
Time-Space Tradeoffs for Sponge Hashing:
Attacks and Limitations for Short Collisions

Cody Freitag1 , Ashrujit Ghoshal2 , and Ilan Komargodski3

1 Cornell Tech
cfreitag@cs.cornell.edu

2 Paul G. Allen School of Computer Science & Engineering
University of Washington, Seattle, Washington, USA

ashrujit@cs.washington.edu
3 School of Computer Science and Engineering, Hebrew University of Jerusalem

and NTT Research 91904 Jerusalem, Israel
ilank@cs.huji.ac.il

Abstract. Sponge hashing is a novel alternative to the popular Merkle-
Damg̊ard hashing design. The sponge construction has become increas-
ingly popular in various applications, perhaps most notably, it underlies
the SHA-3 hashing standard. Sponge hashing is parametrized by two
numbers, r and c (bitrate and capacity, respectively), and by a fixed-
size permutation on r + c bits. In this work, we study the collision re-
sistance of sponge hashing instantiated with a random permutation by
adversaries with arbitrary S-bit auxiliary advice input about the ran-
dom permutation that make T online queries. Recent work by Coretti
et al. (CRYPTO ’18) showed that such adversaries can find collisions
(with respect to a random c-bit initialization vector) with advantage
Θ(ST 2/2c + T 2/2r).

Although the above attack formally breaks collision resistance in some
range of parameters, its practical relevance is limited since the resulting
collision is very long (on the order of T blocks). Focusing on the task
of finding short collisions, we study the complexity of finding a B-block
collision for a given parameter B ≥ 1. We give several new attacks and
limitations. Most notably, we give a new attack that results in a single-
block collision and has advantage

Ω

((
S2T

22c

)2/3

+
T 2

2r

)
.

In certain range of parameters (e.g., ST 2 > 2c), our attack outperforms
the previously-known best attack. To the best of our knowledge, this is
the first natural application for which sponge hashing is provably less se-
cure than the corresponding instance of Merkle-Damg̊ard hashing. Our
attack relies on a novel connection between single-block collision find-
ing in sponge hashing and the well-studied function inversion problem.
We also give a general attack that works for any B ≥ 2 and has ad-
vantage Ω(STB/2c + T 2/2min{r,c}), adapting an idea of Akshima et al.
(CRYPTO ’20).

https://orcid.org/0000-0002-6307-204X
https://orcid.org/0000-0003-2436-0230
https://orcid.org/0000-0002-1647-2112

2 Cody Freitag, Ashrujit Ghoshal, Ilan Komargodski

We complement the above attacks with bounds on the best possible
attacks. Specifically, we prove that there is a qualitative jump in the
advantage of best possible attacks for finding unbounded-length colli-
sions and those for finding very short collisions. Most notably, we prove
(via a highly non-trivial compression argument) that the above attack is
optimal for B = 2 in some range of parameters.

1 Introduction

Due to a series of successful attacks on widely used hash functions such as MD5,
SHA-0, and SHA-1, in 2006 the National Institute of Standards and Technology
(NIST) organized a competition to create a new hash standard. At that time,
the existing hash functions were all based on the well-known Merkle-Damg̊ard
hash function construction [24,25,26,14]. The goal of the competition was to find
an alternative, dissimilar cryptographic hashing design. It took almost a decade
until the winner, a family of cryptographic functions called Keccak, become
a hashing standard called SHA-3. The Keccak family is based on the sponge
construction [8,7] which was a novel alternative to the popular Merkle-Damg̊ard
design. By now, the sponge paradigm is used for building collision resistant
hash functions, message authentication codes (MACs), pseudorandom functions
(PRFs) [9], key derivation functions [19], and more.

A sponge function Sp : {0, 1}∗ → {0, 1}r is defined via three parameters: (1)
two natural numbers r (for bitrate) and c (for capacity) so that n = c + r,

(2) an initial state σ(0) = (σ
(0)
r , σ

(0)
c) ∈ {0, 1}r × {0, 1}c, and (3) a function

Π : {0, 1}n → {0, 1}n which is usually thought of as a (public) pseudorandom
permutation. The hashing operation (a.k.a. absorbing) is defined by iterating
the state by computing a round function. Specifically, given a sequence of r-bit
blocks (m1,m2, . . . ,m`), Sp(m1,m2, . . . ,m`) is defined as:4

1. For i = 1, . . . , `, do:
(a) Compute the round function

Π((σ
(i−1)
r ⊕mi) ‖ σ(i−1)

c) and
let σ(i) denote the output.

(b) Parse σ(i) as

(σ
(i)
r , σ

(i)
c) ∈ {0, 1}r × {0, 1}c.

2. Output the first r bits of σ(`),

namely, σ
(`)
r .

Π Π

m1 m2

Π

mℓ

r

c

σ(0)
r

σ(0)
c σ(1)

c

σ(1)
r

σ(ℓ)
c

σ(ℓ)
r

Output

Typically, σ
(0)
r is initialized to 0 and σ

(0)
c is a random initialization vector

(IV). If one wants to be explicit, we write Spr,c,Π,IV for the sponge function.
There are several common instances of r and c used in practice, for example in
SHA-3-256 c = 512 and r = 1088, and in SHA-3-512 c = 1024 and r = 576.
These instance are particularly useful since they were designed to be used as
drop-in replacements for the corresponding SHA-2 instances, and as such they
were intended to have identical (or better) security properties.

4 For simplicity, we do not consider padding of the input.

Time-Space Tradeoffs for Sponge Hashing 3

Sponge in the random permutation model. The concrete permutations
Π that are used in real-life do not have solid theoretical foundations from the
perspective of provable security. Therefore, when coming to analyze the security
of the sponge construction, we model the permutation Π as a completely random
one. That is, the permutation is randomly chosen, and all parties are given
(black-box) access to it and its inverse.5 This is called the random permutation
model (RPM). Such bounds are used as an approximation to the best possible
security level that can be achieved by the corresponding construction in the real-
life implementation. This heuristic has been extensively and successfully used
in the past several decades, with exceptions (i.e., examples where the real-life
implementation and the ideal world construction are separated) being somewhat
contrived and artificial. For “natural” applications it is widely believed that
the concrete security proven in the RPM is the right bound even in the real-
world, assuming the “best possible” instantiation for the idealized permutation
is chosen.

As mentioned, the sponge construction was introduced by Bertoni et al. [8]
and its security was analyzed in a follow-up work [7] assuming that the underly-
ing hash function is an invertible random permutation. The latter work showed
a strong property called indifferentiability from a random oracle, which directly
implies many other properties such as collision resistance, pseudorandomness,
and more.

For instance, the following is known about Sponge’s collision resistance (which
is perhaps the most widely used property). For fixed c, r, the collision resistance
game is defined as follows: a challenger sends a uniformly random IV to the adver-
sary. The adversary “wins” if it is able to come up with distinct m,m′ ∈ {0, 1}∗
for which Spr,c,Π,IV(m) = Spr,c,Π,IV(m′). There is a well-known attack due to the
original works of Bertoni et al. [8,7]: the adversary is given an IV and it merely
queries the permutation oracle on inputs of the form (m‖IV), where the m’s
are chosen uniformly at random. If a collision was observed (i.e., the adversary
finds distinct m1,m2 such that the first r bits of Π(m1‖IV), Π(m2‖IV) are the
same), then the adversary wins. By the well-known birthday bound, the success
probability of this event is Ω(T 2/2r). Alternatively, if two messages m1,m2 such
that the query returned a state with the same last c bits (i.e., Π(m1‖IV) = a1‖b
and Π(m2‖IV) = a2‖b, then m1 ‖ a1 and m2 ‖ a2 form a collision. The success
probability of this event is Ω(T 2/2c). Overall, the attacker wins with probabil-
ity Ω(T 2/2min{c,r}). This is known to be the best possible attack due to the
indifferentiability result of [7].

Non-uniformity / preprocessing attacks. The above discussion assumes
that the adversary is uniform in the sense that it starts off with no knowledge
about Π, as if it did not exist before it was invoked. However, this does not cap-
ture real-life attack scenarios where an attacker can invest a significant amount

5 In typical permutation designs, including the permutations underlying the Keccak
family, if you have the entire state, you can apply the inverse permutation to go
backward to the previous state. This is why we also give free access to the inverse
of the permutation as part of the model.

4 Cody Freitag, Ashrujit Ghoshal, Ilan Komargodski

of preprocessing on the public permutation Π to speed up the actual attack
whenever the IV is chosen. This is why most works (at least in theoretical cryp-
tography) model attackers as non-uniform machines, where the attacker could
obtain arbitrary but bounded-length advice, before attacking the system. The
advice generation phase is called the offline phase and the “attack” given the
advice and the challenge is called the online phase. The output size of the of-
fline phase (i.e., the size of the advice) is denoted S and the number of queries
allowed in the online phase is denoted T ; computation is free of charge in both
phases. This model, being an extension of the RPM where the online adversary
may know a bounded-length hint about the permutation, is called the auxiliary-
input RPM, or AI-RPM in short. This model was first explicitly put forward by
Coretti, Dodis, and Guo [10], naturally extending the influential auxiliary-input
random oracle model (AI-ROM) from the seminal work of Unruh [31] (which in
turn is an explicit version of the model studied by Hellman [23], Yao [33], and
Fiat-Naor [17]). Bounds on the power of “auxiliary-input” adversaries are also
referred to as “time-space” trade-offs.

Although the sponge paradigm is becoming widespread, very little is known
about its formal security guarantees against such attackers that may have a
short preprocessed hint about the permutation computed in an offline phase.
In fact, there is an attack that utilizes this extra power to achieve advantage
Ω(ST 2/2c+T 2/2r) (notice the extra multiplicative S term).6 The attack is based
on a combination of a birthday-style attack, as above, together with a variant
of an attack by Hellman [23] which is nowadays referred to as rainbow tables
(due to Oechslin [29]). While this attack uses known techniques, we were not
able to find an explicit description of it in the literature and so for completeness,
we give the attack and its analysis in Section 4.1.7 8 Only very recently, in the
beautiful work of Coretti et al. [10] (henceforth CDG) it was shown that this
attack is optimal; that is, no S-space T -query attackers can find a collision with
probability better than Ω(ST 2/2c + T 2/2r).

