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Abstract. Anonymous message delivery systems, such as private mes-
saging services and privacy-preserving payment systems, need a mecha-
nism for recipients to retrieve the messages addressed to them without
leaking metadata or letting their messages be linked. Recipients could
download all posted messages and scan for those addressed to them, but
communication and computation costs are excessive at scale.

We show how untrusted servers can detect messages on behalf of recip-
ients, and summarize these into a compact encrypted digest that recip-
ients can easily decrypt. These servers operate obliviously and do not
learn anything about which messages are addressed to which recipients.
Privacy, soundness, and completeness hold even if everyone but the re-
cipient is adversarial and colluding (unlike in prior schemes).

Our starting point is an asymptotically-efficient approach, using Fully
Homomorphic Encryption and homomorphically-encoded Sparse Ran-
dom Linear Codes. We then address the concrete performance using
bespoke tailoring of lattice-based cryptographic components, alongside
various algebraic and algorithmic optimizations. This reduces the digest
size to a few bits per message scanned. Concretely, the servers’ cost is
∼$1 per million messages scanned, and the resulting digests can be de-
coded by recipients in under ∼20ms. Our schemes can thus practically
attain the strongest form of receiver privacy for current applications such
as privacy-preserving cryptocurrencies.

1 Introduction

End-to-end encryption of message content is well understood and widely prac-
ticed. However, metadata about which messages were sent and received by
whom, and when, can yield abundant sensitive information via traffic analysis
and deductions against auxiliary information. Protecting metadata is thus cru-
cial to anonymous message delivery systems [7] such as anonymous messaging
[61,20,42], privacy-preserving analytics [11], and privacy-preserving cryptocur-
rencies [48,8].

Yet, the problem of protecting communication metadata remains an open
challenge for many applications, especially when privacy, scalability, efficiency
and decentralization are all crucial. This challenge is well exemplified by meta-
data protection in privacy-preserving cryptocurrencies, such as Zcash [8,30] and
Monero [48]. These convey digital asset transaction on a public ledger (blockchain),



while keeping the contents of every transaction hidden from all but the coun-
terparties to the transaction (and those they elect to expose it to), using cryp-
tographic protocols utilizing encryption and zero-knowledge proofs. Moreover,
the underlying ledger is permissionless, decentralized and widely replicated, al-
lowing anyone to send transactions over the Internet while anonymizing their
IP address via standard means such as the Tor network. Supposedly, metadata
leaks are thus eliminated.1

However, a crucial point lingers. From a receiver’s perspective, a transaction
pertinent to them could appear anywhere in the ledger. If the receiver has a
full copy of the ledger (a “full node” in blockchain parlance), then it could scan
it to identify pertinent transactions, but the requisite communication, storage
and computation cost may far exceed the capabilities of recipients (e.g., already
today, such ledgers are many GB in size; consider, then, wallet apps running on
computationally-weak mobile devices, with little storage, using slow or expensive
network connections).

How, then, can recipients efficiently detect which messages are pertinent to
them, and retrieve the content of these messages? In general, we consider a bul-
letin board consisting of numerous messages, with arbitrary application-specific
content (of fixed size). Each message is pertinent to a single recipient (identified
by their public address) to which it was sent, and impertinent to other recipi-
ents. A recipient, in lieu of receiving and scanning the whole ledger (full-scan),
may enlist the help of servers, which we call detectors, that will help them detect
their pertinent messages and retrieve the content of these messages.

One approach is for the recipient to provide the detector with a “detection
key” or “incoming viewing key”, that allows the detector to check, for each
bulletin board message, whether it is pertinent to that recipient [48,30]. The
pertinent messages can then be stored and forwarded to the client. Unfortunately,
this exposes metadata to the detector, and thus also to anyone who subverted
or coerced the detector, whether in real time or retroactively. Furthermore, such
long-lived detection key enables devastating deanonymization attacks.2

The problem of Oblivious Message Detection (OMD) is to perform such de-
tection without revealing any information to the detectors about which messages
are pertinent. This is done today in Zcash via the ZIP-307 “light client” protocol
[27], which is essentially optimized full-scan: convert each message to a compact
format which contains just enough information for the recipient to check for
pertinence, and then send all of these compacted messages to the recipient for
processing. In practice, this process can take hours even for a relatively lightly-
used chain, and is recognized as a severe usability and scalability issue.

1 In reality, today’s blockchain privacy solutions suffer from assorted metadata leaks
such as variability in transaction record size, ill-defined cryptographic guarantees,
inadequate network-level anonymization, exposure of amounts at the interface be-
tween transaction pools, and operational mistakes. These are outside our scope.

2 For example, an adversary who acquired a detection key can easily ascertain whether
that key belongs to a given person, by simulating a transaction to that person and
seeing if it matches that detection key; if so, then all past and future transaction
pertinent to that recipient become linked.
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Furthermore, the full task is Oblivious Message Retrieval (OMR), where the
recipient also gets the content (payload) of their pertinent messages. Given just
detection, the recipient would still have to retrieve every detected pertinent
message by some means. Naively querying the detector (or some other server)
again leaks the pertinency metadata. This could be mitigated by using Private
Information Retrieval, mixnets, or decoy traffic, but at high cost or/or ill-defined
security. This is recognized by practitioners as an important open problem.3

These problems have been studied by two recent works, which made signif-
icant headway, but still carry significant drawbacks. Fuzzy Message Detection
(FMD) [7] is based on inducing false-positive decoys into detection, and presents
a difficult tradeoff between security (a high decoy density is needed to foil ad-
versarial analysis) and efficiency (these decoys all entail costs). Private Signaling
(PS) [44]4 provides full privacy only if a single detector serves all recipients in
the system, and moreover requires either trusted hardware such as Intel SGX, or
a pair of servers that are in constant communication but trusted not to collude.
Furthermore, both works assume for correctness that all senders and recipi-
ents behave honestly, and are susceptible to amplified Denial-of-Service attacks,
where an adversary can induce detector and/or recipient work that is dispropor-
tional to the number of messages they place on the bulletin board. They also
exhibit linkability between detection queries and identities. (See further discus-
sion below.) We thus pose the problem:

Is it feasible to achieve oblivious message retrieval/detection that is fully
private, DoS-resistant, unlinkable, trustless, and practical?

1.1 Our Contributions

In this paper, we propose schemes that fulfill all of the above requirements. Our
approach is based on homomorphic encryption using lattice-based cryptography.

Strong Security Definitions. We formally define the notions of Oblivious
Message Retrieval and Detection. Our definitions capture natural notions of
correctness and privacy, and moreover capture two important security notions
that prior works failed to capture or achieve:

– Prior works are vulnerable to amplified Denial-of-Service attacks in the re-
alistic threat model where there exist malicious participants (senders or re-
cipients) in the messaging system. Our strengthened notion says that even
if arbitrary system participants are adversarial and colluding, they cannot
induce more errors or costs than honest participants.

