
PI-Cut-Choo and Friends: Compact Blind
Signatures via Parallel Instance Cut-and-Choose

and More

Rutchathon Chairattana-Apirom2, Lucjan Hanzlik1, Julian Loss1 ,

Anna Lysyanskaya2 , and Benedikt Wagner1

1 CISPA Helmholtz Center for Information Security
Saarbrücken, Germany

{hanzlik,loss,benedikt.wagner}@cispa.de
2 Brown University

Providence RI 02906, USA
rutchathon_chairattana-apirom@alumni.brown.edu,anna_lysyanskaya@brown.edu

Abstract. Blind signature schemes are one of the best-studied tools for
privacy-preserving authentication. Unfortunately, known constructions
of provably secure blind signatures either rely on non-standard hardness
assumptions, or require parameters that grow linearly with the number of
concurrently issued signatures, or involve prohibitively inefficient general
techniques such as general secure two-party computation.

Recently, Katz, Loss and Rosenberg (ASIACRYPT’21) gave a technique
that, for the security parameter n, transforms blind signature schemes
secure for O(logn) concurrent executions of the blind signing protocol
into ones that are secure for any poly(n) concurrent executions.

This transform has two drawbacks that we eliminate in this paper:
1) the communication complexity of the resulting blind signing protocol
grows linearly with the number of signing interactions; 2) the resulting
schemes inherit a very loose security bound from the underlying scheme
and, as a result, require impractical parameter sizes.

In this work, we give an improved transform for obtaining a secure
blind signing protocol tolerating any poly(n) concurrent executions from
one that is secure for O(logn) concurrent executions. While preserving
the advantages of the original transform, the communication complexity
of our new transform only grows logarithmically with the number of
interactions. Under the CDH and RSA assumptions, we improve on this
generic transform in terms of concrete efficiency and give (1) a BLS-based
blind signature scheme over a standard-sized group where signatures
are of size roughly 3 KB and communication per signature is roughly
120 KB; and (2) an Okamoto-Guillou-Quisquater-based blind signature
scheme with signatures and communication of roughly 9 KB and 8 KB,
respectively.
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1 Introduction

In 1982, David Chaum introduced blind signature schemes in the context of
electronic cash [9]. A blind signature scheme is a cryptographic primitive in
which a signer can interactively sign a message held by a user. Informally, a blind
signature scheme must satisfy two security requirements [23,30]. Blindness: the
signer should not be able to see what message is being signed. Unforgeability: The
user should only be able to obtain valid signatures by interacting with the signer.
Classical applications of blind signature schemes include e-cash [9,28], anonymous
credentials [6,7] and e-voting [19]. Recently, blind signatures have also been used
to add privacy features to blockchain-based systems [22]. Despite this variety
of promising applications, the current state-of-the art is unsatisfactory. This is
because even in the random oracle model, schemes with reasonable efficiency are
either based on non-standard assumptions [4,2,11] or have parameters that grow
linearly in the number of concurrent signing interactions [30,20,3,25]. The main
goal of this work is to construct blind signature schemes from well-established
assumptions with concurrent security and practically efficient parameter sizes.

State-of-the-Art. Juels, Luby and Ostrovsky showed that blind signature
schemes can be built generically from any secure signature scheme using secure
two-party computation [23]. Their construction was only shown secure when
signatures were issued sequentially. However, typically one aims for the stronger
notion of concurrent security. Fischlin [10] achieved this by giving universally
composable blind signatures from commitment schemes and UC zero-knowledge
proofs; but it is not clear how to instantiate these generic constructions efficiently.
While it is tempting to instantiate these schemes with efficient signature schemes
in the random oracle model, the security implications of such an instantiation
are unclear. This is because such an instantiation would imply the use of the
random oracle as a circuit, which constitutes a non-standard use of the random
oracle model. We refer to the recent work of [1] which discusses these issues in
more detail.

In the standard model, a variety of blind signature schemes have been proposed.
These schemes are either inefficient as they rely on complexity leveraging [14] or
rely on strong q-type or non-interactive assumptions [27,15,11,16].

Unfortunately, even in the random oracle model, the situation does not
improve much. While there are simple constructions [4,2,30,20,21], they either
require similar non-standard assumptions as their standard model counterparts
[4,2] or support only a very small number of signatures per public key [30,20,21,3].

As a first step to overcome these limitations, Katz, Loss, and Rosenberg
(KLR) [25] showed how to use a cut-and-choose technique to boost the security
of these blind signature schemes in the random oracle model. Their approach
is based on an early work by Pointcheval [29]. The resulting schemes support
polynomially many concurrent signature interactions and are based on standard
assumptions. However, the communication between the signer and the user still
grows linearly with the number of signature interactions, which renders the
scheme impractical.
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We note that relying on the algebraic or generic group model [12,32] yields
better composition and efficiency, as recent works [13,24,33] show. However, these
models are best avoided as they are non-standard.

Our Goal. In this work, we advance the state of the art by giving the first blind
signature schemes in the random oracle model that do not suffer from any of the
above drawbacks. Our main research question can be summarized as follows:

Are there practical and concurrently secure blind signatures from well-established
hardness assumptions which support polynomially many signatures?

1.1 Starting Point: The Basic Boosting Transform

We answer this question in the affirmative. We propose several new techniques
which reduce the size and communication complexity of blind signatures in the
random-oracle model.

Before we explain our techniques, we briefly recall the KLR transform [25],
which will serve as our starting point. The KLR transform can be applied to a
blind signature scheme BS in which the user sends a single message and which
supports a logarithmic number of signing sessions. The transformed scheme CCBS
supports polynomially many signing sessions and achieves the same notion of
blindness as BS. We briefly recall the main ideas of CCBS before explaining our
improved version:

– In the N th signing interaction, the Signer and the User initiate N sessions of
the underlying scheme BS. In the ith session, a commitment µi of the actual
message is signed.

– The User commits to its randomness ρi for the ith session using a commitment
comi = H(ρi), where H is a hash function (modeled as a random oracle). It
sends comi together with its (only) message in the ith session of BS.

– The Signer picks a session J ∈ [N ] uniformly at random and has the User
open the randomness to all commitments comi, i ∈ [N ] \ {J}.

– If the User cannot open one of these commitments, the Signer aborts. Other-
wise, the Signer and User complete the J th session as in BS.

The proof of one-more unforgeability for CCBS is by reduction to the one-more
unforgeability of BS. The reduction’s goal is to turn a one-more forgery against
CCBS into a one-more forgery against BS. To do so, the reduction must answer
all signing queries of the User without knowing the secret key sk of the Signer in
BS. It is further restricted by the fact that it may invoke the Signing oracle in
the underlying security game for BS only logarithmically many times.

To bypass these restrictions, the reduction heavily relies on its capability of
observing the inputs to the random oracle and programming it accordingly. Sup-
pose that the the User behaves honestly in Session J , i.e., it uses the randomness
in comJ to compute its message in the J th session of BS. Then the reduction
can extract the random coins from the commitments and use random oracle
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programming to complete this session without knowing sk. If, on the other hand,
the User cheats, then the reduction can not use this technique and must ask the
Signing oracle in BS for help.

KLR’s key observation is that the probability of such a (successful) cheat is
at most 1/N in the N th signing session. Thus, the expected number of successful
cheats in p interactions is at most

∑
N≤p+1 1/N < ln(p+ 1). Using the Chernoff

bound, one can show that with overwhelming probability, the number of successful
cheats is reasonably close to this expectation. Hence, the signing oracle in the
underlying OMUF game of BS needs to be invoked only a logarithmic number of
times.
Limitations. Although CCBS exponentially increases the security of the under-
lying blind signature scheme BS, this comes at a steep price in terms of efficiency:
the communication in the resulting scheme grows linearly with the number N
of issued signatures. This arguably renders CCBS impractical. In addition, the
number of times that the reduction from one-more unforgeability of BS requires
invoking the underlying signing oracle behaves as ln(1/ε). Here, ε is the advantage
of the adversary in breaking one-more unforgeability of CCBS. For small sizes of
ε (say, 2−128), this leads to impractical parameter sizes for BS. As an example, if
CCBS is applied to the Schnorr blind signature scheme, our calculations show
that the resulting scheme will require groups with a 12000 bit representation.

