
Lower Bound on SNARGs in the Random Oracle
Model

Iftach Haitner1[0000−0003−3167−3294], Daniel Nukrai1 and Eylon
Yogev2[0000−0001−8599−2472]

1 Tel-Aviv University
iftachh@tauex.tau.ac.il

daniel.nukrai@cs.tau.ac.il
2 Bar-Ilan University

eylon.yogev@biu.ac.il

Abstract. Succinct non-interactive arguments (SNARGs) have become
a fundamental primitive in the cryptographic community. The focus of
this work is constructions of SNARGs in the Random Oracle Model
(ROM). Such SNARGs enjoy post-quantum security and can be deployed
using lightweight cryptography to heuristically instantiate the random
oracle. A ROM-SNARG is (t, ε)-sound if no t-query malicious prover
can convince the verifier to accept a false statement with probability
larger than ε. Recently, Chiesa-Yogev (CRYPTO ’21) presented a ROM-
SNARG of length Θ(log(t/ε)·log t) (ignoring logn factors, for n being the
instance size). This improvement, however, is still far from the (folklore)
lower bound of Ω(log(t/ε)).
Assuming the randomized exponential-time hypothesis, we prove a tight
lower bound of Ω(log(t/ε) · log t) for the length of (t, ε)-sound ROM-
SNARGs. Our lower bound holds for constructions with non-adaptive
verifiers and strong soundness notion called salted soundness, restrictions
that hold for all known constructions (ignoring contrived counterex-
amples). We prove our lower bound by transforming any short ROM-
SNARG (of the considered family) into a same length ROM-SNARG in
which the verifier asks only a few oracles queries, and then apply the
recent lower bound of Chiesa-Yogev (TCC ’20) for such SNARGs.

Keywords: Random oracle; SNARGs; high-entropy sets; lower bound

1 Introduction

Constructions in the random oracle model (ROM) have shaped our understand-
ing of the cryptographic world. Being a simple information-theoretic model, the
ROM was found to be a very useful framework for understating what can be
done (sometimes only heuristically), and what is unlikely to be achieved using
(merely) symmetric-key cryptography. A notable example for the above is key-
agreement protocols. Merkle [Mer82] has constructed a key-agreement protocol
in the ROM with a quadratic gap between the query complexity of the players
and the eavesdropper. Barak and Mahmoody-Ghidary [BM17], building on the

seminal work of Impagliazzo and Rudich [IR89], proved that the quadratic gap
achieved by [Mer82] is optimal, and Haitner, Mazor, Oshman, Reingold, and
Yehudayoff [HMORY19], showed that for a large family of constructions, the
communication complexity of [Mer82] is optimal.

Another primitive whose constructions in the ROM have high impact is Suc-
cinct Non-interactive Argument systems (SNARGs): non-interactive computa-
tionally sound proofs (arguments) for NP of succinct proof length (sublinear
in the instance length). The first construction of SNARGs was given by Micali
[Mic00] in the ROM. This feasibility result turned out to be very influential
both theoretically and practically. In theory, it was shown how to instantiate
SNARGs in the standard model for many languages of interest by instantiating
the Fiat and Shamir [FS86] paradigm with a specific family of hash functions
[CCHLRR18]. In practice, the succinctness of the proof is imperative in appli-
cations such as cryptocurrency and blockchain, where proofs are broadcast in
a peer-to-peer network and (redundantly) stored at every network node, c.f.,
[BCGGMTV14; Zc14]. As such, improving the concrete efficiency of SNARGs
is the focus of long line of work c.f., [Gro16; ZGKPP17; AHIV17; BBHR19;
WTSTW18; BBBPWM18; BCRSVW19; CHMMVW20; BFS20; COS20; Sta18;
LSTW21; CY21b; CY21a; GNS21].

ROM-SNARGs, like the one of [Mic00], have several attractive features. First,
to date, they are the most efficient approach for post-quantum security with
public verification (i.e., the verifier has no secrets). Moreover, from a practical
perspective, one can heuristically instantiate the random oracle with a suitable
cryptographic hash function. The result is a SNARG that uses lightweight cryp-
tography (no need for public-key primitives), is easy to deploy (users only need
to agree on a hash function), and has no trusted setup. The best ROM-SNARG
appeared in the recent work of Chiesa and Yogev [CY21a], who constructed a
(t, ε)-sound ROM-SNARG of proof length of O(log(t/ε) · log t · log n), where n is
the instance length. A ROM-SNARG is (t, ε)-sound if no t-queries (malicious)
prover can convince the verifier to accept a false statement with probability
larger than ε.3

Interestingly, and in contrast to other important primitives such as key-
agreement protocols [IR89; HMORY19] and digital signatures [GGKT05; BMG07],
we are lacking crucial lower bounds on the length of SNARGs in the ROM. Apart
from the weak (folklore) lower bound of Ω(log(t/ε)) (which appears in the full
version of the paper), the only exception is the recent bound of Chiesa and Yogev
[CY20], who proved that the verifier query complexity of SNARGs cannot be too
small. However, their bound does not rule out short ROM-SNARGs with verifier
query complexity Ω(log 1/ε), which is common for SNARG constructions.

This state-of-affairs naturally leads to the question of finding the shortest
ROM-SNARG. Is it O(log(t/ε) · log t · log n), as the best-known construction
achieve, or is it as short as O(log(t/ε) · log n), as achieved in other security

3 We focus on the bare ROM— no computational assumptions are made beyond
bounding the query complexity to the oracle.

2

models (see Section 1.2.2). In this work, we advance our understanding about
the existence of short ROM-SNARGs (with arbitrary verifier query complexity).

1.1 Our Results

Assuming the (randomized) exponential time hypothesis (rETH), see details be-
low, we prove that for a large family of constructions, the current state-of-the art
ROM-SNARG is (essentially) optimal. Specifically, we show that, for this family
of constructions, a proof of 3SAT over n variables is of length Ω̃(log(t/ε) · log t)
(hiding log n factors). Matching (up to log n factors) the construction of the
[CY21a]. The family of constructions we consider includes all constructions that
have: (i) non-adaptive verifier and (ii) salted soundness. This includes all types
of constructions we are aware of [Mic00; BCS16; CY21b; CY21a]). See details
below.

– Exponential time hypothesis. The (randomized) Exponential Time Hy-
pothesis (rETH) is a stronger version P 6= NP that states that solving 3SAT
on n variables takes (randomized) time 2Ω(n). Note that some complexity
assumption is inevitable for proving lower bounds on a SNARGs length.4

– Non-adaptive verifier. The oracle queries are asked by a non-adaptive (de-
terministic5) verifier. That is, the queries are a function of the proof and are
independent of the answers to other queries.6

– Salted soundness. This is a natural strengthening of the standard soundness
of SNARG, which was introduced in Chiesa and Yogev [CY20]. A (t, ε)-salted-
soundness ROM-SNARG allows a cheating prover to request the random or-
acle to re-sample the answer for a chosen query (similar to changing a “salt”
for this query). Each re-sampling costs a unit from the total t query bud-
get allowed. The cheating prover can also return to previously sampled query
answers at no cost.7
While one can easily construct contrived ROM-SNARGs for which salted
soundness does not hold, we are not aware of any ROM-SNARG that ex-
ploits the fact that the prover cannot resample some of the oracle answers in
a meaningful way. All constructions we are aware of satisfy salted soundness.8

4 This follows since P = NP yields trivial SNARGs for all NP.
5 If the verifier is “public-coin” then it can be made deterministic by extracting ran-
domness from the random oracle. However, this makes the verifier adaptive and thus
cannot be used for our lower bound.

6 We mention that SNARGs resulting from applying the Fiat and Shamir [FS86]
paradigm on interactive proofs do not require an adaptive verifier, as the queries
added by the compilation are determined by the proof (i.e., transcript) sent by the
non-adaptive prover.

7 Our notion of salted soundness is a strengthening of the salted-soundness notion
considered in Chiesa and Yogev [CY20]. There, the cheating prover has to decide on
a salt for a specific query before moving to the next one. See details in Section 3.5.1.

8 See the analysis given in [CY21b] and in [CY21a], which explicitly allowed the ad-
versary to choose a salt for each query in the construction (e.g., see remark 3.2 in
[CY21b]).

3

With these notions, we are ready to state our main result.(The precise state-
ments of the following results are given in the main body of the paper, see Paper
Organization for references.)

Theorem 1 (Conditional lower bound on ROM-SNARG length. Infor-
mal). Let ARG = (P,V) be an s-length ROM-SNARG for n-variable 3SAT, with
(t, ε)-salted-soundness, perfect completeness, and (deterministic) non-adaptive
verifier. Let qP and qV be the query complexity of P and V, respectively, and let
λ denote the random oracle input and output length.

Assuming rETH, if qV · λ ∈ o(n), and log2(t/ε) · log−1 qP ∈ o(n) then s ≥
c · log t · log t

ε · log
−1 qP, for some universal constant c > 0.

We argue that the assumptions on the parameters regime in our theorem
are reasonable and consider the most interesting settings (see Theorem 13 for
the precise list of requirements). The goal of a SNARG is to have the proof
length and the verifier complexity be much smaller than the instance size n.
Usually, proportional to poly(λ, log n). Thus, our assumption that qV · λ, and
log t · log t

ε/ log qP are of order o(n) is rather mild. The third requirement of
qV ≤ t1/10 is almost trivial. It says that the query complexity of the verifier
is much smaller than the query bound t of the adversary, which is very much
expected from any reasonable SNARG.

The proof of Theorem 1 immediately follows by combing the following lemma
with the recent lower bound of Chiesa and Yogev [CY20] on the length ROM-
SNARG with low query-complexity verifiers.

Lemma 1 (Short ROM-SNARG → low query ROM-SNARG. Infor-
mal). Let ARG = (P,V) be a ROM-SNARG for a language L with a deter-
ministic non-adaptive verifier and (t, ε)-salted-soundness, perfect completeness,
proof length s, and verifier query complexity qV. Then there exists a verifier V′ of
query complexity s/ log t, running time 2qV·log t times that of V, such that (P,V′)
is a ROM-SNARG for L with (t, ε)-soundness and completeness ω(ε).