– Prior works are vulnerable to key-linkability attacks, which tie retrieval actions
to public identities (or to each other) since public keys are themselves reused
or linkable. We achieve a strong notion of key unlinkability, preventing these.

3 E.g., Zcash developers [32] deem it an “action item” that the “lightwalletd [server]
learns which transactions belong to the wallet”, and described the popular mitigation
of using decoy fetches as “security theatre” that fails to achieve unlinkability.

4 Private Signaling [44] is a concurrent and independent work, available only as a
preprint at the time of this paper’s submission.
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Possibility of Compact OMR and OMD. We show that Fully Homomor-
phic Encryption (FHE) can be used to achieve message retrieval and detection
with full privacy against any (computationally-bounded) adversary. Moreover,
we show that FHE can be used to distill the full bulletin board into a compact
digest of size that is near-linear in the number of pertinent messages, rather than
all messages in the bulletin board.

Our approach is based on annotating messages with clues to their perti-
nence, having the detector inspect these clues using FHE and pack the pertinent
messages into a compact digest using homomorphically-encoded sparse random
linear codes, and having the recipient algebraically reconstruct the messages
from the decrypted digest. The homomorphic packing and encoding stages are
reminiscent of techniques used in batch Private Stream Search [51] and Private
Information Retrieval [5,4], adapted and optimized to the OMR/OMD setting.

Practical OMR/OMD. Generic use of FHE is notoriously inefficient. We
tackle this by a series of optimizations to drastically improve concrete perfor-
mance. Our techniques include bespoke composition of several different lattice-
based schemes (specifically PVW [54] and BFV [13,24]) and extensions thereto,
utilization of SIMD-like packed operations, using a tailored Sparse Random Lin-
ear Code, optimization of multiplicative depth to avoid expensive bootstrapping,
and parameter tuning.

We thereby obtain several concrete schemes, with different tradeoffs, that
achieve our security notions under standard lattice hardness assumptions (Ring-
LWE). Security is thus plausibly postquantum. DoS-resistance holds under an
additional natural conjecture about LWE-based encryption, or using zk-SNARKs.

Implementation and Evaluation. We implemented our schemes as an open-
source C++ library [50] and measured their concrete performance for a variety
of parameters and in comparison to prior work. Salient observations include:

– Detector-to-recipient computation: for Bitcoin-scale parameter settings, our
OMR schemes have lower detector-to-recipient communication than any other
known retrieval scheme: ∼9 bits per message for retrieval, and ∼4.5 bits/msg
for just detection. For even larger parameters, the amortized retrieval digest
size drops below 1 bit/msg.

– Recipient’s computation is faster than any other known retrieval scheme, e.g.,
∼20 msec to retrieve 50 pertinent messages out of 500,000.

– Detector’s cost for full retrieval is higher than in related schemes, but still
quite practical at ∼0.065 sec/msg (∼$1.02 per million messages) on a small
cloud VM. For just detection, our scheme is faster than any other known
scheme, including those based on trusted hardware.

Thus, our schemes are attractive when recipients are limited in bandwidth or
computation speed. The one drawback is a one-time cost of sending a key of size
∼129 MB to a detector.

Cryptocurrency Integration. We discuss key design points in integrating
our scheme with a blockchain-based privacy-preserving cryptocurrency (exem-
plified by Zcash) including protocol and costs aspect. We conclude that our
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Scheme
Privacy Soundness + completeness

Detection Retrieval Assumptions Assumptions Overflows

Full Scan [27] Full ECDH + Auth Enc None None

FMD1 [7] pN -msg-anonymity, fixed p = 2−i PKE

Honest S&R

None

FMD2 [7] pN -msg-anonymity, dynamic p PKE None

PS1 [44] Full N/A TEE (SGX) + DDH + PKE Undetected

PS2 [44]
Partitioned
across detectors

N/A
Communicating non-colluding servers
+ Garbled Circuit + Unforgeable Sigs

Undetected

OMRt1 §5.3 Full + full-key-unlinkability FHE Detected

OMRp1 §6.3 Full + full-key-unlinkability Ring-LWE Honest S&R or Conj. 1
or zk-SNARK

Detected

OMRp2 §6.4 Full + full-key-unlinkability Ring-LWE Detected

Table 1: Comparison of privacy guarantees and assumptions. Here, pN -msg-
anonymity means the recipient’s messages are hidden among decoy (false-
positive) messages which are a p fraction of the total N messages. “Partitioned
across detectors” privacy means that if multiple detectors are used for scalability,
then the anonymity set is just the recipients served by the same detector. “Hon-
est S&R” means all senders are honest when generating clue for messages, and
all receivers are honest when generating their clue keys. PS1 can be modified for
key unlinkability (cf. Section 8). TEE means Trusted Execution Environment.

scheme is compatible with existing protocols, and that the cost of detection
service would be ∼$1 of Cloud Computing per million messages scanned (i.e.,
similar magnitude to the total monthly transaction flow in all privacy-preserving
cryptocurrencies).

2 Related Work

2.1 Message Detection

Privacy-preserving message detection and retrieval has been studied in several
prior and concurrent works, discussed below. Table 1 summarizes the function-
ality and privacy aspects of these scheme, compared to our Oblivious Message
Retrieval schemes presented in Sections 5 to 8. See also Section 9 (e.g., Table 2)
for comparison of concrete performance.5

The closest prior work, addressing message detection in a sense similar to
ours, is Fuzzy Message Detection (FMD) [7]. In Table 1 in this section, FMD1
and FMD2 refer to Figures 3 and 4 in [7], respectively. FMD provides the pri-
vacy we call pN -msg-anonymity : the detector can observe which messages were
flagged as pertinent, but hidden among many intentional false-positives which
are indistinguishable from the truly pertinent messages. These decoys are a p
fraction of the N messages in the bulletin. Like other decoy-based privacy no-
tions, pN -msg-anonymity introduces uncertainty into naive analysis, but still
allows many privacy-violating deductions, especially given recurring traffic or an
active adversary [41].

5 For reference, these tables also include full scan, which is the straightforward linear-
communication approach where the recipient scans each message (or a relevant part
thereof) in the whole bulletin board (used, e.g., in the Zcash light wallet [27]).
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Another closely related work (concurrent and independent) is Private Sig-
naling (PS) [44]. Their model assumes that signals (analogous to our clues) are
sent directly to servers (analogous to our detectors). Servers handle these sig-
nals in a privacy-preserving way, using one of two mechanisms. The single-server
(PS1) scheme relies on a Trusted Execution Environment (Intel SGX), running
on the detector server. This is a very strong trust assumption (especially given
the many past attacks on SGX [44, §2.2.1]), with total privacy failure if violated.
The two-server (PS2) scheme instead relies on secure multiparty computation
between two servers, using garbled circuit. The two servers jointly serve as a
detector, and (shares of) signals are sent to both of them. Privacy holds as long
as these servers communicate but do not collude nor leak their secrets. Note that
in this model, if either of the servers is compromised and its data leaks, then
the other server can passively deduce the protected information (the recipient of
every message), even retroactively.