1.2 Our Contribution: Improved Boosting Transforms

As our first contribution, we present a new generic transform to boost the security
of blind signature schemes fitting the linear function family framework of Hauck,
Kiltz and Loss (HKL) [20]. This is based on three insights, as follows. (1) In the
N th signing session, the User can derive the random coins for the ith instance via
ρi := PRF(k, i), where PRF denotes a puncturable pseudorandom function [31]3.
The User can now commit to all its randomness as in CCBS. To open the
commitments comi, i ∈ [N ] \ {J}, the User provides the punctured key kJ . From
this key, the Signer can deterministically recompute all the commitments, save for
comJ . (2) We use a randomness homomorphic commitment scheme to construct
the µi as rerandomizations of one initial commitment µ0 that is sent to the
signer. The rerandomization is also determined by PRF, which implies that kJ
also reveals µi for i 6= J without revealing µJ . (3) To compress the N messages
from the Signer to the User, we use the homomorphic properties of HKL blind
signatures and derive N first messages of the underlying blind signature from
logN randomly chosen ones. These insights allow us to lower the communication
complexity of the resulting blind signature scheme from linear to logarithmic in
the number N of signing sessions4.

Our results have better blindness guarantees than schemes from the KLR
transform. A KLR-transformed blind signature scheme has the same blindness
3 We instantiate PRF efficiently using random oracles [18].
4 In a different context, namely secure multi-party computation, the combination of
puncturable pseudorandom functions and cut-and-choose has been used before
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as its underlying scheme; for many of the schemes underlying it, only so-called
honest signer blindness was known [20], where the Signer’s public key is generated
honestly. A much more desirable notion is malicious signer blindness, in which
the Signer is free to pick his public key adversarially. We show how to achieve
this notion using a three step approach. First, we show that the schemes in [20]
satisfy a slightly stronger (artificial) notion of blindness without any modification.
In this intermediate notion (called semi-honest signer blindness), the Signer
provides the random coins to generate the public key to the experiment. Next,
we show that our improved boosting transform preserves any notion of blindness,
including the new one. We then show that by having the signer prove knowledge
of the random coins we can transform any scheme that satisfies the intermediate
notion into a scheme that satisfies malicious signer blindness.

Practical Schemes from CDH and RSA. Even though our generic transform
is an exponential improvement over the state-of-the-art, it still results in schemes
that require mega bytes of communication when the number of signatures becomes
large (say 230). On top of this, our generic transform would require large (to the
point of being currently impractical) group sizes. To overcome these limitations,
we give concrete, 128-bit secure, practical blind signature schemes that satisfy
concurrent one-more unforgeability under the CDH and RSA assumptions. We
summarize the parameter sizes in Table 1.

Scheme Nr. of Signatures |pk| |σ| a b Max
BSRSA (Section 5) 220 18.37 7.91 0.02 7.11 7.51
BSRSA (Section 5) 230 18.74 8.66 0.02 7.48 8.08

PIKACDH (Section 4) 220 3.68 3.16 3.05 26.50 87.50
PIKACDH (Section 4) 230 3.90 3.16 3.05 26.73 118.20

Table 1. Concrete efficiency of our schemes supporting a given number of signatures
and 128 bit security. Here, communication complexity is given as a · log(N) + b, where
N is the number of issued signatures so far. Column Max shows the communication
complexity for the maximum N . All sizes are in KiloBytes.

Our scheme from CDH is statistically malicious signer blind and builds on
Boldyreva’s blind version of the BLS signature scheme [4] (which is secure under
a one-more version of CDH). We observe that by running our boosting transform
for several independent keys in parallel, we can ensure that with overwhelming
probability, there will be at least one key for which the User is never able to
cheat the Signer. We can leverage this into a reduction that embeds the challenge
key pk randomly into one of these keys. Then, with high probability, no cheat
ever occurs for pk and the reduction can carry out the simulation without having
to ever invoke the signing oracle from the underlying one-more unforgeability
experiment. This makes it possible to run the scheme with a standard sized group
and assuming no more than hardness of the CDH problem. To reduce the size
of our resulting signatures, we can use the aggregatability of the BLS scheme.
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Overall, our scheme from CDH supports 230 signatures at a size of 3KB and
120KB communication per signature.

Our scheme from RSA does not use parallel repetitions to reduce parameter
sizes. Instead, we use the trapdoor provided by the RSA system to improve
communication complexity of the generic transform. In this way, the Signer can
send a single seed from which the User can deterministically derive several values.
The Signer, who needs to know the preimages of these values, can then simply
use its trapdoor to learn these preimages and proceed with the remainder of the
signing protocol. Overall, our scheme from RSA is statistically semi-honest signer
blind and supports 230 signatures at a more balanced size of 9KB per signature
and 8KB communication per signature. To upgrade it to malicious signer blindness
we can either rely on generic proof systems, or on more efficient ones based on
quadratic residuosity [17] or discrete logarithms [8].5 We emphasize, however, that
using proofs from general complexity assumptions may be sufficiently efficient
in our context, as the proofs only have to be generated and verified once upon
registering the Signer’s public key. Therefore, they do not affect the complexity
of the signing protocol or the size of our signatures.

2 Preliminaries

The security parameter is n ∈ N. All algorithms get 1n implicitly as input. For
a finite set S, we write x←$S if x is sampled uniformly at random from S.
For a distribution D, we write x ← D if x is sampled according to D. For a
(probabilistic) algorithm A, we write y ← A(x), if y is output from A on input x
with uniformly sampled random coins. We write y = A(x; ρ) to make the random
coins ρ explicit, and y ∈ A(x) means that y is a possible output of A(x). An
algorithm is said to be PPT if its running time can be bounded by a polynomial
in its input size. We say that a function f : N→ R+ is negligible in its input n, if
f ∈ n−ω(1). For a security game G, we write G⇒ b to indicate that G outputs
b. We denote the first K natural numbers by [K] := {1, . . . ,K}, Euler’s totient
function by ϕ and the group of units in ZN by Z∗N .

Next, we introduce the cryptographic primitives that we need. We make use
of the well-known computational assumptions CDH and RSA. For the definition
of puncturable pseudorandom functions, we follow [31].

Definition 1 (Puncturable Pseudorandom Function). A puncturable pseu-
dorandom function (PPRF) is defined to be a triple of PPT algorithms PRF =
(Gen,Puncture,Eval) with the following syntax:

– Gen(1n, 1d(n)) takes as input the security parameter 1n, an input length 1d(n)

and outputs a key k.
– Puncture(k,X) takes as input a key k and a polynomial size set ∅ 6= X ⊆
D = {0, 1}d(n) and outputs a punctured key kX .

5 If we rely on these proof systems, our scheme can be proven secure assuming that
both the RSA assumption and either of these assumptions hold.
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– Eval(k, x) is deterministic, takes a key k and an element x ∈ D as input and
outputs an element r ∈ R = {0, 1}r(n)

.

Further, the following security and completeness properties should hold:

– Completeness of Puncturing. For any d(n) = poly(n), X ⊆ {0, 1}d(n),
any k ∈ Gen(1n, 1d(n)), any kX ∈ Puncture(k,X) and any x′ /∈ X we have
Eval(k, x′) = Eval(kX , x′).

– Pseudorandomness. For any d(n) = poly(n) and any PPT algorithm A
the following is negligible:

|Pr

A(St, kX , (rx)x∈X) = 1

∣∣∣∣∣∣
(X,St)← A(1n), k ← Gen(1n, 1d(n)),
kX ← Puncture(k,X),
rx := Eval(k, x) for x ∈ X


−Pr

A(St, kX , (rx)x∈X) = 1

∣∣∣∣∣∣
(X,St)← A(1n), k ← Gen(1n, 1d(n)),
kX ← Puncture(k,X),
rx←$ {0, 1}r(n) for x ∈ X

 |.
We define a special type of perfectly hiding commitment scheme in which the
randomness can be rerandomized publicly. Such commitment schemes can be
easily constructed from standard assumptions. For that, we refer to the full
version.

Definition 2 (Randomness Homomorphic Commitment Scheme). A
randomness homomorphic commitment scheme is a tuple of PPT algorithms
CMT = (Gen,Com,Translate) with the following syntax:

– Gen(1n) takes as input the security parameter 1n and outputs a commitment
key ck. We assume that ck implicitly defines a message space Mck and a
randomness space Rck. Further, we assume that Rck is a group with respect
to an efficiently computable group operation +.

– Com(ck, x; r) takes as input a key ck, an element x ∈ Mck, a randomness
r ∈ Rck and outputs a commitment µ ∈ {0, 1}∗.

– Translate(ck, µ, r) is deterministic, takes a key ck, a commitment µ ∈ {0, 1}∗,
and a randomness r ∈ Rck as input and outputs a commitment µ′.