That is, the larger the salted-soundness of ARG, the smaller the number of
queries made by V′, and the better the completeness. While the completeness
and verifier running time of the resulting scheme are rather poor, and we do
not encourage to use it as an actual proof system, it is still non-trivial for the
parameters in consideration: V′ running time is 2o(n), for n being the instance
length, and the completeness is larger than the soundness error. By [CY20], the
existence of such ROM-SNARG for 3SAT contradicts rETH.

Using similar means, we can compile ARG into (P′,V′), with (almost) perfect
completeness, but with inefficient prover and slightly longer proof (see details in
Section 2). Since this transformation does not yield better lower bounds, and the
resulting scheme is impractical, we present the simpler transformation above.

Lower bound on the length of ROM subvector commitments. A subvector com-
mitment (SVC) [LM19] allows to succinctly commit to a sequence of values, and
later open the commitment for a subset of positions (an adversary cannot open

4

any location into two different values). Ideally, the commitment string and the
opening size of the SVC are independent (or at least not strongly related) of the
length of the committed vector and the number of positions to open. This gener-
alization of vector commitments [CF13] has a variety of applications, including
SNARGs, verifiable databases with efficient updates, updatable zero-knowledge
databases, universal dynamic accumulators, and more. Since SVCs in the (bare)
ROM are the main building blocks in all ROM-SNARGs constructions, finding
shorter ROM-SVCs is the obvious approach towards construction shorter ROM-
SNARGs. For this very reason, Theorem 1 yields a lower bound on ROM-SVCs
for an analog family of constructions: non-adapter receiver and salted-binding
(i.e., the sender can resample the oracle outputs).

Theorem 2 (Conditional lower bound on the length of ROM subvec-
tor commitments. Informal). Let CM be a (t, ε)-salted-sound, non-adaptive
(deterministic) verification ROM-SVC for vectors of length n. Let qS and qR be
the query complexity of the sender and receiver, respectively. Let α denote the
commitment length, and β(`) denote the opening length for subsets of size `.

Assuming rETH, if qR · λ ∈ o(n), and log2(t/ε) · log−1 qS ∈ o(n), then α +
β(log t

ε) ∈ Ω(log t · log t
ε/ log n).

That is, unless the commitment itself is large, the opening of subsets of size
log t

ε must be large: about log t/ log n bits per element. SVCs are relatively a
strong primitive as they imply SNARGs for NP via the Micali construction (the
other direction is not known to hold). However, we only know how to derive lower
bounds for them by a reduction to SNARGs. An interesting open question is to
directly get lower bounds for SVC, presumably for a larger class of constructions.
Moreover, we can hope to get a lower bound for SVCs (in the ROM) without
assuming rETH (or any complexity assumption). Indeed, even P = NP is not
known to yield trivial SVCs in the ROM (which is not the case for SNARGs).
1.1.1 Hitting High-Entropy Distributions
The crux of Lemma 1 proof is analyzing the completeness of the resulting low
verifier query scheme. We manage to translate this challenge into the following
task of hitting high-entropy distributions.

Let X = (X1, . . . , Xm) be a random variable uniformly distributed over
({0, 1}λ)m, let W be an event, and consider the random variable X|W , i.e.,
X conditioned on W . It is instructive to think of this question as “How does X
appear to an adversary who received log(1/Pr [W]) bits of information about X?”
A long sequence of works have studied the question of how “close” X|W is to the
uniformly distributed (unconditioned) X. In particular, these works considered
the question of indistinguishability : showing that parts of X|W are close to being
uniform. Some works, see [EIRS01; Raz98; SV10] to name a few, proved that
the distribution of (X|W)i is close in statistical distance to the uniform one,
apart from a size log(1/Pr [W]) set of bad i’s. Other works extended the above
to bounded-query adversaries [Unr07; DGK17; CDGS18; GSV18; GLLZ20].

Unlike the above works, the focus of our result is forgeability : can we hit/sample
from the conditional distributionX|W using a simple distribution? We show that

5

after putting aside some bad indices, one can hit the support ofX|W , conditioned
on its value in these bad indices, using a large enough product distribution. Like
some of the above works, we state our result for high-entropy distributions, and
not only for the uniform distribution conditioned on a high probability event.9

Theorem 3 (Hitting high-entropy distributions using product sets, in-
formal). Let X = (X1, . . . , Xm) be a random variable over the product set
({0, 1}λ)m with H(X) ≥ λm− `, and let dlogme ≤ γ ≤ λ. Then with probability
at least 1/2 over x← X, there exists an O(`/γ)-size set B ⊆ [m] (of bad indices)
such that

PrS←({0,1}λ)m−|B|
[
S ∩ Supp

(
X[m]\B | XB = xB

)
6= ∅
]
∈ Ω(1/λm).

Letting H be the Shannon entropy function, and vI , for a vector v, denote
the ordered vector (vi)i∈I . That is, with high probability over x ← X, and
after a few “bad” locations (indexed by B) are exposed, one can hit (i.e., forge a
sample from) the conditional distribution X[m]\B | XB = xB by sampling a tiny,
in relative terms, product set.

Note that Theorem 3 does not state that X[m]\B | XB = xB is close to the
uniform distribution. Actually, it might be very far from that, e.g., for X =
(U1, . . . , Um) |

⊕
Ui = 0λ where the Ui’s are uniform and independent random

variables over {0, 1}λ, there is no choice of B, apart from the trivial one of
B = [m], that makesX[m]\B | XB = xB being close to uniform. (And this example
demonstrates why the “pre-sampling” approach and alike, c.f., [Unr07], do not
seem to be relevant for proving bounds of the type stated in the theorem.)It
is also worth mentioning that one cannot prove Theorem 3 using the simple
observation that after fixing some bad indices, the projection of X ′ def= (X |
XB = xB) on all other coordinates has large support. While the latter guarantees
that, with high probability, each random subset Si ← {0, 1}γ intersects the
support of X ′i, appending these samples together does not necessarily form an
element in X ′. Rather, we prove the theorem by showing that the number of
points in S ∩ Supp(X ′[m]\B) is well-concentrated around its mean.

In our application of Theorem 3, the event W is the proof sent by P being
a fixed `-bit value π, and the size of the bad set B translates to the query
complexity of the new verier V′. The theorem yields, see Section 2, that if V′
makes all queries is B, and samples the potential answers for the other queries by
itself, then it will accept (i.e., hitting the support of the accepting distribution)
with good probability.

1.2 Related Work

1.2.1 SNARGs in the Random Oracle Model
There are several approaches to construct ROM-SNARGs. Micali [Mic00] (build-
ing on [Kil92; FS86]) showed a transformation that compiles a probabilistically
9 This is a generalization since for uniformly distributed X it holds that H(X |W) ≥
λm− log 1/Pr[W].

6

checkable proof (PCP) and a commitment scheme into ROM-SNARG. Using
the best know PCPs, the proof length of Micali’s construction, to get (t, ε)-
soundness, is O((log(t/ε))2 · log n), where n is the instance size. Even when
using the best-conjectured parameters for PCPs, known as the Sliding Scale
Conjecture [BGLR93], the proof length remains the same up to the log n factors
(see [CY21b] for a tight analysis of the Micali construction). Ben-Sasson, Chiesa,
and Spooner [BCS16] (hereon BCS) transformed a public-coin interactive oracle
proofs (IOPs) into ROM-SNARG. The benefit of their is approach is that we
are much better at constructing IOPs, with good parameters, than PCPs. Still,
even when using the best known (or conjectured) IOP, the proof length of the
BCS construction remains O((log(t/ε))2 · log n).

Recently, Chiesa and Yogev [CY21a] have constructed a ROM-SNARG of
proof length of O(log(t/ε) · log t · log n), and hence slightly overcome the above
“quadratic” barrier. Yet, the proof length of their construction is still far from
the only (folklore) lower bound of Ω(log(t/ε)). Thus, the question of how to close
this gap remains a major open question in this area.
1.2.2 SNARGs in Other Models
The security of SNARGs is unlikely to be proven in a non-idealized model
(using falsifiable assumptions) Gentry and Wichs [GW11], but if one is will-
ing to rely on “more structured” non-falsifiable assumptions (in addition or in-
stead of the random oracle), much shorter SNARGs become feasible. Treating
t as the running time of the adversary, constructions that use group-based and
pairing-based assumptions achieve the optimal length (or close to optimal) of
O(log(t/ε)) (c.f., [Gro10; GGPR13; BCIOP13; BCCGP16; BBBPWM18; BFS20;
PGHR13; MBKM19; CHMMVW20; Set19]). These constructions are insecure
against quantum adversaries. Lattice based constructions, which are plausibly
post-quantum, either achieve private-verifiability [BISW17; BISW18; GMNO18;
ISW21; Nit19], or are public-verifiabe, but with large proof length in practice
(moreover, they typically use a random oracle as an additional assumption)
[BBCPGL18; BLNS20; BCS21; CMSZ21]. (All of the above works assume a
common random or reference string.)

To date, relying on the ROM is the best way to construct SNARGs that
overcome all of the drawbacks mentioned above (alas, at the price of larger
proofs).

Paper Organization

In Section 2, we give a high-level overview of the techniques for proving Lemma 1
(from short ROM-SNARGs to short ROM-SNARGs with low verifier query com-
plexity). A formal definition of our notion of salted soundness, along with nota-
tions, definitions, and general statements used throughout the paper are given in
Section 3. Theorem 3 (hitting high-entropy events using product sets) is proved
in Section 4. Theorem 1 (lower bound on the length of ROM-SNARGs) and its
accompanied Lemma 1 are proved in Section 5, and Theorem 2 (lower bound on
the length of ROM subvector commitments) is proved in the full version of the
paper.

7

2 Techniques

In this section, we give a high-level overview of our proof for Lemma 1, explaining
how to transform a short salted-soundness, perfect completeness, deterministic
non-adaptive verifier ROM-SNARG into a low verifier query ROM-SNARG for
the same language.

Fix a deterministic non-adaptive ROM-SNARG ARG = (P,V) for a language
L with (t, ε)-slated-soundness and perfect completeness. Let s denote the proof
length ARG, and let qP and qV denote the query complexity of P and V, respec-
tively.