DoS Attacks and Key Linkability. Both FMD and PS do not provide
soundness guarantees if clues, or clue keys (public addresses), are generated ma-
liciously; they are thus subject to Denial-of-Service (DoS) attacks (see Section 7).
They also let detection queries be linked to each other, as well as to clue keys,
hence to public identities (see Section 8).

Retrieval. FMD originally addresses only the detection problem, but it natu-
rally extends to retrieval by attaching the full payload for each message; we use
this variant when we report the performance of FMD1 and FMD2 as retrieval
schemes. PS also addresses the detection problem, but we cannot directly add
payloads without breaking privacy; the PS schemes would need to be nontrivially
modified to collect and send the payloads in some privacy-preserving way.

2.2 Other Works

Private Retrieval. There are also works that deal with retrieval once indices
are already known, i.e., Private Information Retrieval (PIR) [19,36]. The key-
word PIR variant [18,6] assumes the client knows explicit plaintext keywords
to search for (similarly to PSS, discussed below). Some works [46,62,39] rely on
trusted hardware, such as Intel SGX, for retrieval privacy. Others offer weak
decoy-based notions of privacy [27,32]. Our model does not make any of these
assumptions or relaxations.

Our construction shares some techniques with state-of-the-art batch PIR
protocols [5,4], namely homomorphic accumulation of messages using FHE and
linear coding. However, in our case the retrieved indices are not known a priori
to the recipient, so our scheme includes encoding and homomorphic decoding of
suitable clues, which are then used to guide the accumulation. Furthermore, we
use a different coding technique, adapted to this setting.

Other Private Messaging Aspects. The complementary problem of main-
taining sender privacy when posting on the bulletin board is addressed by Ri-
poste [20], Signal’s Sealed Sender [42] and its improvement [45]. Alpenhorn
[38] addresses privacy-preserving connection establishment. As discussed in [7],
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Alpenhorn essentially uses identity-based encryption and a trusted server to re-
duce that problem to the privacy-preserving message retrieval problem studied
by this paper. The Vuvuzela [29] mixnet offers differential privacy for sender
and receiver metadata. Rather than a bulletin board model, it assumes an on-
line model where users to remain connected at all times (lest their messages get
dropped). It employs a cluster of servers, of which at least one is assumed to be
honest. Bandwidth cost is high (e.g, 30 GB/month for users and 416 TB/month
for servers [29]).

Private Stream Search. Private Stream Search (PSS) was introduced by
Ostrovsky and Skeith [51] and followups [21,9,25]. It allows a client to search
a keyword over a database of documents and download the ones with such a
keyword without revealing the keyword to the server.

In terms of techniques, our use of homomorphic accumulation and linear
coding is shared also with PSS. However, in PSS, the elements being sought
are plaintext words, which allows for relatively simple protocols. In OMR, con-
versely, the analogues are “clues” which must be randomly sampled and un-
linkable, to hide the identity of the recipients. Therefore, we employ FHE to
compute a complicated circuit for homomorphic decryption (and amplification)
before retrieval, which creates very different cost tradeoffs, optimizations and im-
plementation details compared to PSS. Furthermore, the past PSS works mainly
focused on optimizing the communication cost, at the cost of very high server-
server computation (e.g., [25], using Reed-Solomon coding, has a server perform
do computation superlinear in the number of pertinent messages, for every bul-
letin message); we use different coding techniques to attain practicality in the
the OMR setting.

3 Model and Definitions

System Model. In this section, we define the model and the problem of
Oblivious Message Detection and Retrieval. The system components and their
high-level properties are as follows. See also the high-level components of Fig. 1
(but disregard, for now, the detailed schemes like PVW or BFV; these will be
introduced in Section 6)

A bulletin board (or board for short), denoted BB, contains N messages (e.g.,
blockchain transactions). Each message is sent from some sender and addressed
to some recipient, whose identities are supposed to remain private.

A message is a pair (xi, ci) where xi is the payload to convey, and ci is a clue
which helps notify the intended recipient (and only them) that the message is
addressed to them.

We denote the payload space P = {0,1}ñ for some ñ ∈ Z+, and the clue
space C (typically ` number of ciphertexts in some encryption system). The
whole board BB (i.e., all payloads and clues) is public. (In applications, the
payloads will typically be end-to-end encrypted.)

At any time, any potential recipient p may retrieve the messages addressed to
them in BB. We call these messages pertinent (to p), and the rest are impertinent.
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Fig. 1: System components, and major internal parts of the practical schemes.

A server, called a detector, helps the recipient p detect which message indices
in BB are pertinent to them, or retrieve the payloads of the pertinent messages.
This is done obliviously: even a malicious detector learns nothing about which
messages are pertinent. The recipient gives the detector their detection key, and
a bound k̄ on the number of pertinent messages they expect to receive. The
detector then accumulates all of the messages in BB into string M , called the
digest, and sends it to the recipient p. The digest M should be much smaller
than the board BB (ideally, proportional to k̄).

The recipient p processes M to recover all of the pertinent messages with high
probability, assuming a semi-honest detector and that the number of pertinent
messages did not exceed k̄. The false negative rate (probability that a pertinent
message is not recovered from the digest) is denoted by εn. The false positive rate
(probability that an impertinent message is output by the recovery procedure)
is denoted by εp. Both εn and εp are small (e.g., under 10−9).

There may be many detectors, and each may support many recipients. Out-
side our scope are application-specific aspects such as payload encryption, con-
tact discovery and key establishment, the privacy-preserving mechanism by which
messages are posted to the board, or how recipients subscribe with detectors.
See related discussion in Sections 2 and 10.

Threat Model (non-DoS). We assume a computationally-bounded adversary
that can read all public information, including all board messages, all public keys
in the system, and all communication between the detector and the receiver. It
can also honestly generate new messages (with any payload) and post them on
the board, as well as honestly generate new clue keys and induce other parties
to generate messages addressed to those keys. For soundness and completeness,
we require the detectors, senders, and recipients to be honest but curious; they
may collude by sharing information. In regard to privacy, we let all parties in the
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systems be malicious and colluding (including detectors, senders, and recipients),
except of course for the sender and recipient of the message(s) whose privacy is
to be protected. (A stronger Denial-of-Service (DoS) threat model will be defined
in Section 7.1. Key unlinkability will be defined in Section 8.)

3.1 Definitions

Oblivious Message Retrieval. We capture the notion of an Oblivious Mes-
sage Retrieval (OMR) scheme as follows.

Definition 1 (Oblivious Message Retrieval (OMR)).
An Oblivious Message Retrieval scheme has the following PPT algorithms:

– pp ← GenParams(1λ, εp, εn): takes a security parameter λ, a false positive
rate εp and a false negative rate εn, and outputs public parameters pp. pp is
implicitly taken by the following algorithms.

– (sk, pk = (pkclue, pkdetect)) ← KeyGen() : outputs a secret key sk and a public
key pk consisting of a clue key pkclue and a detection key pkdetect.

– c ← GenClue(pkclue, x) : takes a clue key and a payload x ∈ P, and output a
clue c ∈ C.