It turns out that the above attack results in a very long collision. Specifically,
for parameters S and T as above, the above attack results in a collision of length
≈ T . While this formally breaks collision resistance, it is hard to imagine a
natural application where such a collision would be helpful in an attack. Say
we have a system that uses a sponge-based hash with an output of size 256
bits. Running the above attack with S = T = 260 would result in a collision of
several petabytes long, which is likely to be practically useless for any natural
attack scenario. Therefore, we ask whether there exist attacks that find shorter
collisions and what is their success probability. Specifically, we introduce an

6 Throughout the introduction, for easy of notation, we supress poly-logarithmic (i.e.,
poly(c, r) terms inside the big “O/Ω” notation. The formal theorems state the precise
bounds.

7 More precisely, we give a generalization of this attack which finds collisions of length
B ≥ 2, and this particular attack follows by setting B = T .

8 A related bound is stated in CDG [10, Table 1] but after communication with an
author, they confirmed that the attack was never worked out.

Time-Space Tradeoffs for Sponge Hashing 5

additional parameter B (for blocks) and require an attacker, on a random IV, to
come up with two ≤ B-block messages that collide. The main question studied
in this work is:

What is the complexity of a preprocessing attacker in finding a B block
collision in a Sponge hash function, assuming the underlying permutation is

modeled as random?

1.1 Detour: The Case of Merkle-Damg̊ard

Except being a fundamental problem with theoretical and practical importance,
another motivation to study the above question comes from the recent work of
Akshima et al. [3] (henceforth ACDW), who studied a similar question in the
context of Merkle-Damg̊ard hashing (henceforth MD). Recall that sponge hash-
ing was designed to be used as a drop-in replacement for Merkle-Damg̊ard-based
hash functions, and as such, it is essential to compare their security guarantees
in this natural model that allows attackers to perform preprocessing.

Recall that a Merkle-Damg̊ard hash is defined relative to a compression func-
tion h : [N] × [M] → [N]. Hashing is performed by breaking the input message
into blocks from [M], and processing them one at a time with the compres-
sion function, each time combining a block of the input with the output of
the previous round, where the 0th round value is the IV.9 To obtain provable-
security guarantees, the analysis models the underlying compression function h
as a completely random one. Preprocessing attackers are captured by considering
the AI-ROM [23,33,17,31,10,11] which models attackers as two-stage algorithms
(A1,A2). The first algorithm A1 is unbounded except that it generates an S-bit
“advice”. The second algorithm A2 gets the advice and makes T queries to the
oracle.

Coretti et al. [11] fully characterize the collision resistance of salted-MD
hashing: there exists an attack with advantage Ω(ST 2/N+T 2/N) (loosely based
on the idea of rainbow tables [23,29]), and this is the best possible attack, as
shown using the “bit-fixing” technique [31]. As in the case of sponge hashing, this
attack results in a very long collision, on the order of T blocks. Motivated by this
observation, ACDW [3] ask whether it is strictly harder to find shorter collisions.
They have two main results. The first is an extension of the above simple attack
to result in B-block collisions with advantage Ω(STB/N + T 2/N). The second
result is an upper bound on the advantage for B = 2 of O(ST/N + T 2/N),
showing that the above attack is tight. For B = 1, the problem is equivalent
to finding collisions in a compressing random function, and the advantage is
precisely Θ(S/N + T 2/N) [16].

ACDW [3] could not prove or disprove that their Ω(STB/N +T 2/N) attack
is optimal for any other value of B (except B = 2 and B ∈ Ω(T)). They conjec-
tured that it is optimal and formulated it as the STB conjecture. In very recent
works, Akshima, Guo, and Liu [4] and Ghoshal and Komargodski [21] proved

9 All of the results directly extend to the padded version, but we ignore it for simplicity.

6 Cody Freitag, Ashrujit Ghoshal, Ilan Komargodski

new bounds for this problem (almost resolving the conjecture). Can we prove
similar bounds for sponge hashing? Should we believe an analogous conjecture?

1.2 Our Results

We initiate the study of time-space tradeoffs for bounded length collisions in
sponge hashing. First, the known best attack that gives a single-block collision
has advantage

Ω

(
S

2c
+
T 2

2r

)
. (1)

In this attack, the preprocessing is used to “remember” a collision for S different
IVs. If the challenge IV is in the set of remembered IVs, then the attack suc-
ceeds (this happens with probability S/2c); otherwise, we run a birthday-style
attack which succeeds with probability Ω(T 2/2r). For MD hashing, the analo-
gous bound for B = 1 is known to be tight. Second, there is an attack (loosely
based on rainbow tables) that has advantage Ω(ST 2/2c + T 2/2r) and results
with a Ω(T)-blocks collision [10].

At this point, if one were to speculate that sponge’s security guarantees
are at least as good as MD’s, one would guess that the above attacks should
be tight, at least for B ∈ {1, 2}. With some luck and labor, we may even be
able to prove it. This is where the situation gets interesting. We show that the
above speculation is false for B = 1 and in some natural settings of parameters,
sponge is strictly less secure than MD for this task. On the other hand,
for B = 2 we can only prove tightness for a certain range of parameters.

In what follows, we elaborate on our results. We design two new attacks, one
designed for any B ≥ 2 and the other specifically for B = 1. We complement
our attacks with “lower bounds”, which are actually upper bounds on the best
possible advantage. Specifically, we prove that there is a qualitative jump in the
advantage of best possible attacks for finding unbounded-length collisions and
those for finding very short collisions (i.e., B ≤ 2).

Attacks

We give two new attacks, one for any B ≥ 2 and the other is specialized for
B = 1. The generic attack is the first to result with an arbitrary block length
collision while the one specialized to B = 1 beats the previously known best
attack, at least in some range of parameters. By the latter, to the best of our
knowledge, we show the first natural application for which sponge hashing is less
secure than MD.

A new attack for B ≥ 2. The above-mentioned attack on sponge hashing that
has advantage Ω(ST 2/2c + T 2/2r) can be modified to result with a B-block
collision for B ≥ 2 and with advantage

Ω

(
STB

2c
+

T 2

2min{c,r}

)
. (2)

Time-Space Tradeoffs for Sponge Hashing 7

The attack follows a similar observation of ACDW [3] regarding MD hashing.
Given the upper bound of CDG [10] mentioned earlier, this attack is optimal
for B ∈ Ω(T). For MD hashing, the analogous bound is known to be tight for
B = 2 and B ∈ Ω(T).

A new attack for B = 1. We design a new attack for sponge hashing that
results with a a single-block collision. Specifically, we show that if ST 2 > 2c,
then there is an attack with advantage

Ω

((
S2T

22c

)2/3

+
T 2

2r

)
.

To see why this attack is superior to the previously known one (Eq. 1), we
give a setting of parameters where it achieves a significantly higher advantage.
Consider r = c, S = 24c/5, and T = 22c/5. Indeed, ST 2 > 2c and therefore we
can apply the attack. The previously known best attack (Eq. 1) has advantage

Ω

(
S + T 2

2c

)
= Ω

(
1

2c/5

)
.

This attack is the analog of the provably best attack for MD. On the other hand,
our new attack has strictly better advantage

Ω

((
S2T

22c

)2/3

+
T 2

2c

)
= Ω

((
28c/522c/5

22c

)2/3

+
1

2c/5

)
= Ω (1) .

Thus, at least in this range of parameters, we beat the state-of-the-art attack
and show that sponge is less secure than MD. In the example above, we chose a
setting of parameters where the gap between the attacks is the largest (our attack
succeeds with constant probability, while the previously known one succeeds with
exponentially small probability). However, there are many more concrete settings
where our attack is superior, although the gap could be less dramatic. We note
that our bounds in this section and the technical overview are simplified for ease
of parsing and refer the reader to the technical sections for the exact bounds.

Conceptual novelty: Our attack for B = 1 use the famous time-space
tradeoffs for function inversion of Hellman [23] and its extension by Fiat-Naor [17].
We leverage the possibility of inverse queries to the underlying permutation Π
in the random-permutation model. This is in contrast to Merkle-Damg̊ard con-
struction which is analyzed in the random-oracle model that does not permit
inverse queries. At a very high level, we use time-space tradeoffs for function
inversion to “invert” the function Π−1 on a restricted domain. We view this
conceptual connection between time-space tradeoffs for collision resistance of
sponge hashing and function inversion as novel and hope that it will lead to
better designs and additional attacks in the future.

8 Cody Freitag, Ashrujit Ghoshal, Ilan Komargodski

Lower Bounds

We complement the picture by showing “lower bounds”, namely impossibility
results for better attacks. (In other words, these are upper bounds on the best
possible advantage of any attacker.) We prove two such lower bounds, one for
the case where B = 1 and the other is for B = 2, corresponding to our attacks.

On optimal attacks for B = 2. We show that any attack for B = 2 must have
advantage

O

(
ST

2c
+
S2T 4

22c
+

T 2

2min{c,r}

)
.

We note that this bound is tight with the best known attacks for a large range
of parameters, but there still may be a gap otherwise. Specifically, if ST 3 ≤ 2c,
then the above bound simplifies to O(ST/2c + T 2/2min{c,r}) which matches the
attack from Eq. (2). Thus, any improvement on the generic attack from Eq. (2)
must take advantage of the regime where ST 3 > 2c.

The proof of this result provably cannot be obtained via the bit-fixing method.
Rather, we obtain the result via a compression argument. In such arguments, an
imaginary adversary that is successful too often is used to compress a uniformly
random string, a task which is (information-theoretically) impossible. The com-
pression technique has been instrumental in proving lower bounds in computer
science (see the survey of Morin et al. [28]). It has become useful in the context of
cryptographic constructions and primitives, starting with the work of Gennaro
and Trevisan [20]. Unfortunately, one common “feature” of such proofs is that
they tend to be extremely technical and involved. Our proof is no different; in
fact, it is even much more complicated than the analogous result for B = 2 of
ACDW [3] since we work in the RPM and need to handle inverse queries.

On optimal attacks for B = 1. We show that any attack for B = 1 must have
an advantage

O

(
ST

2c
+
T 2

2r

)
.

The proof of this result is relatively straightforward by using an optimized version
of the remarkable bit-fixing (or presampling) method [31,11,10]. The main point
of distinction of our proof from most previous ones is that we need to apply
this technique in the RPM context, so our argument needs to handle inverse
queries. (This result might have been known before, but we could not find such
a statement, so we give it for completeness.)