2.1 Warmup

As a warmup, assume that the honestly generated proof π, sent by P, only
contains information about outputs of k (“important”) queries, whose identity
is independent of the oracle. (The proof might contain additional information
depending only on the instance x and the witness w.) For this simple scenario,
the construction of a k-query V′ is rather straightforward:

Algorithm 4 (Low-query verifier V′. Warmup).
Oracle: ζ : {0, 1}λ 7→ {0, 1}λ.
Input: Instance x and a proof π.
Operation:

1. Emulate V(x, π) till it produces a list of oracle queries (w1, . . . , wqV). (Recall
that V is non-adaptive.)

2. Sample a random k-size subset J ⊆ [qV].
3. For i = 1, . . . , qV:

If i ∈ J , set yi = ζ(wi).
Otherwise, sample yi ← {0, 1}λ.

4. Accept if V accepts on the emulation with (y1, . . . , yqV) as the answers to its
oracle queries

Namely, V′ guesses the identity of the important queries, and then uses the
oracle ζ to answer them. It samples the answers to the other queries uniformly
at random. The query complexity of V′ is small if the number of important
queries is small. Let us quickly argue about the completeness and soundness of
ARG′ = (P,V′).

– Completeness. If the set J happens to contain all important queries, then the
given proof π, the instance x, and the witness w, the oracle answers provided
to the emulated V have exactly the same distribution as in its non-emulated
execution. Since we assume ARG has perfect completeness, the completeness
of ARG′ is at least 1/

∣∣(qV
k

)∣∣—the probability that J contains all important
queries.

8

– Soundness: Here we rely on the salted soundness of the original SNARG
scheme. Assume there exists a (t − qV)-query cheating prover P̃′ that makes
V′ accept x /∈ L with probability ε. Consider the following t-query cheating
prover P̃ for violating the salted-soundness of ARG.10

1. Run P̃′
ζ
to generate a proof π.

Emulate V(x, π) till it produces a list of oracle queries (w1, . . . , wqV).

2. For i = 1, . . . , qV:
Query ζ on wi with a fresh salt. Set Si = {yi} for yi be the query answer.
If wi was asked by P̃′ in Step 1, add the retrieved answer to Si.

3. If there exists (y1, . . . , yqV) ∈ S1×. . .×SqV that would make V accept (x, π)
with (y1, . . . , yqV) as the answers to its oracle queries, program ζ(wi) = yi
for each i ∈ [qV] (this programming is allowed by the salted soundness
security game).

4. Output π.
By definition, if P̃ outputs a proof π then V accepts π on the programmed
oracle. In addition, the probability that P̃ outputs the proof π generated in
Step 1, is at least as large as the probability that V′ accepts π on the non-
programmed oracle: P̃ considers for each query the original output of the
oracle, as seen by V′ on queries in J , and a uniform output, as sampled by
V′ on inputs not in J .

2.2 Actual Scenario

Things get way more challenging when the proof π depends on the queries made
by P, even in a slightly more complicated way. For instance, suppose π contains
the XOR of some k queries, and V verifies that the XOR of these queries is
consistent with π. Since k might be arbitrarily large, i.e., much larger than π,
there is no low-query verifier that makes all these queries. So the challenge is to
design a verifier that does not make all queries that effect the value of π, but
still has non-trivial soundness and completeness.

The key observation is that for the general case, where π depends arbitrar-
ily on all oracle answers, we can modify the verifier so that the completeness
and soundness are not that different from the naïve example considered in the
warmup. Very informally, with high probability over the value of π and apart
from k = s/γ “important” queries, the verification verdict does not depend ”too
much” on the answer to all other “non-important” queries. That is, there are
many possible answers for the non-important queries that lead to acceptance
(compared with all possible answers in the warmup case). See Section 2.3 for

10 Recall that the salted-soundness game allows a cheating prover to resample (many
times) the output of the random oracle on a query. Each resampling costs the cheat-
ing prover a single query call from its query budget. The prover can role-back the
oracle on certain queries, to set their answers to a previously answered values. See
Section 3.5.1 for exact definition.

9

details. It follows that the answers for the non-important queries can be emulated
by the verifier (without querying the oracle). Equipped with this understanding,
the low query V′ is defined as follows:

Algorithm 5 (Low-query verifier V′).
Oracle: ζ : {0, 1}λ 7→ {0, 1}λ.
Paramters: γ < λ.
Input: Instance x and a proof π.
Operation:

1. Emulate V(x, π) till it produces a list of oracle queries (w1, . . . , wqV). (Recall
that V is non-adaptive.)

2. Sample k′ ∈ [k] at random and sample, a random k′ = ds/γe-size subset
J ⊆ [qV].

3. For i = 1, . . . , qV:
If i ∈ J , set Si = {ζ(wi)}.
Otherwise, let Si be a 2γ-size random subset of {0, 1}λ.

4. Accept if there exists (y1, . . . , yqV) ∈ S1 × . . . × SqV that make V accepts on
the emulation, with (y1, . . . , yqV) as the answers to its oracle queries

That is, similar to the warmup scenario, V′ only uses the oracle to answer
the k = ds/γe queries in the guessed set J . For each other query, V′ samples
2γ candidates answers. It accepts if there is a choice from the candidate answers
that jointly with the oracle answers to the queries in J , leads to acceptance.
The running-time of V′ is (roughly) 2qV·γ , and the following claim states the
completeness and soundness of ARG′ = (P,V′):

Claim (Informal). ARG′ has
(
λ · qP ·k ·

(
qV
s/γ

))−1-completeness and (t−qV ·2γ , ε)-
soundness.

We argue completeness in Section 2.3, using the observation we made above
regarding the small number of important queries, and argue soundness in Sec-
tion 2.4, by extending the approach we took for proving soundness in the warmup
case.

2.3 Completeness

Let Π and Y = (Y1, . . . , YqP) denote the proof and the random oracle answers
to honest prover P queries on instance x and witness w, respectively. Since the
Yi’s are independent uniform values in {0, 1}λ, it holds that

H(Y) = qP · λ (1)

where H(Y) is the Shannon entropy of Y . A standard entropy argument yields
that with probability at least 1/2 over π ← Π:

H(Y | Π = π) ≥ qP · λ− 2|π| (2)

10

In the following, fix π ∈ Supp(Π) for which Equation (2) holds. Applying The-
orem 3 with respect to Y |Π=π and ` = 2|π|, yields that with probability 1/2
over the value of (y1, . . . , yqP) ← Y |Π=π, there exists a set B ⊆ [qP] of size `/γ
(omitting constant factors) such that

Pr
[
(S1 × · · · × SqP−|B|) ∩ Supp(Y ′[qP]\B) 6= ∅

]
∈ Ω(1/λ · qP) (3)

where each of the Si’s is an independent 2γ-size subset of {0, 1}λ, Y ′def=Y |YB=yB,Π=π,
and Y ′I is the ordered vector (Y ′i)i∈I .

Assume for simplicity that V and P make exactly the same queries. By Equa-
tion (3), if the random set J (sampled by V′) is exactly B = B(π), then with
probability Ω(1/λ · qP) over the choice of the sets Si’s sampled by V′, exit an-
swers {yj ∈ Sj}j /∈J that when combined with the oracle answers {yj ∈ Sj}j∈J ,
it holds that y = (y1, . . . , yqP) ∈ Supp(Y |Π=π). Since such a vector y is possible
to occur as random oracle answers in an honest execution of P that results in
π, the perfect completeness of ARG yields that V accepts on (the answers in) y
with probability one. We conclude that V′ accepts with probability Ω(1/λ · qP)
times Pr [J = B] ≥ 1/k · 1/

(
qV
s/γ

)
.

Remark 1 (Improved completeness). We note that one could slightly modify the
transformation to improve the completeness significantly (at the cost of proof
length and prover running time). However, as this does not improve our lower
bound, we only sketch the idea here. Instead of having the verifier guess the set J ,
let the prover find J , and send its description to the verifier. The completeness
error now would come only from the error in Equation (2) (i.e., an error of
(λ · qP)−1), and not from the probability of choosing the right set J . The proof
would be slightly larger (as it needs to contain the description of J), and the
running-time of the honest prover would increase, as it needs to find the right
set J (query complexity will stay the same). Even more so, using a prefix salt
for all queries (included in the proof), one can make the completeness error
exponentially small.

2.4 Soundness

Assume there exists a (t−qV ·2γ)-query cheating prover P̃′ that makes V′ accepts
x /∈ L with probability ε, and consider the following t-query cheating prover P̃
for violating the salted-soundness of ARG.

Algorithm 6 (P̃).
Oracle: ζ : {0, 1}λ 7→ {0, 1}λ.
Input: Instance x.

1. Run P̃′
ζ
(x) to generate a proof π.

2. Emulate V on (x, π) to determine its list of oracle queries (w1, . . . , wqV).

3. For i = 1, . . . , qV:

11

(a) Query ζ on wi for 2γ times. Let Si be the set of answers.

(b) If wi was asked by P̃′ in Step 1, add the retrieved answer to Si.

4. If there exists (y1, . . . , yqV) ∈ S1 × . . . × SqV that make V accept (x, π) with
(y1, . . . , yqV) as the answers to its oracle queries, program ζ(wi) = yi for each
i ∈ [qV].

5. Output π.

The cheating probability of P̃ it as least as high as that of P̃′. This is shown
via a coupling argument, and the precise details are given in Section 5.2.2.

3 Preliminaries

3.1 Notations

We use calligraphic letters to denote sets, uppercase for random variables, and
lowercase for values and functions. Let poly stand for the set of all polyno-
mials. Throughout the paper, log is the base 2 logarithm. For n ∈ N, let
[n] = {1, . . . , n}. Given a vector v ∈ Σn, let vi denote its ith entry. Similarly, for
a set I ⊆ [n], let vI be the ordered sequence (vi)i∈I , let v−I

def
= v[n]\I . For a set

S and k ∈ N, let Pk(S) denote all k-size subsets of S. The support of a random
variable X, denoted Supp(X), is defined as {x : Pr[X = x] > 0}. For an event
E, we write X|E to denote the random variable X conditioned on E.

The language 3SAT over n variables is the set of all satisfiable formulas in
conjunctive normal form where each clause is limited to at most three literals.
The class BPTIME[T] refers to all languages that can be decided by a proba-
bilistic TM that runs in time T (n), on inputs of length n.

Some basic inequalities. We use the following well-known facts:

Fact 7. log(1−x) ≤ −x for x ∈ [0, 1], and log(1−x) ≥ −2x, for any x ∈ [0, 1/2].