– M ← Retrieve(BB, pkdetect, k̄) : takes as input a board BB = {(x1,c1), . . . , (xN ,cN )}
for some size N , a detection key pkdetect, and an upper bound k̄ on the number
of pertinent messages addressed to that recipient; and output a digest M .

– PL ← Decode(M, sk) : takes the digest M and corresponding secret key sk,
and outputs either a decoded payload list PL ⊂ Pk or an overflow indication
PL = overflow.

To define completeness, soundness, and privacy, we first define the notion of
board generation:

Definition 2 (board generation). Given pp, and N which is the num-
ber of messages: Arbitrarily choose the number of recipients 1 ≤ p ≤ N ,
and a partition of the set [N ] into p subsets S1, . . . ,Sp representing the in-
dices of messages addressed to each party. Also arbitrarily choose unique
payloads (x1, . . . ,xN ). For each recipient i ∈ [p]: generate keys (ski, pki)←
KeyGen(), and for each j ∈ Si, generate cj ← GenClue(pki, xj). Then, out-
put the board BB = {(x1,c1), . . . , (xN ,cN )}, the set S1, and (sk1, pk1 =
(pkclue1, pkdetect1)).6

The scheme must satisfy the following properties:

– (Completeness) Let pp ← GenParams(1λ, εp, εn). Set any N = poly(λ), and
0 < k̄ ≤ N . Let a board BB, a set S of pertinent messages, and a key
pair (sk, pk = (pkclue, pkdetect)) be generated as in Definition 2 for any choice
of p, partition and payloads therein. Let M ← Retrieve(BB, pkdetect, k̄) and
PL ← Decode(M, sk). Let k = |S| (the number of pertinent messages in

6 That is, S1 is the indices of messages pertinent to the recipient whose keys are
sk1, pk1, which wlog is the first recipient.
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S). Then either k > k̄ and PL = overflow, or Pr[xj ∈ PL | j ∈ S] ≥
(1− εn − negl(λ)) for all j ∈ [N ] .

– (Soundness) For the same quantifiers as in Completeness: Pr[(xj ∈ PL | j 6∈
S) ∨ (x ∈ PL | x 6∈ (x1, . . . ,xN ))] ≤ (εp + negl(λ)) for all j ∈ [N ] .

– (Computational privacy) For any PPT adversary A = (A1,A2): let pp ←
GenParams(εp, εn), (sk, pk = (pkclue, pkdetect)) ← KeyGen() and (sk′, pk′ =
(pk′clue, pk′detect)) ← KeyGen(). Let the adversary choose a payload x and re-
member its state: (x,st)← A1(pp, pk, pk′). Let c← GenClue(pkclue, x) and c′ ←
GenClue(pk′clue, x). Then: |Pr[A2(st, c) = 1]− Pr[A2(st, c′) = 1]| ≤ negl(λ) .

An OMR scheme is compact if it moreover satisfies the following:

– (Compactness) An OMR scheme is compact if for pp← GenParams(1λ, εp, εn),
(sk, pk = (pkclue, pkdetect))← OMR.KeyGen(), for any board BB = {(x1,c1), . . . ,
(xN ,cN )}, letting M ← Retrieve(BB, pkdetect, k̄), it always holds that: |M | =

poly(λ, logN) · log ε−1
p · Õ(k̄ + εpN) .

Stronger definitions. The above definition assumes that the board generation
is done honestly (though possibly adaptively). For maliciously generated board
(e.g., clues not form GenClue), see Section 7 for related attacks and a strength-
ening that prevents them. For simplicity, we also assume the payloads (xi)i∈[N ]

are all unique (cf. Definition 2), but it can be naturally extended to the case of
duplicate payloads.

Oblivious Message Detection. As a stepping stone towards OMR, we de-
fine a weaker functionality, Oblivious Message Detection (OMD), in which the
digest merely enables detection of the indices of the pertinent messages, but
doesn’t convey the corresponding payloads. Instead of a function Retrieve(BB,
pkdetect, k̄) that enables decoding the pertinent message payloads, OMD offers a
function Detect(BB, pkdetect, k̄) that enables decoding the pertinent message in-
dices. Completeness then says that the index of each of the pertinent messages is
included in PL with probability ≥ 1−εn−negl(λ). Soundness says that the index
of each non-pertinent message is included in PL with probability ≤ εp + negl(λ)

4 Preliminaries

Notation. All logarithms are expressed in base 2 if not indicated otherwise.
Let [n] denote the set {1., . . . ,n}, and let [n,m] denote the set {n,...,m}. We use
P (. . . ; s) to denote a randomized algorithm P running with randomness s. Our
big-O notation, when applied to computational and communication complexity,
absorbs the security parameter λ and payload size ñ as a constant. When we
use a pseudorandom function (PRF), we assume that its range is as implied by
the context (i.e., that the PRF’s outputs are computationally indistinguishable
from uniform over that range). We use 〈i〉sk to denote the space of ciphertexts
that decrypt to i under sk.
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4.1 LWE Encryption

Our constructions will be optimized by using lattice-based encryption. We will
use the PVW [54] variant of Regev’s LWE-based encryption [57], defined as
follows at a high level, and details in full version. The public parameters
ppLWE = (n, `, w, q, σ) ← PVW.GenParams(1λ, `, q, σ) contain secret key dimen-
sion n, the number of LWE samples in the public key w, noise standard deviation
σ, ciphertext modulus q, and number of bits of the plaintext modulus `. (ppLWE

is assumed to be implicitly taken by the other algorithms.)

For key generation (sk, pk) ← PVW.KeyGen() and encryption ct = (~a,~b) ←
PVW.Enc(pk, ~m)). Most crucial is the decryption algorithm ~m← PVW.Dec(sk, ct =

(~a,~b)), which will be evaluated homomorphically. It computes ` inner products
~d = ~b − skT~a ∈ Z`q and outputs ~m ∈ Z`2 where mi = 1 if dq/4e ≤ b[i] < d3q/4e
and mi = 0 otherwise.

PVW is unconditionally correct (sound), and under the standard Learning
With Error (LWE) hardness assumption [57,3] it fulfills the standard definitions
of semantic security (IND-CPA) and key privacy.

4.2 Homomorphic Encryption

Fully Homomorphic Encryption (FHE) enables evaluation of a circuit on en-
crypted data, such that the resulting ciphertext (when decrypted) is the output
of the circuit on the data, but the evaluator learns nothing about the data.

