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Abstract. It is well-known that in the presence of majority coalitions,
strongly fair coin toss is impossible. A line of recent works have shown
that by relaxing the fairness notion to game theoretic, we can overcome
this classical lower bound. In particular, Chung et al. (CRYPTO’21)
showed how to achieve approximately (game-theoretically) fair leader
election in the presence of majority coalitions, with round complexity as
small as O(log logn) rounds.
In this paper, we revisit the round complexity of game-theoretically fair
leader election. We construct O(log∗ n) rounds leader election protocols
that achieve (1−o(1))-approximate fairness in the presence of (1−o(1))n-
sized coalitions. Our protocols achieve the same round-fairness trade-offs
as Chung et al.’s and have the advantage of being conceptually simpler.
Finally, we also obtain game-theoretically fair protocols for committee
election which might be of independent interest.
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1 Introduction

Suppose that Murphy, Murky, and Moody co-authored a paper that proved a
ground-breaking theorem and the paper got accepted at the prestigious CRYPTO’22
conference. Murphy, Murky, and Moody want to run a coin toss protocol over
the Internet to elect a winner who will present the paper at the conference.
Since everyone wants to go to the beautiful beaches of Santa Barbara, all of
them want to be the winner. They each are worried that the other coauthors
might deviate from the honest protocol to gain an unfair advantage. There is
both good and bad news. The bad news is that due to a famous lower bound by
Cleve [Cle86], there is no strongly fair coin toss protocol when half of the parties
may be corrupt and misbehaving — roughly speaking, strong fairness requires
that the coalition cannot bias the outcome of the coin toss whatsoever. The
good news is that a more recent line of work [CCWS21,GGS,CGL+18,WAS22]
has shown that a relaxed fairness notion called game-theoretic fairness is indeed
possible for the leader election problem, even when an arbitrary number of par-
ties may be corrupt. To see why, first observe that the original Blum’s coin toss
protocol [Blu83] actually gives a game-theoretically fair leader election scheme
for n = 2 parties. Imagine that each party first commits to a random coin, they
then open their coin, and the XOR of the two bits is used to elect a random
winner. If one party fails to commit or correctly open, it is eliminated and the
remaining party is declared the winner. Blum’s coin toss satisfies game-theoretic
fairness in the following sense. As long as the commitment scheme is not broken,
a corrupt layer cannot bias the coin to its own favor no matter how it deviates
from the protocol. Note that Blum’s protocol is not strongly fair since a corrupt
party can indeed bias the coin, but only to the other player’s advantage.

For the more general case of the n parties, we can use a folklore tournament-
tree protocol to accomplish the same purpose. Suppose that n is a power of 2
for simplicity. We first divide the n parties into n/2 pairs, and each pair elects
a winner using Blum’s coin toss. The winner survives to the next round, where
we again divide the surviving n/2 parties into n/4 pairs. The protocol continues
after a final winner is elected after log2 n rounds. At any point in the protocol,
if a party fails to commit or correctly open its commitment, it is eliminated and
its opponent survives to the next round.

The recent work of Chung et al. [CCWS21] argued that this simple tour-
nament tree protocol satsfies a strong notion of game-theoretic fairness as ex-
plained below. Suppose that the winner obtains a utility of 1 and everyone else
obtains a utility of 0. As long as the commitment scheme is not broken, the
tournament tree protocol guarantees that 1) no coalition of any size can in-
crease its own expected utilty no matter what (polynomially-bounded) strategy
it adopts; and 2) no coalition of any size can harm any individual honest player’s
expected utility, no matter what (polynomially-bounded) strategy it adopts. Re-
cent work in this space [CCWS21, GGS, CGL+18, WAS22] calls the former no-
tion cooperative-strategy-proofness (or CSP-fairness for short), and calls the
latter notion maximin fairness. Philosophically, CSP-fairness guarantees that
any rational, profit-seeking individual or coalition has no incentive to deviate
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from the honest protocol; and maximin fairness ensures that any paranoid in-
dividual who wants to maximally protect itself in the worst-case scenario has
no incentive to deviate either. In summary, the honest protocol is an equilib-
rium and also the best response for every player and coalition. Therefore, prior
works [CGL+18, CCWS21, WAS22, GGS] have argued that game-theoretic no-
tions of fairness are compelling and worth investigating because 1) they are
arguably more natural (albeit stricly weaker) than the classical strong fairness
notion in practical applications; and 2) the game-theoretic relaxation allows us
to circumvent classical impossibility results pertaining to strong fairness in the
presence of majority coalitions [Cle86].

Having established the general feasibility of game-theoretically fair leader
election in the presence of majority-sized coalitions, Chung et al. [CCWS21]
asked the following natural question: what is the round complexity of game-
theoretically fair leader election in the presence of majority coalitions? Specifi-
cally, can we asymptotically outperform the logarithmic round complexity of the
folklore tournament tree protocol? They then gave a partial answer to this ques-
tion, showing that for any desired round complexity parameter Θ(log log n) ≤
R ≤ log n, there is an O(R)-round n-party leader election protocol that achieves(
1− 1

2Θ(R)

)
-fairness against coalitions of size up to

(
1− 1

2Θ(R)

)
n. In particular,

their result statement adopts an approximate notion of game-theoretic fairness.
Roughly speaking, a protocol is (1− ε)-fair if it satisfies the aforementioned
game theoretic fairness (including CSP-fairness and maximin fairness) up to
an ε slack. More specifically, we want that the coalition’s expected utility can-
not exceed 1/(1 − ε) times its normal utility had everyone behaved honestly,
and we require that any honest individual’s expected utility cannot drop be-
low (1 − ε) times its normal utility had everyone behaved honestly. Chung et
al.’s result [CCWS21] enables a smooth and mathematically quantifiable trade-
off between the efficiency of the protocol and its resilience to strategic behavior.
However, their result requires the protocol to have at least Θ(log log n) rounds
to give any meaningful fairness guarantee. Indeed, a more careful examination
suggests that their framework has a sharp cutoff at Θ(log log n) rounds, i.e., the
approach fundamentally fails when we want round complexity to be less than
log log n. Therefore, an obvious gap in our understanding is the following:

In the presence of majority-sized coalitions, can we achieve any meaningful
fairness guarantee for small-round protocols whose round complexity is less
than log log n?

1.1 Our Results and Contributions

In this paper, we revisit the round complexity of game-theoretically fair leader
election. We make the following contributions. First, we show positive results in
the style of Chung et al. [CCWS21], but now for a broader range of parameters
as explained in the following Theorem 1.1. In particular, our result shows that
under standard cryptographic assumptions, there is a O(log∗ n)-round leader
election protocol that achieves (1−o(1))-game-theoretic-fairness, in the presence
of (1− o(1)) · n-sized coalitions.



4 Ilan Komargodski, Shin’ichiro Matsuo, Elaine Shi and Ke Wu

Second, we give conceptually simpler constructions than those of Chung et
al. [CCWS21], which also result in simpler analyses. More specifically, Chung et
al.’s construction relies on combinatorial objects called extractors, which we get
rid of in our construction. We believe that our conceptually simpler constructions
can lend to better understanding and make it easier for future work to extend
our framework. Interestingly, our constructions are inspired and have structural
resemblance to Feige’s famous lightest bin leader election protocol [Fei99]. We
stress, however, that Feige’s protocol itself does not satisfy game-theoretic fair-
ness, but rather, achieves only a much weaker notion of resilience, i.e., an honest
party is elected leader with constant probability. At a very high level, our ap-
proach augments Feige’s protocol lightest-bin protocol with a “commit and open”
and a “virtual identity” mechanism, and we prove that the resulting protocol
satisfies the desired game-theoretic properties.

Third, we also present results for the more generalized problem of fair com-
mittee election, where the goal is to elect a committee of size c. The leader
election problem can be viewed as a special case of committee election where
c = 1. Our main results are summarized in the following theorems.

Theorem 1.1 (Game-theoretically fair leader election). Assume the existence
of enhanced trapdoor permutations, and collision-resistant hash functions. Fix n
and let log∗ n ≤ R ≤ C log n be the round complexity we want to achieve for
some constant C. Then there exists an O(R)-round leader election that achieves
(1− 1

2Θ(R) )-game-theoretic fairness against a non-uniform p.p.t. coalition of size

at most (1− L
Θ(R) )n, where L is the smallest integer such that log(L) n ≤ 2R.

For readers who are familiar with the line of work on approximate strong
fairness [Cle86,MNS09,AO16,BOO10,HT14], an interesting observation is that
for game-theoretic fairness, the efficiency-fairness tradeoff is exponentially better
than that of strong fairness. Specifically, it is known that any R-round protocol
cannot achieve Ω(1/R) strong fairness4 against an n/2-sized coalition, whereas
we show that R-round protocols can achieve (1− 1/2Θ(R))-fairness.