Theorem 8 (Paley–Zygmund inequality). For any finite non-negative ran-
dom variable X it holds that Pr[X > 0] ≥ E[X]2/E[X2] .

3.2 Entropy Measures

We refer to several measures of entropy. The relation and motivation of these
measures are best understood by considering a notion that we will refer to as the
sample-entropy: for a random variable X and x ∈ Supp(X), the sample-entropy
of x with respect to X is the quantity

HX(x)
def
= log 1

Pr[X=x] ,

letting HX(x) =∞ for x /∈ Supp(X), and 2−∞ = 0.
The sample-entropy measures the amount of “randomness" or “surprise" in

the specific sample x, assuming that x has been generated according to X. Using

12

this notion, we can define the Shannon entropy H(X) and min-entropy H∞(X)
as follows:

H(X)
def
= Ex←X [HX(x)] , H∞(X)

def
= min

x∈Supp(X)
HX(x).

We will also discuss the max-entropyH0(X)
def
= log |Supp(X)|. The term “max-

entropy” and its relation to the sample-entropy will be made apparent below.
It can be shown that H∞(X) ≤ H(X) ≤ H0(X) with each inequality being

an equality if and only if X is flat (uniform on its support). Thus, saying that
H∞(X) ≥ k is a strong way of saying that X has “high entropy” and H0(X) ≤ k
a strong way of saying that X has “low entropy”.

Conditional entropies. We will also be interested in conditional versions of en-
tropy. For jointly distributed random variables (X,Y) and (x, y) ∈ Supp(X,Y),
we define the conditional sample-entropy to be HX|Y (x|y) = log 1

PrX|Y [x|y] =

log 1
Pr[X=x|Y=y] . Then the standard conditional Shannon entropy can be written

as

H(X | Y) = E(x,y)←(X,Y)

[
HX|Y (x | y)

]
= Ey←Y [H(X|Y=y)] = H(X,Y)−H(Y).

The following fact gives a bound on the amount of entropy that is reduced
when conditioning on an event for uniformly distributed random variables.

Fact 9. Let X be a random variable uniform over a set S and let W be an event.
Then H(X |W) ≥ log(|S|)− log 1/Pr [W].

3.3 Randomized Exponential Time Hypothesis

Definition 1 (rETH; [DHMTW14]). The randomized Exponential Time
Hypothesis (rETH) states that there exist ε > 0 and c > 1 such that 3SAT on n
variables and with c · n clauses cannot be solved by probabilistic algorithms that
run in time 2ε·n.

3.4 Random Oracles

We denote by U(λ) the uniform distribution over all functions ζ : {0, 1}∗ →
{0, 1}λ. Given an oracle algorithm A and an oracle ζ ∈ U(λ), queries(A, ζ) is the
set of oracle queries that Aζ makes. We say that A is t-query if |queries(A, ζ)| ≤ t
for every ζ ∈ U(λ). We say that A is non-adaptive if its queries do not depend
on the responses of the random oracle to previous queries. Finally, we consider
the length of oracle queries, i.e., the number of bits used to specify the query:
we say that A has queries of length λ if for every ζ ∈ U(λ) and x ∈ queries(A, ζ)
it holds that |x| ≤ λ.

13

3.5 Non-Interactive Arguments in the ROM

We consider non-interactive arguments in the ROM, where security holds against
query-bounded, yet possibly computationally-unbounded, adversaries. Recall that
a non-interactive argument typically consists of a prover algorithm and a ver-
ifier algorithm that prove and validate statements for a binary relation, which
represents the valid instance-witness pairs.

A pair of polynomial-time oracle algorithms ARG = (P,V) is a ROM-SNARG
with α-completeness and (t, ε)-soundness, for a relation R, if the following holds.

– Completeness. For every λ ∈ N and (x,w) ∈ R:

Pr
ζ←U(λ)

π←Pζ(x,w)

[
Vζ(x, π) = 1

]
≥ α(|x| , λ) .

– Soundness.11 For every λ ∈ N, t-query P̃ and x /∈ L(R):

Pr
ζ←U(λ)

π←P̃ζ

[
Vζ(x, π) = 1

]
≥ ε(|x| , λ, t) .

Complexity measures. We consider several complexity measures beyond sound-
ness error. All of these complexity measures are, implicitly, functions of x and
the security parameter λ.
– argument length: s := |π|.
– times: the prover P runs in time pt; the verifier V runs in time vt.
– queries: the prover P is a qP-query algorithm the verifier V is a qV-query

algorithm.

3.5.1 Salted Soundness
Chiesa and Yogev [CY20] introduced a stronger notion of soundness for ROM-
SNARG that they named salted soundness. This notion requires soundness to
hold also against a malicious prover that has limited ability to program the oracle:
it can obtain a set of random, independent strings as candidates for random
oracle answers to a specific query. After obtaining such sets to the queries of his
choice, the malicious prover can pick an answer of his desire from each set to be
the random oracle answer.12 This notion is formalized via the following salted
soundness game defined as follows:

Game 10 (SaltedSoundessV,λ,t(A,x)).
Parameters: Algorithm V and λ, t ∈ N.
11 This notion, where x is set before the oracle, is sometimes refereed to as non-adaptive

soundness. Clearly, lower bounds on this weaker notion , as we do in this work, apply
also for its adaptive variant (where the cheating prover is allowed to choose x as a
function of the oracle).

12 Our notion slightly strengthens the notion of Chiesa and Yogev [CY20], in which
the prover cannot roll back the oracle answer to a previously seen answer.

14

Input: x ∈ {0, 1}∗
Player: A.
Operation:

1. Initialize keyed-map S of lists (each entry is initialized with the empty list).
2. Repeat the following t times:

(a) A sends a query x ∈ {0, 1}∗.
(b) Send y ← {0, 1}λ to A, and add it to the list S[x].

3. A outputs a proof string π and query-answer list σ = [(x1, y1), . . . , (xn, yn)].
4. Abort if yi /∈ S[xi] for some i ∈ [n].
5. Output Vζσ (x, π).

Definition 2 (Salted soundness).We say that ROM-SNARG (P,V) has (t, ε)-
salted-soundness for a language L, if for any λ, x /∈ L and P̃ it holds that
Pr
[
SaltedSoundessV,λ,t(P̃,x) = 1

]
≤ ε(|x| , λ, t).

Remark 2 (Known constructions satisfy salted soundness). Known construc-
tions of ROM-SNARGs are usually proven to have standard soundness (as op-
posed to salted soundness). However, we observe that the constructions of [Mic00;
BCS16; CY21b; CY21a] actually achieve this stronger notion of security. In par-
ticular, the tight analysis given in [CY21b] and in [CY21a] explicitly allowed the
adversary to choose a salt for each query in the construction (e.g., see remark
3.2 in [CY21b]).

Amplification. It turns out that salted soundness can be easily amplified (at the
expense of the query complexity). The proof of Lemma 2 is proved in the full
version of the paper.

Lemma 2. Let ARG be an ROM-SNARG for a language L with (t, ε)-salted-
soundness for ε ≤ 1/4. Then ARG has (t/k, 2ε/k)-salted-soundness for any k ∈
N.

4 Hitting High-Entropy Distribution using Product Sets

In this section we formally state and prove Theorem 3. Recall that for a set S
and k ∈ N, we let Pk(S) denote all k-size subsets of S. Thus, a uniform sample
from (P2γ ({0, 1}λ))m−|B| is a random product in ({0, 1}λ)m−|B| of width 2γ .

Theorem 11 (Hitting high-entropy distributions using product sets,
restatement of Theorem 3). Let γ ≤ λ ∈ N, and let X = (X1, . . . , Xm) be a
random variable over ({0, 1}λ)m. If H(X) ≥ λm− ` and γ ≥ 4 dlogme+4, then
with probability at least 1/2 over x← X, then there exists a set B ⊆ [m] of size
at most 8`/γ + 4 such that

PrS←(P2γ ({0,1}λ))m−|B|
[
S ∩ Supp(X[m]\B |XB=xB) 6= ∅

]
≥ 1/32λm.

15

Remark 3 (Tightness of Theorem 11). The size of B in Theorem 11 is tight up
to a constant: Let m,λ, γ ∈ N be as in Theorem 11, let X = (X1, . . . , Xm) be
uniform over ({0, 1}λ)m and let W be the event that X1 = . . . = Xt = 0λ, for
some t ∈ [m]. Clearly, H(X|W) = (m− t)λ. It is also clear that for every x and
every set B ⊆ [m] of size t′ < t, it holds that

Pr
S←(P2γ ({0,1}λ))m−t

′
[
S ∩ Supp(X[m]\B |XB=xB) 6= ∅

]
≤ 2γ−λ,

which is negligible for sufficiently small γ, e.g., γ = λ/2. This matches, up to a
constant, Theorem 11, which states that with high probability over x← X |W ,
there exists a set B of size at most 16t+4 for which that the above event occurs
with probability at least 1/32λm.

Proving Theorem 11. We start with describing the high-level approach of the
proof. We need to prove that with high probability over x ← X, there exists a
small (i.e., with size at most 8`/γ + 4) subset B ⊆ [m] such that

PrS←(P2γ ({0,1}λ))m̂
[
S ∩ Supp(X̂) 6= ∅

]
≥ 1/32λm,

for X̂ = X[m]\B |XB=xB and m̂ = m−|B|. We assume, without loss of generality,
that the elements of each Si are chosen in a uniform order, and denote the jth
element of Si, according to this order, by Si[j]. For y = (y1, . . . , ym̂) ∈ [2γ]m̂, let
Sy ∈ {0, 1}λ×m̂ be the random variable defined by (Sy)i = Si[yi]. Let Zy be the
indicator for the event Sy ∈ Supp(X̂), and let Z def

=
∑
y∈[2γ]m̂ Z

y. That is, Zy is
event that the yth element of S is in Supp(X̂). Given this notation, we need to
prove that Pr [Z > 0] ≥ 1/32λm. We start by proving that the expected value
of Z is large. By linearity of expectation,

E [Z] =
∑

y∈[2γ]m̂
E [Zy] = 2γm̂ · |Supp(X̂)|/2m̂λ = 2(γ−λ)m̂ · |Supp(X̂)| (4)

To guarantee that E [Z] is at least one, we chose B to be a maximal subset of
[m] with

HXB(xB) ≤ (λ− γ) · |B| (5)

forHY (y) be the sample entropy of y according to Y (see Section 3.2). It is rather
straightforward to show that with respect to this choice of B, the expected value
of Z is indeed at least one. Furthermore, since, by assumption, X has high
entropy, the expected size of B, as a function of x, is small, and therefore, with
high probability over x the size of B is also small. (See proof in Lemma 3).