Formally, an (asymmetric) FHE scheme is an encryption with PPT algo-
rithms GenParams(1λ),KeyGen(),Enc(pk,m),Dec(sk, c) fulfilling the standard def-
initions of semantic security, soundness, and key privacy. Moreover, it has two
more PPT algorithms: Eval(pk, (ct1, . . . , ctk), C),Recrypt(pk, ct). Recrypt func-
tion is as defined in [26], i.e., it decrypts homomorphically using the encrypted
secret key, thus yielding a fresh re-encryption of the original plaintext. These
two new algorithms fulfill the following generalized correctness. Given a cir-
cuit C and plaintexts (m1, ...,mk), ciphertexts (ct1, ..., cik) which are each ei-
ther cti ← FHE.Enc(pk,mi) or cti ← FHE.Recrypt(pk,FHE.Enc(pk,mi)), and let-
ting ct′ ← FHE.Eval(pk, C,(ct1, ..., ctk)): Pr[FHE.Dec(sk, ct′) = C(m1, ...,mk)] ≥
1− negl(λ). We require an additional property for the FHE scheme:

Definition 3 (Wrong-Key Decryption). For an FHE scheme with plain-
text space Zt, and t ≥ 2, letting (sk, pk) ← FHE.KeyGen(1λ) and (sk′, pk′) ←
FHE.KeyGen(1λ), ct← FHE.Enc(pk, 1), and m′ ← FHE.Dec(sk′,FHE.Recrypt(pk′, ct)),
it holds that: Pr[m′ = 1] ≤ 1/t+ negl(λ).

BFV Encryption. We use the Brakerski/Fan-Vercauteran homomorphic en-
cryption scheme [13,24], which we refer to as the BFV scheme. Given a polyno-
mial from the cyclotomic ring Rt = Zt[X]/(XD + 1), the BFV scheme encrypts
it into a ciphertext consisting of two polynomials, where each polynomial is from
Rq = Zq[X]/(XD + 1) where q > t. We refer to t, q, and D as the plaintext
modulus, the ciphertext modulus, and the ring dimension, respectively. Each
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ciphertext can pack D plaintext group elements (m1, . . . ,mD) ∈ ZDt , and “single
instruction, multiple data” (SIMD) homomorphic operations can be applied .

BFV is unconditionally correct (sound), and under the standard Ring-LWE
(RLWE) [43,55] hardness assumption it fulfills semantic security (IND-CPA).

5 Generic OMR and OMD Using FHE

5.1 Oblivious Message Detection Using FHE

We start by constructing Oblivious Message Detection (OMD), with retrieval
to be added in Section 5.2 This section’s constructions will be based on general
fully homomorphic encryption (FHE), and assume all the clues are generated
honestly. This serves as a simple proof of theoretical possibility; Section 6 will
address practicality and stronger security guarantees.

Non-compact Construction of OMD We start by showing how pertinent
messages can be detected, with a small digest, using any key-private public-key
FHE satisfying Definition 3 (e.g, FHEW/TFHE [22,16]). For simplicity, assume
the plaintext space is Z2.7 Our didactic starting point is a straightforward, non-
compact construction; we then improve it to achieve compactness.

High-Level Idea. Each clue ci for i ∈ [N ] consists of ` ciphertexts, each
encrypting the constant 1 under the public key of the party this message is
addressed to. The detector, serving recipient p, will use p’s FHE public key pk
to recrypt all the ciphertexts in all the clues: ci,j 7→ c′i,j for j ∈ [`]. Crucially, note
that each such c′i,j will be 〈1〉sk if the message is addressed to p, and otherwise
be 1 with probability ≤ 1/2 + negl(λ) when decrypted by sk, the corresponding
secret key for the recipient p (by Definition 3). Thus, for each message, The
detector performs an AND gate over all c′i,j (j ∈ [`]) to get PVi (the Pertinency
Vector) for all i ∈ [N ]. Then the detector sends PV vector to the recipient. The
recipient decrypts each PVi using its FHE secret key, and if the result is 1, deems
the i-ith message pertinent.

The resulting OMD algorithm OMDt1 pseudocode and analysis is deferred
to the full version. .

Theorem 1. The scheme OMDt1 is an Oblivious Message Detection scheme,
when instantiated with any fully homomorphic encryption scheme.

Compact Construction of OMD Our next step is to achieve compactness,
i.e., a digest size which depends primarily on the number of pertinent messages k,
rather than the total number of messagesN . Since k itself is a private information
that should not be exposed, the digest size (and detector’s computation) instead

7 The following naturally generalizes to plaintext space Zt for any prime t. For brevity,
we kept this section focused on Z2, which suffices for its results, and added footnotes
to clarify the generalization. Section 6 will use t > 2.
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need to depend on an upper bound k̄ on the number of pertinent messages k for
the particular recipient (see Definition 1). The bound k̄ is given as a parameter
to the detector.8

The technique used here is reminiscent of that used in [51], where homomor-
phic operations are used to summarize “documents” according to 0/1 encryp-
tions; in our case the the 0/1 encryptions are indirectly derived by homomorphic
computation (as above), and the (implicit) “documents” are our message indices.

High-Level Idea. We start as above, with the detector recrypting these and
computing PVi ciphertexts which are 〈1〉sk iff the i-th message is pertinent w.h.p.

Then, we create m buckets, for some m > k̄ (to be fixed later). Each bucket
contains an accumulator Acci containing a value in ZN encrypted under pk,
represented as a vector of dlog(N)e ciphertexts of FHE that store the bit-wise
binary encoding of the ZN element.9 A bucket also contains a counter Ctri∈[m],
where Ctri contains a value in Zk̄ encrypted under pk, represented using binary
encoding as well. All buckets and counters initially encrypt 0.

To add the i-th message in the board, the detector computes PVi as in
OMDt1, draws a random bucket index µ ∈ [m], and homomorphically adds PVi
to counter Ctrµ in Zk̄. It also homomorphically computes PVi and adds it to the
accumulator Accµ.

Finally, the detector sends all buckets and counters to the recipient. The
recipient decrypts these and checks: if the decrypted Ctrµ is 1, then bucket has a
single pertinent message mapped to it, and the decrypted Accµ gives the index
of that message. If any Ctrµ decrypts to greater than 1, indicating that several
pertinent messages collided in the µ-th bucket, then it outputs overflow.

This method gives us a success rate of ρ =
∏k̄−1
i=1

(m−i)
m . To achieve the desired

εn, we amplify by repeating this C times with fresh buckets and counters and
re-randomized assignment of messages to buckets, such that (1− ρ)C < εn.

Our technique is different from bloom filter as used in [21,17]. With bloom
filter, the recipient runtime can easily be O(N), and for polylog(N) cost, there
is an extra false positive rate, which can be avoided using our technique.

Gathering Partial Information. The amplification can be optimized as
follows. Even when a set of buckets contains collisions and thus doesn’t directly
decode to give all pertinent message indices, there will likely be some buckets
in the set that do yield useful information (i.e., the corresponding counters are
〈1〉sk). If we gather all such partial information together, we may get the full

information. Then, the failure probability is < 1−
∏k̄−1
i=1 (1− ( im )C).

Parameter Analysis. The scheme requires choice of m and C. If we choose

m = 10k̄, we can then choose the smallest integer C such that 1 −
∏k̄−1
i=1 (1 −

( i
10k̄

)C) ≤ εn. We can see that C = O(log(k̄) log(1/εn)) by using union bound.
We get similar results for any choice of m > k that is linear in k.