We summarize our main results as well as the known best bounds in Fig. 1.

1.3 Future Directions

Our work is the first to address the question of characterizing the complexity of
a preprocessing attacker in finding a B-block collision in a Sponge hash function.

Time-Space Tradeoffs for Sponge Hashing 9

Best Attack Advantage Upper Bound

B = 1 min

(
S2T 2

22c
,

(
S2T

22c

)2/3
)

+
S

2c
+
T 2

2r
[Thm 2]

ST

2c
+
T 2

2r
[Thm 4]

B = 2
ST

2c
+

T 2

2min{c,r} [Thm 1]
ST

2c
+
S2T 4

22c
+

T 2

2min(c,r)
[Thm 5]

B ≥ 3
STB

2c
+

T 2

2min{c,r} [Thm 1]
ST 2

2c
+
T 2

2r
[10]

Fig. 1: A summary of the attacks and advantage upper bounds for finding B-
block collisions for the Sponge hash function. All bounds are given ignoring
poly(c, r) terms. We note that the attack for B = T is implicitly claimed in [10]
based on [11].

Our results raise many natural open problems on both the attacks side and lower
bounds side. Regarding attacks, we have shown, somewhat surprisingly, that
there is a non-trivial attack for B = 1 that takes advantage of inverse queries
in a novel way. We hope that these ideas can be pushed forward to obtain even
better attacks for B = 1 or beyond. Specifically, is it possible to beat the ST/2c

attack for B = 2 in some range of parameters? In ruling out possible attacks,
it would be interesting to come up with a tight upper bound on the advantage
for B = 1 or B = 2. Our work suggests that ruling out attacks that use inverse
queries may indeed be a complicated task. In fact, for B = 3 we are not aware
of any upper bound on the advantage that is better than O(ST 2/2c + T 2/2r).

1.4 Related Work

Time-space tradeoffs are fundamental to the existence of efficient algorithms. For
example, look-up tables (used to avoid “online” recalculations) have been imple-
mented since the very earliest operating systems. In cryptography (or cryptanal-
ysis), they were first used by Hellman [23] in the context of inverting random
functions. Hellman’s algorithm was subsequently rigorously analyzed by Fiat and
Naor [17] where it was also extended to handle arbitrary (not necessarily ran-
dom) functions. Limitations of such algorithms were studied by Yao [33], and by
De, Trevisan, and Tulsiani [15] (building on works by Gennaro and Trevisan [20]
and Wee [32]). More limitations were proven by Barkan, Biham, and Shamir [5]
but for a restricted class of algorithms. Very recently, Corrigan-Gibbs and Ko-
gan [13] showed complexity-theoretic limitations for improving the lower bound
of Yao. While these techniques have mostly cryptographic origins, interesting
relations were discovered to other classical problems in other fields (e.g., [1,22]).
Time-space tradeoffs have been studied for other problems beyond the ones we
mentioned (various cryptographic properties of random oracles, function and
permutation inversion, and security of common hashing paradigms). For in-
stance, specific modes for block ciphers (e.g., [18] studied the Even-Mansour

10 Cody Freitag, Ashrujit Ghoshal, Ilan Komargodski

cipher), and various assumptions related to cyclic groups, such as discrete loga-
rithms and Diffie-Hellman problems [27,6,12,10].

On the salt. In the theoretical cryptography literature collision resistance is
defined with respect to a family of hash functions indexed by a key. This is
important to achieve the standard notion of non-uniform security. Indeed, no
single hash function can be collision-resistant as a non-uniform attacker can just
hardwire a collision. In practice, however, a single hash function is considered
by fixing an IV. Thus, the relevance of our model could be questioned. However,
often in applications, the hash function used is salted by prepending a random
salt value to the input, for example in password hashing [30]. Salting essen-
tially brings us back to the random-IV/keyed setting, where our results become
relevant.

2 Technical Overview

In this section, we provide a high-level overview of our techniques. We first
describe the generic attack for finding B-block collisions for B ≥ 2. This attack
is a variant of an analogous attack for MD, given by ACDW [3]. We also recall
the known best attack for B = 1. Then, we describe our new attack for finding
1-block collisions. In particular, our attack outperforms the optimal analogous
attacks for MD for specific regimes of parameter settings. Lastly, we overview
the techniques used to prove limitations on the best possible attacks for finding
short collisions.

Sponge notation. A sponge function is a keyed hash function that takes as
input an a c-bit initialization vector IV along with an arbitrary size input and
outputs an r-bit string: Sp : {0, 1}c × {0, 1}∗ → {0, 1}r. The second input is
parsed as a sequence of r-bit blocks, denoted (m1,m2, . . .). On such an input
Sp(IV, (m1,m2, . . .)) is defined as follows. The function Sp is defined relative
to a permutation Π : {0, 1}r+c → {0, 1}r+c. An input to or an output of this
permutation, denoted σ ∈ {0, 1}r+c, contains an r-bit block, denoted σ[1], and a
c-bit block, denoted σ[2]. We sometimes use (σ[1], σ[2]) to mean σ[1]‖σ[2] = σ.

On input m1,m2, . . . ,m` to Sp, it works as follows:

1. Initialize σ(0) = (σ(0)[1], σ(0)[2]) = (0, IV).
2. For i = 1, . . . , `, compute σ(i) = Π((σ(i−1)[1]⊕mi) ‖ σ(i−1)[2]).
3. Output σ(`)[1].

2.1 Attacks

Generic attack for finding length B collisions. In the preprocessing phase
the adversary randomly samples t ≈ S different IVs IV1, . . . , IVt and for i =
1, . . . , t it does as follows.

1. Compute σi,j for j ∈ [B/2−1] as σi,j = Π(0, σi,j−1[2]), where σi,0 = (0, IV).
The sequence σi,0, . . . , σi,B/2−1 forms a “zero-walk” on IVi.

Time-Space Tradeoffs for Sponge Hashing 11

2. Find mi,m
′
i such that Π(mi, σi,B/2−1[2])[1] = Π(m′i, σi,B/2−1[2])[1].

The preprocessing phase outputs (σi,B/2−1[2],mi,m
′
i)i=1,...,t. In Fig. 2, we depict

the preprocessing phase of the attack. In the online phase, the adversary gets

σ1,1[2]𝖨𝖵1

𝖨𝖵2

𝖨𝖵t

σ1,2[2] σ1,l[2]

σ2,l[2]

f

σ2,1[2] σ2,2[2]

σt,l[2]σt,2[2]σ1,l[2]

c1

c2

ct

f(⋅) := Π(0,⋅)[2]

f f

f f f

f f f

Π(, ⋅)[1]m1

Π(, ⋅)[1]m′￼1

Π(, ⋅)[1]m2

Π(, ⋅)[1]m′￼2

Π(, ⋅)[1]mt

Π(, ⋅)[1]m′￼t

Fig. 2: An illustration of the preprocessing phase of the generic attack. In red, we
depict the components that are part of the output of the preprocessing phase.
In blue we see the collisions that will be outputted in the online phase if some
chain is hit. Notice that we denote f(·) := Π(0, ·)[2].

a challenge IV as input. For i = 1, . . . , T/B, it computes IVi = Π(i, IV)[2] (for
simplicity, we assume that i is in its bit representation). For each of the IVi’s, it
does a zero-walk of length B − 2. Formally, it sets σi,0 ← Π(i, IVi) and then for
j = 1, . . . , B − 1 it does the following.

1. If there is a tuple of the form (σi,j−1[2],m,m′) in the preprocessing output,
then return

(σi,0[1] ‖ . . . σi,j−1[1] ‖m), (σi,0[1] ‖ . . . σi,j−1[1] ‖m′).

2. Set σi,j ← Π(0, σi,j−1[2]).

Correctness is easy to verify. We next discuss the success probability of the
adversary. Suppose that the online phase of the adversary computes a σi,j during
the first half of any of the T/B zero-walks such σi,j [2] matches the last c bits of
one of the σi′,j′s defined in the preprocessing phase. Then, it is guaranteed to
stumble on σi′,B/2−1[2] during its zero walk. Hence, in this case, it would output
a collision.

Since the adversary encounters roughly Ω(SB) distinct σi,j [2]’s in expecta-
tion during the preprocessing phase, this suffices to prove that with probability
roughly Ω(STB/2c) the online phase will win. The term Ω(T 2/2c + T 2/2r)
appears due to birthday-style collisions. We refer the reader to Section 4.1 for
details.

12 Cody Freitag, Ashrujit Ghoshal, Ilan Komargodski

Attack for B = 1. As described in the introduction, the best attack known so
far for B = 1 has an advantage of O(S/2c+T 2/2r). The analogous attack for MD
is provably optimal, as mentioned. However, in contrast to the setting in MD
where the ideal object is a random function, here the ideal object is a random
permutation, which gives us the additional ability to make inverse queries. This
is precisely the leverage that we utilize to get our improved attack. We remark
that we are not aware of any prior work that takes advantage of making inverse
queries in related contexts.

For B = 1, recall that the goal is, given a random IV, to find m,m′ such
that Π(m, IV)[1] = Π(m′, IV)[1]. Our first step is a bit counter-intuitive since we
actually aim to solve a harder task. Specifically, rather than finding an arbitrary
collision, we set out to find a collision on 0, that is, find m and m′ such that
Π(m, IV)[1] = Π(m′, IV)[1] = 0. This step helps us since a natural way to use
inverse queries arises, as we argue next.

Main observation: Finding a collision on 0 can be obtained by finding
distinct y and y′ such that Π−1(0, y)[2] = Π−1(0, y′)[2] = IV.

In other words, it suffices to find two pre-images of IV with respect to the function
fΠ : {0, 1}c → {0, 1}c where fΠ(x) outputs the last c bits of Π−1(0, x). In Fig. 3,
we show the partite representations of Π(·) and Π−1(0, ·). Note that while Π(·)
is a perfect matching, the function fΠ(·) = Π−1(0, ·) has several elements in its
co-domain with multiple pre-images.

{0,1}c+r {0,1}c+r {0,1}c {0,1}c

Π(⋅) Π−1(0,⋅)[2]

Fig. 3: Partite representation of Π(·) and Π−1(0, ·). Notice that Π is a permu-
tation and thus forms a perfect matching while Π−1(0, ·) is not a permutation
and in expectation a random image will have several pre-images.