The above would suffice for lower-bounding Pr [Z > 0], if the random vari-
ables {Zy} would have been independent. This, however, is clearly not the case
since most Zy are not even pairwise independent: for a pair y, y′ ∈ [2γ]m̂ with
yI = y′I for some I ⊆ [m̂], the event Zy = 1, implying (Sy

′
)I ∈ Supp(X̂I),

is likely to increase the probability of Zy
′
= 1. Yet, we manage to show that

16

the expected value of Z2 is small enough, implying that Z is well concentrated
around its mean, and therefore Pr [Z > 0] is large. To do that, we notice that
for the maximal set B defined above, it holds that

HXI |XB=xB
(xI) > (λ− γ) · |I| (6)

for every I ⊆ [m] \ B. This condition implies that for every y, y′ with yI = y′I ,
the probability of Zy ∧ Zy′ is sufficiently small (quantified by the size of I),
implying that E

[
Z2
]
is small.

Moving to the formal proof, Theorem 11 is an immediate corollary of the
following two lemmata: Lemma 3 states that with high probability over x, there
exists a small set B for which Equation (6) holds, and Lemma 4 completes the job
by proving the conclusion of the theorem for the random variable X[m]\B |XB=xB .

Lemma 3 (High-entropy events have an almost full-entropy large pro-
jection). Let γ ≤ λ ∈ N, and let X = (X1, . . . , Xm) be a random variable over
({0, 1}λ)m. If H(X) ≥ λ ·m− ` and γ ≥ 2 · dlogme+ 2, then with probability at
least 1/2 over x ← X, exists a set B ⊆ [m] of size at most 4`/γ + 4 such that
for every I ⊆ [m] \ B:

HXI |XB=xB
(xI) ≥ (λ− γ) |I| .

Lemma 4 (Hitting almost full-entropy events using product sets). Let
γ ≤ λ ∈ N, let X = (X1, . . . , Xm) be a random variable over ({0, 1}λ)m. Assume
γ ≥ 2 · dlogme + 3, and that for every x ∈ Supp(X) and I ⊆ [m], it holds that
HXI (xI) ≥ (λ− γ/2) · |I|. Then

PrS←(P2γ ({0,1}λ))m [S ∩ Supp(X) 6= ∅] ≥ 1/32λm.

We prove Lemmas 3 and 4 in Sections 4.1 and 4.2, receptively, but first use
them for proving Theorem 11.

Proof of Theorem 11:. Let t def= 8`/γ + 4, and let

T def
= {x ∈ Supp(X) : ∃B ⊆ [m], |B| ≤ t : ∀I ⊆ [m] \ B, HXI |XB=xB

(xI) ≥ (λ− γ/2) · |I|} .

Since, by assumption, γ/2 ≥ 2 dlogme+ 2, Lemma 3 yields that

Pr [X ∈ T] ≥ 1/2 . (7)

Fix x ∈ T , let B be the set guaranteed by the definition of T (choose an arbitrary
one, if there is more than one), and let X ′def=X[m]\B|XB=xB , and letm′def=m−|B|.
By Lemma 4

Pr
S←(P2γ ({0,1}λ))m

′ [S ∩ Supp(X ′) 6= ∅] ≥ 1/32λm′ ≥ 1/32λm . (8)

Combining Equations (7) and (8), concludes the proof.

17

4.1 High-Entropy Distributions Have an (Almost) Uniform Large
Projection,
Proving Lemma 3

Proof of Lemma 3. Let m,λ, γ and X be as in Lemma 3. For x ∈ Supp(X), let
Bx be the (lex. first) maximal13 subset of [m] with

HXBx (xBx) ≤ (λ− γ) |Bx| (9)

Since Equation (9) holds for the empty set, Bx is always defined. We prove
Lemma 3 using the following two claims, proven below.

Claim. For every x ∈ Supp(X) and I ⊆ [m]\Bx, it holds thatHXI |XBx=xBx (xI) ≥
(λ− γ) · |I|.

Claim. If H(X) ≥ λ · m − `, then for every random variable I ⊆ [m] it holds
that H(XI | I) ≥ (λ− dlogme) · E [|I|]− `− dlogme.

By Section 4.1, for every x ∈ Supp(X) and I ⊆ [m] \ Bx, it holds that

HXI |XBx=xBx (xI) ≥ (λ− γ) |I| (10)

Hence, to conclude the proof, it is left to argue that with high probability over
x ← X, the size of Bx is small. For I ⊆ [m], let fI(x) = xI if Bx = I, and
fI(x) = ⊥ otherwise, and let pI = Pr [fI(X) = ⊥]. Compute

H(XBX | BX) = EB←BX
[
H(XB | BX = B)

]
(11)

= EB←BX
[
H(fB(X) | BX = B)

]
≤
∑
I

EB←BX
[
H(fI(X) | BX = B)

]
=
∑
I
H(fI(X) | BX) ≤

∑
I
H(fI(X))

=
∑
I

(∑
x : Bx=I

Pr [X = x] ·HXI (xI)
)
+pI · log(1/pI)

≤
∑
I

Pr
[
BX = I

]
· (λ− γ) · |I|+ pI · log(1/pI) (12)

= (λ− γ)E
[∣∣BX ∣∣]+∑

I
pI · log(1/pI)

≤ (λ− γ)E
[∣∣BX ∣∣]+ 1 +

∑
I,pI≥1/2

−pI · log(pI)

≤ (λ− γ)E
[∣∣BX ∣∣]+ 1 +

∑
I,pI≥1/2

pI · 2(1− pI) (13)

= (λ− γ)E
[∣∣BX ∣∣]+ 1 + 2 ·

∑
I,pI≥1/2

pI · Pr
[
BX = I

]
≤ (λ− γ)E

[∣∣BX ∣∣]+ 3.

13 Maximal means relative to inclusion—there is no I strictly containing Bx with
HXI (xI) ≤ (λ− γ) · |I|.

18

Inequality 12 holds by the definition of Bx, and Inequality 13 holds since log(1−
x) ≥ −2x for x ∈ [0, 1/2].

On the other hand since, by assumption, H(X) ≥ λ ·m−`, Section 4.1 yields
that

H(XBX | BX) ≥ (λ− dlogme) · E
[∣∣BX ∣∣]− `− dlogme (14)

Combining Equations (11) and (14), we conclude that E
[∣∣BX ∣∣] ≤ `+dlogme+3

γ−dlogme ≤
2`/γ+2, where the 2nd inequality follows from the fact that γ ≥ 2 · dlogme+3.
The proof follows by Markov inequality.

Proving Section 4.1.

Proof of Section 4.1. Let B = Bx. Since for every disjoint sets A, C ⊆ [m] and
x ∈ Supp(X)

Pr[XA = xA] · Pr[XC = xC | XA = xA] = Pr[XA∪C = xA∪C],

for every I ⊆ [m] \ B

HXB(xB) +HXI |XB=xB
(xI) = HXI∪B(xI∪B).

Assume towards a contradiction that HXI |XB=xB(xI) < (λ − γ) |I|. Since, by
definition, HXB(xB) ≤ (λ− γ) |B|, it follows that

HXI∪B(xI∪B) < (λ− γ) · (|B|+ |I|) = (λ− γ) · |B ∪ I| ,

in contradiction to the maximality of B.

Proving Section 4.1.

Proof. Since, by assumption, H(X) ≥ λm− `, and since

H(I) = H(I, |I|) ≤ dlogme+H(I | |I|) ≤ dlogme+ E [|I|] · dlogme = dlogme (E [|I|] + 1),

we conclude that

H(X | I) ≥ λm− `− (Ex←X [|I|] + 1) dlogme (15)

Therefore,

H(X | I) = H(XI , X[m]\I | I) ≤ H(XI | I) +H(X[m]\I | I) (16)

Finally, since H(X[m]\I | I) ≤ H0(X[m]\I) | I) ≤ λ·(m−Ex←X [|I|]), we conclude
that

H(XI | I) ≥λ ·m− `− dlogme (E [|I|] + 1)− λ · (m− E [|I|])
=(λ− dlogme) · E [|I|]− `− dlogme .

19

4.2 Hitting almost Full-Entropy Distributions using Product Set,
Proving Lemma 4

We start by proving the following variant of Lemma 4, stated for flat distri-
butions, i.e., X is uniform over a set. In Section 4.2.1, we use this variant for
proving Lemma 4.

Lemma 5 (Hitting flat distributions). Let m, γ ≤ λ ∈ N be such that
γ ≥ 2 · dlogme + 2, let δ > 0, and let T ⊆ {0, 1}λ·m be a non empty set. If for
all I ⊆ [m] and a ∈ {0, 1}λ·|I|, it holds that

|{x ∈ T : xI = a}| ≤ |T | · 2(γ/2−λ)|I|/δ , (17)

then

PrS←(P2γ ({0,1}λ))m [S ∩ T 6= ∅] ≥ δ/2 .

Proof. Let S = (S1, . . . , Sm) be as in the lemma statement, i.e., uniformly dis-
tributed over

(
P2γ ({0, 1}λ)

)m. We assume, without loss of generality, that the el-
ements of each Si are chosen in a uniform order and denote the jth element of Si,
according to this order, by Si[j]. For y = (y1, . . . , ym) ∈ [2γ]m, let Sy ∈ {0, 1}λ×m

be the random variable defined by (Sy)i
def
= Si[yi]. Let Zy be the indicator for

the event Sy ∈ T , and let Z def
=
∑
y∈[2γ]m Z

y. By the Paley–Zygmund inequality,
Theorem 8, it holds that

PrS←(P2γ ({0,1}λ))m [S ∩ T 6= ∅] = Pr[Z > 0] ≥ E[Z]2/E[Z2] . (18)

Thus, we prove Lemma 5 by properly bounding E[Z] and E[Z2]. Let ρ def
= |T |

2mλ
.