8 If the actual number of pertinent messages k exceeds the assumed bound k̄, then
retrieval may fail. The recipient can detect overflow and ask for the detection to be
redone with a larger k̄. Our scheme gives the exact number of k, as discussed below.

9 For FHE over Zt, use dlogt(N)e ciphertexts per bucket.
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Decoding k. We add a global counter for the total number of pertinent mes-
sages, Ttl, represented as dlog(N)e ciphertexts of FHE containing the bit-wise
binary representation of k ∈ ZN . The detector homomorphically sums all PV’s
into Ttl to let the recipient learn the number of pertinent messages, k.

We construct a compact OMD algorithm OMDt2 using the techniques men-
tioned above. Pseudocode and analysis of OMDt2 and the proof of the following
theorem are deferred to the full version.

Theorem 2. The scheme OMDt2 is a compact Oblivious Message Detection
scheme, when instantiated with any fully homomorphic encryption scheme FHE
and a PRF f .

This construction satisfies the asymptotic requirements of compact OMR (com-
pleteness, soundness, privacy, and compactness). Additional asymptotic opti-
mizations are possible and deferred to the full version. The above is still far
from concrete practicality (see end of Section 5), as will be addressed in Sec-
tion 6.

5.2 Payload Retrieval using FHE

An OMD scheme, like the one above, lets the recipient learn the indices of the
messages addressed to it in the board. It would then still need to retrieve the
content (or payload) of those messages, and (in our motivating applications) do
so privately without revealing which messages were of interest. As discussed in
Section 2, retrieval with current methods after obtaining the indices is either
inefficient or non-private.

We thus extend the above OMD scheme to Oblivious Message Retrieval,
starting with a simple construction from generic FHE below, and improving it
in Section 6. Our approach embeds techniques from PSS [51,21,9,25] and multi-
query PIR [5,4] (see Section 2.2) into the detector’s operation, without an extra
round-trip to the client. Specifically, we use the encrypted 0/1 pertinency bits,
derived above, to extract the pertinent payloads using homomorphic multiplica-
tion; we then compress these using homomorphically-evaluated linear codes.As
discussed in Section 2.2, these techniques require substantial adaptations for ef-
ficiency in OMD/OMR. The generic OMR approach is detailed below, first as
an inefficient construction based on generic FHE (as a didactic stepping stone),
and then with major optimizations (Section 6).

Single Pertinent Message. Our starting point is the above OMDt1 construc-
tion. The detector’s procedure OMR.Retrieve first runs PV← OMDt1.Detect(D, pk, k̄, εn),
to obtain a pertinency vector PV of N ciphertexts, each encrypting 1 or 0. It
then proceeds as follows.

Consider first the simple scenario where, throughout the board, there is a
single message xz that is pertinent for the recipient p (but z is initially unknown).
Hence, PV has a single 〈1〉sk ciphertext, and the rest are 〈0〉sk .

Let the payload space P be represented by a tuple of FHE’s plaintext space
(i.e., for P = {0,1}ñ and the plaintext space Z2, we use ñ ciphertexts to represent
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each payload). In the following we generalize the FHE.Enc, FHE.Eval, and 〈·〉sk
notation to work on such tuples in the natural way, as vector operations over Z2.
For each i ∈ [N ], multiply xi by PVi homomorphically to get a ciphertext tuple
x′i. Thus, x′z ∈ 〈xz〉sk , and x′i ∈ 〈0〉sk for i ∈ [N ] for the rest of the ciphertext
tuples (i 6= z). Then, homomorphically sum up all x′i to get a ciphertext tuple
M ′, so that M ′ ∈ 〈xz〉sk . The detector sends this M ′ to the recipient, who
decrypts it to obtain the payload xz.

Multiple Pertinent Messages via Random Linear Coding. We generalize
the above to the case of k pertinent messages, where 0 ≤ k ≤ k̄. The cap k̄ is
chosen by the recipient and given to the detector, but does not need to be known
(or even fixed) when the board messages are generated.

The above single-message scheme fails if there are multiple pertinent mes-
sages, because the detector would output the encrypted sum of the k pertinent
payloads, from which the individual payloads cannot be (in general) recovered.
However, we can have the detector compute several encrypted combinations of
the pertinent plaintexts, each one summing them with different weights, in hope
of creating a linear system that the recipient can solve.

Specifically, we will choose some m ≥ k̄ and have the detector homomorphi-
cally compute encrypted payload m combinations Cmbj ←

∑
i∈[N ](wi,j ·xi) ·PVi

for j ∈ [m], using random weights wi,j (i ∈ [N ], j ∈ m).10 Letting PS ⊆ [N ]
denote the k pertinent message indices, we then have Cmbj ∈

〈∑
i∈PS wi,j ·xi

〉
sk

.
The combinations are realized as FHE ciphertext tuples big enough to rep-

resent P, with element-wise operations, i.e., as a vector space over the field
GF(t) of the plaintext space (in our case, of binary plaintext space: ñ binary
ciphertexts, with bitwise AND and XOR).

The OMR digest includes the aforementioned output of OMDt1.Detect, from
which the recipient can recover PS. Moreover the recipient can know the weights
wi,j (by including the seed used to pseudorandomly generate the weights in the
digest). Then the recipient can decrypt the payload combinations and recover m
equations over the variables (xi)i∈PS, of the form

∑
i∈PS wi,jxi = FHE.Dec(Cmbj) ∈〈∑

i∈PS wi,j · xi
〉
sk

for j ∈ [k̄] . If |PS| = k of these equations are linearly in-

dependent, then the recipient can use Gaussian elimination to recover these xi,
i.e., the pertinent messages’ payloads.

For randomly-chosen weights in the field GF(t) (in our case t = 2), the
probability of getting k̄ linearly independent equations is

∏m
i=m−k̄+1(1 − 1/ti),

via [58, Lemma 1]. Therefore, m = k̄ + dlogt(
1
εn

)e suffices.

5.3 Improved Retrieval Using SRLC

In the above attempt, the detector’s computational cost for preparing the pay-
load combinations is proportional to k̄ · N . To reduce this cost, we use Sparse

10 Here multiplication is in the field GF(2), for the plaintext space Z2, so the weights
are just 0 or 1. In general, this works over GF(t) for prime t. From this point on we
will require both multiplications and addition (to perform linear algebra), and thus
consider the field GF(t) instead of the group Zt.
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Random Linear Coding (SRLC) [34], encoded homomorphically. SRLC is widely
studied and applied to data transmission [34,35,15,60].11

In this approach, we create weighted linear combinations as above, but we
make them sparse: each message is assigned to just a few combinations (i.e., most
of the weights wi,j are chosen as zero). We provide the following two schemes for
SRLC to ensure that the resulting combinations are still linearly independent
(thus solvable by the recipient) with high probability.

SRLC1: Analytically-Bounded SRLC. For SRLC1, each weight is chosen
as nonzero with probability γ/m, where γ is some SRLC parameter and m
is the number of combinations. To ensure that the resulting combinations are
solvable for k < k̄ variables with probability greater than 1 − εn, provably γ =
O(k̄ log2 k̄ log(ε−1

n )) and m = O(γ · k̄) suffice.