Further, the following security and completeness properties should hold:

– Completeness of Translation. For any ck ∈ Gen(1n), and x ∈Mck and
any r, r′ ∈ Rck, we have

Translate(ck,Com(ck, x; r), r′) = Com(ck, x; r + r′).

– Perfectly Hiding. For any key ck and any x0, x1 ∈ Mck, the following
distributions are identical:

{(ck, x0, x1, µ) | r←$Rck, µ := Com(ck, x0; r)} and
{(ck, x0, x1, µ) | r←$Rck, µ := Com(ck, x1; r)} .
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– Computationally Binding. For any PPT algorithm A, the following is
negligible:

Pr
[

Com(ck, x0; r0) = Com(ck, x1; r1) ∧ x0 6= x1

∣∣∣∣ ck← Gen(1n),
(x0, r0, x1, r1)← A(ck)

]
.

Next, we define the primitive of interest, namely blind signature scheme.

Definition 3 (Blind Signature Scheme). A blind signature scheme BS =
(Gen,S,U,Ver) is a quadruple of PPT algorithms, where

– Gen(1n) takes as input the security parameter 1n and outputs a pair of keys
(pk, sk). We assume that the public key pk defines a message spaceM =Mpk
implicitly.

– S and U are interactive algorithms, where S takes as input a secret key sk
and U takes as input a key pk and a message m ∈M. After the execution, U
returns a signature σ and we write (⊥, σ)← 〈S(sk),U(pk,m)〉.

– Ver(pk,m, σ) is deterministic and takes as input public key pk, message
m ∈M, and a signature σ, and returns b ∈ {0, 1}.

We say that BS is complete if for all (pk, sk) ∈ Gen(1n) and all m ∈Mpk it holds
that

Pr [Ver(pk,m, σ) = 1 | (⊥, σ)← 〈S(sk),U(pk,m)〉] = 1.

Definition 4 (One-More Unforgeability). Let BS = (Gen,S,U,Ver) be a
blind signature scheme and ` : N → N. For an adversary A, we consider the
following game `-OMUFABS(n):

1. Sample keys (pk, sk)← Gen(1n).
2. Let O be an interactive oracle simulating S(sk). Run

((m1, σ1), . . . , (mk, σk))← AO(pk),

where A can query O in an arbitrarily interleaved way and complete at most
` = `(n) of the interactions with O.

3. Output 1 if and only if all mi, i ∈ [k] are distinct, A completed at most k − 1
interactions with O and for each i ∈ [k] it holds that Ver(pk,mi, σi) = 1.

We say that BS is `-one-more unforgeable (`-OMUF), if for every PPT algorithm
A the following advantage is negligible:

Pr
[
`-OMUFABS(n)⇒ 1

]
.

Further, we say that BS is one-more unforgeable (OMUF), if it is `-OMUF for
all polynomial `.

We note that from a practical perspective, it is sufficient to focus on `-OMUF
for some large but a priori bounded ` (e.g. ` = 230), while full OMUF is more of
theoretical interest.
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Definition 5 (Blindness). Consider a blind signature scheme BS = (Gen, S,U,
Ver). For an adversary A and bit b ∈ {0, 1}, consider the following game
BLINDAb,BS(n):

1. Sample (pk, sk)← Gen(1n) and run (m0,m1, St)← A(pk, sk).
2. Let O0 be an interactive oracle simulating U(pk,mb) and O1 be an interactive

oracle simulating U(pk,m1−b). Run A on input St with arbitrary interleaved
one-time access to each of these oracles, i.e. St′ ← AO0,O1(St).

3. Let σb, σ1−b be the local outputs of O0,O1, respectively. If σ0 = ⊥ or
σ1 = ⊥, then run b′ ← A(St′,⊥,⊥). Else, obtain a bit b′ from A on input
σ0, σ1, i.e. run b′ ← A(St′, σ0, σ1).

4. Output b′.

We say that BS satisfies honest signer blindness, if for every PPT algorithm A
the following advantage is negligible:∣∣∣Pr

[
BLINDA0,BS(n)⇒ 1

]
− Pr

[
BLINDA1,BS(n)⇒ 1

]∣∣∣ .
We also consider semi-honest and malicious signer blindness, where we modify
the game in the following way:

– For semi-honest signer blindness, (pk, sk) is not sampled by the game, but A
outputs random coins ρ in addition to m0,m1. Then, the game defines (pk, sk)
via (pk, sk) := Gen(1n; ρ).

– For malicious signer blindness, (pk, sk) is not sampled by the game, but A
outputs pk in addition to m0,m1.

Semi-honest signer blindness is a non-standard notion and lies inbetween honest
and malicious signer blindness. We claim that any semi-honest signer blind
scheme can be transformed into a malicious signer blind scheme while preserving
one-more unforgeability. The high-level idea is to append a non-interactive zero-
knowledge proof-of-knowledge to the public key. This proof shows that the signer
knows corresponding random coins that generate the key. The rest of the scheme
does not change, and thus the transformation is very efficient. For details, we
refer to the full version.

We will now introduce linear function families, following [20].

Definition 6 (Linear Function Family). A linear function family LF is a
given by a tuple of algorithms LF = (PGen,F, Ψ) with the following properties:

– PGen(1n) returns system parameters par which define abelian groups S,D,R
with |S|, |R| ≥ 2n and there exists scalar multiplication · : S × D → D with
s · (x+ x′) = s · x+ s · x′ for all s ∈ S and x, x′ ∈ D. The same applies for
R. Note that it is not necessarily true that (s+ s′) · x = s · x+ s′ · x.

– Fpar(x) is deterministic, takes as input an element x ∈ D, and returns an
element in y ∈ R. We require that:
• For all s ∈ S, x, y ∈ D, Fpar(s · x+ y) = s · Fpar(x) + Fpar(y).
• Fpar has a pseudo torsion-free element in the kernel, i.e. there exists
z∗ ∈ D such that Fpar(z∗) = 0 and for all distinct s, s′ ∈ S, s · z∗ 6= s′ · z∗.
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• Fpar is smooth, i.e. if x← D is sampled uniformly, Fpar(x) has uniform
distribution in R.

– Ψpar(y, s, s′) is deterministic, takes as inputs y ∈ R, and s, s′ ∈ S, and
returns a value x ∈ D. The function satisfies for all y in the range of Fpar
and s, s′ ∈ S,

(s+ s′) · y = s · y + s′ · y + Fpar(Ψpar(y, s, s′)).

Intuitively, the function Ψpar corrects for the fact that the group operation in
S may not distribute over R. When it is clear from the context, we will omit
the subscript par.

As in [25], we define preimage resistance for a linear function family. For the
related notion of collision resistence, we refer to the full version and [25].

Definition 7 (Preimage Resistance). A linear function family LF is preimage
resistant if for any adversary A, the following advantage is negligible:

Pr [F(x) = F(x′) | x← D, x′ ← A(par,F(x))] .

3 An Improved Boosting Transform

Hauck, Kiltz, and Loss [20] introduced a generic construction of a three-move
blind signature scheme BS[LF] from any linear function family LF and a hash
function H modeled as a random-oracle. The main result of [20] is that the
linear blind signature scheme BS[LF] is `-one-more unforgeable for ` = O(logn).
Building on that, Katz, Loss, and Rosenberg [25] presented a boosting transform
CCBS[LF] that turns this logarithmic security into polynomial security. In this
section, we introduce an improved boosting transform CCCBS[LF] that eliminates
the drawback of linearly growing communication complexity.

3.1 Overview

We recall the main idea of the boosting transform [25] that turns a linear blind
signature scheme BS[LF] into a boosted blind signature scheme CCBS[LF].

In the scheme CCBS[LF], at the onset of the N th interaction, the signer sends
the current value of the counter N to the user. Then, user and signer proceed as
follows.

1. The user chooses N random strings urj , j ∈ [N ] and N random strings
ϕj , j ∈ [N ]. It prepares N commitments µj = H(m, ϕj), where H is a random
oracle and m is the message to be signed. It also prepares commitments
comj = H(urj , µj). Then it sends the commitments comj to the signer.

2. The user and the signer run N independent sessions of the underlying linear
blind signature scheme BS[LF], where the user inputs µj , urj in the jth session.
Recall that the scheme BS[LF] contains three messages R, c, s.
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3. Before the signer sends the last message sj of the underlying scheme, it
chooses a cut-and-choose index J ∈ [N ] at random and asks the user to open
all commitments comj with j 6= J .

4. Once the signer knows the values µj and randomness urj , it runs the user
algorithm U to check if the user behaved honestly so far, at least for the
sessions j 6= J . If there is some session for which this check fails, the signer
aborts.