Since we associate a random order with the elements of each Si, for every y ∈
[2γ]m it holds that E [Zy] = ρ. Hence,

E [Z] =
∑

y∈[2γ]m
E [Zy] = 2γmρ . (19)

For upper bounding E[Z2], we use the following claim (proved in Section 4.2).
In the following for y, y′ ∈ [2γ]m, let Ky,y′

def
= {i ∈ [m] : yi = y′i}.

Claim 12. For every y, y′ ∈ [2γ]m it holds that Pr[Zy ∧Zy′] ≤ 2γ·|Ky,y′ |/2 ·ρ2/δ.

For K ⊆ [m], let AK
def
= {(y, y′) ∈ [2γ]m : Ky,y′ = K}. Using Claim 12, we

deuce that

20

E
[
Z2
]
=

∑
y,y′∈[2γ]m

Pr[Zy ∧ Zy
′
] (20)

=
∑
K⊆[m]

∑
y,y′∈AK

Pr[Zy ∧ Zy
′
]

≤
∑
K⊆[m]

∑
y,y′∈AK

2γ|K|/2 · ρ2/δ

≤ ρ2

δ
·
m∑
k=0

∑
K⊆[m],|K|=k

2γk · (22γ)m−k · 2γk/2

=
ρ2

δ
· 22γm ·

m∑
k=0

(
m

k

)
· 2−γk/2

≤ ρ2

δ
· 22γm ·

m∑
k=0

2−k·(γ/2−logm) ≤ 2·ρ
2

δ
· 22γm.

The first inequality holds by Claim 12, and the last one by holds since, by
assumption, γ ≥ 2 · dlogme + 2. Combining Equations (18) to (20), prove the
lemma by deducing that

Pr[Z > 0] ≥ E[Z]2

E[Z2]
≥ (2γm · ρ)2

2·ρ2δ · 22γm
= δ/2.

Proving Claim 12.

Proof. Let K = Ky,y′ , and for a ∈ {0, 1}λ|K| let Ta = {x ∈ T : xK = a}. Compute

Pr
[
Zy ∧ Zy

′
]
=

∑
a∈{0,1}λ·|K|

Pr [SyK = a] · Pr
[
Zy ∧ Zy

′
| SyK = a

]
=

∑
a∈{0,1}λ·|K|

Pr [SyK = a] ·
(
|Ta| · (|Ta| − 1)

22λ(m−|K|)

)

≤
∑

a∈{0,1}λ·|K|
2−λ|K| ·

(
|T |

2λ(m−|K|)

)2

·
(
|Ta|
|T |

)2

≤
∑

a∈{0,1}λ|K|
2−λ|K| ·

(
|T |

2λ(m−|K|)

)2

· |Ta|
|T |
· 2(γ/2−λ)·|K|/δ

=
1

δ
·
(
|T |
2λm

)2

· 2γ|K|/2 ·
∑

a∈{0,1}λ|K|

|Ta|
|T |

=
1

δ
· ρ2 · 2γ|K|/2.

The second inequality holds by the assumption of the lemma (Equation (17)).

21

4.2.1 Proving Lemma 4

Proof of Lemma 4. Define

T def
= {x ∈ Supp(X) : ∀I ⊆ [m], HXI (xI) ≥ (λ− γ/2) · |I|}

We partition the set T into 2λm subsets, such that the elements of each part
have roughly the same probability under X. Specifically, for i ∈ [2λm] let

T i def= {x ∈ T : HX(x) ∈ [i− 1, i)},

and let T 0 def
= {x ∈ T : HX(x) ≥ 2λm}. By definition,

Pr[X ∈ T 0] =
∑
x∈T 0

Pr[X = x] ≤ 2λ·m · 2−2·λ·m = 2−λ·m,

and therefore 2−λ·m+
∑
i∈[2·λ·m] Pr[X ∈ T i] ≥ 1. Hence, by averaging argument,

exists i ∈ [2λm] such that

Pr[X ∈ T i] ≥ 1− 2−λ·m

2λm
≥ 1

4λm
(21)

The second inequality hold since, by assumption, λ ≥ γ ≥ 2. In the rest of the
proof we use Lemma 5 to prove that PrS←P2γ ({0,1}λ)

[
S ∩ T i 6= ∅

]
. Let Xi =

X |X∈T i , and for I ⊆ [m] and a ∈ Supp(Xi
I), let T iI,a

def
= {x ∈ T i : xI = a}. Since

Xi is almost flat, for every a ∈ Supp(Xi
I) and x ∈ T iI,a:

Pr[Xi
I = a] =

∑
x′∈T iI,a

Pr[Xi = x′] ≥
∣∣T iI,a∣∣ · Pr[Xi = x]/2.

Similarly,

1 =
∑

a∈Supp(XiI)

Pr[Xi
I = a] =

∑
a∈Supp(XiI)

∑
x′∈T iI,a

Pr[Xi = x′]

≤
∑

a∈Supp(XiI)

∣∣T iI,a∣∣ · 2 · Pr[Xi = x] = 2 ·
∣∣T i∣∣ · Pr[Xi = x].

Combing the above two inequalities, we get that

Pr[Xi
I = a] ≥

1/2 ·
∣∣T iI,a∣∣ · Pr[Xi = x]

2 · |T i| · Pr[Xi = x]
=

∣∣T iI,a∣∣
4 · |T i|

(22)

By assumption, for every x ∈ T and I ⊆ [m]:

Pr[XI = xI] ≤ 2(γ/2−λ)|I| (23)

22

Therefore, for every a ∈ Supp(Xi
I):∣∣T iI,a∣∣

|T i|
≤ 4 · Pr[Xi

I = a] ≤ 4 · Pr[XI = a]

Pr[X ∈ T i]
≤ 16λm · 2(γ/2−λ)|I| (24)

The first inequality holds by Equation (22), and the third by Equation (23).
Applying Lemma 5 for the set T i with parameter δ = 1/16λm, yields that

PrS←P2γ ({0,1}λ)
[
S ∩ T i 6= ∅

]
≥ 1

32λm
,

and we deduce that PrS←P2γ ({0,1}λ) [S ∩ Supp(X) 6= ∅] ≥ 1
32λm .

5 Lower Bound on the Length of ROM-SNARGs

In this section, we present our lower bound on the proof length of ROM-SNARGs,
formally stated below (see Definition 1 for the formal definition of rETH, and
Section 3.5 for that of salted-soundness ROM-SNARGs).

Theorem 13 (Conditional lower bound on ROM-SNARGs length).
Let ARG = (P,V) be an s-length ROM-SNARG for n-variable 3SAT, with (t, ε)-
salted-soundness, perfect completeness, and deterministic non-adaptive verifier.
Let qP and qV be the query complexity of P and V, respectively, let v denotes
V’s running time, and let λ denote the random oracle input and output length.
Assuming rETH, if

1. ε ≤ 1/4;
2. qV · λ ∈ o(n), qV + λ ≤ t1/10;
3. log2(t/ε) · log−1 qP ∈ o(n); and
4. v ∈ 2o(n),

then s ≥ 2−15 · log t · log t
ε/ log qP.

Theorem 13 is proved using the following two lemmata. Lemma 6 states
that the verifier query complexity of a short ROM-SNARG can be significantly
reduced, and Lemma 7, taken from [CY20], states that the existence of a low
verifier query complexity ROM-SNARGs contradicts rETH.

Lemma 6 (Short ROM-SNARGs → Low Query ROM-SNARGs). Let
ARG = (P,V) be as in Theorem 13, then for any γ ∈ N, there exists a verifier V′

such that ARG′ def= (P,V′) is a ROM-SNARG for L with the following properties:

1. completeness
(
λ · qP · qV20·ds/γe)−1;

2. (t− qV · 2γ , ε)-soundness;
3. verifier query complexity 20 · ds/γe; and
4. verifier running time O(2qV·log t · v).

23

Furthermore, the transformation from V to V′ is efficient (in the description
length of V).

In words, Lemma 6 states that there exists a generic transformation from
short ROM-SNARGs into the same length ROM-SNARGs with low verifier query
complexity (but worse completeness and soundness). Lemma 6 is proven in Sec-
tion 5.2.

While not explicit in their work, the following lemma follows by similar ar-
guments to the main proof in [CY20]. A formal proof is given in the full version
of the paper.

Lemma 7 (Follows from [CY20]). Let ARG = (P,V) be a (t, ε)-sound
ROM-SNARG for n-variable 3SAT with random oracle (input and output) length
λ, argument length s, and let qV and qP denote P’s and V’s query complexity,
respectively. Assume

1. s+ λ · qV ∈ o(n);
2. qV ≤ 1/4 · log(1/ε) · log−1 qP;
3. completeness ≥ ε2/3;
4. log2(1/ε) · log−1 qP ≤ o(n); and
5. V’s running time 2o(n),

then 3SAT ∈ BPTIME[2o(n)].

Note that Lemma 7 does not require V to be deterministic or non adaptive.

5.1 Proof of Theorem 13

Proof of Theorem 13. Suppose we are given a SNARG ARG for 3SAT that sat-
isfies the conditions of the theorem, and assume without loss of generality that
qP ≤ t1/10. (Otherwise, for qP > t1/10, the lower bound we need to prove can be
written as s ≥ 2−15 · log t

ε , which follows by the folklore lower bound14). Assume
towards contradiction that s ≤ 2−15 · log t · log t

ε/ log qP. Theorem 13 is proved
via the following steps:

1. Apply Lemma 2 with parameter k = t0.5 which yields a scheme ARG that has
(t′, ε′)-salted-soundness, where t′ = t1/2, and ε′ = 2ε/t1/2.

2. Apply Lemma 6 with γ = 1/10 · log t, to get a ROM-SNARG ARG′ for 3SAT
with the following parameters:

(a) completeness
(
λ · qP · qV20·ds/γe)−1;

(b) (t′ − qV · 2γ , ε′)-soundness.
(c) verifier query complexity qV

′ = 20 · ds/γe; and
(d) verifier running time v′ = O(2qV·log t · v).

14 The proof of the folklore lower bound appears in the full version of the paper.

24

3. Apply Lemma 7 on ARG′ to contradict rETH. For this, we need to verify that
all five conditions of the lemma apply. Indeed,

(i) s+λ ·qV′ ∈ o(n): First, observe that s ≤ 2−15 · log t · log t
ε/ log qP ∈ o(n).