Theorem 1.2 (Game-theoretically fair committee election). Assume the exis-
tence of enhanced trapdoor permutations and collision-resistant hash functions.
Fix n and c. Let L∗ be the smallest integer such that log(L∗) n ≤ c. Then for any
L∗ ≤ R ≤ C0 log n for some constant C0, we have that

– If c ≥ 2R, there exists an O(R)-round committee election that achieves (1−
1

cΘ(1) )-game-theoretic fairness against a non-uniform p.p.t. coalition of size

at most (1− L∗

Θ(R) )n.

– If c < 2R, there exists an O(R)-round committee election that achieves (1−
1

2Θ(R) )-game-theoretic fairness against a non-uniform p.p.t. coalition of size

at most (1− L
Θ(R) )n, where L is the smallest integer such that log(L) n ≤ 2R.

4 The approximate strong fairness line of work defines what we call (1− ε)-fairness as
ε-fairness (but for the notion of strong fairness instead). Following the notations of
Chung et al. [CCWS21], we flipped this notation to make it more intuitive: with our
notation, 1-fair is more fair than 0-fair which agrees with our intuition.
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Below are some interesting examples with respect to different committee size
c and the round complexity R.

– For committee size c = 1, i.e., leader election, and round complexity R =
O(log∗ n), our protocol achieves Θ(1)-game-theoretic fairness against a coali-
tion of size Θ(n) assuming log ∗n is a constant;

– For committee size c = 1, i.e., leader election, and round complexity R =
log log log n, out protocol achieves (1− 1

poly log logn )-fairness against a coalition
of size n− n

Θ(log log logn) .

– For committee size c = poly log log n and for constant round complexity
R = Θ(1), our protocol achieves (1− 1

poly log logn )-fairness against Θ(n)-sized
coalition.

In this paper, we consider the standard notions of approximate CSP-fairness
and maximin-fairness. The standard notion of approximate CSP-fairness is also
sometimes referred to as approximate coalition-resistant Nash equilibrium in
some earlier works such as Fruitchain [PS17]. It is also known [CCWS21] that
the standard notion of approximate CSP-fairness (or maximin-fairness) is equiva-
lent in some sense to approximate notions of fairness formulated by the more clas-
sical Rational Protocol Design (RPD) paradigm [GKM+13,GTZ15,GKTZ15].

Although the standard notion of approximate fairness seems the most nat-
ural one, Chung et al. [CCWS21] pointed out that when defining approximate
fairness, one can in fact adopt a strengthened notion which they call sequential
fairness. Their game-theoretically fair leader election result is in fact stated for
the sequential notion. In this sense, our result is incomparable to theirs: they
consider a stronger solution concept but their approach inherently cannot give
any meaningful result for protocols of o(log log n) rounds. By contrast, we con-
sider the more standard non-sequential notion and we are able to generalize the
smooth tradeoff between efficiency and fairness shown by Chung et al. [CCWS21]
to a broader range of parameters.

1.2 Additional Related Work

Game theory meets cryptography. Some recent efforts have instigated the inter-
section of the game theory [Nas51,Aum74] and multi-party computation [GMW19,
Yao82]. See [Kat08,DR+07] for a survey. There have been two classes of questions
that have attracted a lot of interests.

Some work [HT04, KN08, ADGH06, OPRV09, AL11, ACH11] explore how to
define game-theoretic notions of security, as opposed to cryptography security
notions for distributed computing tasks such as secure function evaluation. Ex-
isting works in this line considered a different notion of utility than our work.
Their utility functions are often defined assuming that players prefer to com-
pute the function correctly, or prefer to learn others’ secret data and prefers
that other players do not gain knowledge about their own secrets. Garay et al.
propose a paradigm called Rational Protocol Design [GKM+13] and develop this
paradigm in subsequent works [GTZ15, GKTZ15]. As mentioned in Section 1,
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the standard notion of approximate CSP-fairness (or maximin fairness) is in
some sense equivalent to the approximate notion of fairness formulated in RPD
paradigm.

Another line of work explores how cryptography can help traditional game
theory. Many works in game theory assumed the existence of a trusted mediator,
which can be realized under cryptography [DHR00, IML05,GK12,BGKO11].

Recently, there has been renewed interest in the connection between game
theory and cryptography. Besides the work of Chung et al. [CCWS21] that
inspires our work, and [GGS] that generalized the lower bound of the round
complexity of game-theoretically fair leader election, the recent work [CGL+18,
WAS22] have also suggested game-theoretically fair multi-party binary-coin toss.
Binary-coin toss considers tossing a binary coin among n players, while in leader
election, we consider tossing an n-way coin among n players. These two formu-
lations are different and they exhibit starkly different theoretical landscape.

Leader election in other models. Leader election has been studied extensively.
A line of work [BK14, ADMM14] considered how to achieve “financially-fair”
n-party lottery over cryptocurrencies. Their game-theoretic notion of fairness is
similar to ours, yet they rely on collateral and penalty mechanisms to achieve
fairness. As a comparison, our fairness can be achieved without relying on addi-
tional assumptions such as collateral and penalty. Moreover, [ADGH06] studied
an incomparable game-theoretic notion for leader election. In their notions, all
users prefer to have a leader, and users may have different preferences of who
the leader is.

Besides, leader election was considered in the full information model [RZ01,
RSZ02,Fei99,Dod06]. Their notion of security concentrates on electing an honest
leader with some small constant probability, assuming honest majority [Fei99].
This notion is much weaker than the game-theoretic notion considered in our
work, which are more suitable in some decentralized applications, where honest
majority assumption is not applicable. Moreover, in the full-information model,
leader election is impossible against a majority coalition even under this weak
notion of security. Interestingly, our committee election protocol actually builds
on Feige’s lightest bin protocol [Fei99].

Approximate strong fairness. As mentioned in Section 1, the de facto notion of
fairness considered in the multi-party computation literature is strong fairness or
unbiasability. The celebrated result of Cleve [Cle86] showed that it is not possible
to achieve Ω( 1

R )-unbiasable coin toss against a coalition consisting of half or
more players. Moran et al. [MNS09] showed how to obtain an R-round protocol
that achieves Ω( 1

R )-unbiasability in the two-party setting, that matches Cleve’s
lower bound. Recent work [AO16,BOO10,HT14] have been making encouraging
progress on building fair multi-party coin toss. However, they rely on constant
number of players to ensure polynomial round complexity. We cannot directly
rely on multi-party unbiasable coin toss to build game-theoretically fair leader
election because our trade-off curve between round complexity and the fairness
slack ε is exponentially better than that of the unbiasability.



log∗-Round Game-Theoretically-Fair Leader Election 7

2 Technical Roadmap

2.1 Electing Poly-logarithmically Sized Committees: Achieving
CSP-Fairness

We start by observing that a single iteration of Feige’s lightest-bin protocol [Fei99]
can elect a committee of size c ≥ poly log n while satisfying CSP-fairness against
relatively large coalitions. Feige’s ingenious protocol works as follows (we de-
scribe a single iteration of the protocol): each player i ∈ [n] chooses a random
bin bi among a total of B = n/c bins, and broadcasts its choice bi. At this
moment, we identify the lightest bin, and everyone who has placed itself in the
lightest bin is elected as a committee member. A simple analysis shows that
this protocol satisfies CSP-fairness against relatively large coalitions. Specifi-
cally, the lightest bin cannot exceed a capacity of c = n/B. Moreover, applying
the standard Chernoff bound and the union bound, we know that with proba-
bility at least 1 − n · exp(−Ω(ε4 · c)), a good event that every bin has at least
(1 − ε2) · (1 − β) · c honest players must happen, where β · n is the maximum
coalition size for β ∈ (0, 1). Now we show that if the coalition has size larger
than ε · n, then Feige’s lightest bin is (1− Θ(ε))-CSP-fair. Given that the good
event happens, the expected fraction of corrupted players in the committee is at
most 1 − (1 − ε2) · (1 − β) ≤ β

1−2ε . For large n, it is easy to see that the good
event happens with 1 − negl(n) probability and the expected fraction of coali-
tion in the committee is at most β

1−Θ(ε) . For small n, however, the calculation

is more involved, as we will describe below. The overall expected fraction of the
coalition in the committee is at most β

1−2ε + δ, where δ = n · exp(−Ω(ε4 · c))
is the probability that the good event does not happen. To guarantee that the
expected fraction of the coalition in the committee is at most β

1−Θ(ε) , we need

the failure probability δ ≤ β ·Θ(ε). The expected fraction of the coalition in the
committee is thus β

1−2ε + δ ≤ β( 1
1−2ε +Θ(ε)) ≤ β

1−Θ(ε) . For example, if we pick

ε = 1
logn and c = (log n)10, then the probability that the good event does not

happen is at most n exp{−Ω((log n)6)} ≤ ε2 ≤ β · ε for any n ≥ 3. Henceforth
the protocol satisfies (1 − Θ(ε)) -CSP-fairness as long as the coalition contains
at least εn players.

