]〉 6= 〈(pki)i∈[2,n]〉) .

By definition of correctness, Pr
[
bad1

]
= 0.

2. There is a collision on the public keys:

bad2 := (∃i1, i2 ∈ [1, n] : ti1 = t12) .

The vectors ti are generated as the product of the public matrix Ā times a
secret vector sampled uniformly at random in the set S`+kη . As Ā = [A|Ik],
multiplication by Ā is injective over the last k coefficients, and by the birth-
day argument we obtain the bound Pr

[
bad2

]
≤ n(n−1)
|Skη |2

= n(n−1)
ηkN

≤ 2−poly(λ).

3. The invertibility condition is not satisfied:

bad3 := (∃i ∈ [1, n] : w(m)
1 /∈ R×q ) .
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Again, the vector w(m)
1 is the product of the first row of Ā times ȳ :=∑n

i=1 y(m)
i . As σy ≥ ηε(R)

√
2, Lemma 5 applied component-wise to ȳ guar-

antees that each of its components is statistically close to a Gaussian with
parameter nσy. Thus, by [28, Corollary 7.5] (i.e., Lemma 8) w(m)

1 is statisti-
cally close to uniform over the entire ring, (and the same for all the signers)
and Lemma 2 ensures that: Pr

[
bad3

]
= 2

qN/2 − 1
qN

= 2−poly(λ).
4. One of the signers aborts during the RS step:

bad4 := (∃i ∈ [1, n] : RejSamp(v, z1, (b(j))j∈[m]) = 0) .

Lemma 7 shows that the hypotheses of Lemma 6 are satisfied, thus we have:
Pr
[
bad4

]
≤ 1− [ 1

M + ε+δ2−εδ2
M ]n = 1− 1

Mn + negl(λ).
5. The aggregated signature does not pass verification:

bad5 := (Ver(KAgg(L), µ, σj) = 0) .

The verification includes two checks, the linear relation and the norm bound.
The former is trivially always satisfied, as the output of the hashes is the
same for all signers once the ordering of the components of the input to each
hash is set (e.g., to the lexicographical ordering). Analogously, the sampling
of the b(j)’s is deterministic once the nonces are computed, thus all the
signers get the same w̃. One only needs to estimate the probability that a
honestly generated z does not satisfy the norm bound.
By Lemma 6 zi is statistically close to a Gaussian with parameter Σ̂ =
σ1I`+k. Hence by Lemma 4 we can bound the norm of zi as: ‖zi‖ ≤ s1(

√
Σ)
√
N(`+ k) =

σ1
√
N(`+ k) =: B. Since the sum of n independent Gaussian samples with

parameter σ1 is statistically close to Gaussian with
√
n · σ1 (Lemma 5), the

norm of the aggregate signature can be bound by Bn =
√
n ·B. Finally, we

need to ensure that there is no wrap around when aggregating signatures,
i.e., that q/2 > n‖z‖∞. The norm of z can be bounded as ‖z‖∞ ≤ 8σ1 by
substituting m = 1, c = 1, and r = 8σb in Lemma B.6 of the full version.
The bound holds with probability smaller than 2−195. Hence, q > 16nσ1 is
enough to avoid the wrap around in the aggregation. The bound holds with
probability greater than 1− 2−195. Thus Pr

[
bad5

]
≤ n2−195.

Putting everything together we get that

Pr
[
0← MS-CORMS(λ, n, τ)

]
=

τ∏
j=1

5∑
i=1

Pr
[
badi

]
=
(

1− 1
Mn

+ n2−195 + negl(λ)
)τ

.

ut

3.3.1 Number of Aborts, Round Complexity, and Signature Length.
In its standard form, this protocol requires some repetitions to deal with possible
aborts in order to produce a signature. As the probability that a single signer
outputs something is essentially 1

M (cf. Section 3.2), successful signing requires
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around Mn rounds, where M = exp(1/(2α2) + t/(2α)). Analogously to [16],
having a smallMn requires α ∝ n. However, as long as n = o(N−4) this does not
imply an increase in the norm of each signature share, as σ1 = O(N4

√
N). Larger

values of n yield an increase of roughly7 O(log(n)) in the signature size when
comparing with Dilithium-G. Standard optimizations are possible. For example,
running parallel executions of the same protocol at once yields at least one
instance in which no signer aborts, thus the protocol is exactly 2-rounds. To this
aim λ · log

(
Mn

Mn−1

)
parallel instances suffice.