At this point, we made some progress: we reduced the problem of collision
finding to a function inversion problem (for the function fΠ : {0, 1}c → {0, 1}c).
Indeed, preprocessing attacks for function inversion have been well studied since
the 80’s. Hellman [23] described an algorithm that gets S bits of preprocessing
on the random function f : {0, 1}a → {0, 1}b as input and inverts it at a point
in its image making T queries to the function. It was later formally analyzed by
Fiat and Naor [17] and shown to have advantage ε(a, b) at inverting y = f(x)

Time-Space Tradeoffs for Sponge Hashing 13

for a random x←$ {0, 1}a, where

ε(a, b) = Ω

(
min

{
1,

ST

2min(a,b)
,

(
S2T

22min(a,b)

)1/3
})

(3)

We are almost done; three technical challenges remain. First, the result of
Hellman applies only to random functions. On the other hand, our function is
a restriction of a random permutation (which is not a random function). Fiat
and Naor [17] showed a clever method to extend Hellman’s algorithm to support
any function (rather than only random ones), but this improvement is more
complicated and comes with a cost in efficiency, which we would like to avoid. To
this end, we re-do and adapt the analysis of Hellman to our setting by using the
fact that restrictions of permutations are “close enough” to random functions.
Our analysis achieves the same parameters as the original one of Hellman, up to
constants.

The second problem is that we want to find a pre-image of IV←$ {0, 1}c
under fΠ , but IV may not even have any pre-images under fΠ , let alone two
which are required for our attack. Fortunately, as fΠ is at least “close” to a
random function, we can show via a balls-into-bins analysis that a constant
fraction of the co-domain will have at least two distinct pre-images. Still, could
it be the case that Hellman’s attack somehow fails on this fraction of the co-
domain? Via a closer analysis of Hellman’s attack, we show that for any function
f : {0, 1}a → {0, 1}b and fixed element y ∈ {0, 1}b, the attack succeeds at finding
a pre-image x′ ∈ f−1(y) with probability ε(a, b) where

ε(a, b) = Ω

(
1

b
min

(
1,
ST · |f−1(y)|

2a
,

(
S2T · |f−1(y)|2

22a

)1/3
))

(4)

The last problem we face is that we need to find two distinct pre-images for
IV. However, applying an inversion algorithm in a black box fashion does not
guarantee that distinct inverses will be found. Thus, we also prove that Hellman’s
inversion algorithm finds a uniform pre-image among all possible pre-images for
a given element in the co-domain.

After resolving the above technical challenges, we show that if we run Hell-
man’s attack twice independently for the function fΠ on the image IV, if IV has
at least two pre-images (which it does with constant probability), then we will
find two distinct pre-images with at least 1/2 probability times the probabil-
ity that both attacks succeed. Thus, our overall success probability is roughly
Ω(ε(c, c)2) where ε is defined in (4). We refer the reader to section 4.2 for the
details.

2.2 Impossibility Results for Best Attacks

When giving new attacks for finding short collisions, the natural question is how
far we can go. In other words, what are the best possible attacks? For B = 1, 2
in the case of MD, optimal attacks are known. Our goal here is to prove an

14 Cody Freitag, Ashrujit Ghoshal, Ilan Komargodski

upper bound on the advantage for the best-possible adversary that has S bits of
preprocessing as input and can make T queries to Π,Π−1 in finding collisions
of length 1 and 2 for the sponge construction.

Impossibility result for B = 1. We use the pre-sampling technique proposed
by [31] and later optimized and adapted to the AI-RPM by [10] to get an ad-
vantage upper bound of roughly O(ST/2c + T 2/2r). However, we note that this
bound does not match the best B = 1 attacks, so it is open which side can be
improved. Ideally, one could use a compression-based technique as done in [16]
to get a tight bound for the B = 1 case for MD, but it is not clear how to adapt
this argument to handle inverse queries in the AI-RPM model, as we shall see
below.

Impossibility result for B = 2. The presampling technique of [31,10] prov-
ably cannot give an advantage upper bound better than O(ST 2/2c + T 2/2r) for
B = 2. Since we can prove this advantage upper bound even for unbounded
length collisions, it is natural to ask whether we can prove that 2-block colli-
sions are, in fact, harder to find than collisions of arbitrary length. Aside from
presampling techniques, the main technique used to rule out attacks is via a
compression argument [20,32], which we turn to for our impossibility result. As
a warm up, we first give an overview for the B = 1 compression argument for
MD from [16] to highlight the key challenges in our setting.

Overview of B = 1 compression argument for MD. In a compression argument,
the main idea is to use an adversary A that succeeds at some task involving
a random object O, to compress O beyond what is information theoretically
possible. This clearly establishes a contradiction, which gives an upper bound in
the success probability of A.

Let h : [N] × [M] → [N] be a hash function that is modeled as a random
oracle, and A = (A1,A2) be an (S, T) adversary that tries to find a 1-block
collision in h. A1 gets h as input and can output S bits of advice σ. A2 gets σ
along with a random salt a ∈ [N], can make T queries to h, and tries to output
m,m′ ∈ [M] such that h(a,m) = h(a,m′) and m 6= m′. We show that if A
succeeds at this task for many salts a, then we can describe h with fewer bits
than possible.

To encode h, we first compute σ ← A1(h). We let G ⊆ [N] be the set of
elements for which A2 succeeds on inputs (σ, a) for all a ∈ G. We run A2 on
(σ, a) for all a ∈ G in lexicographic order. The hope is that whenever A2 succeeds
in finding a collision, we can use the corresponding queries for the collision it
makes to compress the function h.

For example, if A2(σ, a) outputs a collision (m,m′), then we can assume that
A2 must have queried h(a,m) and h(a,m′) at some point (we assume without
loss of generality that (a,m) was queried before (a,m′)). So whenever it queries
h(a,m′), rather than encoding the output of h, we write down information to
indicate that it’s the same output as the query for h(a,m). It is easy to see by a
counting argument that at least half of the a ∈ G cannot be queried by A2 more
than 2T times. For all such a, we can refer back to the previous query h(a,m)

Time-Space Tradeoffs for Sponge Hashing 15

using log 2T bits, and we use another log 2T bits to identify the query h(a,m′).
Thus, we save logN − 2 log 2T bits per each of these a values in G, which gives
a non-trivial compression of h if T 2 < N .

The problem with inverse queries. As we stated before, the first major roadblock
we encounter when adapting this framework to the AI-RPM is the existence of
inverse queries. Let’s try to adapt the argument above to the setting of Sponge
with 1-block collision. Now the preprocessing adversary A1 is given a random
permutation Π and outputs some state σ with |σ| ≤ S. The online adversary
A2 receives σ and a random IV, and tries to find m,m′ such that Π(m, IV)[1] =
Π(m′, IV)[1].

Now suppose that A2 outputs a collision (m,m′) with respect to the sponge
construction. We can no longer even assume that A2 queries both Π(m, IV) and
Π(m′, IV)! For example, it may have first queried Π(m, IV) = (y, u1) and then
queried Π−1(y, u2) = (m′, IV). At first glance, this doesn’t seem like a problem,
we can again note that part of the output of query (y, u2) is the same as the
input to the query for (m, IV). So maybe we can use the same trick as before
and instead of storing the whole answer of Π−1(y, u′), store information indi-
cating that the last c bits of the answer is the same as the input of the query
Π(m, IV). This intuition is misleading. We can no longer do a counting argu-
ment to show that this information is short. It is not clear how to identify the
query Π−1(y, u′) with few bits to be able to point back to the Π(m, IV) query.
For example, the adversary may just query Π−1(y, ∗) many times and hope
to hit IV twice. We hope that this example sheds light on why, at a minimum,
inverse queries significantly complicate the situation and deserve extra attention.

Compression for B = 2 via multi-instance games. The above compression ap-
proach is not known to generalize to the case of B ≥ 2 collisions for MD. To
overcome this limitation, Akshima et al. [3] propose a beautiful framework that
gives non-trivial bounds B ≥ 2 for the case of MD. Their framework reduces
the problem to a related “multi-instance” game. In a multi-instance game, the
adversary has an arbitrary size string σ of S-bits hard-coded, and its goal is to
find a 2-block collision for a set of u ≈ S uniformly random a’s. The adversary
A2 can make T queries to h when running on each of the u IVs. The key distinc-
tions in this multi-instance game is that (1) the advice sigma that A2 receives
is independent of h, and (2) we only need to analyze A2’s success probability
for a random set of u IVs. The core of the proof is a compression argument to
upper bound the advantage of this adversary. This framework unfortunately is
not strong enough to deal with B = 1, as at best it gives the same bound as bit-
fixing. However, we adapt this framework to the setting of random permutations
to give a non-trivial bound for B = 2.

In our case, we need to build a compression argument to compress Π and a
set of u random IVs, IV1, . . . , IVu, (for u ≈ S) using an adversary A2 which has
some fixed hard-coded advice. A2 runs on the IVs one by one and succeeds in
finding 2-block collisions for all of them. The encoding avoids storing some of

16 Cody Freitag, Ashrujit Ghoshal, Ilan Komargodski

the values of Π explicitly, and instead stores information about the queries of
A2 to Π and Π−1 which help during the decoding procedure to recover these
particular values of Π.

For B = 2 collisions, there are possibly 4 “crucial” queries that the adversary
might make that correspond to a 2-block collision (two for each message). We
possibly need to consider all combinations of ways that the queries could have
been made in either the forward or the reverse direction. For the case of this
overview, we zoom in on a single case where inverse queries complicate the
situation, and explain how we overcome this.

Suppose on an input IVj (where A2 had previously been run on inputs
IV1, . . . , IVj−1),A2 arrives at a collision by making the crucial queries q1, q2, q3, q4
(not necessarily in that order) such that

1. q1 was a query to Π on (m1, IVj) and returned (x1, IV
′
1)

2. q2 was a query to Π on (m2, IVj) and returned (x2, IV
′
2)

3. q3 was a query to Π on (m3 ⊕ x1, IV′1) and returned (y, IV′3)
4. q4 was a query to Π on (m4 ⊕ x2, IV′2) and returned (y, IV′4)

Clearly, (m1,m3) and (m2,m4) hash to the same output and hence are a collision.
Now suppose queries q1 and q2 were first made during A2(IVj),

10 while queries
q3 and q4 were each made previously while running A2 on an earlier IVi value.
Now, the strategy to compress on the lines of [3] is not to include the last
c bits of the answers of q1, q2 and the last r bits of the answer of q4 in the
encoding. Instead, we can store the index of the queries q3, q4 among all queries
(these indices will be in [uT] since there are u IVs and T queries for each of
them) and store the indices of the queries q1, q2 among the queries made while
running A2 on IVj (these indices will be in [T]). This leads to a saving of roughly
2c+r−2 log T−2 log uT bits. For reasonable parameters of S, T, c, r, this implies
a compression of at least c − log uT bits, so if uT ≈ ST < 2c, this gives non-
trivial compression. This implies an upper bound of ST/2c on the advantage for
this case.