Unfortunately, the protocol does not satisfy CSP-fairness for small coalitions.
For example, a single individual i ∈ [n] (i.e., a coalition of size 1) can examine
all others’ bin choices and then decide to place itself in the lightest bin. In this
case, if the lightest bin (not counting player i) is at least 2 lighter than the
second lightest bin, player i is elected into the committee. This happens with a
probability at least 6

5 ·
c
n for large n , which is significantly higher than the normal

probability c/n that player i ought to be elected in an all-honest execution.

Commit-and-reveal lightest bin. We introduce commit-and-reveal version of Feige’s
lightest bin protocol which achieves CSP-fairness not just against large coali-
tions, but also against small coalitions as well. The idea is quite simple —
below we describe the scheme assuming ideal commitments, although in our
formal technical sections we will instantiate the commitments using standard
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non-malleable commitments. Everyone first commits to a random bin number
among B = n/c bins. They then open their commitments. Those who land in
the lightest bin are declared the committee, and like before, anyone who fails
to commit or correctly open is kicked out. Using the same argument as be-
fore, we can show that the commit-and-reveal lightest bin protocol also achieves
(1−Θ(ε))-CSP-fairness against coalitions of size at least εn .

We now argue why it also satifies CSP-fairness against small coalitions of size
βn < εn. Intuitively, the coalition’s best strategy is to pick a bin with the fewest
number of honest players (henceforth called the honest-lightest bin), and place
as many coalition members in it as possible while still maintaining that it is the
lightest. However, the coalition does not know which one is the honest-lightest
bin when committing to its own bin choices. In fact, even when conditioned on
the coalition’s view during the commitment phase, each bin is the honest-lightest
bin with equal probability. No matter how the coalition spreads its members
across the bins, the expected number of coalition members in a randomly chosen
bin is at most β · n/B = β · c. Further, with 1− n · exp(−Ω(ε4 · c)) probability,
the good event that honest-lightest bin should have at least (1 − ε2)(1 − β)c
honest players happens. Therefore, the coalition’s expected representation on
the committee cannot exceed β

(1−ε2)(1−β) ≤
β

1−2ε given that the good event

happens. Overall, the expected fraction of the coalition in the committee is at
most β

1−2ε + δ, where δ = n · exp(−Ω(ε4 · c)) is the probability that the good
event does not happen. Still, as long as δ ≤ βε, by the same analysis as before,
the expected fraction of the coalition in the committee is at most β

1−Θ(ε) .

2.2 Electing Poly-logarithmically Sized Committees: Achieving
Maximin Fairness

Although simple and cute, the commit-and-reveal lightest bin protocol does not
satisfy maximin fairness. For example, a Θ(n)-sized coalition can target a victim
player i ∈ [n] and prevent it from being elected with high probability using the
following strategy. During the commitment phase, spread the coalition members
evenly across all bins. During opening, first observe which bin (denoted b∗)
player i lands in. Then, all coalition members fail to open except those whose
choice was b∗.

To achieve maximin fairness, we are inspired by a virtual identity technique
originally proposed by Chung et al. [CCWS21], but unfortunately, directly ap-
plying this idea to the lightest bin does not work. At a high level, a strawman
idea is as follows:

1. Every player i ∈ [n] selects a random virtual identity vi from a sufficiently
large space, and commits to the pair (i, vi).

2. Every player i ∈ [n] selects a random bin bi among B = n/c bins, and
commits to the pair (vi, bi) where vi is its secret virtual identity.

3. Everyone i ∈ [n] opens their commitment of (vi, bi). The virtual identities
contained in the lightest bin will be elected committee.
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4. Everyone opens their real-virtual identity mapping (i, vi). This will allow
everyone to compute the real identities of those elected to the committee.

Now, as long as the coalition does not know an honest player i’s virtual ID,
it does not know who to target during the commit-and-reveal lightest bin steps
(Steps 2 and 3). Therefore, as long as the good event that each bin contains at
least (1 − ε)(1 − β)c honest players happens, an honest player i will be elected

into the committee with probability at least (1−ε)(1−β)c
(1−β)n = (1−ε)c

n . By law of

total probability, the probability that an honest player i gets elected into the

committee with probability at least (1−ε)(1−δ)c
n , where 1 − δ is the probability

that the good event happens. Henceforth, as long as δ ≤ ε, an honest player i

gets elected into the committee with probability at least (1−Θ(ε))c
n .

Unfortunately, this idea does not work if the coalition can eavesdrop on the
network channel and observe who sent which (bin, virtual ID) pair in the commit-
and-reveal lightest bin protocol. This would allow the coalition to immediately
learn the correspondance between virtual and real identities.

To salvage this idea, our high-level idea is simple but realizing it turns out
to be somewhat subtle as we explain later. First, if we are willing to assume the
existence of an idealized anonymous communication network where players can
post messages anonymously, then we can overcome the aforementioned problem
by running Steps 2 and 3 over an anonymous communication network. Therefore,
it suffices to find a suitable anonymous communication protocol to realize anony-
mous communication. Although anonymous communication has been extensively
studied in the literature [Cha81,Cha88,Abe99,CGF10,DMS04,SGR99,ZZZR05],
in our setting, it is tricky to adopt existing schemes directly. The main techni-
cality is that in the presence of a majority coalition, we cannot guarantee the
liveness of the anonymous communication protocol.

To overcome this problem, one näıve idea is to rely on an anonymous commu-
nication protocol with identifiable abort, and if the protocol fails, we kick out an
offending player and retry. Unfortunately, the vanilla notion of identifiable abort
does not work for us because we cannot afford to kick out offending players one
by one since we are aiming for small round complexity. Our idea is to devise an
anonymous communication protocol not just with identifiable abort, but with
with plentiful identifiable aborts. In other words, if the protocol fails, we want to
kick out sufficiently many players, such that we can eventually succeed without
too many retries.

Therefore, we adapt an anonymous communication protocol inspired by DC-
nets [Cha88] to achieve such a plentiful identifiable abort notion. Assuming an
upper bound of βn on the coalition size, our protocol kicks out at least (1−β)n
players in the event of failure. Thus the round complexity is at most 1

1−β . For

example, if β = 99%, we can still succeed in O(1) rounds.

We present a formal description and proof of our anonymous communication
protocol in Section 6.2 in supplementary materials. We give a formal descrip-
tion of our poly-logarithmically-sized committee election protocol and prove its
security in Section 4.
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2.3 Leader Election

Although the lightest bin protocol via anonymous broadcast (denoted as LBin-V
below) achieves CSP-fairness and maximin-fairness simultaneously, it cannot be
directly used to select a leader, i.e., c = 1. Indeed, the fairness of LBin-V depends
on the occurrence of the good event that each bin has at least (1 − ε2)(1 − β)c
number of honest players, where β ·n is the maximum coalition size for β ∈ (0, 1).
If we are to choose a leader directly using LBin-V, then the probability that this
good event happens is 0, which makes our protocol unfair.

To construct a leader election protocol, we compose the committee election
LBin-V for multiple iterations. In each iteration: we choose a log-sized committee.
In the first iteration we choose a poly log-sized committee C1, and then in the
second iteration we choose a poly log log sized committee C2 from C1, and so on.
As analyzed earlier, each iteration of LBin-V is (1−Θ(ε))-game-theoretically fair
given that the failure probability δ that the good event does not happen in this
iteration is small compare to β · ε.

However, as the committee size becomes smaller in each iteration, the prob-
ability that the good event does not happen becomes larger. In the last few
rounds, when the committee becomes constant size, the probability that the
good event does not happen becomes a constant. Therefore, we need to cut off
at some point and instead run the “almost perfect” tournament tree protocol. As
shown in Chung et al. [CCWS21], the tournament tree protocol among c players
chooses a leader in O(log c) rounds and is (1 − negl)-game-theoretically fair. If
we want to achieve a round complexity of R, then we can stop running LBin-V
when the committee size becomes smaller than 2Θ(R) and run the tournament
tree protocol among the committee to elect a leader.

Now suppose that we run L iterations of committee election LBin-V and get
a committee of size 2Θ(R). Then we need to guarantee that the round complexity
of these L iterations of LBin-V is at most O(R). By the analysis above, if we
kick out (1−β)n players in each anonymous communication protocol, the round
complexity of each LBin-V is at most 1

1−β . This requires that the fraction of

coalition β ≤ 1− L
Θ(R) .

Now since the probability that the good event does not happen increases in
each iteration, the probability that there is an iteration in which the good event
does not happen is dominated by L · δL, where δL = exp{−ε4 · 2−Θ(R)} is the
probability that good event does not happen in the last iteration. As long as this
probability is smaller than β · ε, the protocol is (1 − Θ(ε))-fair. Picking ε = 1

2R

suffices. Therefore, if we run LBin-V multiple iterations to elect a committee C
of size is 2Θ(R), and then run the tournament tree protocol among C to elect a
leader, our leader election protocol achieves (1− 1

2Θ(R) )-game-theoretic fairness.