SRLC2: Empirically-Bounded SRLC. In this scheme, we uniformly choose
exactly γ nonzero weights among the m combinations. The choice of γ and m
is done by an empirical estimation procedure (in the absence of tight analytical
bounds), and we prove that the estimation error is negligible.

Compact OMR using SRLC. We can construct a compact OMR scheme
using SRLC, following the intuition of Sections 5.2 and 5.3. The resulting algo-
rithm OMRt1 pseudocode is defered to the full version. The following theorem
is proven, and complexity analyzed, in the full version:

Theorem 3. The scheme OMRt1 is a Oblivious Message Retrieval scheme,
when instantiated with any fully homomorphic encryption scheme FHE, PRFs
f , and SRLC scheme SRLC. Moreover, when instantiated with SRLC1, OMRt1
is also compact.

(Im)practicality. The above establishes the asymptotic existence of compact
OMR (assuming existence of FHE), but it is still impractical, e.g., due to the
cost of the Recrypt algorithm in state-of-the-art FHE schemes [22,16,13,24,14].
Moreover, the clues are large (e.g, FHEW/TFHE needs 512 bytes per each of
the ∼20 plaintext bits required in Section 5.1).

6 Practical OMR

We proceed to introduce optimizations that improve communication and com-
putation costs to practical levels, as well as security improvements. See Section 9
below for implementation and quantitative evaluation.

Our starting point is the generic FHE construction of Section 5, generalized
from plaintext space Z2 to Zt for prime t ≥ 2 (as discussed in footnotes whenever
pertinent). The generalization immediately gives us improved concrete bounds
on false positive rate, and in the SRLC-based retrieval. We then proceed to
modify the scheme as follows.

11 State-of-the-art batch-PIR [5,4] uses different coding techniques, which rely on the
client knowing the pertinent indices a priori.
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6.1 PVW Clue Ciphertext

Instead of generating clues using encryption under an FHE scheme, we use a
lighter-weight encryption scheme which can still be homomorphically decrypted
and processed by the detector. Specifically, we use the PVW scheme [54], a vari-
ant of the Regev05 LWE-based encryption scheme [57]. See Section 4.1 for details.
PVW decryption can be cheaply evaluated under FHE (we discuss in more detail
later), and moreover its ciphertext size grows slowly when multiple bits are en-
crypted (to encrypt ` bits, clue size using PVW grows with O(n+ `), compared
to O(n · `) in the original Regev05 scheme [57], where n is a predetermined LWE
parameter to be discussed below). Choice of PVW parametersdeferred to the full
version. The switch to PVW maintains the OMD/OMR privacy requirement,
since PVW is IND–CPA and key-private by [28] and [54, Lemma 7.4].

6.2 BFV Leveled Homomorphic Encryption

In the detection and retrieval algorithm, we also replace FHE with leveled HE,
i.e., homomorphic encryption restricted to evaluation of arithmetic circuits with
predetermined multiplicative depth. This suffices since, as shown below, the mul-
tiplicative depth can be kept low and moreover, after the switch to PVW en-
cryption, we do not need Recrypt. Specifically, we use the BFV [13,24] scheme
(see Section 4.2).

The detection key now contains the BFV public key, and the PVW secret key
PVW.sk encrypted under BFV public key. The detector uses these to homomor-
phically decrypt the clue, resulting in PVi which are 〈0〉BFVsk or 〈1〉BFVsk . It then
proceed to process these into a digest as in Section 5, using BFV homomorphic
operations, all with plaintext space GF(t).

One advantage of this choice is that BFV supports “single instruction, mul-
tiple data” (SIMD) operations: each BFV ciphertext has D slots, each of which
can convey an element of Zt, for some plaintext modulus t and a parameter D.
When computing PV, we can thus operate on D separate messages {(xi,ci)} in
parallel via SIMD (see Section 4.2).

Specifically, the detector performs the following steps to homomorphically
perform PVW.Dec (described intuitively here, and precisely in the full ver-
sion). Note that for simplicity when decrypting homomorphically using BFV,
we redefine our clues to be PVW encryptions of 0 instead of 1 as above (i.e.
PVW.Dec(skp′ ,GenClue(pkp,·)) = 0 iff p = p′ w.h.p.).

– Inner Product (InnerProd). The detector performs the first step of PVW.Dec:
inner product of the clue’s PVW ciphertext with PVW.sk (that is provided by
the recipient under BFV encryption).

– Range checking (RangeCheck) For a range [−r, r] and plaintext element
u ∈ Zt, this maps u to 0 if u ∈ [−r, r], otherwise to 1. We implement this homo-
morphically using [33, Equation 2] as follows, using the Paterson-Stockmeyer
algorithm [53] to minimize multiplicative depth. To evaluate the function f(x)
where fr(x) = 0 for t − r ≤ x ≤ r, and f(x) = 1 otherwise, we can evaluate
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the following polynomial over Zt:

RCr(X) = fr(0)−
t−1∑
i=0

Xi
t−1∑
a=0

fr(a)at−1−i . (1)

We thus calculate u′ ← RCr(u) homomorphically, so u′ ∈ 〈1〉BFVsk iff u ∈ [−r, r]
(which is the case for pertinent messages with high probability). An exact
implementation of PVW.Dec would require r = t/4 (by definition of PVW in
Section 4.1), but this can be relaxed to reduce εp, since the error distribution
is Gaussian.

– PV Unpacking (PVUnpack). Because we used SIMD evaluation, the above
steps result in a single ciphertext ct whose D slots encode u′ ∈ {0,1} values
of D different messages. This already suffices as a digest, but to maintain a
clean interface and allow further improvements below, we proceed to unpack
ct’s slots into separate D ciphertexts (PVi)i∈[D].

Between RangeCheck and PVUnpack, we flip the sign of u′ (u′ ← 1− u′) so that
after all these steps, we get PVi ciphertexts encrypting 1 in all slots for the
pertinent messages, and 0 in all slots for impertinent messages with some false
positive rate. Similarly to Section 5, we proceed as follows.

Soundness Amplification. Analogously to in Section 5.1, we reduce this false
positive rate by having the sender encrypt ` 0’s to the recipient’s clue key (in this
case: all in a single `-bit PVW ciphertext). Note that here, the probability of a
clue ciphertext decrypting to 0 (so that the range-checked output is PV ∈ 〈1〉BFVsk )
for impertinent messages is p = 1− (2r + 1)/q ≥ 1/2, rather than 1/2 as in the
Z2 case. Therefore, using ` ciphertexts, we get εp of p`.

Applying all of the above, we obtain and OMD scheme analogous to OMDt2,
but based on PVW clues and BFV scheme instead of generic FHE, thereby
improving efficiency and size. The same technique applies toOMDt1, for more
efficient compact detection.

Finally, compress the detection digest by one of two means.