The length of the signature only depends on Bn, as a standard optimization is
for signatures to be composed by (c, z) instead of (w̃, z). Verification in this case
amounts to checking c = Hsig(Āz− ct̃, µ, t̃) instead of Āz− ct̃ = w̃ in addition
to the norm check. With this optimization, signatures output by our scheme are
O(N(`+ k) log(σ1

√
n)) bits long. Relying on a trapdoor to simulate the signing

oracle in the security proof affects the length of the signature, as it yields σy =
O(N2

√
N) and σb = O(N2) (cf. Section 4.3). Moreover, our rejection sampling

technique requires σ1 to be larger than σy ·σb, i.e., σ1 = O(N4
√
N). This implies

that signature length is in fact O(N(` + k) log(N
√
n)), i.e., larger than a non-

optimized, single-user version of Dilithium-G by a factor O(log(N
√
n)), but equal

to [16]8.

4 Security Proofs

4.1 Reduction to LWE and SIS

For simplicity, we first consider a situation where the adversary does not make
any sign oracle queries, i.e., Qs = 0. Our proof closely follows “the double forking
technique” of [31], except that in our scheme the aggregation coefficients ai’s are
picked from the challenge space C consisting of small and sparse ring elements.
Full security proof is deferred to the full version.

7 Observe that to avoid rejecting valid signatures due to arithmetic overflow q has to
be larger than the size of the coefficients in the aggregated signature, i.e., the size of
the ring has to grow linearly with

√
n too. This is inherent to additively aggregating

signatures. As observed in [16], having a larger q makes MSIS harder, but MLWE
easier. Compensating for it requires increasing N by a factor O

(
1 + logn

log q0

)
, where

q0 is the modulus used in the single party case. However, one usually sets q > 220,
which makes logn

log q0
less than 2 even for billions of users, and allows to neglect this

factor in the signature size estimates.
8 This is not immediately evident from their analysis of the signature length. In fact,
verifiability requires a signature to include the randomness used to generate the
commitments. Such randomness is sampled from a discrete Gaussian of parameter
s, which has to be large enough to be sampled using a trapdoor, i.e., linear in N
(cf. [16, Theorem 2]) times square root of the number of parties (since the sum of n
Gaussian randomness is output as a signature). This adds a factor O(log(N

√
n)) to

their signature length, making it equivalent to ours.
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Theorem 2. MuSig-L is MS-UF-KOA-secure under MSISq,k,`+1,β and MLWEq,k,`,η
assumptions with β = 8κ

√
B2
n + κ3. Concretely, for any PPT adversary A

against MS-UF-KOA that makes at most Q queries to the random oracles, there
exist PPT adversaries B′ and D such that

AdvMS-UF-KOA
MuSig-L (A) ≤ Q(2Q+ 3)

|C|
+ 2k+1

qkN/2
+ AdvMLWE

q,k,`,η(B′) +

√
Q2

|C|
+Q

√
Q · AdvMSIS

q,k,`+1,β(D)

(2)

Proof sketch.We first sketch the high-level ideas of proof. The complete reduc-
tion algorithms are described in the full version. First, we construct a “wrapper”
B that internally invokes A to obtain a forged signature. The wrapper makes sure
that a crucial query to Hsig with input t̃∗ is only made after the corresponding
query to Hagg, and aborts otherwise (indicated by the badagg flag). Moreover, it
guarantees that no aggregated keys collide with each other, and aborts other-
wise (indicated by the badkcol flag). By the MLWEq,k,`,η assumption, an honestly
generated public key t1 := t∗ = Ās∗ mod q is indistinguishable with a uniformly
random element in Rq. Hence, one can regard the input (A, t∗) as an instance
of the MSISq,k,`+1,β problem.