In Section 5, we give a generalized protocol that combines multiple itera-
tions of LBin-V and the tournament tree protocol to elect an arbitrary-sized
committee, including the special case of committee size 1, i.e., leader election.
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3 Preliminaries

Notation. Throughout, we use λ to denote the security parameter. The nota-
tion log(`) n means taking logarithm ` times over n. For example, log(3) n ≡
log log log n. Moreover, we use log∗ n to denote the smallest integer ` such that
log(`) n ≤ 1. For an event E, we denote E as the event that E does not happen.
For a vector X of length M , we use X[j] for j ∈ [M ] to denote the j-th element
of X. By t-out-of-n SS, we refer to a Shamir secret sharing protocol in which
any t + 1 players can reconstruct the secret, while any t players know nothing
about the secret [Sha79]. We use the acronym p.p.t. for non-uniform probabilis-
tic polynomial time. We use {Xλ}λ ≡c {Yλ}λ to denote that two distribution
ensembles {Xλ}λ and {Yλ}λ are computationally indistinguishable, i.e., for all
non-uniform p.p.t. A, there exists a negligible function negl(·), such that for any

λ ∈ N, |Pr[x
$←Xn,A(x) = 1]− Pr[y

$←Yn,A(y) = 1]| < negl(λ).

3.1 Probability Tools

Lemma 3.1 (Chernoff bound, Corollary A.1.14 [AS16]). Let X1, . . . , Xn be
independent Bernoulli random variables. Let µ = E [

∑n
i=1Xi]. Then, for any

ε ∈ (0, 1), it holds that

Pr

[
n∑
i=1

Xi ≤ (1− ε)µ

]
≤ e−ε

2µ/2.

3.2 Fairness Notions for Committee Election

Since a leader is a special case of a 1-sized committee, we will define correctness
and fairness with respect to committee election protocol.

In a (c, n)-committee election protocol, n players interact through pairwise
private channels and a public broadcast channel. We assume that each player has
identity 1, 2, . . . , n, respectively. We assume that all communication channels are
authenticated, i.e., messages carry the sender’s identity. Moreover, the network
is synchronous, and the protocol proceeds in rounds.

The protocol execution is parametrized with the security parameter λ. We
assume that the coalition (adversary) A performs a rushing attack. In every
round r, it waits for all honest players (those not in A) to send messages in round
r and decide what messages the players in the coalition send in round r. At the
end of the committee election, the protocol outputs a set of at most c players
called the committee. The output is defined as a deterministic, polynomial-time
function over all public messages posted to the broadcast channel. Since we assume
that all players wish to be selected into the committee, the utility function we
consider is as follows: each player elected into the committee gains a utility of
1, while everyone else gains a utility of 0. If all players behave honestly, the
committee is chosen uniformly at random.
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Correctness. We say that a (c, n)-committee election protocol is correct, if in an
all honest execution, every subset C ⊂ [n] of size c has an equal probability of
being elected as the committee, where the probability is taken over the random-
ness of (an honest execution) the protocol.

For the fairness notion, we recall the definitions proposed by Chung et al. [CCWS21].
The first notion of fairness (CSP-fairness) protects against a malicious coali-
tion from increasing its utility. The second notion (maximin-fairness) protects
against a malicious coalition from decreasing the utility of any honest party.
Each of these notions is natural and useful on its own, and in some sense, they
complement each other. A protocol that satisfies both simultaneously is called
game-theoretically fair.

Approximate CSP-fairness. The CSP-fairness requires that no coalition can in-
crease its own expected utility by more than a (1 − ε) multiplicative factor, no
matter how it deviates from the honest protocol.

Definition 3.2 ((1− ε)-CSP-fair committee election). A (c, n)-committee elec-
tion is (1 − ε)-CSP-fair against a non-uniform probabilistic polynomial time
(p.p.t.) coalition A of size βn, iff no matter what strategy A adopts,

E[β̃] ≤ β

1− ε
,

where β̃ is the fraction of players in the coalition among the committee, where
the expectation is taken over the randomness of the protocol.

In our proof, we will also make use of another fairness notion:

Definition 3.3 ((1−ε, δ)-CSP-fair committee election). A (c, n)-committee elec-
tion is (1 − ε, δ)-CSP-fair against a non-uniform probabilistic polynomial time
(p.p.t.) coalition A of size βn, if there exists an event GOOD, where Pr[GOOD] ≥
1− δ, such that no matter what strategy A adopts,

E[β̃ | GOOD] ≤ β

1− ε
,

where β̃ is the fraction of the coalition’s representation in the committee, and
the expectation is taken over the randomness of the protocol.

Analogously, we define (1− ε)-maximin-fair and (1− ε, δ)-maximin-fair com-
mittee election, which requires that the probability that an honest individual
gets into the committee is large enough given that the good event happens.

Approximate maximin-fairness. Maximin-fairness requires that no coalition can
harm any honest individual by more than a (1 − ε) multiplicative factor, no
matter how it deviates from the honest protocol.
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Definition 3.4 ((1 − ε)-maximin-fair committee election). A (c, n)-committee
election is (1 − ε)-maximin-fair against a non-uniform probabilistic polynomial
time (p.p.t.) coalition A of size βn, iff for any honest individual i, the probability
that i gets into the committee is

Pr[i is in the committee] ≥ (1− ε)c
n

,

no matter what strategy A adopts. The probability is taken over the randomness
of the protocol.

Definition 3.5 ((1−ε, δ)-maximin-fairness). A (c, n)-committee election is (1−
ε, δ)-maximin-fair against a non-uniform probabilistic polynomial time (p.p.t.)
coalition A of size βn, if there exists an event GOOD, where Pr[GOOD] ≥ 1− δ,
such that no matter what strategy A adopts,

Pr[i is in the committee | GOOD] ≥ (1− ε)c
n

,

for any honest individual i. The probability is taken over the randomness of the
protocol.

Although committee election is a constant-sum game, these two notions of
fairness are non-equivalent. See Section ?? for more explanation.

Finally, we define game-theoretical fairness. This notion of fairness requires
CSP and maximin-fairness simultaneously.

Definition 3.6 ((1− ε)-game-theoretical fairness). A (c, n)-committee election
is (1− ε) game-theoretically fair committee election against a non-uniform prob-
abilistic polynomial time (p.p.t.) coalition A, iff it is (1−ε)-CSP-fair and (1−ε)-
maximin-fair against A.

Definition 3.7 ((1 − ε, δ)-game-theoretical fairness). A (c, n)-committee elec-
tion is (1− ε) game-theoretically fair committee election against a non-uniform
probabilistic polynomial time (p.p.t.) coalition A, iff it is (1− ε, δ)-CSP-fair and
(1− ε, δ)-maximin-fair against A.

By definition, a (1 − ε)-game-theoretically fair committee election is also
(1 − ε, 0)-game-theoretically fair. Next we give the translation from (1 − ε, δ)-
CSP/maximin-fair to (1− ε)-CSP/maixin-fair.

Lemma 3.8. Let n be the number of parties and fix a parameter c. Let CElect
be an R-round (1 − ε, δ)-CSP-fair (c, n)-committee election protocol against a
coalition of size βn. Then the above leader election protocol is (1− ε1)-CSP-fair
against a coalition of size βn, with a round complexity R+O(log c), where

ε1 =
βε+ δ(1− ε)
β + δ(1− ε)

+ negl(λ).
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Lemma 3.9. Let n be the number of parties and fix a parameter c. Let CElect be
an R-round (1 − ε, δ)-maximin-fair (c, n)-committee election protocol against a
coalition of size βn. Then the above leader election protocol is (1− ε2)-maximin-
fair, with a round complexity R+O(log c), where

ε2 = ε+ δ + negl(λ).

The proofs of these two lemmas are available in the full version.

Hybrid vs. real worlds. For ease of presentation and modulatiry purposes, we
shall sometimes consider protocols in a hybrid setting where we assume some
“generic” functionality is given for free. This is called a “hybrid world”. That
is, we say that a protocol is in the F-hybrid world if players interacting in
this protocol have access to an ideal functionality F . A protocol in the (plain)
real world is a protocol without any ideal functionalities or setup assumptions.
Specifically for us, we say that a (c, n)-committee election protocol achieves
(1 − ε)-game-theoretic fairness against a coalition A in the F-hybrid world, if
the protocol achieves (1 − ε)-game-theoretic fairness against this coalition A,
assuming the ideal functionality F .

3.3 Publicly Verifiable Concurrent Non-Malleable Commitment

A publicly verifiable commitment scheme (C,R,V) consists of a pair of inter-
acting Turing machines, the committer C, the receiver R, and a deterministic,
polynomial-time public verifier V. We assume that the protocol has two phases,
a commitment phase and an opening phase. The public verifier, upon receiving
a transcript Γ of the commitment protocol, outputs either a bit b ∈ {0, 1} to
accept or ⊥ to reject. We use 〈C∗(z),R∗(z′)〉 to denote an execution between C∗

on input z, 1λ, and R∗ on input z′, 1λ, where λ is the security parameter.