However, with inverse queries allowed, things get more complicated. Suppose
instead that queries q3 and q4 were made in the reverse direction, so A2 queries
Π−1(y, IV′3) and Π−1(y, IV′4) prior to running A2(IVj). In this case, we can still
save the c bits from the answers of q1, q2. But there is no clear way to save in
storing the answer to query q4 since its answer (m4 ⊕ x2, IV′2) has seemingly no
relation to either the answer or input of q3. So, in this case, we are only able to
save 2c − 2 log T − 2 log uT bits, which leads to non-trivial compression only if
u2T 4 ≈ S2T 4 < 2c. This implies an upper bound of S2T 4/22c on the attacker’s
advantage for this case. Note that this is actually better than the ST/2c bound
we got when considering only forward queries whenever ST 3 < 2c. However, it
is important to note that we still need to consider all possible ways in which the
attacker may find a collision. We need to show even in the worst case, we can
compress Π in order to get an upper bound on the advantage.

10 Note that this assumption is easy to remove as otherwise we can achieve compression
by not including IVj in the encoding and recovering it from A2’s queries during
decoding

Time-Space Tradeoffs for Sponge Hashing 17

The above highlights just one of the several subtleties that inverse queries
introduce in the proof. The ability of the adversary to make queries in two
directions makes the encoding and decoding procedures significantly more com-
plicated and lengthy. See Section 5 for full details.

3 Preliminaries

We let [N] = {1, 2, . . . , N} for N ∈ N and for k ∈ N such that k ≤ N , let
(
S
k

)
denote the set of k-sized subsets of S. We use |X| to denote the size of a set X
and use X+ to denote one or more elements of X. The set of all permutations
on D is denoted by Perm(D). We let ∗ denote a wildcard element. For example
(∗, z) ∈ L is true if there is an ordered pair in L where z is the second element
(the type of the wildcard element shall be clear from the context). For a random
variable X we use E[X] to denote its expected value.

We use x←$D to denote sampling x according to the distribution D. If D is
a set, we overload notation and let x←$D denote uniformly sampling from the
elements of D. For a bit-string s we use |s| to denote the number of bits in s.

All logarithms in this paper are for base 2 unless otherwise specified.

Sponge-based hashing. For c, r ∈ N, let Π : {0, 1}c+r → {0, 1}c+r be a per-
mutation. We define sponge-based hashing SpΠ : {0, 1}c × ({0, 1}r)+ → {0, 1}r
as follows. For s ∈ {0, 1}r+c we use s[1] to denote its first r bits and s[2] to
denote its last c bits.

SpΠ(IV,m = (m1, . . . ,mB))

s0 ← 0r ‖ IV
For i = 1, . . . , B
si[1] ‖ si[2]← Π ((mi ⊕ si−1[1]) ‖ si−1[2])

Return sB [1]

The elements of {0, 1}r shall be referred to as blocks and IV refers to the ini-
tialization vector (also referred to as salt in the literature). This is the same
abstraction of sponge-based hashing as the one used in [10].

Auxiliary-input Random Permutation Model (AI-RPM). We use the
Auxiliary-Input Random Permutation Model (AI-RPM) introduced by Coretti,
Dodis and Guo [10] to study non-uniform adversaries in the Random Permu-
tation Model (this was a natural extension of the AI-ROM model proposed by
Unruh in [31]). This model is parameterized by two non-negative integers S and
T and an adversary A is divided into two stages (A1,A2). Adversary A1, referred
to as the preprocessing phase of A has unbounded access to the random per-
mutation Π and it outputs an S-bit auxiliary input σ. Adversary A2, referred
to as the online phase, gets σ as input and can make a total of T queries to
Π,Π−1, and attempts to accomplish some goal involving Π. Formally, we say
that A = (A1,A2) is an (S, T)-AI adversary if A1 outputs S bits and A2 issues T
queries to its oracles. We next formalize the collision resistance of sponge-based
hash functions in AI-RPM.

18 Cody Freitag, Ashrujit Ghoshal, Ilan Komargodski

Game Gai-cr
c,r,B(A = (A1,A2))

1. Π←$ Perm({0, 1}c+r)
2. IV←$ {0, 1}c
3. Return AI-CRΠ,IV(A)

Subroutine AI-CRΠ,IV(A = (A1,A2))

1. σ←$A1(Π)

2. (α, α′)←$AΠ,Π
−1

2 (σ, IV)
3. Return true if:

(a) α 6= α′,
(b) |α|, |α′| are at most B blocks long and
(c) SpΠ(IV, α) = SpΠ(IV, α′)

4. Else, return false

Fig. 4: The bounded-length collision resistance game of salted sponge based hash
in the AI-RPM, denoted Gai-cr

c,r,B .

Short collision resistance of sponge-based hashing in AI-RPM. We
formalize the hardness of bounded-length collision resistance of sponge-based
hash functions in the AI-RPM. The game is parameterized by c, r. The game
first samples a permutation Π uniformly at random from Perm({0, 1}c+r) and
IV uniformly at random from {0, 1}c. Then, A1 is given unbounded access to
Π, and it outputs σ. At this time, A2 gets σ and IV as input and has oracle
access to Π,Π−1. It needs to find α 6= α′ such that (1) SpΠ(IV, α) = SpΠ(IV, α′)
and (2) α, α′ consist of ≤ B blocks from {0, 1}r. This game, denoted Gai-cr

c,r,B , is
explicitly written in Fig. 4. In Fig. 4, we write the adversary’s execution in its
own subroutine only for syntactical purposes (as we shall use it later).

Definition 1 (AI-CR Advantage). For parameters c, r, B ∈ N, the advantage
of an adversary A against the bounded-length collision resistance of sponge in
the AI-RPM is

Advai-crSp,c,r,B(A) = Pr
[
Gai-cr
c,r,B(A) = true

]
For parameters S, T ∈ N, we overload notation and denote

Advai-crSp,c,r,B(S, T) = max
A

{
Advai-crSp,c,r,B(A)

}
,

where the maximum is over all (S, T)-AI adversaries.

The compression lemma. Our proof of the impossibility result for B = 2 uses
the well-known technique of finding an “impossible compression”. The main
idea, formalized in the following proposition, is that it is impossible to compress
a random element in set X to a string shorter than log |X | bits long, even relative
to a random string.

Proposition 1 (E.g., [15]). Let Encode be a randomized map from X to Y
and let Decode be a randomized map from Y to X such that

Pr
x←$ X

[Decode(Encode(x)) = x] ≥ ε.

Then, log |Y| ≥ log |X | − log(1/ε).

Time-Space Tradeoffs for Sponge Hashing 19

4 Attacks

In this section, we first provide the generic attack for finding B-block collisions
inspired by the analogous attack for MD in [3]. We then provide our new AI-RPM
attack for finding 1-block collision (Section 4.2). Additionally, in Section 4.3, we
prove the key lemma for our attack. The key lemma is a preprocessing attack
for inverting a function f which is a restricted random permutation. The attack
is closely related to that of Hellman [23], but we provide rigorous analysis for
our specific application for completeness.

4.1 Generic Attack for B-Block Collisions

We give a (S, T) adversary A that has advantage O(STB/2c + T 2/2c + T 2/2r)
against Gai-cr

c,r,B . The main idea for this attack is similar to the zero-walk attack
for finding B-block collisions in the Merkle-Damg̊ard construction introduced
in [3] which was in turn inspired by an attack in [11].

High level idea. In the preprocessing phase the adversary randomly samples
t ≈ S different IVs IV1, . . . , IVt and for each of them computes σi,j for j ∈ [B/2−
1] as σi,j = Π(0, σi,j−1[2]), where σi,0 = (0, IV). The sequence σi,0, . . . , σi,B/2−1
forms a “zero-walk” on IVi. It then findsmi,m

′
i such thatΠ(mi, σi,B/2−1[2])[1] =

Π(m′i, σi,B/2−1[2])[1] for i = 1, . . . , t. It outputs

(σi,B/2−1[2],mi,m
′
i)i=1,...,t .

In the online phase, the adversary gets a challenge IV as input. For i =
1, . . . , T/B, it computes IVi = Π(i, IV)[2]. For each of the IVi’s, it does a zero-
walk of length B − 2. If on any of the walks it hits an IV that the preprocessing
phase output then it outputs a collision. The reason this attack achieves an
advantage of Ω(STB/2c) is because in the preprocessing phase the adversary
roughly hits Ω(SB) distinct IVs and in the online phase if it hits any of these
IV’s in the first half of its T/B (i.e., in roughly T/2 of the queries) walks it finds
a collision.

We formally state our result below.

Theorem 1. Let S, T,B, c, r ∈ N such that SB ≤ 2c−1, T ≤ min{(2c−1, 2r−1)},
T ≥ 2B. There exists an (S, T) adversary A = (A1,A2) such that

Advai-crSp,c,r,B(A) ≥
⌊

S

c+ 2r

⌋⌊
B

2
− 1

⌋
T

2c+3
+

(T −B)(T −B − 1)

2c+1

+
3(T −B)(T −B − 1)

2r+3
− S

e(2r−1)
.

We defer the proof of this theorem to the full version.

20 Cody Freitag, Ashrujit Ghoshal, Ilan Komargodski

4.2 Preprocessing Attack for B = 1

We give a new AI-RPM attack for finding 1-block collisions in the Sponge con-
struction. The key ingredient in our attack is an (S, T) adversary for a function
f finds two distinct pre-images of a random element of the co-domain under f .
We construct this adversary in Lemma 1 based on the adversary from Lemma 2
that finds a single pre-image of a random element of the co-domain under f .