Then, since λ · qV ∈ o(n), we get that λ · qV′ = O(λ · s/γ) = O(log t ·
s/ log t) = o(n). Together, we have that s+λ ·qV′ ≤ o(n)+o(n) = o(n):

(ii) qV
′ ≤ 1/4 · log(1/ε′) · log−1 qP: the query complexity of the verifier of

ARG′ is

qV
′ ≤ 20 · ds/γe ≤ 20 ·

⌈
2−15 · log t · log t

ε/ log qP

1/10 · log t

⌉
≤ 1/8 · log t

ε
· log−1 qP

≤ 1/4 · log t
1/2

2ε
· log−1 qP = 1/4 · log 1

ε′
· log−1 qP .

(iii) completeness ≥ ε′2/3: Observe that 20 ds/γe ≤ 2−10 · log(t/ε) · log−1 qP.
Thus, the completeness of our scheme satisfies:(

λ · qP · qV20·ds/γe
)−1
≥
(
t1/10 · t1/10 · qV2−10·log(t/ε)·log−1 qP

)−1
≥ 2−2/10 log t−2−10·log(t/ε) ≥ 2−2/10 log t−2−9·log(t1/2/2ε)

≥ 2−3/10·log(t
1/2/2ε) = 23/10·log(ε

′) ≥ ε′2/3 .

(iv) log2(1/ε′) · log−1 qP ≤ o(n): By the definition of ε′ and the conditions of
the theorem we get that log2(1/ε′) · log−1 qP = O(log2(t/ε) · log−1 qP) =
o(n).

(v) V’s running time 2o(n): The verifier running time of the scheme is
O(2qV·log t · v). Since qV · log t = o(n) and v = 2o(n), its total running
time is 2o(n).

4. We conclude that 3SAT ∈ BPTIME[2o(n)], contradicting rETH.

5.2 Short ROM-SNARGs to Low Query ROM-SNARGs, Proving
Lemma 6

In this section, we prove Lemma 6 (see Section 2 for a high-level overview of
the proof). Let ARG = (P,V) be ROM-SNARG with (t, ε)-salted soundness,
random oracle of length λ, a non-adaptive deterministic verifier, prover query
complexity qP, and verifier query complexity qV. The low query verifier V′ is
defined as follows:

Algorithm 14 (Low-query verifier V′).
Oracle: ζ : {0, 1}λ 7→ {0, 1}λ.
Parameter: γ ≤ λ. Let k = 20 ds/γe.
Input: Instance x and proof π.
Operation:

25

1. Emulate V on (x, π) to get a list of queries w = (w1, . . . , wqV).
2. Sample k′ ∈ [k], uniformly st random and uniformly sample a k′-size subset
J ⊆ [qV].

3. For each i ∈ [qV]:
If i ∈ J , set Si = {ζ(wi)}.
Otherwise, let Si be a 2γ-size random subset of {0, 1}λ.

4. Accept if there exists (y1, . . . , yqV) ∈ S1× . . .×SqV that make V accepts given
(y1, . . . , yqV) as answers to its oracle queries.

It is easy to observe that V′ has the desired query complexity and running
time. Thus, it is left to prove that ARG′ = (P,V′) has the desired completeness
and soundness. The completeness of ARG′ is analyzed in Section 5.2.1 and its
soundness in Section 5.2.2. We put things together in Section 5.2.3

5.2.1 Completeness
We prove the following lower bound on the completeness of ARG′.

Claim. ARG′ has completeness ≥
(
λ · qP · qV20·ds/γe)−1.

In the following, we assume for simplicity that the V’s queries are (always)
a subset of the P’s queries. (The proof without this assumption follows very
similar lines, though with more complicated notation. Also, one could always
modify the honest prover to perform all the verifier’s queries, this comes with a
negligible cost that has no effect on our results.)

Proof. We associate the following random variable with the probability space
defined by the choice of ζ over the (honest) execution of (Pζ(w),V′

ζ
)(x): denote

P’s queries by X = (X1, . . . , XqP), define Z = (Z1, . . . , ZqP) by Zi = ζ(Xi), and
let Π denote the proof sent by P. We assume for ease of notation that the queries
that V would have made on the proof Π are just X1, . . . , XqV .

The length of Π is s, thus a standard argument yields that H(Π) ≤ H0(Π) ≤
s. Since each Zi is a bit string of length λ (recall that λ is the output length of
ζ), it holds that H(Z | Π) ≥ H(Z)−H(Π) ≥ λ · qP − s.

Since (by definition) H(Z | Π) = Eπ←Π [H(Z | Π = π)], with probability
at least 1/2 over π ← Π, it holds that H(Z | Π = π) ≥ λ · qP − 2 · s. Fix any
such proof π, and let Y = (Y1, . . . , YqP) = Z |Π=π. For ` = 2 · s, it holds that
H(Y) ≥ λ · qP − `. Applying Theorem 11 on Y yields that with probability 1/2
over y ← Y there exists a subset B ⊆ [qP] with |B| ≤ b8`/γc+ 4 such that:

PrS←(P2γ ({0,1}λ))qP−|B| [S ∩ Supp(Y |YB=yB) 6= ∅] ≥
1

32 · λ · qP
. (25)

An immediate corollary of Equation (25) is that with probability at least 1/2
over the choice of y ← Y , the following process outputs 1 with probability 1

32·λ·qP :

1. For each i ∈ [qV]:
If i ∈ B, set Si = {yi}.
Otherwise, let Si be a 2γ-size random subset of {0, 1}λ.

26

2. Output 1 if (S1 × . . .× SqV) ∩ Supp((Y |YB=yB)[qV]) 6= ∅.

The perfect completeness of the argument scheme ARG yields that for any
π ∈ Supp(Π), it holds that V(x, π) accepts on any value of z ∈ Supp((Y =
Z|Π=π)[qV]) given as oracle answers. Thus, it accepts any value of z ∈ Supp((Y |YB=yB
)[qV]) for any y ∈ Supp(Y).

We deduce that V′ accepts with this probability, assuming that J = B ∩
[qV]. Noting that |B| ≤ b8`/γc + 4 = b16s/γc + 4 ≤ 20 ds/γe = k, the latter
happens with probability at least k−1 ·

(
qV
k

)−1. We conclude that V′ accepts with
probability at least

1

2
· 1
2
· 1

32 · λ · qP
· 1
k
· 1(

qV
k

) ≥ 1

128 · λ · qP
· 1
k
· (k/e)

k

qVk

≥ 1

e · 128 · λ · qP
(k/e)k−1

qVk
≥ 1

e · 128 · λ · qP
(20/e)19

qVk
≥ 1

λ · qP · qVk
.

5.2.2 Soundness
We prove the following upper bound on the soundness error of ARG′.

Claim. ARG′ has (t− qV · 2γ , ε)-soundness.

Proof. Let P̃′ be a t′ := t−qV·2γ-query cheating prover such that Pr
[
〈P̃′,V′(x)〉 = 1

]
>

ε, for some x /∈ L. We show how to use P̃ to construct the following t-query
cheating prover P̃ such that Pr

[
SaltedSoundessV,λ,t′(P̃,x) = 1

]
> ε , violating

the assumed salted-soundness of (P, V).
We assume without loss of generality that P̃′ is deterministic. Indeed, since

P̃ is computationally unbounded (it is only bounded by its query complexity to
the random oracle), it has sufficient time to enumerate all random strings and
choose the best one.

Algorithm 15 (P̃).
Oracle: ζ : {0, 1}λ 7→ {0, 1}λ. Input: Instance x.

1. Run P̃′
ζ
(x) to generate a proof π.

2. Emulate V on (x, π) to determine its list of oracle queries (w1, . . . , wqV).

3. For i = 1, . . . , qV:
(a) Iterate in the salted soundness loop with query wi for 2γ times. Let S̃i

be the set of obtained answers.

(b) If wi was asked by P̃′ in Step 1, add the retrieved answer to S̃i.

4. If there exists (y1, . . . , yqV) ∈ S̃1 × . . . × S̃qV that make V accept (x, π) with
(y1, . . . , yqV) as the answers to its oracle queries, output (π, σ = [(w1, y1), . . . , (wqV , yqV)]).

27

Recall that for i ∈ J , the verifier V′ sets Si to be the output of a single call
to the oracle, and for i /∈ J , it sets Si to 2γ random strings in {0, 1}λ. Hence, for
every choice of ζ, there exists a coupling between the sets Si sampled by V′ to
the sets S̃i sampled by P̃ with S̃i ⊇ Si for every i. It follows that the probability
that P̃ makes V accept x is at least as high as the probability that P̃′ makes P′
accept x, which by assumption is at least ε. This concludes the proof since by
construction, P̃′ makes t′ queries.

5.2.3 Putting it Together
Proof of Lemma 6. Immediately follows by Sections 5.2.1 and 5.2.2.

References

[AHIV17] S. Ames, C. Hazay, Y. Ishai, and M. Venkitasubramaniam. “Ligero:
Lightweight Sublinear Arguments Without a Trusted Setup”. In:
CCS ’17.

[BBBPWM18] B. Bünz, J. Bootle, D. Boneh, A. Poelstra, P. Wuille, and G. Maxwell.
“Bulletproofs: Short Proofs for Confidential Transactions and More”.
In: S&P ’18.

[BBCPGL18] C. Baum, J. Bootle, A. Cerulli, R. d. Pino, J. Groth, and V. Lyuba-
shevsky. “Sub-linear Lattice-Based Zero-Knowledge Arguments for
Arithmetic Circuits”. In: CRYPTO ’18.

[BBHR19] E. Ben-Sasson, I. Bentov, Y. Horesh, and M. Riabzev. “Scalable Zero
Knowledge with No Trusted Setup”. In: CRYPTO ’19.

[BCCGP16] J. Bootle, A. Cerulli, P. Chaidos, J. Groth, and C. Petit. “Efficient
Zero-Knowledge Arguments for Arithmetic Circuits in the Discrete
Log Setting”. In: EUROCRYPT ’16.

[BCGGMTV14] E. Ben-Sasson, A. Chiesa, C. Garman, M. Green, I. Miers, E. Tromer,
and M. Virza. “Zerocash: Decentralized Anonymous Payments from
Bitcoin”. In: SP ’14.