Correctness. Correctness guarantees that an honest committer always completes
the protocol and correctly opens its input bit; and will not be stuck by a mali-
cious, non-aborting receiver. Formally, for b ∈ {0, 1}, for any λ ∈ N, if C is honest
and receives input bit b, then 〈C(z),R∗(z′)〉 will complete with the accepting bit
b with probability 1, for any non-aborting R∗. If the messages sent by R∗ are
outside the valid range, it is treated as aborting.

Perfect Binding. Perfect binding guarantees that the commitment phase will
determine only one bit that can be successfully opened. Formally, let (Γc, Γo) ∈
{0, 1}`(λ) be the transcripts of the commitment phase and the opening phase,
respectively, where `(λ) is a fixed polynomial function denoting the maximum
length of the transcripts. Then for any λ ∈ N, any transcripts Γc, Γo, Γ

′
o, if

V(1λ, Γc, Γo) = b and V(1λ, Γc, Γ
′
o) = b′, where b, b′ ∈ {0, 1}, it must be that

b = b′.
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Computationally Hiding. Computationally hiding guarantees that at the end of
the commitment phase, the receiver learns only a negligible amount of informa-
tion about the input that the committer commits to. Formally, let pλ(v) denote
the probability that R∗ outputs 1 at the end of the commitment phase in an
execution 〈C∗(1λ, v),R∗(1λ)〉, then for any non-uniform p.p.t. R∗, there exists a
negligible function negl(·) such that for every λ ∈ N and every v1, v2 ∈ {0, 1}λ,
it holds that |pλ(v1)− pλ(v2)| ≤ negl(λ).

Concurrent Non-malleability. We follow the definition of Lin et al. [LPV08].
Consider a man-in-the-middle adversary A that participate on the left m in-
teractions with an honest committer who runs commitment phase committing
to values v1, . . . , vm with identity id1, . . . , idm, and on the right m interactions
with an honest receiver trying to commit to values v′1, . . . , v

′
m with identity

id′1, . . . , id
′
m. If any of the right commitments are invalid its value is set to ⊥.

For every i ∈ [m], if id′j = idi for some j ∈ [m], then v′j is set to be ⊥. Let

mitmA(1λ, v1, v2, . . . , vm, z) denote the view of A and the values v′1, . . . , v
′
m.

Definition 3.10. A commitment scheme is concurrent non-malleable if for ev-
ery polynomial p(·), for every non-uniform p.p.t. adversary A that participates
in at most m = p(λ) concurrent executions, there exists a polynomial time sim-
ulator S such that

{mitmA(1λ, v1, v2, . . . , vm, z)}v1,...,vm∈{0,1},z∈{0,1}∗,λ∈N ≡c
{S(1λ, z)}v1,...,vm∈{0,1},z∈{0,1}∗,λ∈N.

Theorem 3.11 ( [LPV08]). Assume that one-way permutations exist. Then
there exists a constant-round, publicly verifiable commitment scheme that is per-
fectly correct, perfectly binding, and concurrent non-malleable.

In this paper, we will only consider bounded concurrency. Without loss of
generality, the number of concurrent calls to public verifiable concurrent non-
malleable commitment in our protocol is upper bounded by n2, where n is the
number of players.

4 Game-Theoretically Fair Committee Election

In this section, we present our game-theoretically fair committee election that
extends Feige’s lightest bin protocol. Later, in Section 5, we will use it as a build-
ing block to get our committee election protocol that achieves game-theoretic
fairness for arbitrary committee size.

4.1 Electing Poly-logarithmically Sized Committees: Achieving
CSP-Fairness

In this section, we give a CSP-fair committee election protocol. This is the first
step towards our game-theoretically fair committee election (that needs to be
CSP-fair and maximin fair, simultaneously).
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Our CSP-fair protocol is a commit-and-reveal variant of Feige’s well-known
lightest bin protocol [Fei99]. Specifically, we require all parties to (cryptograph-
ically) commit to their bin choices and only afterward to reveal their choices.
The parties whose choices correspond to the lightest bin are the committee. The
commitments that we use are interactive. To commit to a string, a player invokes
n instances of NMC, one for each of the n receivers. To open the commitments,
the committer posts the openings for all n instances in the broadcast channel,
and the opening is correct iff all of the n instances are correctly opened to the
same string. Without loss of generality, we assume that the committer only needs
to send one message in the opening phase. Moreover, we assume that messages
are posted to the broadcast channel, and it can be checked publicly if a commit-
ment is correctly opened. This is why we also require public verifiability of the
commitment scheme. We say that a player fails to commit if the player fails to
commit in an instance, where the receiver is non-aborting.

LBin-C: Commit-and-Reveal Lightest Bin

Parameters: Let c be an upper bound of the size of the required committee
and n is the number of players. Fix B = dnc e as the number of bins. For
simplicity, we assume c divides n.

Building blocks: A publicly verifiable concurrent non-malleable commit-
ment as in Section 3.3, NMC.

Protocol:

1. Round 1: Every player i randomly chooses a bin bi ∈ [B], invokes n NMC
instances and run the commit phase with n receivers to commit to bi.
The messages are sent in a broadcast channel. Exclude those players
who fail to commit.

2. Round 2: Every player i runs the opening phase with n receivers to open
its bin choice bi. Exclude those players who fail to open all n instances
correctly.

3. Let b̂ be the lightest bin after exclusion (break ties with lexicograph-

ically the smallest bin). The players who choose bin b̂ constitute the
committee.

Theorem 4.1. Assume that NMC is publicly verifiable concurrent non-malleable
commitment as in Section 3.3. For n, c ∈ N, ε ∈ (0, 1/2), and β ∈ (0, 1), the
protocol LBin-C is a constant round (1−2ε, δ)-CSP-fair (c, n)-committee election
protocol against a coalition K of size βn, where

δ =
n

c
exp

{
−ε

4

2
(1− β)c

}
. (1)

Proof. Fix n, c, ε, and β as in the statement. Define GOOD to be the event that
each bin has at least (1 − ε2)(1 − β)c honest players. Let β̃ denote the fraction
of players in K among the committee. Then, we have the following lemma.
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Lemma 4.2. E
[
β̃ | GOOD

]
≤ β

1−2ε .

For now assume that Lemma 4.2 holds and we explain why Theorem 4.1
follows from it. The proof of Lemma 4.2 appears right afterwards. By Chernoff
bound (Lemma 3.1) and the union bound,

Pr [GOOD] ≥ 1− n

c
exp

{
−ε

4

2
(1− β)c

}
. (2)

Combing Lemma 4.2 and (2), LBin-C is a (1 − 2ε, δ)-CSP-fair committee
election protocol by Definition 3.5.

Proof sketch of Lemma 4.2 We split into two cases. First, assume that
β ≥ ε. In this case, the claim follows directly from the assumption that GOOD
holds: The fraction of players in K among the committee must satisfy β̃ ≤
1− (1− ε2)(1− β) = β

(
1 + ε2

β − ε
2
)
≤ β

1−2ε as required.

Now, we focus on the case where β < ε. By the perfect binding property, at
the end of commit phase, player i’s bin choice are fixed. Let {bi}ni=1 denote the bin

choices of n players at the end of the commit phase. To compute E[β̃ | GOOD], we
define a random variable γ, which depends only on {bi}ni=1, that upper bounds

β̃ in an execution of LBin-C. Let b̃ ∈ [B] be the index of the bin that contains
least number of honest players; and b∗ ∈ [B] be index of the lightest bin at the

end of the commit phase. Note that by the way the protocol works, b̃ and b∗

depends only on {bi}ni=1. Below, for l ∈ [B], we use hl to denote the number of
honest players in bin l, and fl to denote the number of players in K in bin l.

Given the bin choices {bi}ni=1 at the end of the commit phase, the fraction of

players in K among the committee is at most γ :=
f
b̃

hb∗+fb∗
. This is because by

the perfect binding property and public verifiability of the commitment scheme,
the only way the coalition can deviate is essentially to refuse to open some of
their bin choices in the opening phase and get excluded at the end of Round
2, in order to change the lightest bin. To maximize the fraction of the coalition
in the committee, the best strategy for the coalition is to choose bin l = b̃,
which contains the least number of honest players. Since the number of honest
players in bin l is hl, the fraction of players in K in bin l = b̃, after excluding

the misbehaved players, is at most 1− h
b̃

fb∗+hb∗
≤ f

b̃

hb∗+fb∗
.

Therefore, to upper bound E[β̃ | GOOD], it suffices to bound E[γ | GOOD].
Since when GOOD happens, the number of honest players in every bin is at least
(1− ε2)(1− β)c, we have that

E[γ | GOOD] ≤ 1

(1− ε2)(1− β)n

B∑
l=1

E
[
fl | b̃ = l,GOOD

]
.