Theorem 2. Let c, r ∈ N. For any S, T ∈ N such that S ≥ 24c, 2c ≥ 24S, and
2c ≥ (S/(T −2)) ·243, there exists an (S, T) attacker A = (A1,A2) that on input
{0, 1}c outputs a valid 1-block collision with probability ε, where

ε ≥
(

1

20 · 2882 · c2

)
·min

(
1,
S2(T − 2)2

22c+2
,

(
S2(T − 2)

22c+1

)2/3
)
.

Proof. LetΠ : {0, 1}c+r → {0, 1}c+r be a random permutation. Define the func-
tion fΠ : {0, 1}c → {0, 1}c as fΠ(x) = Π−1(0r ‖x)[2]. Note that fΠ is equivalent
to the function that outputs the first c bits of the permutation Π ′(x ‖ 0r), where
Π ′(x ‖ y) for x ∈ {0, 1}c, y ∈ {0, 1}r computes Π−1(y ‖x) and shifts the first r
bits of the output to the end of its output. Thus, we can invoke Lemma 1 for
the function fΠ , which implies an (S, T − 2) attacker B = (B1,B2) for finding
two distinct pre-images of a random y←$ {0, 1}c. The attacker A = (A1,A2) is
defined as follows.

– A1(Π):

1. Output σ ← B1(fΠ).

– A2(IV, σ):

1. Compute (x1, x2)← B1(IV, σ).
2. If fΠ(x1) = fΠ(x2) = IV and x1 6= x2, compute m1 ‖ IV = Π−1(0r ‖x1)

and m2 ‖ IV = Π−1(0r ‖x2) and output (m1,m2).
3. Otherwise, output ⊥.

For correctness, we note that if A2 outputs a non-⊥ value, then A2 suc-
ceeds in finding a 1-block collision. Recall that SpΠ(IV,m1) = Π(m1 ‖ IV)[1] and
SpΠ(IV,m2) = Π(m2 ‖ IV)[1]. By construction, fΠ(x1) = fΠ(x2) = IV implies
m1 ‖ IV = Π−1(0r ‖x1) and m2 ‖ IV = Π−1(0r ‖x2) for some m1,m2 ∈ {0, 1}r.
But this in turn implies that Π(m1 ‖ IV)[1] = Π(m2 ‖ IV)[1] = 0r. Since Π is a
permutation and x1 6= x2, it must be the case that m1 6= m2, so (m1,m2) is a
valid 1-block collision, as required.

Whenever B succeeds, A succeeds, so the success probability follows imme-
diately from Lemma 1.

Lemma 1. Let n ≥ 1, a ≤ n− 3 and Π be a random permutation over {0, 1}n.
Let f : {0, 1}a → {0, 1}a such that f(x) consists of the first a bits output by
Π(x ‖ 0n−a). For any S, T ∈ N such that S ≥ 24a, 2a ≥ 24S, and 2a ≥ (S/T) ·
243, there exists an (S, T) attacker A = (A1,A2) that on input y←$ {0, 1}a

Time-Space Tradeoffs for Sponge Hashing 21

outputs x1, x2 such that f(x1) = f(x2) = y and x1 6= x2 with probability ε,
where

ε ≥
(

1

20 · 2882 · a2

)
·min

(
1,
S2T 2

22a+2
,

(
S2T

22a+1

)2/3
)
.

Proof. Let B = (B1,B2) be an (S/2, T/2) adversary from Lemma 2. In the
offline phase, A1 on input the function f runs B1(f) twice and gets σ1, σ2. A1

outputs σ = (σ1, σ2). In the online phase, A2 on input σ and y = f(x) for
x←$ {0, 1}a, computes x1 = B2(y, σ1) and x2 = B2(y, σ2). If f(x1) = f(x2) = y
and x1 6= x2, A2 outputs (x1, x2) and otherwise outputs ⊥. It directly follows
that A uses space |σ| = |σ1|+ |σ2| ≤ S and makes at most 2 · (T/2) = T queries.
So it remains to analyze the advantage of A.

We define the following events that are relevant to the analysis. Let Success1,
Success2 be the events that B1(f, σ1) and B1(f, σ2) output a valid pre-image, re-
spectively. Let Inverse be the event that |f−1(y)| ≥ 2 for the challenge y←$ {0, 1}a.
Let Distinct be the event that the outputs x1 and x2 are distinct. Thus, the prob-
ability of success is given by

ε = Pr[Success1 ∧ Success2 ∧ Inverse ∧ Distinct].

Note that Success1 and Success2 are identical and independently distributed
given a fixed value for y. Thus, we can rewrite the success probability as

ε = Pr[Inverse] · Pr[Success1 | Inverse] · Pr[Success2 | Inverse]
· Pr[Distinct | Success1 ∧ Success2 ∧ Inverse].

= Pr[Inverse] · Pr[Success1 | Inverse]2

· Pr[Distinct | Success1 ∧ Success2 ∧ Inverse]

We analyze each of these terms separately.
In Claim 3, we show that Pr[Inverse] ≥ 1/10 as long as a ≤ n−3. Pr[Success1 |

Inverse] is given in Lemma 2 using S′ = S/2 and T ′ = T/2. As |f−1(y)| ≥ 2 by
assumption, it holds that

Pr[Success1 | Inverse] ≥
(

1

288 · a

)
·min

(
1,

ST

2a+1
,

(
S2T

22a+1

)1/3
)
.

For the event Distinct, note that in the worst case |f−1(y)| = 2. In this case, it
is equally as likely that x1 = x2 compared to x1 6= x2 since there are only two
equally likely values for x1, x2. Thus,

Pr[Distinct | Success1 ∧ Success2 ∧ Inverse] = 1/2.

Combining the above, we conclude that the attackers probability of success
is at least

ε ≥ 1

2
· 1

10
·
(

1

2882 · a2

)
·min

(
1,
S2T 2

22a+2
,

(
S2T

22a+1

)2/3
)
,

as required.

22 Cody Freitag, Ashrujit Ghoshal, Ilan Komargodski

Claim 3 Let n ≥ 1, a ≤ n − 3 and Π be a random permutation over {0, 1}n.
Let f : {0, 1}a → {0, 1}a such that f(x) consists of the first a bits output by
Π(x ‖ 0n−a). Then, Pr[y←$ {0, 1}a : |f−1(y)| ≥ 2] ≥ 1/10.

We provide the proof of this claim in the full versiondue to lack of space.

4.3 Time-Space Tradeoffs for Inverting a Restricted Permutation

In this section, we prove a time-space tradeoff for inverting a restricted permuta-
tion. Let n ∈ N, a, b < n, and let Π ← Perm (n) be a randomly chosen permuta-
tion. Consider the function f : {0, 1}a → {0, 1}b defined such that f(x) outputs
the first b bits of Π(x ‖ 0n−a). We show that there exists an (S, T) adversary A
that inverts f with advantage roughlyΩ(min(1, ST/2min(a,b), (S2T/22min(a,b))1/3)).
Additionally, we show that on input y = f(x) for a random x←$ {0, 1}a, A out-
puts a uniformly random pre-image x′ ∈ f−1(y) if it succeeds.

We note that our attack closely follows the approach of Hellman [23] and its
extension from Fiat and Naor [17]. We provide the full details of the attack and
analysis for completeness. We emphasize that our analysis differs from Hellman’s
analysis since our function f is not quite a random function. Still, we do not
need the full generality of the result of Fiat and Naor that works for arbitrary
functions. We also note that we show how to instantiate and analyze the “g”
functions (see the proof for full details) used in Hellman’s attack using only
pairwise independence, whereas Fiat and Naor’s result for arbitrary functions
required k-wise independence for k ≈ T .

Lemma 2. Let n ≥ 1, a, b ≤ n and Π be a random permutation over {0, 1}n.
Let f : {0, 1}a → {0, 1}b such that f(x) consists of the first b bits output by
Π(x ‖ 0n−a). For any S, T ∈ N such that S ≥ 24 max(a, b), 2min(a,b) ≥ 24S, and
2min(a,b) ≥ (S/T) ·243, there exists an (S, T) attacker A = (A1,A2) that succeeds
in inverting f on input y = f(x) for x←$ {0, 1}a with probability ε, where

ε ≥
(

1

288 · b

)
·min

(
1,

ST

2min(a,b)
,

(
S2T

22min(a,b)

)1/3
)
.

Additionally, the following hold:

– If the attacker A = (A1,A2) succeeds at inverting y = f(x), it outputs a
uniform pre-image x′ ∈ f−1(y) over the randomness of A1 and A2.

– For any fixed x ∈ {0, 1}a and y = f(x), the attack succeeds with probability
at least

ε ≥
(

1

288 · b

)
·min

(
1,
ST · |f−1(y)|

2a
,

(
S2T |f−1(y)|2

22a

)1/3
)
.

Due to a lack of space, we defer the proof of this lemma to the full version.

Time-Space Tradeoffs for Sponge Hashing 23

5 Impossibility Results

We next give impossibility results for attacks for 1-block and 2-block collisions
for sponge hashing. This consists of upper bounding the best possible advantage
of any (S, T) adversary.

5.1 Advantage Upper Bound for B=1

We prove an upper bound for the advantage of an adversary in finding a 1-block
collision for the sponge construction. Formally, we prove the following theorem.

Theorem 4. For all S, T, c, r ∈ N

Advai-crSp,c,r,1(S, T) ≤ 2(S + c)T + 1

2c
+
T 2

2r
.

To prove this theorem, we use the result of [10] which relates the advantage
upper bound of an adversary in the AI-RPM to that in BF-RPM (bit-fixing
RPM). Due to lack of space we defer the preliminaries for BF-RPM, the proof
of Theorem 4 and the argument why the bit-fixing technique cannot be used to
prove an advantage upper bound for B = 2 better than O(ST 2/2c) to the full
version.

5.2 Advantage Upper Bound for B = 2

In this section we prove an upper-bound the advantage of an adversary in finding
a 2-block collision for the sponge construction in the AI-RPM, according to
the game Gai-cr

c,r,B described in Fig. 4. First, without loss of generality, in what
follows we assume that the adversary is deterministic. This is because we can
transform any probabilistic attacker into a deterministic one by hard-wiring the
best randomness (see Adleman [2]).

We reduce the task of bounding the advantage of an attacker in finding a 2-
block collision in the sponge construction, to a “multi-instance” game where the
adversary does not have a preprocessing phase but rather only has non-uniform
auxiliary input, chosen before the random permutation Π. The latter game is
easier to analyze. This is in line with the work of Akshima et al. [3].