We then invoke the general forking lemma [7] twice. The first fork happens
at the return value of Hagg : {0, 1}∗ → C (handled by the algorithm D, internally
running C); the second fork happens at the return value of Hsig : {0, 1}∗ → C
(handled by C, internally running B). Hence, after running the wrapper B in
total 4 times, we get four forgeries satisfying the equations

w̃1 = Āz∗1 − c∗1
∑
i 6=1

aiti − c∗1a1,1t∗ = Āẑ∗1 − ĉ∗1
∑
i6=1

aiti − ĉ∗1a1,1t∗ mod q (3)

w̃2 = Āz∗2 − c∗2
∑
i 6=1

aiti − c∗2a2,1t∗ = Āẑ∗2 − ĉ∗2
∑
i6=1

aiti − ĉ∗2a2,1t∗ mod q (4)

where, in particular, c∗1 6= ĉ∗1, c∗2 6= ĉ∗2, and a1,1 6= a2,1 thanks to the forker
algorithms FB and FC , respectively. Rearranging the above equations, we get
that

Āz̄1 − c̄1
∑
i6=1

aiti − c̄1a1,1t∗ = 0 mod q (5)

Āz̄2 − c̄2
∑
i6=1

aiti − c̄2a2,1t∗ = 0 mod q (6)

where z̄i = z∗i − ẑ∗i and c̄i = c∗i − ĉ∗i for i = 1, 2, respectively. By multiplying
the first equation by c̄2 and the second by c̄1, the second terms cancel out. This
gives us

Ā(c̄2z̄1 − c̄1z̄2)− c̄1c̄2āt∗ = 0. (7)

where ā = a1,1 − a2,1. Since c̄1, c̄2, and ā are all non-zero and none of them are
zero-divisors thanks to Lemma 1, c̄1c̄2ā is guaranteed to be non-zero. Moreover,
both c̄2z̄1 − c̄1z̄2 and c̄1c̄2ā have relatively small L2-norms. Thus we obtain a
valid solution to SIS w.r.t. the instance matrix [A|Ik|t∗].
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4.2 Switching Lemma

Before sketching our CMA security proof, we first prove a simple yet very pow-
erful technical lemma. Let us first recall a regularity lemma in the ring setting.

Lemma 8 (Corollary 7.5 of [28]). Let F (X) be the 2N -th cyclotomic poly-
nomial and let R = Z[X]/(F (X)) and Rq = R/qR. For positive integers k ≤
n ≤ poly(N), let Ā = [A|Ik] ∈ Rk×nq , where Ik ∈ Rk×kq is the identity matrix
and A ∈ Rk×(n−k)

q is uniformly random. Then with probability 1− 2−Ω(N) over
the choice of A, the distribution of Āx ∈ Rkq , where x ←$ Dn

σ with parameter
σ > 2N ·qk/n+2/(Nn), satisfies that the probability of each of the qNk possible out-
comes is in the interval (1± 2−Ω(N))q−Nk. In particular, it is within statistical
distance 2−Ω(N) of the uniform distribution over Rkq .

As a consequence, we obtain the following switching lemma. This will make
the hybrid arguments for simulation significantly modular as we shall see soon.

Lemma 9 (Switching lemma). Let R,N, q, k, n and σ be as in Lemma 8.
Consider the following two algorithms:
A0: A←$ R

k×(n−k)
q ; x← Dn

σ ; u = [A|Ik] · x mod q; output (A,x,u).

A1: A←$ R
k×(n−k)
q ; u←$ Rkq ; x← Dn

Λ⊥u (Ā),σ; output (A,x,u).

Then ∆(A0,A1) = 2−Ω(N).

Proof. Let (Ai, Xi, Ui) be random variables corresponding to outputs of Ai. For
any fixed A ∈ Rk×(n−k)

q , x ∈ Rnq and u ∈ Rkq , we have

Pr
[
(A0, X0, U0) = (A,x,u)

]
= Pr[A0 = A] · Pr[X0 = x] ·

[
u = Āx mod q

]
= 1
|Rk×(n−k)
q |

·Dn
σ (x) ·

[
x ∈ Λ⊥u (Ā)

]
where we have let Ā = [A|Ik], and

[
u = Āx mod q

]
=
[
x ∈ Λ⊥u (Ā)

]
is the

Iverson bracket notation: it has value 1 if the condition is met and 0 otherwise.
Thus, the probability is 0 if x 6∈ Λ⊥u (Ā), and for x ∈ Λ⊥u (Ā), we have:

Pr
[
(A0, X0, U0) = (A,x,u)

]
= 1
|Rk×(n−k)
q |

· ρσ(x)
ρσ(Rn)

= 1
qNk(n−k) ·

ρσ(x)
ρσ(Λ⊥u ) ·

ρσ(Λ⊥u )
ρσ(Rn)

= 1
qNk(n−k) ·DΛ⊥u (Ā),σ(x) · ρσ(Λ⊥u )

ρσ(Rn) .