By the non-malleability of the commitment scheme, E[γ | GOOD] in the protocol
should be negligibly close to the conditional expectation of γ in an idealized
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world where the bin choices of the players in K are independent from the honest
players’ bin choices, i.e, b̃ is independent from f`. Therefore,

E[γ | GOOD] =
1

(1− ε2)(1− β)n

B∑
l=1

E [fl] + negl(λ) ≤ β

(1− ε2)(1− ε)
+ negl(λ),

where the last inequality comes from the assumption that β < ε. Putting to-

gether, the expectation E
[
β̃ | GOOD

]
in the committee election LBin-C is at

most β
(1−ε2)(1−ε) + negl(λ) ≤ β

1−2ε .

4.2 Electing Poly-logarithmically Sized Committees: Achieving
Maximin-Fairness

In Section 4.1 we gave a commit-and-reveal variant of Feige’s lightest bin pro-
tocol for committee election and showed that it is CSP-fair. The protocol is,
however, not maximin-fair. While the adversary cannot gain too much utility by
deviating from the protocol, it can still harm the utility of an honest individual.
Specifically, consider the following adversarial strategy. The coalition generates
commitments so that the coalition’s representations in each bin are equal. Then,
when it wants to target at a specific player i to not participate in the committee,
it waits to see which bin l was chosen by that honest party and then it refuses
to reveal commitments from some other bin l′ which will then be lighter than
the bin l chosen by honest player i. This attack prevents an honest individual i
from being elected into the committee.

By the properties of the commitment scheme and how our protocol works,
this is the only useful attack for the adversary. Thus, we modify our protocol to
withstand this attack by masking the identity of parties. Namely, we hide which
bin choice belongs to which party. We achieve this by requiring players to choose
a random virtual ID and use it throughout the execution. Players will only reveal
their virtual IDs at the end of the protocol, after the lightest bin has been fixed.
A-priori, it seems hard to implement such a system because once a party sends
its message, everybody knows who sent it (recall that we are in the broadcast
model). We overcome this by implementing an “anonymous” broadcast channel
on top of our existing broadcast channel.

Thus, we first describe our anonymous broadcast functionality F t,Oanon. Then,
we show that in a F t,Oanon-hybrid model, we can build a committee election protocol
that ensures CSP-fairness and maximin-fairness simultaneously.

Anonymous Broadcast Functionality Let O be the set of all players in-
volving in the protocol. Our anonymous broadcast functionality F t,Oanon works as
follows.

F t,Oanon: Anonymous broadcast with t-identifiable abort
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Parameters: O is the set of players involving in the protocol and t is a
bound on the number of misbehaved players to exclude.

Functionality:

1. Input: Every player i sends a single message mi or ⊥ to F t,Oanon.
2. Output: F t,Oanon computes a multiset Out = {mi : i ∈ O and mi 6= ⊥}.

If the number of corrupted players is smaller than t, send (ok,Out) to
everyone in O. Otherwise, send Out to the adversary A.
– If receives ok from A, F t,Oanon sends (ok,Out) to every honest player

in O.
– Otherwise, it receives a set D of corrupted IDs of size at least t from

the adversary A, and then send (fail,D) to every honest player in
O.

We say that an adversary A is admissible if 1) it sends only one message for
each corrupt player, and 2) it either sends ok, or a set of corrupted players
of size at least t in Step 2.

The functionality exhibits several appealing properties that are important
for us. Specifically, in the ideal functionality F t,Oanon, it holds that:

1. Each player can only send one message.
2. The coalition has to choose their messages independently from honest play-

ers’ messages.
3. The coalition cannot tell which honest player sends which message.
4. The output is either (ok,Out), or (fail,D) with a set D of size at least t.

Formal Description of the Protocol Here we present the formal description
of our lightest bin via anonymous broadcast protocol in the F t,Oanon-hybrid model.

LBin-V(c, n, β): Lightest Bin via Anonymous Broadcast

Parameters: Let c be an upper bound of the required committee and n is
the number of players. Fix B = dnc e as the number of bins. For simplicity,
we assume c divides n. Let O be initialized as [n] that denotes the set of
active players. β · n is the maximum size of the coalition for β ∈ (0, 1).

Building blocks: A publicly verifiable concurrent non-malleable commit-
ment as in Section 3.3, NMC.

Protocol:

1. Every player i randomly chooses a string vi ← {0, 1}λ as its virtual ID,
invokes n instances of NMC, and runs the commit phase with n receivers
to commit to (i, vi). Exclude those players who fail to commit.

2. Each player randomly chooses a bin bi ← [B] with fresh randomness,
and sets mi = (bi, vi). Broadcast mi using F t,Oanon with t = b(1− β)nc.
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– If the output is (fail,D), exclude the players in D from O (namely,
set O = O \ D). Then, the remaining players (i.e., those in the
updated O) re-run step 2.

– If the output is (ok,Out), go to the next step.
3. Let b∗ be the lightest bin. Every player opens its virtual ID (i, vi). Let
Ub∗ be the set of virtual IDs that are unique and choose the lightest bin
b∗. Those who open the (i, vi) successfully with vi ∈ Ub∗ are chosen to
be the committee.

Note that in LBin-V, players do not need to commit to their bin choices and then
open, since the functionality F t,Oanon guarantees that the malicious coalition has
to choose their messages, i.e., bin choices, independently from honest players’
messages. In the following theorem we show that the protocol LBin-V described
above is both maximin-fair and CSP-fair in the F t,Oanon-hybrid model.

Theorem 4.3. Assume that NMC is a publicly verifiable concurrent non-malleable
commitment as in Section 3.3. For any n, c ∈ N and ε ∈ (0, 1/2), β ∈ (0, 1),
the committee election protocol LBin-V(c, n, β) is a (1− ε, δ)-maximin-fair and a
(1−2ε, δ)-CSP-fair (c, n)-committee election 5 in the F t,Oanon-hybrid model, against
a coalition K of size βn, where

δ =
2n

(1− β)c
exp

{
−ε

4

2
(1− β)c

}
+ negl(λ).

Moreover, the round complexity of LBin-V is at most 2
1−β + 2.

Proof. Fix n, c, ε, and β as in the statement. Let Unique be the event that honest
players choose unique virtual IDs, and their virtual IDs do not collide with any
players in the coalition. Let GOOD be the event that in every execution of F t,Oanon

in Step 2, each bin has at least (1− ε2)(1− β)c honest players.
We use the following lemma to prove maximin-fairness and CSP-fairness.

The proof to the lemma appears afterward.

Lemma 4.4. Pr [Unique,GOOD] ≥ 1− δ.

Maximin-fairness Let Hi denote the event that an honest player i is chosen into
the committee. The claimed maximin-fairness follows from the following lemma.
The proof of the lemma appears below.

Lemma 4.5. Pr [Hi | Unique,GOOD] ≥ (1− ε)c/n.

Combining Lemmas 4.4 and 4.5, we have that LBin-V is a (1− ε, δ)-maximin-
fair committee election protocol against a coalition of size βn by Definition 3.7.

CSP-fairness Let β̃ denote the fraction of the coalition in the committee. Now,
the claimed CSP-fairness follows from the following lemma. The proof of the
lemma appears below.

5 Theorem 4.3 implies that the protocol LBin-V is a (1− 2ε, δ)-game-theoretic fairness
by Definition 3.7.
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Lemma 4.6. E
[
β̃ | GOOD,Unique

]
≤ β

1−2ε .

Combining Lemmas 4.4 and 4.6, we have that LBin-V is a (1−2ε, δ)-CSP-fair
committee election protocol against a coalition of size βn by Definition 3.5.

Proof sketch of Lemma 4.4 By the non-malleability property of the com-
mitment scheme, Pr[Unique] in an real execution of the protocol should be neg-
ligibly close to this probability in an idealized world where the virtual IDs of
players in K are chosen independently from honest players’ virtual IDs. There-
fore, Pr[Unique] = 1− negl(λ). By Chernoff’s bound (Lemma 3.1) and the union
bound over B bins, in a single execution of F t,Oanon, each bin contains at least

(1− ε2)(1− β)c honest players with probability p = 1− n
c exp

{
− ε

4

2 (1− β)c
}

.

Each time F t,Oanon is invoked, it either outputs ok or wipes out a set of players
in the coalition of size at least t. Since t = b(1 − β)nc, we will run at most

βn
b(1−β)nc <

2
1−β rounds of F t,Oanon. Hence, Pr[GOOD,Unique] ≥ p

2
1−β (1− negl(λ)).

Lemma 4.4 thus follows.

Proof sketch of Lemma 4.5 In LBin-V, the players choose their bins in Step 2
with their virtual IDs and broadcast the bin choices using F t,Oanon. By the property
of the functionality, in each execution of F t,Oanon, the coalition has to choose their
bins independently from honest players’ bin choices. If the coalition chooses to
fail a call to F t,Oanon, honest players will choose bins with fresh randomness in
the next call to F t,Oanon. Therefore, the coalition’s strategy Sl of whether to fail
the l-th call to F t,Oanon in Step 2 depends only on the output of the first l calls
Out1, . . . ,Outl to F t,Oanon, and the view viewcomm

K of the coalition K in Step 1. Still,
we use H to denote the set of honest players, where |H| = n− βn.