5. The signer sends only sJ to the user. That is, signer and user only complete
the J th session. The final signature consists of a signature on µJ from the
underlying scheme BS[LF] as well as the randomness ϕJ which binds m to
µJ .

We highlight that the communication now grows linearly with the number of
issued signatures.

a) In the second message, the user sends N commitments comj .
b) In the third message, the signer sends N commitments Rj .
c) In the fourth message, the user sends N challenges cj .
d) In the sixth message, the user opens N − 1 of the commitments comj .

Our goal is to eliminate these linear dependencies on N and improve them by an
at most logarithmic dependency.

First, we eliminate the linear dependency a) by replacing the commitments
comj = H(urj , µj) by a single commitment comr, which commits to (salted)
hashes of all urj , µj at once. By sending all urj for j 6= J and the hash of urJ ,
the user can still open this commitment without revealing urJ .

Next, we focus on d). Here, we let the user generate the randomness (urj , ϕj)
used for each session using the puncturable pseudorandom function PRF. We
replace the unstructured commitment with a randomness homomorphic com-
mitment scheme. This allows us to let the user derive the commitments µi as
rerandomizations Com(m, ϕ0 + ϕj) of one single commitment µ0 = Com(m, ϕ0)
with randomness ϕj . The user sends commitment µ0 together with comr. Now,
the user can open the commitment comr by sending only a punctured key kJ .
Intuitively, this preserves blindness, as the punctured key does not reveal anything
about the randomness urJ , ϕJ . Using similar tricks, we eliminate c).

To tackle b), we compute the N values Ri of the underlying linear scheme
BS[LF] as subset sums of a logarithmic number of such values. Then, only these
basis values have to be sent.

We end up with a scheme with logarithmic communication complexity, for
which the ideas that underlie the original boosting transform still apply.

3.2 Blind Signatures from Linear Function Families

We briefly recall the blind signature scheme BS[LF] from a linear function family
LF. For more details, we refer the reader to [20] or the full version. For key
generation of the blind signature scheme BS[LF], parameters par← LF.PGen(1n)
are generated. Then, a secret key and public key are sampled via sk←$D and
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pk := F(sk), assuming pk implicitly contains par. We present the signature issuing
protocol formally in Figure 1. Signatures σ = (c′, s′) for a message m are verified
by checking if c′ = H(m,F(s′)− c′ · pk) holds.

S(sk) U(pk,m)

r←$D, R := F(r) R α←$D, β←$S, R′ := R+ F(α) + β · pk

s := r + c · sk c c′ := H(m, R′), c := c′ + β

s if F(s) 6= R+ c · pk : abort

s′ := s+ α+ Ψ(pk, c,−c′)
return σ := (c′, s′)

Fig. 1. The signature issuing protocol of the linear blind signature scheme BS[LF] for a
linear function family LF and a random oracle H : {0, 1}∗ → S [20].

3.3 Construction

In this section, we define our Compact Cut-and-Choose blind signature scheme
for a linear function family LF, abbreviated as CCCBS[LF]. To this end, let
LF = (PGen,F, Ψ) be a linear function family, CMT be a randomness homomor-
phic commitment scheme, and PRF be a puncturable pseudorandom function.
For efficient instantiations of CMT and PRF, we refer to the full version. Fur-
ther, let H : {0, 1}∗ → S,Hr : {0, 1}∗ → {0, 1}n,Hx : {0, 1}∗ → D × S × Rck ×
{0, 1}nPRF ,Hc : {0, 1}∗ → {0, 1}n be random oracles, where nPRF = Θ(n) is a
security parameter used for the pseudorandom function.

Key Generation. Algorithm CCCBS[LF].Gen(1n) is as follows:

1. Sample ck← CMT.Gen(1n) and par← LF.PGen(1n).
2. Sample sk′←$D, and let sk := sk′, pk = (par, ck, pk′ := F(sk′)).
3. Return the public key pk and the secret key sk.

Signature Issuing. The signer and user algorithms S,U are given in Figures 2
and 3, where the S keeps a state (N, ctr) which is initialized as N := 2 =
22 − 2, ctr := 0. In each interaction, S atomically increments ctr and, if ctr = N,
sets N := 2N + 2, ctr := 0.

Verification. Algorithm CCCBS[LF].Ver(pk,m, σ = (c, s, ϕ)) returns the output
of BS[LF].Ver(pk′,Com(ck,m;ϕ), (c, s)).
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Check(pk, N, µ0, comr, {Ri}i, comc, J, kJ , cJ , hJ)

1 : for j ∈ [N ] \ {J} :
2 : prerj := PRF.Eval(kJ , j), rj := Hx(prerj)
3 : parse rj = (αj , βj , ϕj , γj) ∈ D × S ×Rck × {0, 1}nPRF

4 : R̃j :=
∑
i∈Sj

Rj , µj := Translate(ck, µ0, ϕj)

5 : cj := H(µj , R̃j + F(αj) + βj · pk′) + βj

6 : if comr 6= Hr(Hr(r1), . . . ,Hr(rJ−1), hJ ,Hr(rJ+1), . . . ,Hr(rN )) : return 0
7 : if comc 6= Hc(c1, . . . , cN ) : return 0
8 : return 1

Fig. 2. The algorithm Check used in the issuing protocol of CCCBS[LF], where H :
{0, 1}∗ → S,Hr,Hc : {0, 1}∗ → {0, 1}n, and Hx : {0, 1}∗ → D×S ×Rck×{0, 1}nPRF are
random oracles. The set Sj is defined as {i ∈ [l] : ith-bit of j is 1}.

3.4 Security Analysis

Completeness of CCCBS[LF] follows by inspection. We show blindness and one-
more unforgeability.

Theorem 1. Let PRF be a puncturable pseudorandom function, LF be a linear
function family, and CMT be a randomness homomorphic commitment scheme.
Let Hr : {0, 1}∗ → {0, 1}n,Hx : {0, 1}∗ → D × S × Rck × {0, 1}nPRF be random
oracles. If BS[LF] satisfies honest, semi-honest, or malicious signer blindness,
then CCCBS[LF] satisfies honest, semi-honest, or malicious signer blindness,
respectively.

Concretely, for any adversary that uses NL and NR as the counters in its
executions with the user, runs in time t, has advantage ε in the blindness game and
makes at most QHx , QHr queries to Hx,Hr respectively, there exists an adversary
against blindness of BS[LF] running in time t with advantage εBS[LF] such that

ε ≤ NLNR

(
4(QHx

+QHr )
2nPRF

+ 4εPRF + εBS[LF]

)
,

where εPRF is the advantage of an adversary against the security of PRF with
input length max{log(NL), log(NR)} puncturing at one point.

We give a intuition of the proof and postpone details to the full version. The
strategy is to apply a sequence of changes to the user oracles, such that final
game is independent of bit b. In a first step, we guess the cut-and-choose index
J . Then, we compute the commitment µJ directly instead of deriving it from the
commitment µ0. Next, we use the security of PRF and generate rJ for session
J at random instead of using the key k. Now, we observe that the randomness
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S(sk = sk′); state N, ctr U(pk = (par, ck, pk′),m)

ctr := ctr + 1
if ctr = N :
N := 2N + 2, ctr := 0 ϕ0←$Rck, µ0 := Com(ck,m;ϕ0)

l := log(N + 2) N k ← PRF.Gen(1nPRF , 1log(N))
for j ∈ [N ] :

prerj := PRF.Eval(k, j)
rj := Hx(prerj)
parse rj = (αj , βj , ϕj , γj)
µj := Translate(ck, µ0, ϕj)
hj := Hr(rj)

for i ∈ [l] : comr, µ0 comr := Hr(h1, . . . , hN )

ri←$D, Ri := F(ri) R1, . . . , Rl for j ∈ [N ] :

R̃j :=
∑
i∈Sj

Ri

R̃′j := R̃j + F(αj) + βj · pk′

c′j := H(µj , R̃′j), cj := c′j + βj

comc comc := Hc(c1, . . . , cN )

J←$ [N ] J kJ ← PRF.Puncture(k, J)

if Check = 0 : abort kJ , cJ , hJ

sJ :=
∑
i∈SJ

ri + cJ · sk′ sJ s′J := sJ + αJ + Ψ(pk, cJ ,−c′J)

return σ = (c′J , s′J , ϕ0 + ϕJ)

Fig. 3. The signature issuing protocol of the blind signature scheme CCCBS[LF], where
H : {0, 1}∗ → S,Hr,Hc : {0, 1}∗ → {0, 1}n,Hx : {0, 1}∗ → D × S ×Rck × {0, 1}nPRF are
random oracles. The algorithm Check is defined in Figure 2. The set Sj is defined as
{i ∈ [l] : ith-bit of j is 1}. The states ctr and N are incremented atomically.