In particular, summing over all possible choices of x for a fixed A, we see that:

ρσ(Λ⊥u )
ρσ(Rn) = Pr

x∼Dn
σ

[
u = Āx mod q

]
.
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We denote this probability HA,σ(u). In other words, HA,σ is the probability
distribution over Rk

q given by Ā ·Dn
σ mod q. To sum up, we have shown that for

all (A,x,u):

Pr
[
(A0, X0, U0) = (A,x,u)

]
=
{

Dn
Λ⊥u (Ā),σ(x) · HA,σ(u)

qNk(n−k) if x ∈ Λ⊥u (Ā),
0 if x /∈ Λ⊥u (Ā).

On the other hand, still for fixed A,u,x, we have:

Pr
[
(A1, X1, U1) = (A,x,u)

]
= 1
|Rk×(n−k)
q |

· 1
|Rk
q |
·Dn

Λ⊥u (Ā),σ(x)

= 1
qNk(n−k) ·

1
qNk

·Dn
Λ⊥u (Ā),σ(x),

and in particular this probability is non zero only for vectors x ∈ Λ⊥u (Ā). There-
fore, the statistical distance ∆(A0,A1) can be written as:

∆(A0,A1) =
∑

A,u,x

∣∣∣Pr
[
(A0, X0, U0) = (A,x,u)

]
− Pr

[
(A1, X1, U1) = (A,x,u)

]∣∣∣
=

∑
A∈Rk×(n−k)

q ,u∈Rkq

1
qNk(n−k)

∑
x∈Λ⊥u (Ā)

Dn
Λ⊥u (Ā),σ(x) ·

∣∣∣HA,σ(u)− 1
qNk

∣∣∣
=

∑
A∈Rk×(n−k)

q

1
qNk(n−k)

∑
u∈Rkq

∣∣∣HA,σ(u)− 1
qNk

∣∣∣
=

∑
A∈Rk×(n−k)

q

1
qNk(n−k)∆

(
HA,σ,URkq

)
,

for URkq the uniform distribution on Rk
q . Now Lemma 8 says that there exists a

subset S ⊂ Rk×(n−k)
q of cardinality at most 2−Ω(N)|Rk×(n−k)

q | such that for all
A 6∈ S, we have ∆

(
HA,σ(u),URkq

)
= 2−Ω(N). As a result:

∆(A0,A1) =
∑
A∈S

1
qNk(n−k)∆

(
HA,σ,URkq

)
+
∑
A6∈S

1
qNk(n−k)∆

(
HA,σ,URkq

)
≤ |S|
qNk(n−k) · 1 + 1 · 2−Ω(N) ≤ 2−Ω(N)

as required. ut

4.3 Simulating Nonces via Trapdoor Sampling

As a first step towards CMA security, recall that our goal is to simulate the view
of the adversary interacting with an honest singer P1. This essentially amounts to
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simulating the distribution of the offline messages (w(j)
1 )j∈[m], nonces (b(j))j∈[m],

challenge c, and z1, such that they satisfy the condition:

Āz1 − c · a1 · t1 =
m∑
j=1

b(j)w(j)
1 mod q. (8)

From our rejection sampling lemma (Lemma 6), we can indeed simulate c
and z1, and thus they already determine the sum w̃1 :=

∑m
j=1 b

(j)w(j)
1 mod

q. However, since the offline commit messages w(j)
1 must be handed over to

the adversary before the simulator sees adversary’s commitments w(j)
i , we are

restricted to generating b(j)’s such that they “explain” the above constraint for
already fixed (w(j)

1 )j∈[m] and w̃1.
More concretely, after OSignOff outputs w(j)

1 , whenever the simulator receives
a query to Hnon or the online oracle OSignOn with adversarially chosen w(j)

i and
µ as inputs, the simulator already has to prepare c, z1 as well as b(j) satisfying
(8), and then program the random oracles Hnon and Hsig such that they output
b(j)’s and c, respectively.9 We overcome this technical hurdle by making use of
lattice-based trapdoor sampling. For readability we will drop the party index
“1” for the rest of this subsection.