[BCIOP13] N. Bitansky, A. Chiesa, Y. Ishai, R. Ostrovsky, and O. Paneth.
“Succinct Non-Interactive Arguments via Linear Interactive Proofs”.
In: TCC ’13.

[BCRSVW19] E. Ben-Sasson, A. Chiesa, M. Riabzev, N. Spooner, M. Virza, and
N. P. Ward. “Aurora: Transparent Succinct Arguments for R1CS”.
In: EUROCRYPT ’19.

[BCS16] E. Ben-Sasson, A. Chiesa, and N. Spooner. “Interactive Oracle Proofs”.
In: TCC ’16-B.

[BCS21] J. Bootle, A. Chiesa, and K. Sotiraki. “Sumcheck Arguments and
Their Applications”. In:

[BFS20] B. Bünz, B. Fisch, and A. Szepieniec. “Transparent SNARKs from
DARK Compilers”. In: EUROCRYPT ’20.

[BGLR93] M. Bellare, S. Goldwasser, C. Lund, and A. Russell. “Efficient Prob-
abilistically Checkable Proofs and Applications to Approximations”.
In: STOC ?93.

[BISW17] D. Boneh, Y. Ishai, A. Sahai, and D. J. Wu. “Lattice-Based SNARGs
and Their Application to More Efficient Obfuscation”. In: EURO-
CRYPT ’17.

28

[BISW18] D. Boneh, Y. Ishai, A. Sahai, and D. J. Wu. “Quasi-Optimal SNARGs
via Linear Multi-Prover Interactive Proofs”. In: EUROCRYPT ’18.

[BLNS20] J. Bootle, V. Lyubashevsky, N. K. Nguyen, and G. Seiler. “A Non-
PCP Approach to Succinct Quantum-Safe Zero-Knowledge”. In:

[BM17] B. Barak and M. Mahmoody-Ghidary. “Merkle’s Key Agreement
Protocol is Optimal: An O(n2) Attack on Any Key Agreement from
Random Oracles”. In: J. Cryptol. (2017).

[BMG07] B. Barak and M. Mahmoody-Ghidary. “Lower bounds on signatures
from symmetric primitives”. In:

[CCHLRR18] R. Canetti, Y. Chen, J. Holmgren, A. Lombardi, G. N. Rothblum,
and R. D. Rothblum. “Fiat–Shamir From Simpler Assumptions”.
Cryptology ePrint Archive, Report 2018/1004.

[CDGS18] S. Coretti, Y. Dodis, S. Guo, and J. Steinberger. “Random oracles
and non-uniformity”. In:

[CF13] D. Catalano and D. Fiore. “Vector Commitments and Their Appli-
cations”. In:

[CHMMVW20] A. Chiesa, Y. Hu, M. Maller, P. Mishra, N. Vesely, and N. Ward.
“Marlin: Preprocessing zkSNARKs with Universal and Updatable
SRS”. In: EUROCRYPT ’20.

[CMSZ21] A. Chiesa, F. Ma, N. Spooner, and M. Zhandry. “Post-Quantum
Succinct Arguments”. In: IACR Cryptol. ePrint Arch. (2021).

[COS20] A. Chiesa, D. Ojha, and N. Spooner. “Fractal: Post-Quantum and
Transparent Recursive Proofs from Holography”. In: EUROCRYPT ’20.

[CY20] A. Chiesa and E. Yogev. “Barriers for Succinct Arguments in the
Random Oracle Model”. In:

[CY21a] A. Chiesa and E. Yogev. “Subquadratic SNARGs in the Random
Oracle Model”. In: CRYPTO ’21.

[CY21b] A. Chiesa and E. Yogev. “Tight Security Bounds for Micali’s SNARGs”.
In:

[DGK17] Y. Dodis, S. Guo, and J. Katz. “Fixing cracks in the concrete: Ran-
dom oracles with auxiliary input, revisited”. In:

[DHMTW14] H. Dell, T. Husfeldt, D. Marx, N. Taslaman, and M. Wahlén. “Expo-
nential time complexity of the permanent and the Tutte polynomial”.
In: ACM Transactions on Algorithms (2014).

[EIRS01] J. Edmonds, R. Impagliazzo, S. Rudich, and J. Sgall. “Communica-
tion complexity towards lower bounds on circuit depth”. In: Compu-
tational Complexity (2001).

[FS86] A. Fiat and A. Shamir. “How to prove yourself: practical solutions
to identification and signature problems”. In: CRYPTO ’86.

[GGKT05] R. Gennaro, Y. Gertner, J. Katz, and L. Trevisan. “Bounds on the
Efficiency of Generic Cryptographic Constructions”. In: SICOMP
(2005).

[GGPR13] R. Gennaro, C. Gentry, B. Parno, and M. Raykova. “Quadratic
Span Programs and Succinct NIZKs without PCPs”. In: EURO-
CRYPT ’13.

[GLLZ20] S. Guo, Q. Li, Q. Liu, and J. Zhang. “Unifying Presampling via
Concentration Bounds.” In: IACR Cryptol. ePrint Arch. (2020).

[GMNO18] R. Gennaro, M. Minelli, A. Nitulescu, and M. Orrù. “Lattice-Based
zk-SNARKs from Square Span Programs”. In: CCS ’18.

29

[GNS21] C. Ganesh, A. Nitulescu, and E. Soria-Vazquez. “Rinocchio: SNARKs
for Ring Arithmetic”. In: IACR Cryptol. ePrint Arch. (2021).

[Gro10] J. Groth. “Short Pairing-Based Non-interactive Zero-Knowledge Ar-
guments”. In: ASIACRYPT ’10.

[Gro16] J. Groth. “On the Size of Pairing-Based Non-interactive Arguments”.
In: EUROCRYPT ’16.

[GSV18] A. Grinberg, R. Shaltiel, and E. Viola. “Indistinguishability by adap-
tive procedures with advice, and lower bounds on hardness amplifi-
cation proofs”. In:

[GW11] C. Gentry and D. Wichs. “Separating Succinct Non-Interactive Ar-
guments From All Falsifiable Assumptions”. In: STOC ’11.

[HMORY19] I. Haitner, N. Mazor, R. Oshman, O. Reingold, and A. Yehudayoff.
“On the Communication Complexity of Key-Agreement Protocols”.
In:

[IR89] R. Impagliazzo and S. Rudich. “Limits on the provable consequences
of one-way permutations”. In:

[ISW21] Y. Ishai, H. Su, and D. J. Wu. “Shorter and Faster Post-Quantum
Designated-Verifier zkSNARKs from Lattices”. In:

[Kil92] J. Kilian. “A note on efficient zero-knowledge proofs and arguments”.
In: STOC ’92.

[LM19] R. W. F. Lai and G. Malavolta. “Subvector Commitments with Ap-
plication to Succinct Arguments”. In:

[LSTW21] J. Lee, S. T. V. Setty, J. Thaler, and R. S. Wahby. “Linear-time
zero-knowledge SNARKs for R1CS”. In: IACR Cryptol. ePrint Arch.
(2021).

[MBKM19] M. Maller, S. Bowe, M. Kohlweiss, and S. Meiklejohn. “Sonic: Zero-
Knowledge SNARKs from Linear-Size Universal and Updatable Struc-
tured Reference Strings”. In:

[Mer82] R. C. Merkle. “Secure Communications over Insecure Channels”. In:
[Mic00] S. Micali. “Computationally Sound Proofs”. In: SIAM Journal on

Computing (2000). Preliminary version appeared in FOCS ’94.
[Nit19] A. Nitulescu. “Lattice-Based Zero-Knowledge SNARGs for Arith-

metic Circuits”. In:
[PGHR13] B. Parno, C. Gentry, J. Howell, and M. Raykova. “Pinocchio: Nearly

Practical Verifiable Computation”. In: Oakland ’13.
[Raz98] R. Raz. “A parallel repetition theorem”. In: SIAM Journal on Com-

puting (1998).
[Set19] S. Setty. “Spartan: Efficient and general-purpose zkSNARKs without

trusted setup”. Cryptology ePrint Archive, Report 2019/550.
[Sta18] libstark. libstark: a C++ library for zkSTARK systems. 2018. url:

https://github.com/elibensasson/libSTARK.
[SV10] R. Shaltiel and E. Viola. “Hardness amplification proofs require ma-

jority”. In: SIAM Journal on Computing (2010).
[Unr07] D. Unruh. “Random oracles and auxiliary input”. In:
[WTSTW18] R. S. Wahby, I. Tzialla, A. Shelat, J. Thaler, and M.Walfish. “Doubly-

efficient zkSNARKs without trusted setup”. In:
[Zc14] Electric Coin Company. “Zcash Cryptocurrency”. https://z.cash/.
[ZGKPP17] Y. Zhang, D. Genkin, J. Katz, D. Papadopoulos, and C. Papa-

manthou. “A Zero-Knowledge Version of vSQL”. Cryptology ePrint
Archive, Report 2017/1146.

30

https://github.com/elibensasson/libSTARK
https://z.cash/

	Abstract
	1 Introduction
	1.1 Our Results
	1.1.1 Hitting High-Entropy Distributions

	1.2 Related Work
	1.2.1 SNARGs in the Random Oracle Model
	1.2.2 SNARGs in Other Models

	Paper Organization

	2 Techniques
	2.1 Warmup
	2.2 Actual Scenario
	2.3 Completeness
	2.4 Soundness

	3 Preliminaries
	3.1 Notations
	3.2 Entropy Measures
	3.3 Randomized Exponential Time Hypothesis
	3.4 Random Oracles
	3.5 Non-Interactive Arguments in the ROM
	3.5.1 Salted Soundness

	4 Hitting High-Entropy Distribution using Product Sets
	4.1 High-Entropy Distributions Have an (Almost) Uniform Large Projection
	4.2 Hitting almost Full-Entropy Distributions using Product Set
	4.2.1 Proving lem:HittingFullEntropyEvents

	5 Lower Bound on the Length of ROM-SNARGs
	5.1 Proof of thm:LowerBoundOnSnargsLength
	5.2 Short ROM-SNARGs to Low Query ROM-SNARGs, Proving lem:ShortSnargsToLowQuerySnargs
	5.2.1 Completeness
	5.2.2 Soundness
	5.2.3 Putting it Together

	References