ϕ0 is hidden in the final signature, and we can switch µ0 to a commitment of a
random message. Finally, we see that the only dependency on the message is in
session J and we can reduce from the blindness of BS[LF].

Theorem 2. Let PRF be a puncturable pseudorandom function, LF be a linear
function family, and CMT be a randomness homomorphic commitment scheme.
Let H : {0, 1}∗ → S,Hr,Hc : {0, 1}∗ → {0, 1}n be random oracles. If BS[LF] satis-
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fies `-one-more unforgeability for any ` = O(log(n)), then CCCBS[LF] satisfies
`-one-more unforgeability for any ` = poly(n).

Concretely, suppose there exists an adversary with advantage ε against the
`-one-more unforgeability of CCCBS[LF], that runs in time t, starts at most p
interactions with his signer oracle, and makes at most QH, QHr , QHc

queries to
H,Hr,Hc respectively. Then, there exists an adversary against the λ-one-more
unforegability BS[LF], where λ = 3dlog pe+ log(2/ε), that runs in time t, starts
at most p interactions with his signer oracle, makes at most QH queries to H,
and has advantage εBS[LF], such that

ε ≤ 2
(
εBS[LF] + p · εLF + εCMT +

Q2
Hr

+Q2
Hc

+ pQHr + pQHc

2n + p2(p2 +QH)
|R|

)
,

where εLF is the advantage of an adversary with running time t against the
preimage resistance of LF and εCMT is the advantage of an adversary with running
time t against the binding property of CMT.

The proof is very similar to the proof for the original boosting transform [25]
and can be found in the full version.

Remark 1. As an asymptotic result, we are satisfied with our improved boosting
transform with logarithmic communication complexity. However, similar to the
original boosting transform, we rely on the very loose security bound of the
underlying linear blind signature scheme BS[LF]. For concrete efficiency, this
is prohibitive, as we require that BS[LF] supports a non-trivial number λ of
signatures. Also, the logarithmic term of the communication complexity depends
on computational assumptions. Thus, the loose bound will also have a negative
impact on communication complexity.

To highlight this, we computed the parameter sizes for the instantiations of
the boosting transform based on the discrete logarithm problem. Our calculations
show that in order to support 230 signatures, the scheme requires a 12035 bit
group. It is apparent that this group size is impractical, and no standardized
elliptic curve groups of this size exist. We remark that Katz et al. [25] also provide
a parameter estimate, but this holds only for a very specific choice of signing
queries, random oracle queries and advantage. A detailed explanation of our
calculations can be found in the full version.

In the following, we will see how to augment the ideas of this section to
construct schemes which eliminate aforementioned drawbacks and come with
practical concrete parameters.

4 A Concrete Scheme based on CDH

Here, we construct a concrete blind signature scheme PIKACDH based on the CDH
assumption. While the construction in the previous section was generic, we aim
for a scheme with concrete efficiency in this section.
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4.1 Overview

As discussed in Remark 1, our improved boosting transform inherits the loose
security bound of the underlying linear blind signature scheme. To see how we can
circumvent this, let us first recall the reduction idea of the boosting transform.
The main challenge is that the underlying scheme BS[LF] allows for a logarithmic
number of signing interactions, while the reduction has to simulate an arbitrary
polynomial number of signing interactions for the adversary. This is solved as
follows. First, note that whenever the adversary honestly commits to urj , µj , the
reduction can extract these values from the commitments comr by observing the
random oracle queries. Then, an important property of linear blind signature
schemes comes into play: If one knows the randomness and the message that
is input into the user algorithm BS[LF].U and controls the random oracle, one
can simulate the signer algorithm without knowing the secret key. Thus, the
reduction only needs to access the signer oracle of BS[LF] if the adversary cheats
(i.e., it malforms the commitment for the J th session in the first step and is not
caught). Fortunately, the probability of such a (successful) cheat is at most 1/N
in the N th signing session. Thus, the expected number of successful cheats in p
interactions is at most logarithmic in p. Using the Chernoff bound, one can show
that with overwhelming probability, the number of successful cheats is reasonably
close to this expectation.

We observe that by letting the cut-and-choose parameter grow slightly faster
than before and scaling appropriately, the expected number of successful cheats
can be bounded to be less than 1. Unfortunately, we can not just use the Chernoff
bound, if we want to argue that this also holds with overwhelming probability.
We can, however, use the Chernoff bound to show that exceeding a single cheat
happens with some constant probability less than 1. Then, we play our next
card, which is parallel repetition. Namely, we run K independent instances of our
scheme so far, where each instance is relative to a separate key pair. We show
that with high probability, in one randomly chosen instance, there is no cheat at
all. Using this observation, we can give a reduction from the key-only security of
the underlying blind signature scheme to finish our proof.

We do not apply this overall strategy to a linear blind signature scheme, but
instead to the BLS blind signature scheme [4]. We notice that the approach also
works for this scheme and observe additional benefits: First, the BLS scheme
allows to aggregate signatures. Hence, it is easy to merge the resulting signatures
from the K instances for a significant efficiency improvement. Second, the scheme
has two rounds and thus the logarithmic term in the communication complexity
is independent of computational assumptions (cf. Remark 1). We emphasize that
the original BLS blind signature scheme is secure under a one-more variant of
the CDH assumption. Fortunately, we only need key-only security here, which
is implied by CDH. Also, the concrete security loss of our scheme is as for the
standard BLS digital signature scheme [5], which means that it can be used over
the same groups as BLS.

Finally, we introduce further minor optimizations such as making the signer
commit to its cut-and-choose indices in its message. In this way, the reduction in
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the blindness proof can extract these indices rather than guessing them. This
leads to more efficient statistical security parameters 6.

4.2 Construction

Let PGGen(1n) be a bilinear group generation algorithm that outputs a cyclic
group G of prime order p with generator g, and a pairing e : G×G→ GT into
some target group GT . We assume that these system parameters are known
to all algorithms. Note that their correctness can be verified efficiently. Our
scheme makes use of a randomness homomorphic commitment scheme CMT
with randomness space Rck and a puncturable pseudorandom function PRF. We
can instantiate PRF using random oracles and CMT tightly based on the DLOG
assumption. We also need random oracles H : {0, 1}∗ → Zp,H′ : {0, 1}∗ → {0, 1}n
and Hr,Hc : {0, 1}∗ → {0, 1}n,Hx : {0, 1}∗ → Zp ×Rck × {0, 1}nPRF , where nPRF
is a security parameter used for PRF.

Our scheme makes use of a parameter K ∈ N, which defines how many
instances of the underlying boosting transform are executed in parallel, and a
function f : N → N, which determines how fast the cut-and-choose parameter
N grows. We give a detailed explanation and Python scripts computing all
parameters in the full version of our paper.

Key Generation. To generate keys algorithm PIKACDH.Gen(1n) does the following:

1. For each instance i ∈ [K], sample ski←$ Zp and set pki := gski .
2. Sample a commitment key ck← CMT.Gen(1n).
3. Return public key pk := (pk1, . . . , pkK , ck) and secret key sk := (sk1, . . . , skK).

Signature Issuing. The algorithms S,U and their interaction are formally given
in Figures 4 and 5. Here, S keeps a state ctr, which is inititalized as ctr := 1 and
incremented in every interaction.

Verification. The resulting signature σ = (σ̄, ϕ1, . . . , ϕK) for a message m is
verified by algorithm PIKACDH.Ver(pk,m, σ) as follows:

1. For each instance i ∈ [K], compute the commitment µi := Com(ck,m;ϕi).
2. Return 1 if and only if

e (σ̄, g) =
K∏
i=1

e (H(pki, µi), pki) .