Recall that the first “commit” messages are computed as w(j) := Āy(j)

for j = 1, . . . ,m. From the regularity result (Lemma 8), they are statistically
indistinguishable with matrices uniformly sampled from Rk×mq . Now let us de-
fine suitable trapdoor generator and sampling algorithms to perform sign oracle
simulation. To sample the vector b := [b(2), . . . , b(m)], we take advantage of
the gadget-based trapdoor (Ring-)SIS inversion algorithm of [34]. (Recall that
b(1) = 1 so we only need to sample m− 1 elements.) Let W := [w(2), . . . ,w(m)]
be the parity check matrix for which we would like to obtain a trapdoor. For in-
tegers k,w = dlog2 qe,m′ = kw+1, let m = 2kw+1. Let gT = [1, 2, 4, . . . , 2w−1]
be a gadget vector and G = Ik⊗g ∈ Rk×kw be the corresponding gadget matrix.
Then the Micciancio-Peikert trapdoor can be directly applied as follows.
– TrapGen(1λ): It samples a uniformly random matrix [w(2), . . . ,w(kw+1)] ∈
Rk×kwq . It sets W̄ = [w(2), . . . ,w(kw+1)] and samples the trapdoor matrix
R ∈ Rkw×kw following the Gaussian Dkw×kw

s̄ with parameter s̄. Then the
parity check matrix is defined as

W = [W̄|G− W̄R] ∈ Rk×2kw
q . (9)

It outputs (W,R).
– TrapSamp(R,w′, σb): Given a target vector w′ ∈ Rk, it samples a vector

b ∈ R2kw = Rm−1, whose distribution is statistically close the discrete
9 Note that once b(j)’s are simulated, finding corresponding uniform randomness r(j)’s
are easy assuming that the Samp algorithm is “sampleable” [14]. Such a property
can be for example satisfied by simple CDT-based samplers.
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Gaussian Dm−1
Λ⊥w′ (W),σb

supported on the lattice coset

Λ⊥w′(W) :=
{

x ∈ R2kw : W · x = w′ mod q
}
. (10)

This can be instantiated with [34, Alg. 3] or its adaptation in the module
setting [10]. Note that efficiency of the sampler does not matter here, since
trapdoor Gaussian sampling operations are only required by simulation, and
parties in the actual protocol are never asked to do so.

4.3.1 Indistinguishability of W output by TrapGen We show that m
columns of the parity check matrix W generated as above is indistinguishable
with [w(2), . . . ,w(m)] in the actual protocol. We apply the regularity lemma
twice to argue that w(2), . . . ,w(m) are uniform both in the actual protocol and
in TrapGen, up to an negligible error.
– In the actual protocol, the distribution of w(2) = Āy(2), . . . ,w(m) = Āy(m)

is statistically close to uniform over Rk×2kw
q if

σy > 2N · qk/(`+k)+2/(N(`+k)) (11)

as required by Lemma 8. Note that, since the matrix Ā is reused, the statis-
tical distance grows linearly in m. The same remark applies to W̄R below.

– We now check the distribution of W output by TrapGen. By construction,
the distribution of kw columns W̄ = [w(2), . . . ,w(kw+1)] are uniform over
Rk×kwq . As Lemma 8 requires a matrix to contain an identity submatrix,
we need to bound the probability that W̄ contains no invertible submatrix,
i.e., W̄ is not full rank. As our scheme assumes q = 5 mod 8, we can use
Lemma 2 to argue this only happens with negligible probability (see full ver-
sion for formal analysis). Hence, we can indeed apply Lemma 8 to guarantee
the distribution of W̄ ·R is statistically close to uniform over Rk×kwq if

s̄ > 2N · q1/w+2/(Nkw). (12)

4.3.2 Indistinguishability of b(j)’s output by TrapSamp To sample from
spherical Guassian with parameter σb, the gadget-based TrapSamp algorithm
requires σb ≈ s1(R) · s1(

√
ΣG) [34, §5.4] where

√
ΣG is a parameter used when

performing Gaussian sampling from a coset Λ⊥w′(G). As ΣG is a constant, we
only need to evaluate s1(R), which is s̄ ·O(

√
Nkw+

√
Nk log2 q) from [34, §5.2].