We define the following “multi-instance” game Gmi-cr
c,r,B,u(σ,A2), where the pre-

processing part of the adversary A1 is degenerate and outputs the fixed string
σ. More precisely, the game has the following steps:

1. Π ←$ Perm({0, 1}c+r)
2. U ←$

({0,1}c
u

)
3. Define A1 to be the algorithm that always outputs the string σ.
4. Return true if AI-CRΠ,IV(A = (A1,A2)) = true for every IV ∈ U . Otherwise,

return false.

24 Cody Freitag, Ashrujit Ghoshal, Ilan Komargodski

For a string σ and an adversary A2, define

Advmi-cr
Sp,c,r,B,u(σ,A2) = Pr

[
Gmi-cr
c,r,B,u(σ,A2)

]
.

Lemma 3 (Reducing the problem to the multi-instance game). Fix
c, r, B, S, T, u ∈ N. Then,

Advai-crSp,c,r,B(S, T) ≤ 6 ·
(

max
σ,A2

{
Advmi-cr

Sp,c,r,B,u(σ,A2)
}) 1

u

+ 2S−u,

where the maximum is taken over all σ ∈ {0, 1}S and T -query algorithms A2.

We refer the reader to [21] for a proof.
We next prove an upper bound on the advantage of any auxiliary-input adver-

sary in finding a 2-block collision for the sponge construction. The main theorem
is stated next.

Theorem 5. For any c, r, S, T ∈ N and fixing Ŝ := S + c, it holds that

Advai-crSp,c,r,2(S, T) ≤

(
27e ·max

{
T 2

2c−1
,
T 2

2r−1
,
ŜT

2c−3
,
Ŝ2T 4

22c−2

})
+

1

2c
.

Theorem 5 follows as a direct corollary of Lemma 3 together with the follow-
ing lemma, setting u = S + c and observing that (1) the lemma holds trivially

when T 2

2r−1 > 1 and (2) uT 3

2c+r−2 ≤ uT
2c−1 whenever T 2

2r−1 ≤ 1.

Lemma 4 (Hardness of the multi-instance game). Fix c, r, T , u ∈ N
and σ ∈ {0, 1}S. Then, for any A2 that makes at most T queries to its oracle,
it holds that

Advmi-cr
Sp,c,r,2,u(σ,A2) ≤

(
27 · e ·max

{
T 2

2c−1
,
T 2

2r−1
,
uT

2c−3
,
uT 3

2c+r−2
,
u2T 4

22c−2

})u
.

The rest of this section is devoted to the proof of Lemma 4.
We are interested in bounding the advantage of the best strategy, i.e., a pair

(σ,A2) where σ ∈ {0, 1}S is a fixed string and A2 is a T -query algorithm, of
finding collisions of length 2 in a sponge with respect to the game Gmi-cr

c,r,2,u(σ,A2).
Recall that in this game A2 needs to find proper collisions for u randomly chosen
IVs, denoted U . The main idea in the proof is to use any such adversary (σ,A2)
in order to represent the permutation Π as well as the set of random IVs U with
as few bits as possible. If the adversary is “too good to be true” we will get an
impossible representation, contradicting Proposition 1.

Setup. Denote

ζ∗ := log

((
25 · 4e ·max

{
T 2

2c−1
,
T 2

2r−1
,
uT

2c−3
,
uT 3

2c+r−2
,
u2T 4

22c−2

})u
·
(

2c

u

)
· (2c+r)!

)
.

Time-Space Tradeoffs for Sponge Hashing 25

Assume the existence of an adversary A = (σ,A2), where σ ∈ {0, 1}S is a
string and A2 is a T -query adversary, that contradict the inequality stated in
the lemma. That is, there is ζ > ζ∗ such that

Advmi-cr
Sp,c,r,2,u(A) := ζ > ζ∗. (5)

Define G to be the set of permutations-sets of IV pairs for which the attacker
succeeds in winning the game for every IV in the set relative to the permutation,
That is,

G =

{
(U,Π)

∣∣∣∣∣ U ∈
({0,1}c

u

)
,

Π ∈ Perm({0, 1}c+r),
∀IV ∈ U : AI-CRΠ,IV(A) = true

}
.

Recall that ζ is defined to be the advantage of A in the game Gmi-cr
c,r,2,u(A) in which

Π and U are chosen uniformly, and then A needs to find a collision with respect
to every one of the u IVs in U . Therefore,

|G| = ζ ·
(

2c

u

)
· (2c+r)!.

In what follows we define an encoding and a decoding procedure such that
the encoding procedure gets as input U,Π such that U ∈

({0,1}c
u

)
and Π ∈

Perm({0, 1}c+r), and it outputs an L bit string, where L = log
(
ζ∗ ·

(
2c

u

)
· (2c+r)!

)
.

The decoding procedure takes as input the string L and outputs U∗, Π∗. It will
hold that U∗ = U and Π∗ = Π with probability ζ.11 Using Proposition 1, this
would give us that

log ζ ≤ L− log

((
2c

u

)
· (2c+r)!

)
=⇒ ζ ≤ ζ∗

which is a contradiction to the assumption (see (5)).
Using A, we shall define procedures Encode,Decode such that for every

(U,Π) ∈ G, Decode(Encode(U,Π)) = (U,Π) and the size of the output of
Encode(U,Π) is at most L bits where

L = log

((
25 · 4e ·max

{
T 2

2c−1
,
T 2

2r−1
,
uT

2c−3
,
uT 3

2c+r−2
,
u2T 4

22c−2

})u
·
(

2c

u

)
· (2c+r)!

)
.

Using Proposition 1, this would give us that

ε ≤
(

27 · e ·max

{
T 2

2c−1
,
T 2

2r−1
,
uT

2c−3
,
uT 3

2c+r−2
,
u2T 4

22c−2

})u
.

This immediately gives the bound claimed in the statement of the lemma. The
rest of the proof of the lemma would define Encode,Decode, show an upper bound

11 Essentially, we will show that for all (U,Π) ∈ |G|, if the encoding procedure produces
output L, then the decoding procedure on input L outputs U∗, Π∗ such that U∗ = U
and Π∗ = Π.

26 Cody Freitag, Ashrujit Ghoshal, Ilan Komargodski

on the size of the output of Encode and that Decode(Encode(U,Π)) = (U,Π) for
all (U,Π) ∈ G.

Notation and Definitions. Fix (U,Π) ∈ G. Let U = {IV1, . . . , IVu} where
the IVi’s are ordered lexicographically. Let Qrs(IV) ∈ ({0, 1}r+c)T be the list of
queries that A2 makes to Π or Π−1 when executed with input (σ, IV). Namely,
for IV ∈ {0, 1}c,

Qrs(IV) =
{
s ∈ {0, 1}c+r | A2(σ, IV) queries Π or Π−1 on s

}
Note that Qrs(IV) is indeed a set as we can assume (without loss of generality)
that A2 never repeats queries in a single execution (since A2 can just remember
all of its past queries).

Let Ans(IV) ∈ ({0, 1}r+c)T be the list of answers to the queries of that A2 to
Π or Π−1 when executed with input (σ, IV). Namely, for IV ∈ {0, 1}c,

Ans(IV) =
{
s ∈ {0, 1}c+r | A2(σ, IV) queries Π or Π−1 on s

}
We say that IV′ ∈ SIVs(IV) if there is some s[2] ∈ {0, 1}r such that s[2] ‖ IV′ is
an entry in Qrs(IV) or Ans(IV). Namely, for IV, IV′ ∈ {0, 1}c,

IV′ ∈ SIVs(IV)⇐⇒ ∃s[2] ∈ {0, 1}r s.t. s[2] ‖ IV′ ∈ Qrs(IV) ∪ Ans(IV).

We define the set of fresh IVs in U . An IV IVi for i ∈ [u] is called fresh if it was
never an IV in either input or output of any query performed by A2 while being
executed on IVj for j ≤ i − 1 which are fresh. The first IV IV1 is always fresh.
An IV IVi for i ≥ 2 is fresh if for any fresh IVj for j ≤ i − 1, IVi /∈ SIVs(IVj).
Namely, denoting the set of fresh IVs by Ufresh, we have the following inductive
(on i ∈ [u]) definition:

IVi ∈ Ufresh ⇐⇒ ∀j ≤ i− 1, IVj ∈ Ufresh : IVi 6∈ SIVs(IVj).

Looking ahead, we define Ufresh like this because we run A2 on the IVs in Ufresh

in lexicographical order, and this definition ensures that each IV that A2 is
executed on was not queried by it previously. Denote

F := |Ufresh| and Ufresh = {IV′1, . . . , IV
′
F } (ordered lexicographically).

Denote

∀i ∈ [F] : Qi := Qrs(IV′i) and Qfresh := Q1 ‖Q2 ‖ . . . ‖QF ,

where ‖ is the concatenation operator. Let Qfresh[r] be the rth query in the list
Qfresh. Note that r ∈ [F · T]. For every IV ∈ U \ Ufresh, let tIV be the minimum
value such that Qfresh[tIV] is a query either with input or output of the form
(∗, IV). Let bIV = 0 if input of Qfresh[tIV] was of the form (∗, IV) and 1 otherwise.
Define the set of prediction queries as

P := {2tIV − bIV | IV ∈ U \ Ufresh}.

Time-Space Tradeoffs for Sponge Hashing 27

The encoding algorithm will output Ufresh,P, which suffices to recover the set U
by running A2.

Structure of collisions. Since adversary A2 succeeds on all of the IVs in U ,
it holds that for every j ∈ [F], the output of the adversary is (αj , α

′
j) such

that αj 6= α′j , SpΠ(IV′j , αj) = SpΠ(IV′j , α
′
j) and both αj 6= α′j . We can assume

without loss of generality that the last blocks of αj and α′j are distinct (because
otherwise we can trim αj , α

′
j to obtain a shorter collision).

Definition 2 (Crucial queries). The queries to Π,Π−1 in Qj include a
subset of queries that we call the crucial queries. The subset consists of ear-
liest appearing queries in Qj that are required to compute SpΠ(IV′j , αj) and

SpΠ(IV′j , α
′
j). It follows that for 2-block collisions, this subset consists of at most

four queries.

We say that a query made by running while running on (σ, IV′j) is new if
either of the following hold.