6 Note that without this optimization, the security loss would be exponential in K.
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Check(pk, N, µ0, comr, comc, seedJ, kJ, {ci,Ji}i, {ηi}i)

1 : J = (H′(seedJ, 1), . . . ,H′(seedJ,K)) ∈ [N ]K

2 : for i ∈ [K] :
3 : for j ∈ [N ] \ {Ji} :
4 : preri,j := PRF.Eval(kJ, (i, j)), ri,j := Hx(preri,j)
5 : parse ri,j = (αi,j , ϕi,j , γi,j) ∈ Zp ×Rck × {0, 1}n

6 : µi,j := Translate(ck, µ0, ϕi,j)
7 : ci,j := H(pki, µi,j) · g

αi,j

8 : comr,i := Hr(Hr(ri,1), . . . ,Hr(ri,Ji−1), ηi,Hr(ri,Ji+1), . . . ,Hr(ri,N ))
9 : if comr 6= Hr(comr,1, . . . , comr,K) : return 0

10 : if comc 6= Hc(c1,1, . . . , cK,N ) : return 0
11 : return 1

Fig. 4. The algorithm Check used in the issuing protocol of blind signature scheme
PIKACDH, where H : {0, 1}∗ → G,H′ : {0, 1}∗ → {0, 1}n and Hr,Hc : {0, 1}∗ →
{0, 1}n,Hx : {0, 1}∗ → Zp ×Rck × {0, 1}nPRF are random oracles.

4.3 Security Analysis

Completeness of the scheme follows by inspection. We show blindness and one-
more unforgeability. For one-more unforgeability, we show qmax-OMUF, where
qmax is a parameter that can be set freely (e.g. qmax = 230) and has influence
the function f . We note that making f grow quadratically, one could show full
OMUF using a similar proof.

Theorem 3. Let PRF be a puncturable pseudorandom function and CMT be a
randomness homomorphic commitment scheme. Let H′ : {0, 1}∗ → {0, 1}n and
Hr : {0, 1}∗ → {0, 1}n,Hx : {0, 1}∗ → Zp × Rck × {0, 1}nPRF be random oracles.
Then PIKACDH satisfies malicious signer blindness.

In particular, for any adversary who uses NL and NR as the counters in
its executions with the user and queries H′,Hr,Hx at most QH′ , QHr , QHx

times,
respectively, the malicious signer blindness advantage can be bounded by

4εPRF + Q2
H′

2n−1 + QH′

2n−2 + KQHx

2nPRF−2 + KQHr

2nPRF−2 ,

where εPRF is the advantage of an adversary against the security of PRF with
input length max{log(NL), log(NR)} when puncturing at K points.

Due to space limitation, we postpone the proof to the full version.

Theorem 4. Let CMT be a randomness homomorphic commitment scheme and
PRF be a puncturable pseudorandom function. Let PGGen(1n) be a bilinear group
generation algorithm. Further, let H : {0, 1}∗ → Zp,H′ : {0, 1}∗ → {0, 1}n and
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S(sk); state ctr U(pk,m)

ctr := ctr + 1, N := f(ctr) k ← PRF.Gen(1nPRF , 1log(KN))
seedJ, salt←$ {0, 1}n ϕ0←$Rck, µ0 := Com(ck,m;ϕ0)

comJ := H′(seedJ, salt) N, comJ for (i, j) ∈ [K]× [N ] :

preri,j := PRF.Eval(k, (i, j))
ri,j := Hx(preri,j)
parse ri,j = (αi,j , ϕi,j , γi,j)
µi,j := Translate(ck, µ0, ϕi,j)
ci,j := H(pki, µi,j) · g

αi,j

for i ∈ [K] :
comr,i := Hr(Hr(ri,1), . . . ,Hr(ri,N ))

comr := Hr(comr,1, . . . , comr,K)
µ0, comr, comc comc := Hc(c1,1, . . . , cK,N )

seedJ, salt if comJ 6= H′(seedJ, salt) : abort

for i ∈ [K] : for i ∈ [K] : Ji := H′(seedJ, i)
Ji := H′(seedJ, i) J = (J1, . . . ,JK)

J = (J1, . . . ,JK) J := {(i,Ji) | i ∈ [K]}
kJ ← PRF.Puncture(k,J )

if Check = 0 : abort kJ, {ci,Ji , ηi}i for i ∈ [K] : ηi := Hr(ri,Ji )

for i ∈ [K] : si,Ji := cski
i,Ji

s̄ :=
K∏
i=1

si,Ji
s̄ σ̄ := s̄ ·

K∏
i=1

pk−αi,Ji
i

if
K∏
i=1

e (H(pki, µi,Ji ), pki)

6= e (σ̄, g) : abort
for i ∈ [K] : ϕi := ϕ0 + ϕi,Ji

return σ := (σ̄, ϕ1, . . . , ϕK)

Fig. 5. The signature issuing protocol of the blind signature scheme PIKACDH, where
H : {0, 1}∗ → Zp,H′ : {0, 1}∗ → {0, 1}n and Hr,Hc : {0, 1}∗ → {0, 1}n,Hx : {0, 1}∗ →
Zp ×Rck × {0, 1}nPRF are random oracles. The algorithm Check is defined in Figure 4.
The state ctr of S is incremented atomically.
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Hr,Hc : {0, 1}∗ → {0, 1}n be random oracles. Also, assume that there is a ϑ > 0
and f is such that

f(ctr) = d3ϑ ln(qmax + 1) · ctre .

Then PIKACDH satisfies qmax-one-more unforgeability, under the CDH assumption
relative to PGGen.

Specifically, assume the existence of an adversary against the OMUF security
of PIKACDH that has advantage ε, runs in time t, makes at most QHr , QHc , QH′ , QH
queries to oracles Hr,Hc,H′,H, respectively, and starts at most q ≤ qmax interac-
tions with his signer oracle. Let δ > 0 such that (1− δ)ϑ > 1. Then there exists
an adversary against the CDH problem relative to PGGen with advantage εCDH
and running time t and an adversary against the binding property of CMT with
advantage εCMT and running time t such that

ε− e−δK ≤ εCMT + K

p
+ 4qKεCDH + stat

where

stat =
Q2

Hr

2n +
Q2

Hc

2n + qQHr

2n + qKQHr

2n + qQHc

2n + qQH′

2n−1 .

Proof. Set BS := PIKACDH. Let A be an adversary against the OMUF security of
BS. We prove the statement via a sequence of games.

Game G0: We start with game G0 := qmax-OMUFABS, which is the one-more
unforgeability game. We briefly recall this game. A key pair (pk, sk)← Gen(1n)
is sampled, A is run with concurrent access to an interactive oracle O simulating
the signer S(sk). Assume that A completes ` interactions with O. Further, A
gets access to random oracles H,H′,Hr and Hc, which are provided by the game
in the standard lazy manner. When A finishes its execution, it outputs tuples
(m1, σ1), . . . , (mk, σk) and wins, if all mi are distinct, k > ` and all signatures σi
verify with respect to pk and mi.

Game G1: In game G1, we add an additional abort. The game aborts if in the
end A’s output contains two pairs (m(0), σ(0)), (m(1), σ(1)) such that m(0) 6= m(1)

but there exists i(0), i(1) ∈ [K] such that

Com(ck,m(0);ϕ(0)
i(0)) = Com(ck,m(1);ϕ(1)

i(1)).

As CMT is computationally binding, a straight-forward reduction with advantage
εCMT and running time t shows that

|Pr [G0 ⇒ 1]− Pr [G1 ⇒ 1]| ≤ εCMT.

Game G2: This game is as G1, but we rule out collisions for oracles Ht, t ∈ {r, c}.
To be more precise, we change the simulation of oracles Ht, t ∈ {r, c} in the
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following way. If A queries Ht(x) and this value is not yet defined, the game
samples an image y←$ {0, 1}n. However, if there exists an x′ 6= x with Ht(x′) = y,
the game returns ⊥. Otherwise it behaves as before. Note that A can only
distinguish between G1 and G2 if such a collision happens, i.e. Ht returns ⊥. We
can apply a union bound over all Q2

Ht
pairs of random oracle queries and obtain

|Pr [G1 ⇒ 1]− Pr [G2 ⇒ 1]| ≤
Q2

Hr

2n +
Q2

Hc

2n .

Note that the change in G2 implies that at each point of the execution of the
game and for each image y ∈ {0, 1}n, there is at most one preimage H−1

t (y)
under Ht. By looking at the random oracle queries of A, the game can extract
preimages of given images y, and we know that for each y at most one preimage
can be extracted. We will make use of such an extraction in the following games.

Game G3: We change the way the signer oracle is executed. In particular, when
A sends µ0, comr, comc as its first message, the game tries to extract values ¯comr,i
such that comr = Hr( ¯comr,1, . . . , ¯comr,K) by searching through random oracle
queries. If the game can not extract such a preimage, we write ¯comr,i = ⊥ for
all i ∈ [K]. Then, the game aborts if it can not extract such a preimage , i.e.

¯comr,i = ⊥, but later algorithm Check outputs 1. Recall that algorithm Check
verifies that

comr = Hr(comr,1, . . . , comr,K).