Together with the condition (12) on s̄ required by regularity, one can bound the
parameter σb.

4.4 Oracle simulation lemma

Now let us turn to our main goal: security against adversaries that make concur-
rent chosen-message queries. For our honest party oracle simulator to succeed,
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Algorithm 1: Simulation of honest signing algorithm

T (Ā, a, s, t)
// Offline

1: for j ∈ [1,m] do
2: if j = 1 then
3: y(1) ← D`+k

σ1

4: b(1) := 1
5: else
6: y(j) ← D`+k

σy

7: b(j) ← Dσb

8: w(j) := Āy(j) mod q
9: ỹ :=

∑m
j=1 b

(j)y(j)

// Online
10: c←$ C
11: v := c · a · s
12: z := v + ỹ
13: ρ←$ [0, 1)

14: if ρ > min

 D`+k√
Σ̂

(z)

M ·D`+k√
Σ,v

(z) , 1

 then

15: z := ⊥
16: return (Ā, a, t, (w(j), b(j))j∈[m], c, z)

S(Ā, a, t)
1: w(1) ←$ Rkq
2: ([w(2), . . . ,w(m)],R)← TrapGen(1λ)
3: z← D`+k√

Σ̂
4: c←$ C
5: w′ := Āz− c · a · t−w(1)

6: b(1) := 1
7: (b(2), . . . , b(m))← TrapSamp(R,w′, σb)
8: ρ←$ [0, 1)
9: if ρ > 1/M then

10: z := ⊥
11: return (Ā, a, t, (w(j), b(j))j∈[m], c, z)

we need the following lemma. It can proved via standard hybrid arguments,
by invoking the switching lemma multiple times, indistinguishability of TrapGen
and TrapSamp as stated above, and our generalized rejection sampling lemma
(Lemma 6). Conditions on the parameters are detailed in the full version.

Lemma 10. Let σ1, σy, σb, Σ, Σ̂,M be parameters satisfying conditions in Lemma 6
and Section 4.3. Suppose q = 5 mod 8 as in Lemma 2. Let A ←$ Rk×`,
Ā := [A|Ik], s ∈ S`+kη , t := Ās, a ∈ C. The output distributions of T and
S in Alg. 1 are statistically indistinguishable.

Proof. We prove via standard hybrid arguments. Each hybrid is detailed in the
full version.
– Hyb0 is identical to T .
– Hyb1 is identical to Hyb0, except that w(j)’s are sampled uniformly and y(j)’s

are sampled from Gaussian defined over a coset Λ⊥w(j)(Ā) =
{

x ∈ Rk+` : Āx = w(j) mod q
}
.

From Lemma 9, Hyb0 and Hyb1 are statistically close.
– Hyb2 is identical to Hyb1, except that ỹ, a linear combination of y(j)’s, is

directly sampled from Gaussian over a coset Λ⊥w̃(Ā), where w̃ =
∑
j b

(j)w(j)

mod q. From Lemma 5, Hyb1 and Hyb2 are statistically close.
– Hyb3 is identical to Hyb2, except that z is sampled from Gaussian over a

coset Λ⊥u centered at v, where u = w̃ + c · a · t and v = c · a · s. Clearly, the
output distributions of Hyb2 and Hyb3 are equivalent.
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– Hyb4 is identical to Hyb3, except that z is sampled from Gaussian over a
coset Λ⊥u centered at 0 and it is output with constant probability 1/M .
From Lemma 6, Hyb3 and Hyb4 are statistically close.

– Hyb5 is identical to Hyb4, except that w′ = w̃ −w(1) is uniformly sampled
from Rkq and a vector [b(2), . . . , b(m)] is sampled from spherical Gaussian
over a coset Λ⊥w′(W), where W = [w(2), . . . ,w(m)]. From Lemma 9, Hyb4
and Hyb5 are statistically close.

– Hyb6 is identical to Hyb5, except that z is sampled from Gaussian over R`+kq

and w̃ is defined as w̃ = Āz − c · a · t. From Lemma 9, Hyb5 and Hyb6 are
statistically close.

– Hyb7 is identical to Hyb6, except that a matrix [w(2), . . . ,w(m)] is generated
with the corresponding trapdoor R. From indistinguishability of the TrapGen
algorithm, Hyb6 and Hyb7 are statistically close.