Let L denote the total number of F t,Oanon calls. Now consider the l-th call to
F t,Oanon. Let Hi,j denote the event that honest player i chooses bin j in that F t,Oanon

call. Since honest players choose their bins independently in different calls to
F t,Oanon, it follows that

Pr [Hi,j | Out1, . . . ,OutL, viewcomm
K , S1, . . . , SL] = Pr [Hi,j | Outl, viewcomm

K ] .

By the non-malleability and the anonymity of F t,Oanon, the map between the
honest virtual ID and the honest players’ identity remains hidden from the coali-
tion K. For j ∈ [B], we use Vj to denote the set Vj = {vi : (vi, j) ∈ Outl}, i.e.,
the set of virtual IDs choosing bin j. Then we have

Pr[Hi,j | Outl = {(vi, bi)}i∈[n], viewcomm
K = v] ≥ hj

|H|
− negl(λ),

where hj is the number of honest players in bin j. Given the assumption that
GOOD happens, hj ≥ (1 − ε2)(1 − β)c for every j ∈ [B]. Let viewK denote the
view of the adversary at the end of Step 2, which includes viewcomm

K , all the
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outputs Out1, . . . ,OutL, as well as A’s strategy S1, . . . , SL. Then, the lightest
bin b∗ is deterministic given viewK . For any i ∈ H we have

Pr[Hi | GOOD] =
∑
j∈[B]

Pr [Hi,j , b
∗ = j | GOOD] ≥ (1− ε2)c

n
− negl(λ).

Therefore, at the end of Step 2, the probability that an honest player i’s virtual
ID is in the lightest bin b∗ is at least (1− ε2)c/n − negl(λ). This implies that
the honest player i will be elected into the committee with a probability at least
(1− ε2)c/n− negl(λ) ≥ (1− ε)c/n, given that GOOD and Unique happens.

Proof sketch of Lemma 4.6 The proof to this Lemma is similar to the proof
of Lemma 4.2, except that honest players’ bin choices are now hidden from the
coalition by the anonymous broadcast functionality F t,Oanon.

5 Fairness Amplification Though Iteration

This section gives our final game-theoretically fair committee election and leader
election protocols to select arbitrary committee size with good fairness parame-
ters. The committee election protocol LBin-V introduced in Section 4.2 does not
achieve fairness with good parameter for arbitrary committee size. For example,
if we want to choose a log log n-sized committee from n players using LBin-V,
the probability that the GOOD event does not happen is upper bounded by

n
log logn exp{− ε

4

2 log log n}, which is even larger than 1. This makes LBin-V not
fair enough for electing a small sized-committee.

Therefore, to build a fair committee election protocol that works for arbitrary
committee size, we compose LBin-V for multiple iterations, and combine it with
the tournament tree protocol if necessary.

We first give the formal description of the tournament tree protocol and its
“almost perfect” fairness. Then we give our final committee election protocol
that achieves game-theoretic fairness for arbitrary committee size.

5.1 Preliminary: Fairness of Tournament Tree Protocol

This section gives a formal description of the tournament tree protocol.

Tournament tree protocol Tourn(O)

Let n be the size of O.

– If n = 1, return the single player in O.
– Otherwise, let n1 = bn2 c and n2 = dn2 e. Let O1 be the first n1 players

in O and O2 be the remaining players.
– In parallel, run Tourn(O1) and Tourn(O2), and denote the output as O1

and O2, respectively.
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– The final winner is determined by the duel protocol between O1 and O2

such that Oi wins with probability ni/n. This is described below.

Duel Protocol between O1 and O2

Let k1
k1+k2

and k2
k1+k2

be the probability that player O1 and O2 wins, respec-
tively.

– Let k = k1 + k2, and ` = dlog ke. Each player Oi commits to an `-bit
random string that represents some si ∈ Zk−1 for i = 1, 2.

– Each player Oi opens its commitment and reveals si. If s1+s2 mod k ∈
{0, . . . , k1 − 1}, player O1 wins. Otherwise, O2 wins.

– If a player aborts or fails to open the commitment correctly, it is treated
as forfeiting and the other player wins.

Lemma 5.1 (Theorem 3.5 of Chung et al. [CCWS21]). Let n be the number
of players and λ be the security parameter. Then, the tournament-tree protocol,
when instantiated with a suitable publicly verifiable, non-malleable commitment
scheme as defined in Section 3.3, satisfies (1 − negl(λ))-CSP-fairness and (1 −
negl(λ))-maximin-fairness against coalition of arbitrarily sizes. Moreover, the
round complexity is O(log n).

5.2 Our Final Game-Theoretically Fair Committee Election

In this section, we give our fair committee election protocol that works for arbi-
trary committee size. Our final protocol runs multiple iterations of LBin-V and
combines it with the tournament tree protocol if necessary. The F t,Oanon ideal func-
tionality in LBin-V can be instantiated in real-world cryptography, with only a
constant round blowup. The instantiation will be given in Section 6 in supple-
mentary materials.

Let c be the upper bound of the committee size we want to achieve. The final
committee election is given below.

Committee election protocol CElect(n, c)

Parameter: Let c be the upper bound of the committee size and R be the
round complexity we want to achieve. The initial committee is C0 = [n],
c0 = n. The fraction of the coalition is β0 = β. If c ≥ 2R, let L ≤ R be the
smallest integer such that log(L) n ≤ c0.1 and ε = 1

c0.1 ; otherwise, set L ≤ R
be the smallest integer such that log(L) n ≤ 2R and ε = 1

2R
.

Protocol

1. For ` = 1, . . . , L− 1:
– Let c` = (log(`) n)10, O = C`−1, β` = β`−1(1− ε2) + ε2.
– Run LBin-V(c`, C`−1, β`−1). That is, we choose a committee C` of

size c` = (log(`) n)10 from C`−1.
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– ` = `+ 1.
2. If c ≥ 2R, set cL = c; otherwise, set cL = 211R. Run the committee

election protocol LBin-V(cL, CL−1, βL−1) to elect a committee CL of size
at most cL.

3. If cL ≥ c, run c number of parallel instances of Tournsid(CL) for sid ∈ [c].
Let the final committee be the set of elected leaders in these c instances
of tournament tree protocol.

Note that in the protocol, β` is just a parameter that passes to LBin-V,
together with c and O. It is not the real fraction of the coalition in committee
C`. Instead, it is the upper bound of the real fraction of the coalition in C` if
good event happens in each round up to `. The parameter β` is only used to set
the parameter t of F t,Oanon in the `-th LBin-V call.

Theorem 5.2. Assume the existence of enhanced trapdoor permutations and
collision-resistant hash functions. Fix n and c. Let L∗ be the smallest integer
such that log(L∗) n ≤ c. Then for any L∗ ≤ R ≤ C0 log n for some constant C0,
we have that

– If c ≥ 2R, there exists an O(R)-round committee election that achieves (1−
1

cΘ(1) )-game-theoretic fairness against a non-uniform p.p.t. coalition of size

at most (1− L∗

Θ(R) )n.

– If c < 2R, there exists an O(R)-round committee election that achieves (1−
1

2Θ(R) )-game-theoretic fairness against a non-uniform p.p.t. coalition of size

at most (1− L
Θ(R) )n, where L is the smallest integer such that log(L) n ≤ 2R.

Our final leader election protocol can be gained directly by picking c = 1 in
Theorem 5.2.

Theorem 5.3. Assume the existence of enhanced trapdoor permutations, and
collision-resistant hash functions. Fix n and let log∗ n ≤ R ≤ C log n be the
round complexity we want to achieve for some constant C. Then there exists
an O(R)-round leader election that achieves (1− 1

2Θ(R) )-game-theoretic fairness

against a non-uniform p.p.t. coalition of size at most (1 − L
Θ(R) )n, where L is

the smallest integer such that log(L) n ≤ 2R.

The full proof of Theorem 5.2 and Theorem 5.3 are available in the full version.

6 Instantiation of the Ideal Functionalities

In this section, we show how to instantiate the ideal functionalities F t,Oanon used
in committee election LBin-V. Recall that the ideal functionality F t,Oanon receives
one message from each player and either sends the set of all messages it receives
to everyone or a set of corrupt players of size at least t to everyone. We will first
give our protocol in a IdealZK∗-hybrid model in which players have access to an
ideal zero-knowledge proof functionality. Then we use the elegant techniques of
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Pass [Pas04] to instantiate the protocol with real-world cryptography. Next. we
will first describe the IdealZK∗ functionality in Section 6.1, and then we will give
our protocol in the IdealZK∗-hybrid world in Section 6.2.