Thus, for every fixed interaction, we can bound the probability of such an abort
by QHr/2n. Indeed, once comr is sent by A and thus fixed, and the game can not
extract, we know that there is no bitstring x such that Hr(x) = comr. Also, if
algorithm Check outputs 1, we know that A was able to find a preimage of comr
after this was fixed. This can happen with probability at most 1/2n for each
random oracle query. Using a union bound over all interactions we obtain

|Pr [G3 ⇒ 1]− Pr [G4 ⇒ 1]| ≤ qQHr

2n .

Game G4: We introduce another abort in the signer oracle. In this game, after
the extraction of ( ¯comr,1, . . . , ¯comr,K) from comr we introduced before, the game
extracts (̄ri,1, . . . , r̄i,N ) from ¯comr,i for every i ∈ [K] for which ¯comr,i 6= ⊥, such
that

¯comr,i = Hr(Hr (̄ri,1), . . . ,Hr (̄ri,N )).

Again, the game does this by looking at the random oracle queries of A and we
write r̄i,j = ⊥ if the game can not extract the value r̄i,j . If there is an instance
i ∈ [K] and a session j ∈ [N ] such that ¯comr,i 6= ⊥ but r̄i,j = ⊥ and later in
that execution Ji 6= j but algorithm Check outputs 1, the game aborts.

To analyze the probability of this abort, fix an interaction and an instance
i ∈ [K]. Assume that ¯comr,i 6= ⊥ and there is a session j ∈ [N ] such that
r̄i,j = ⊥ and later in that interaction Ji 6= j. Then, after ¯comr,i is fixed, we
consider two cases. In the first case, the game could not extract h1, . . . , hN such
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that ¯comr,i = Hr(h1, . . . , hN ). Clearly, once ¯comr,i, the probability that one of
the hash queries of A evaluates to ¯comr,i is at most 1/2n. Thus, the probability
that Check outputs 1, i.e. A is able to open ¯comr,i in this case, is at most QHr/2n.
Similarly, in the case where the game could extract h1, . . . , hN , but could not
extract r̄i,j such that Hr(̄ri,j) = hj , the probability that one of A’s hash queries
evaluates to hj is at most 1/2n. Thus, the probability that Check outputs 1, i.e.
A is able to open hj in this case, is at most QHr/2n. Note that here we needed
that j 6= Ji, as the definition of Check does not require A to open hJi

.
Applying a union bound over the interactions and instances we get

|Pr [G3 ⇒ 1]− Pr [G4 ⇒ 1]| ≤ qKQHr

2n .

Game G5: We introduce another abort: Whenever A sends µ0, comr, comc as
its first message, the game behaves as before, but additionally the game extracts
values c̄1,1, . . . , c̄K,N from comc such that

comc = Hc(c̄1,1, . . . , c̄K,N ).

If the game can not extract, but later algorithm Check outputs 1, the game
aborts. Note that algorithm Check internally checks if

comc = Hc(c1,1, . . . , cK,N ).

Thus, for each fixed interaction it is possible to argue as in the previous games
to bound the probability of such an abort and hence we obtain

|Pr [G4 ⇒ 1]− Pr [G5 ⇒ 1]| ≤ qQHc

2n .

Game G6: In G6, the signer oracle sends a random comJ in the beginning of
each interaction. Later, before it has to send seedJ, salt, it samples salt←$ {0, 1}n
and aborts if H′(seedJ, salt) is already defined. If it is not yet defined, it defines
it as H′(seedJ, salt) := comJ. The adversary A can only distinguish between G5
and G6 if H′(seedJ, salt) is already defined. By a union bound over all QH′ hash
queries and q interactions we obtain

|Pr [G5 ⇒ 1]− Pr [G6 ⇒ 1]| ≤ qQH′

2n .

Game G7: In G7, the game aborts if in some interaction there exists an i ∈ [K]
such that H′(seedJ, i) has already been queried before the signing oracle sends
seedJ to A. Clearly, A obtains no information about seedJ before the potential
abort, see G6. Further, seedJ is sampled uniformly at random. A union bound
over all QH′ queries and q interactions shows that

|Pr [G6 ⇒ 1]− Pr [G7 ⇒ 1]| ≤ qQH′

2n .
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Now, fix an interaction in G7 and assume that Check returns 1 and the
game does not abort due to any of the reasons we introduced so far. Note that
this means that for all instances i ∈ [K] the value ¯comr,i could be extracted.
Furthermore, this means that if there exists i ∈ [K], j0 ∈ [N ] such that r̄i,j0 = ⊥
then later Ji = j0. Also, note that if Check does not abort, then we have

¯comr,i = comr,i, r̄i,j = ri,j and c̄i,j = ci,j for all (i, j) ∈ [K]× [N ] for which these
values are defined. This is because we ruled out collisions for oracles Hr,Hc. Now,
we define an indicator random variable cheati,ctr for the event that in the ctrth

interaction, the signer oracle does not abort and there exists i ∈ [K], j ∈ [N ]
such that r̄i,j = ⊥ or r̄i,j = (α,ϕ, γ) such that

ci,j 6= H(pki,Translate(ck, µ0, ϕ)) · gα.

We say that A successfully cheats in instance i ∈ [K] and interaction ctr if
cheati,ctr = 1. We also define the number of interactions in which A successfully
cheats in instance i as cheat∗i :=

∑q+1
ctr=2 cheati,ctr.

By the above discussion, we have that cheati,ctr = 1 implies that Ji = j0 and
thus

Pr [cheati,ctr = 1] ≤ 1
N
.

Therefore, we can bound the expectation of cheat∗i using

E [cheat∗i ] ≤
1

3ϑ ln(qmax + 1)

q+1∑
ctr=2

1
ctr ≤

ln(q + 1)
3ϑ ln(qmax + 1) ≤

1
3ϑ.

Now, if we plug X := cheat∗i and s := 3E [cheat∗i ] + δ = 1/ϑ+ δ into the Chernoff
bound (see the full version), we get that for all i ∈ [K]

Pr
[
cheat∗i ≥

1
ϑ

+ δ

]
≤ e−δ.

We note that the entire calculation of this probability also holds if we fix the
random coins of the adversary.

Game G8: Game G8 is defined as G7, but additionally aborts if for all i ∈ [K]
we have cheat∗i ≥ δ+ 1/ϑ. In particular, if G8 does not abort, then there is some
instance i for which A does not successfully cheat at all, which follows from the
assumption (1− δ)ϑ > 1.

We can now bound the distinguishing advantage of A between G7 and G8 as
follows. We denote the random coins of A by ρA and the random coins of the
experiment (excluding ρA) by ρ. Let bad be the event that for all i ∈ [K] we
have cheat∗i ≥ δ + 1/ϑ. We note that the coins ρ that the experiment uses for
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the K instances are independent. Thus we have

Pr
ρ,ρA

[bad] =
∑
ρ̄A

Pr
ρA

[ρA = ρ̄A] · Pr
ρ,ρA

[bad | ρA = ρ̄A]

=
∑
ρ̄A

Pr
ρA

[ρA = ρ̄A] ·
∏
i∈[K]

Pr
ρ,ρA

[
cheat∗i ≥

1
ϑ

+ δ

∣∣∣∣ ρA = ρ̄A

]
≤
∑
ρ̄A

Pr
ρA

[ρA = ρ̄A] · e−δK = e−δK ,

which implies

|Pr [G7 ⇒ 1]− Pr [G8 ⇒ 1]| ≤ Pr
ρ,ρA

[bad] ≤ e−δK .

Game G9: In game G9, we sample a random instance i∗←$ [K] at the beginning
of the game. In the end, the game aborts if cheat∗i∗ ≥ δ + 1/ϑ. In particular, if
this game does not abort, then A does not successfully cheat in instance i∗ at all.
As A’s view is independent from i∗, we have

Pr [G9 ⇒ 1] = Pr
[
G8 ⇒ 1 ∧ cheat∗i∗ <

1
ϑ

+ δ

]
= Pr [G8 ⇒ 1] · Pr

[
cheat∗i∗ <

1
ϑ

+ δ

∣∣∣∣ G8 ⇒ 1
]

≥ Pr [G8 ⇒ 1] · Pr
[
cheat∗i∗ <

1
ϑ

+ δ

∣∣∣∣ ∃i ∈ [K] : cheat∗i <
1
ϑ

+ δ

]
≥ Pr [G8 ⇒ 1] · 1

K
,

where the first inequality follows from the fact that the event G8 ⇒ 1 implies
the event ∃i ∈ [K] : cheat∗i < δ + 1/ϑ.