– Hyb8 is identical to Hyb7, except that a vector [b(2), . . . , b(m)] is sampled using
the trapdoor sampling algorithm. From indistinguishability of the TrapSamp
algorithm, Hyb7 and Hyb8 are statistically close.

Note that the distribution output by Hyb8 is identical to one by S. This concludes
the proof. ut

4.5 MS-UF-CMA security of MuSig-L

Given the oracle simulation lemma, we are finally ready to conclude with our
main theorem.

Theorem 3. If MuSig-L is MS-UF-KOA-secure, then it is MS-UF-CMA-secure.
Concretely, for any PPT adversary X against MS-UF-KOA that makes at most
Qh queries to the random oracles and in total Qs queries to OSignOff and
OSignOn, there exists PPT adversary A such that

AdvMS-UF-CMA
MuSig-L (X ) ≤ 2(Qh +Qs)2 ·

(
1 + 2−Ω(N)

qkN

)m
+ (2Qh +Qs)2

ρσb(R)

+ e · (Qs + 1) ·
(
Qs · εs + AdvMS-UF-KOA

MuSig-L (A)
)

where εs is determined by the statistical distance of Lemma 10.

Proof sketch We sketch the high-level ideas. Full security proof is deferred to
the full version. We denote by H′agg,H′non,H′sig (resp. Hagg,Hnon,Hsig) the random
oracles in the MS-UF-CMA game (resp. MS-UF-KOA game), respectively.

On a high-level, we simulate the adversary’s view by first producing a trap-
door for the outputs of OSignOff, and then answer every query to OSignOn and
Hnon using a known trapdoor. In a bit more detail:
– OSignOff: For every concurrent session launched by the adversary, it stores in

table WT party 1’s commit messages [w(j)
1 , . . . ,w(m)

1 ] with a known trapdoor
R produced by the TrapGen algorithm.
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– H′non: Whenever it receives a query of the form ({ti||comi}i∈[n], µ, t̃), it first
makes sure that (1) there is no duplicate honest keys in the input, (2) the
mth sum of commit message contains an invertible element, and (3) com1 =
[w(j)

1 , . . . ,w(m)
1 ] (i.e., a commit message appended to the honest party’s key

t1) has been previously produced by OSignOff. It does (3) by looking up
the table WT, and if it finds a suitable trapdoor R associated with the
corresponding session ID, H′non internally performs simulation following the
procedures of Alg. 1, and then programs outputs of the random oracles H′sig
and H′non accordingly. A simulated signature is finally stored in the table ST.

– OSignOn: When the online oracle is queried, it always invokes H′non first
and checks whether a simulated signature is recorded in ST. The simulation
succeeds if that is the case, and aborts otherwise. The reason for aborts is
that H′non must not produce simulated signatures for all queries, because
it might be that the adversary will later submit a forgery based on the
challenge c programmed inside H′non. If that happens, the output of the
external RO Hsig is not consistent with that of H′sig anymore, and thus the
reduction cannot win the MS-UF-KOA game. However, this issue can be
handled by having H′non perform simulation only probabilistically, a proof
technique similar to [18] and [16]. Such “bad challenges” are then kept in
the table CT, and we evaluate the probability that the adversary does not
use bad challenge to create a forgery.

– Note that this is exactly where appended public keys come in to play,
and interestingly, they are crucial for proving security in the offline-online
paradigm. Consider a modified scheme where H′non does not take individual
public keys, i.e., it simply derives randomness via H′non(〈comi〉i∈[n], µ, t̃). It
is easy to see that the simulator would have a hard time looking up the
right trapdoor to perform simulation: say OSignOff has produced (com1,R)
in session 1 and (com′1,R′) in session 2, respectively. Now, if the adversary
queries H′non with input ((com1, com′1), µ, t̃) there is no way for the simula-
tor to determine which trapdoor should be used for performing simulation
to sign a queried message µ. E.g. if the simulator uses a trapdoor R, and the
adversary later queries OSignOn in session 2 with µ and com1 (by malicously
claiming com1 to be adversary’s offline commit), a signature previously sim-
ulated by H′non is clearly invalid. Essentially the same issue happens if t1
occurs multiple times in the key list L.
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