6.1 Ideal Zero-Knowledge Functionality IdealZK∗

Basically, IdealZK∗ either sends success to everyone indicating that the proof is
correct, or the identity of the prover/verifier who leads to the failure of the proof.
Formally,

Ideal Zero-knowledge Functionality IdealZK∗[x, L, i, j]
The functionality involves n parties 1, . . . , n, and is parametrized with

a statement x, the language L, the prover’s identity i and the verifier’s
identity j.

1. If both the prover i and the verifier j are corrupted, receive a bit b from
the prover i. If b = 1, send (success, i, j) to everyone.

2. Receive ok or ⊥ from the verifier j.
3. If received ⊥ from the verifier, send (fail, j) to everyone.
4. Receive w or ⊥ from the prover.
5. If R(x,w) = 1, send (success, i, j) to everyone. Otherwise send (fail, i)

to everyone.

In an n-party IdealZK∗-hybrid protocol, the players can invoke the ideal zero-
knowledge functionality IdealZK∗[x, L, i, j] between any prover i ∈ [n] and any
verifier j ∈ [n], and for arbitrary NP language L. Without loss of generality, in
every round, there can be at most n2 concurrent invocations of IdealZK∗. Given
an n-party IdealZK∗-hybrid protocol, we can instantiate IdealZK∗ with actual
cryptography using the elegant techniques suggested by Pass [Pas04].

Theorem 6.1. (Constant-round, bounded concurrent secure computation [Pas04]).
Assume the existence of enhanced trapdoor permutations and collision-resistant
hash functions. Then, given an n-party IdealZK∗-hybrid protocol Π∗, in which
the number of concurrent calls of IdealZK∗ is upper bounded by a priori known
bound m = poly(λ), there exists a real-world protocol Π such that the following
hold:

– Simulatability: For every real-world non-uniform p.p.t. adversary A con-
trolling an arbitrary subset of up to n− 1 players in Π, there exists a non-
uniform p.p.t. adversary A∗ in the protocol Π∗, such that for any input
(x1, . . . , xn), every auxiliary string z ∈ {0, 1}∗,

ExecΠ,A(1λ, x1, . . . , xn, z) ≡c ExecΠ
∗,A∗

(1λ, x1, . . . , xn, z).

In the above, the notation ExecΠ,A (or ExecΠ
∗,A∗

) outputs each honest play-
ers’ outputs as well as the corrupt players’ (arbitrary) outputs.
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– Round efficiency: The round complexity of Π is at most a constant factor
worse than that of Π∗.

This real-world protocol is fulfilled by replacing the IdealZK∗ instance with
the bounded concurrent zero-knowledge proofs. All the zero-knowledge proof
messages are posted to the broadcast channel. The full proof of Theorem 6.1 is
available in the full version.

Now it suffices to show how to replace F t,Oanon with a protocol Anont,O in the
IdealZK∗-hybrid world. In the protocol, we will omit the language L when it is
clear from the context.

6.2 Implementing Anonymous Broadcast Functionality

In this section, we describe how to implement F t,Oanon in the IdealZK∗-hybrid
model. The protocol makes use of a perfect binding, statistically hiding commit-
ment scheme comm. Also, every player keeps track of two sets, Ds and Dr, the
set of players who fail to share and the set of players who fail to reconstruct,
respectively, to guarantee the identifiable abort property. Still, we use K to rep-
resent the set of corrupted players, H to represent the set of honest players. The
number of parallel sessions is set to be λ. The protocol Anont,O is given below.

Anont,O: instantiating F t,Oanon in the IdealZK∗ -hybrid world

Parameters: Let M = 2n be the number of slots. Let Ds, Dr and Out be
initially empty sets. Without loss of generality we assume that O = [n].

Building blocks: A perfectly binding, computationally hiding commitment
scheme comm.

Input: Each player has an input mi ∈ F for a finite field F with size
larger than 2λ. The sum of tuples is computed entry-wise, i.e., (a1, b1, c1) +
(a2, b2, c2) = (a1 + a2, b1 + b2, c1 + c2).

Preparation Phase Run the following for λ independent, parallel sessions:

1. Player i uniformly randomly choose a nonce midi ∈ F. It then uniformly
randomly chooses a slot li ← [M ] and computes a vector Si ∈ (F3)M

such that Si[l] = (0, 0, 0) if l 6= li, and Si[l] = (mi,midi, 1) if l = li.
2. Player i then splits Si into (n − t)-out-of-n Shamir secret shares. Let

Xi,j be the j-th share of Si. Let X̂i,j = comm(Xi,j , ri,j) where ri,j are

fresh randomness. Broadcast the commitments {X̂i,j}j∈[n].
3. If a player i fails to broadcast the commitments, add i to the set Ds.

Validation Phase For sid ∈ [λ], let ∗sid denote the variable ∗ in session
sid . Player i invoke IdealZK∗[stmti, i, j] for each j ∈ [n], with the state-

ment stmti = {X̂sid
i,j }j∈[n],sid∈[λ], and send the witness w = (mi,midi,

{Ssid
i }sid∈[λ], {Xsid

i,j , r
sid
i,j }j∈[n],sid∈[λ]) to prove that



log∗-Round Game-Theoretically-Fair Leader Election 27

– For each sid ∈ [λ], for each j ∈ [n], (Xsid
i,j , r

sid
i,j ) is the correct opening

of X̂sid
i,j ;

– For each sid ∈ [λ], {Xsid
i,j }j∈[n] forms a valid (n − t)-out-of-n secret

sharing of Ssid
i ;

– For each sid ∈ [λ], the vector Ssid
i contains only one non-zero slot

(mi,midi, 1).

For each i ∈ [n], if there exists a j that IdealZK∗[stmti, i, j] outputs (fail, i),
i.e., the prover fails to prove the statement to receiver j, add i to the set
Dsid
s for all sid ∈ [λ].

Sharing phase Continue the following for λ independent, parallel sessions:

1. For j ∈ [n], player i sends (Xi,j , ri,j) to player j.
2. Player i does the following: for every j ∈ [n] \ Ds, if it receives a mes-

sage (Xj,i, rj,i) that is a correct opening with respect to X̂j,i, record
(Xj,i, rj,i) and broadcast (ok, i, j). Otherwise, broadcast (complain, i, j)
to complain about j.

3. Player i does the following: for all j such that there is a complain
(complain, j, i) in Step 2, player i broadcasts the corresponding opening
(i, j,Xi,j , ri,j).

4. Unless player i broadcasts all correct openings for those players who
has sent (complain, j, i) to complain about i, add i to the set Ds.

5. Player i does the following: for j ∈ [n]\Ds, if player i sent (complain, i, j)
in Step 2, and j broadcast a correct opening (Xj,i, rj,i) in Step 3. then
record the correct opening (Xj,i, rj,i).

Reconstruction Phase Run the following for λ independent, parallel sessions:

1. Player i computes Yi =
∑
j∈[n]\Ds Xj,i and broadcast Yi. If a player j

fails to broadcast, add j to the set Dr.
2. Player i does the following for each j ∈ [n]: invoke IdealZK∗[stmt′i, i, j]

with the statement stmt′i = (Ds,Yi, {X̂j,i}j∈[n]\Ds). It sends the witness
w′ = ({Xj,i, rj,i}j∈[n]\Ds) to the ideal functionality IdealZK∗ to prove
that
– For any j ∈ [n] \ Ds, (Xj,i, rj,i) is a correct opening of X̂j,i;
– Yi =

∑
j∈[n]\Ds Xj,i.

3. If there exists a j such that IdealZK∗[stmt′i, i, j] outputs (fail, i), i.e., the
prover fails to prove the statement to receiver j, add i to the set Dr.

4. If |Dr| ≥ t, everyone stores (fail,Dr ∪ Ds) for the reconstruction phase
of this session.

5. Otherwise, every player uses all broadcast shares {Yi}i∈[n]\Dr to re-
construct the sum S =

∑
i/∈Ds Yi. Store (ok,S) for the reconstruction

phase of this session.
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Output Phase For each sid ∈ [λ], we use (fail,Dsid) or (ok,Ssid) to denote
the value each player stores in the reconstruction phase of session sid . Each
player i does the following:

1. If there is a sid ∈ [λ] such that player i stores (fail,Dsid) for that
session, outputs (fail,∪sid∈[λ]Dsid), whereDsid = ∅ for those successfully
reconstructed sessions.

2. Otherwise, each player does the following: We say that (m,mid) appears
in session sid if there exists a slot l ∈ [M ] such that Ssid [l] = (m,mid, 1).
For each pair (m,mid) that appears in a majority number of sessions,
add a copy of m to Out.

3. Output (ok,Out).

Theorem 6.2. If the commitment scheme comm is perfectly binding and com-
putationally hiding, then Anont,O securely realizes F t,Oanon in the IdealZK∗-hybrid
model as long as |O| − t ≥ |K|. Moreover, Anont,O runs in constant number of
rounds.

The full proof of the above theorem is available in the full version.
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