– the query isΠ(m, IV) with answer (m′, IV′) and neitherΠ(m, IV) orΠ−1(m′, IV′)
had been queried by A2 while running on IV′1, . . . , IV

′
j−1.

– the query is Π−1(m, IV) with answer (m′, IV′) and neither Π−1(m, IV) or
Π(m′, IV′) had been queried by A2 while running on IV′1, . . . , IV

′
j−1.

If a query is not new we classify it into one of 2 types: repeatedUsed, and
repeatedUnused. A repeatedUsed query is one such that it was a crucial
query for IV′i where i < j. A repeatedUnused query is one such that it is not
a new or a repeatedUsed query.

Our goal is to compress (U,Π) and we are going to achieve this by using
our collision finding adversary A2. The encoding procedure shall output the set
Ufresh, the set P, the list Π̃ with some entries removed and some additional lists
and sets. We will be describing the details of these lists and sets below and which
entries we remove from Π̃. Our main goal is to show that when we remove entries
of Π̃ and instead using additional lists and set, we are actually compressing. Our
ways to compress will depend on the crucial queries in each Qj for j ∈ [F].

We classify the IV′jth for each j ∈ [F] into the first of the following cases

it satisfies, e.g., if the crucial queries for IV′j satisfies both cases 1 and 2, we
categorize it into 1.

1. One of the crucial queries for IV′j is a query such that the last c bits of the

answer is IV′j
2. All of the crucial queries to are new.
3. At least one of the crucial queries is repeatedUsed.
4. There is exactly one repeatedUnused crucial query.
5. There are exactly two repeatedUnused crucial queries.

Claim 6 We claim that each IV′j will be categorized into one of the above cases.

28 Cody Freitag, Ashrujit Ghoshal, Ilan Komargodski

Proof. To begin with, observe that given how we define fresh IV′j , there will
have to be a new crucial query such that either it is a query to Π with input of
the form (∗, IV′j) or it is a query to Π−1 with answer of the form (∗, IV′j), because
we have assumed without loss of generality that A2 makes all the queries while
running on IV′j required to find the collision. If there is a new crucial query

to Π−1 with answer of the form (∗, IV′j) then case 1 is satisfied. Also observe
that there are at most two crucial queries that are not new since we are looking
at 2-block collisions because any query whose input or output is of the form
(∗, IV′j) is new for all IV′j as they are fresh. So it follows if IV′j is not categorized
into 1, it will either have all new crucial queries (case 2) or have at least one
repeatedUsed query (case 3) or have one (case 4) or two repeatedUnused
(case 5) queries. This proves the claim.

Due to a lack of space, we defer all the details of how we handle each of the
cases, and achieve the required amount of compression to the full version.

Acknowledgements

Ilan Komargodski is supported in part by an Alon Young Faculty Fellowship,
by a JPM Faculty Research Award, by a grant from the Israel Science Foun-
dation (ISF Grant No. 1774/20), and by a grant from the US-Israel Bina-
tional Science Foundation and the US National Science Foundation (BSF-NSF
Grant No. 2020643). Part of Ashrujit Ghoshal’s and Cody Freitag’s work was
done during an internship at NTT Research. Cody Freitag is also supported
in part by the National Science Foundation Graduate Research Fellowship un-
der Grant No. DGE–2139899 and DARPA Award HR00110C0086. Any opinion,
findings, and conclusions or recommendations expressed in this material are
those of the authors and do not necessarily reflect the views of the National Sci-
ence Foundation or the Defense Advanced Research Projects Agency (DARPA).

References

1. Abusalah, H., Alwen, J., Cohen, B., Khilko, D., Pietrzak, K., Reyzin, L.: Beyond
Hellman’s time-memory trade-offs with applications to proofs of space. In: Ad-
vances in Cryptology - ASIACRYPT. pp. 357–379 (2017) 9

2. Adleman, L.: Two theorems on random polynomial time. In: 19th Annual Sympo-
sium on Foundations of Computer Science (sfcs 1978). pp. 75–83 (1978) 23

3. Akshima, Cash, D., Drucker, A., Wee, H.: Time-space tradeoffs and short collisions
in Merkle-Damg̊ard hash functions. In: Advances in Cryptology - CRYPTO. pp.
157–186 (2020) 5, 7, 8, 10, 15, 16, 19, 23

4. Akshima, Guo, S., Liu, Q.: Time-space lower bounds for finding collisions in
Merkle-Damg̊ard hash functions. To appear in CRYPTO (2022) 5

5. Barkan, E., Biham, E., Shamir, A.: Rigorous bounds on cryptanalytic
time/memory tradeoffs. In: Advances in Cryptology - CRYPTO. pp. 1–21 (2006)
9

Time-Space Tradeoffs for Sponge Hashing 29

6. Bernstein, D.J., Lange, T.: Non-uniform cracks in the concrete: The power of free
precomputation. In: Advances in Cryptology - ASIACRYPT. pp. 321–340 (2013)
10

7. Bertoni, G., Daemen, J., Peeters, M., Assche, G.V.: On the indifferentiability of
the sponge construction. In: Advances in Cryptology - EUROCRYPT. pp. 181–197
(2008) 2, 3

8. Bertoni, G., Daemen, J., Peeters, M., Van Assche, G.: Sponge functions. In:
ECRYPT hash workshop. vol. 2007. Citeseer (2007) 2, 3

9. Bertoni, G., Daemen, J., Peeters, M., Van Assche, G.: On the security of the keyed
sponge construction. In: Symmetric Key Encryption Workshop. vol. 2011 (2011) 2

10. Coretti, S., Dodis, Y., Guo, S.: Non-uniform bounds in the random-permutation,
ideal-cipher, and generic-group models. In: Advances in Cryptology - CRYPTO.
pp. 693–721 (2018) 4, 5, 6, 7, 8, 9, 10, 14, 17, 23

11. Coretti, S., Dodis, Y., Guo, S., Steinberger, J.P.: Random oracles and non-
uniformity. In: Advances in Cryptology - EUROCRYPT. pp. 227–258 (2018) 5, 8,
9, 19

12. Corrigan-Gibbs, H., Kogan, D.: The discrete-logarithm problem with preprocess-
ing. In: Annual International Conference on the Theory and Applications of Cryp-
tographic Techniques. pp. 415–447 (2018) 10

13. Corrigan-Gibbs, H., Kogan, D.: The function-inversion problem: Barriers and op-
portunities. In: Theory of Cryptography - TCC. pp. 393–421 (2019) 9

14. Damg̊ard, I.: Collision free hash functions and public key signature schemes. In:
Advances in Cryptology - EUROCRYPT. pp. 203–216 (1987) 2

15. De, A., Trevisan, L., Tulsiani, M.: Time space tradeoffs for attacks against one-way
functions and PRGs. In: Advances in Cryptology - CRYPTO. pp. 157–186 (2010)
9, 18

16. Dodis, Y., Guo, S., Katz, J.: Fixing cracks in the concrete: Random oracles with
auxiliary input, revisited. In: Advances in Cryptology - EUROCRYPT. pp. 473–
495 (2017) 5, 14

17. Fiat, A., Naor, M.: Rigorous time/space trade-offs for inverting functions. SIAM
J. Comput. 29(3), 790–803 (1999) 4, 5, 7, 9, 12, 13, 22

18. Fouque, P., Joux, A., Mavromati, C.: Multi-user collisions: Applications to dis-
crete logarithm, even-mansour and PRINCE. In: Advances in Cryptology - ASI-
ACRYPT. pp. 420–438 (2014) 9

19. Gazi, P., Tessaro, S.: Provably robust sponge-based PRNGs and KDFs. In: Ad-
vances in Cryptology - EUROCRYPT. pp. 87–116 (2016) 2

20. Gennaro, R., Trevisan, L.: Lower bounds on the efficiency of generic cryptographic
constructions. In: 41st Annual Symposium on Foundations of Computer Science,
FOCS. pp. 305–313. IEEE Computer Society (2000) 8, 9, 14

21. Ghoshal, A., Komargodski, I.: On time-space tradeoffs for bounded-length colli-
sions in Merkle-Damg̊ard hashing (2022) 5, 24

22. Golovnev, A., Guo, S., Horel, T., Park, S., Vaikuntanathan, V.: Data structures
meet cryptography: 3SUM with preprocessing. In: 52nd Annual ACM SIGACT
Symposium on Theory of Computing, STOC. pp. 294–307 (2020) 9

23. Hellman, M.E.: A cryptanalytic time-memory trade-off. IEEE Trans. Inf. Theory
26(4), 401–406 (1980) 4, 5, 7, 9, 12, 19, 22

24. Merkle, R.C.: Secrecy, Authentication and Public Key Systems. Ph.D. thesis, UMI
Research Press, Ann Arbor, Michigan (1982) 2

25. Merkle, R.C.: A digital signature based on a conventional encryption function. In:
Advances in Cryptology - CRYPTO. pp. 369–378 (1987) 2

30 Cody Freitag, Ashrujit Ghoshal, Ilan Komargodski

26. Merkle, R.C.: A certified digital signature. In: Advances in Cryptology - CRYPTO.
pp. 218–238 (1989) 2

27. Mihalcik, J.: An analysis of algorithms for solving discrete logarithms in fixed
groups. Tech. rep., Naval Postgraduate School Monterey CA (2010) 10

28. Morin, P., Mulzer, W., Reddad, T.: Encoding arguments. ACM Comput. Surv.
50(3), 46:1–46:36 (2017) 8

29. Oechslin, P.: Making a faster cryptanalytic time-memory trade-off. In: Advances
in Cryptology - CRYPTO. pp. 617–630 (2003) 4, 5

30. Sr., R.H.M., Thompson, K.: Password security - A case history. Commun. ACM
22(11), 594–597 (1979) 10

31. Unruh, D.: Random oracles and auxiliary input. In: Advances in Cryptology -
CRYPTO. pp. 205–223 (2007) 4, 5, 8, 14, 17

32. Wee, H.: On obfuscating point functions. In: 37th Annual ACM Symposium on
Theory of Computing, STOC. pp. 523–532 (2005) 9, 14

33. Yao, A.C.: Coherent functions and program checkers (extended abstract). In:
STOC. pp. 84–94 (1990) 4, 5, 9

	Time-Space Tradeoffs for Sponge Hashing: Attacks and Limitations for Short Collisions