We note that from now on, our proof follows the proof strategy of the BLS
signature scheme [5].

Game G10: In game G10, we introduce an initially empty set L and a new abort.
We highlight that we treat L as a set and therefore every bitstring is in L only
once. Recall that when A sends µ0, comr, comc to the signer oracle, the game
tries to extract values r̄i,j for (i, j) ∈ [K]× [N ]. Then the game samples seedJ
and computes J accordingly. In particular, due to the changes in the previous
games we know that the game extracts r̄i∗,Ji∗ = (α,ϕ, γ) unless the experiment
will abort anyways. Then, in game G10, the game will insert Translate(ck, µ0, ϕ)
into L.

Fix the first pair (m, σ) in A’s final output such that for σ = (σ̄, ϕ1, . . . , ϕK)
and µ∗ := Com(ck,m;ϕi∗) we have µ∗ /∈ L. Such a pair must exists if A is
successful, see game G1. Then game G10 aborts if H(pki∗ , µ∗) is not defined yet.
Note that A’s success probability in such a case can be at most 1/p and hence

|Pr [G9 ⇒ 1]− Pr [G10 ⇒ 1]| ≤ 1
p
.
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Game G11: In game G11, we change how the random oracle H is simulated and
add a new abort. For every query of the form H(pki∗ , µ) the game independently
samples a bit b[µ] ∈ {0, 1} such that the probability that b[µ] = 1 is 1/(q + 1).
Whenever the game adds a value µ to the set L, it aborts if b[µ] = 1. Then, after
A returns its final output, the game determines µ∗ as in G10, adds arbitrary
values to L such that all values in L∪ {µ∗} are distinct and |L| = q and aborts if
b[µ∗] = 0 or there is a µ ∈ L such that b[µ] = 1. Otherwise it continues as before.
Note that unless the game aborts, A’s view does not change. As all bits b[µ] are
independent, we derive

Pr [G11 ⇒ 1] = Pr [G10 ⇒ 1] · Pr [b[µ∗] = 1 ∧ ∀µ ∈ L : b[µ] = 0]

= Pr [G10 ⇒ 1] · 1
q + 1

(
1− 1

q + 1

)q
= Pr [G10 ⇒ 1] · 1

q

(
1− 1

q + 1

)q+1

≥ Pr [G10 ⇒ 1] · 1
4q ,

where the last inequality follows from (1− 1/x)x ≥ 1/4 for all x ≥ 2.
Finally, we construct a reduction B that solves CDH with running time t and

advantage εCDH such that

Pr [G11 ⇒ 1] ≤ εCDH.

Then, the statement follows by an easy calculation. Reduction B works as follows:

– B gets as input bilinear group parameters G, g, p, e and group elements X =
gx, Y = gy. The goal of B is to compute gxy. First, B samples i∗←$ [K]. Then,
it defines pki∗ := X (which implicitly defines ski∗ := x) and ski←$ Zp, pki :=
gski for i ∈ [K] \ {i∗}.

– B runs adversary A on input G, g, p, e, pk := (pk1, . . . , pkK , ck) with oracle
access to a signer oracle and random oracles H,Hr,Hc,H′. To do so, it simulates
oracles Hr,Hc,H′ exactly as in G11. The other oracles are provided as follows:
• For a query of the form H(pki∗ , µ) for which the hash value is not yet
defined, it samples a bit b[µ] ∈ {0, 1} such that the probability that
b[µ] = 1 is 1/(q+ 1). Then, it defines the hash value as Y b[µ] · gt[i∗,µ] for a
randomly sampled t[i∗, µ]←$ Zp. For a query of the form H(pki, µ), i 6= i∗

for which the hash value is not yet defined it defines the hash value
as gt[i,µ] for a randomly sampled t[i, µ]←$ Zp. For all other queries it
simulates H honestly.

• When A starts an interaction with the signer oracle, B sends N to B as
in the protocol. When B sends its first message µ0, comr, comc as its first
message, B behaves as G11. In particular, it tries to extract r̄i,j , c̄i,j for
(i, j) ∈ [K]× [N ]. It then sends seedJ to A.
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• When A sends its second message kJ, {ci,Ji , ηi}i∈[K], B aborts under the
same conditions as G11 does. In particular, if B does not abort and the
signer oracle does not abort then r̄i∗,Ji∗ = (α,ϕ, γ) is defined and B for
µ := Translate(ck, µ0, ϕ), B sets si∗,Ji∗ := Xt[i∗,µ]+α. As defined in G11,
B also inserts µ into the set L. It computes si,Ji

for i 6= i∗ as game G11
does, which is possible as B holds the corresponding ski. Then, B sends
s̄ :=

∏K
i=1 si,Ji to A.

– When A returns its final output, B performs all verification steps in G11.
In particular, it searches for the first pair (m, σ) in A’s final output such
that for σ = (σ̄, ϕ1, . . . , ϕK) and µ∗ := Com(ck,m;ϕi∗) we have µ∗ /∈ L. As
defined in G11, B aborts if b[µ∗] = 0. Finally, B defines µi := Com(ck,m;ϕi)
and returns

Z := σ̄ ·X−t[i
∗,µ∗] · g−

∑
i∈[K]\{i∗}

t[i,µi]ski

to its challenger.

We first argue that B perfectly simulates G11 for A. To see that, note that as the
t[i, µ] are sampled uniformly at random, the random oracle is simulated perfectly.
To see that si∗,Ji∗ is distributed correctly, note that if the signing oracle and G11
do not abort, then we have

cski∗
i∗,Ji∗

= (H(pki∗ , µ) · gα)ski∗ =
(
Y b[µ] · gt[i

∗,µ] · gα
)x

= Xt[i∗,µ]+α,

where the last equality follows from b[µ] = 0, as otherwise G11 would have
aborted.

It remains to show that if G11 outputs 1, then we have Z = gxy. This follows
directly from the verification equation and b[µ∗] = 1. To see this, note that

K∏
i=1

e (H(pki, µi), pki) = e
(
Y b[µ

∗] · gt[i
∗,µ∗], X

)
·

∏
i∈[K]\{i∗}

e
(
gt[i,µi], gski

)
= e (g, g)xy+t[i∗,µ∗]x · e (g, g)

∑
i∈[K]\{i∗}

t[i,µi]ski
.

Using the verification equation, this implies that

gxy = σ̄ · g
−
(
t[i∗,µ∗]x+

∑
i∈[K]\{i∗}

t[i,µi]ski

)
Concluded. ut

We note that instead of giving games G10,G11 and the reduction from CDH
explicitly, one can also directly reduce from the security of the BLS signature
scheme to G9, leading to the very same bound in total. This tells us that one
can use (up to losing log(K) bits 7 of security) the same curves as for BLS.
Corollary 1 (Informal). Under the same conditions as in Theorem 4, the
scheme PIKACDH satisfies qmax-one-more unforgeability, if the BLS signature
scheme [5] is unforgeable under chosen message attacks relative to PGGen, where
the concrete security loss is (up to statistically negligible terms) given by K.

7 In our concrete instantiation, log(K) ≈ 6.5.
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5 A Concrete Scheme based on RSA

In addition to our concrete scheme from CDH, we also construct a concrete
scheme BSRSA based on the RSA assumption. We postpone the details to the full
version and only give a short overview here.

Our scheme is based on the Okamoto-Guillou-Quisquater (OGQ) [26] linear
function. That is, we start with this function in our generic transformation from
Section 3. Informally, the function has domain D := Zλ × Z∗N , scalar space
S := Zλ and range Z∗N , where N is an RSA modulus and λ is a prime with
gcd(N,λ) = gcd(ϕ(N), λ) = 1. As we can not aggregate signatures efficiently, we
can not mimic the K-repetition technique from our CDH-based scheme. Thus,
we still rely on the loose bound of the underlying linear blind signature scheme.
To solve this issue and obtain practical parameter sizes, we note that the bound
becomes acceptable, once we increase the parameter λ. Our insight is that this
can be done independently from the modulus N .

Although this improves the bound and thus concrete parameters, we still
have a rather large communication complexity, due to the logarithmic number
of Ri ∈ Z∗N that are sent in our generic transformation. Here, our solution is to
send a short random seed (e.g. 128 bit) and derive the values Ri using a random
oracle. Now, the signer has to recover the preimages of the Ri to continue the
protocol. We show that the OGQ linear function admits a trapdoor that allows
to sample preimages, solving this problem as well.
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