Deterministic Digest Compression. Each BFV ciphertext can pack D el-
ements of Zt, each of which can represent blog(t)c bits of plaintext information.
We pack the single-bit pertinency indicators into these bits, homomorphically.
This makes near-optimal use of the plaintext space; and in terms of digest size,
utilization remains high: roughly 4.5 bit/msg, for the representative parame-
ters of Section 9. The recipient can sum up all these bits to get the exact number
of pertinent messages, and thus robustly detects overflow.

Randomized Digest Compression. Alternatively, we can use the bucket-
based method in Section 5.1 to achieve an compact digest, and compress D
accumulators into one ciphertext to fully utilize all D slots in each ciphertext.
In particular, we can achieve an amortized digest size of less than 1 bit/msg,
including retrieval, for sufficiently large N � k̄. See performance in Section 9.

For this methodwe could also use the summation of individual bucket coun-
ters to get k, but this may overflow if the number of pertinent messages is
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huge, since each slot is computed homomorphically in Zt (e.g. if k & tD, where
tD > 1012 for typical parameters).12

OMD via Deterministic Digest Compression. We can use deterministic
digest compression to construct a non-compact OMD, which we call OMDp1.
The advantage of this method is that it does not need PVUnpack, and therefore
greatly reduces the detector running time.

6.3 A Practical OMR scheme

Fig. 1 portrays the high-level components of the resulting scheme, and their
invocation of different encryption schemes.

By combining all of the above detection optimizations, and adding message
retrieval analogously to Section 5.3, we have a practical OMR scheme OMRp1.
Here we use the aforementioned Deterministic Digest Compression, which is
simpler than compact (randomized) detection, and offers better concrete digest
size and detection time for some parameter choices (cf. Section 9). The resulting
pseudocode is deferred to the full version. The following theorem is proven, and
complexity analyzed, deferred to the full version:

Theorem 4. The scheme OMRp1 is an OMR scheme, assuming security of
PVW encryption (Section 4.2), security of BFV leveled HE (Section 4.2), when
instantiated with PRF f and an SRLC scheme SRLC.

6.4 A Practical Compact OMR Scheme

While OMRp1 above is practically efficient for many parameters of interest
(cf. Section 9), its asymptotic digest size is still O(N). An alternative approach
achieves compactness, i.e., a digest size that grows only mildly with N when
k̄ is fixed and εp is small (cf. Definition 1). This can be achieved by using the
Randomized Digest Compression approach of Section 6.2. The resulting practical
and compact OMR algorithm, OMRp2, and the pseudocode is deferred to the
full version. The following theorem is proven, and complexity analyzed, details
deferred to the full version:

Theorem 5. The scheme OMRp2 in OMRp2 is a OMR scheme for N < D · t/2,
assuming security of LWE encryption (Section 4.2) and security of BFV leveled
HE (Section 4.2), when instantiated with PRF f and an SRLC scheme SRLC.
Moreover when instantiated with SRLC1, OMRp2 is also compact.

6.5 Additional Properties

Additional modifications improve the practicality of our algorithm. The following
points are salient; further discussion is deferred to the full version.

12 If such parameters are exceeded, we can avoid undetected decoding failures using a
global counter that represents values in [N ] without overflow.
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Streaming Updates. The detector can break up OMR.Retrieve into several
phases and some of the phases can be done on-the-fly without receiving k̄ from
the recipient. With this process, we can greatly reduce the latency during re-
trieval. We defer the details to the full version. Security requires seed secrecy.
For details see the the paper’s full version.

Handling Overflows. Retrieval may fail in case the number k of pertinent
messages overflows the bound k̄. The possibility is inherent, since information-
theoretically, a compact digest for a given k̄ cannot represent k � k̄ messages.
When an overflow occurs, the recipient can robustly detect it and sends another
retrieval query to the detector, with a larger bound k̄. To prevent the linka-
bility of the two queries, the recipient can issue the second query from a fresh
anonymized network connection, and using unlinkable keys (see Section 8).

Detection Key Size Reduction. The detection key includes the BFV cipher-
texts ctpvwSK encrypting skpvw, and the BFV public keys (including encryption
key, relinearization key, and rotation keys as in [37, §5.6]). Their size is O(1),
but concretely quite large (cf. Section 9). We reduce it as follows.

First, all of the aforementioned components are RLWE ciphertexts of the
form (~a,~b), generated by the recipient who knows the corresponding RLWE se-
cret key, and who can thus choose a pseudorandom ~a that is represented as a
short PRG seed, thereby halving the ciphertext size. Second, we pack the n · `
elements of ctpvwSK into just ` BFV ciphertexts, and involve homomorphic rota-
tion to compute the inner products. Third, the detection key size is dominated
by the rotation keys in used for the homomorphic evaluation of slot rotations,
and most of them can be generated for a low multiplicative level.

7 Denial-of-Service Resistance

Thus far we have assumed, as in prior works, that all clues in the board are gen-
erated honestly by the prescribed GenClue algorithm, using honestly-generated
clue keys. However, clues may be generated maliciously, especially if anyone is
allowed to add messages to the board in reality.

In a Denial of Service (DoS) attack on an OMR or OMD scheme, the adver-
sary can maliciously generate any of the clues in board messages, in an attempt
to induce false positives or false negatives in the subsequent detection/retrieval.
The adversary could simply create pertinent messages for some recipient, thus
trying to induce an overflow for that recipient (by exceeding their k̄); this is in-
evitable and handled in Section 6.5. But the bigger danger is amplified DoS : even
a single maliciously-crafted clue could cause catastrophic failure (e.g., causing
false negative or positives for many recipients). Furthermore, the adversary may
also take the role of a recipient in the system, and publish a maliciously-crafted
clue key, thereby inducing honest senders to unwittingly generate harmful clues.

Attacks. OMRt1, instantiated with FHEW/TFHE, is susceptible to a wildcard
ciphertext attack, where a malicious sender populates the clue with ciphertexts
that decrypt to 1 (hence detected as pertinent) for most recipients, causing
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overflows. FMD [7] is also vulnerable to wildcard ciphertexts, as also observed by
[40, commit e19b99112e]. PS [44] is likewise vulnerable to wildcard ciphertexts
(in the single-server version). Moreover, in the PS model, signals are sent to
servers rather than placed on the board, opens an additional DoS attack vector.
For instance, a malicious sender can send many pertinent-looking signals to a
server to overflow the message accumulator for recipients.

7.1 Modeling DoS Resistance

DoS Threat Model. In the DoS threat model, the computationally bounded
adversary has all the power as defined in Section 3. Additionally, it is allowed
to generate any (perhaps malformed) clues and post them on the board, as well
as generate any (perhaps malformed) clue keys for other senders to use. Thus,
for correctness and soundness, we assume only that the detector is honest but
curious. Other parties are malicious. As before, for privacy, everyone but the
message’s sender and recipient are assumed malicious and colluding.

DoS Resistance Definition. We introduce a formal definition of DoS re-
sistance, strengthening the OMR definition of Section 3.1. Recall that Defini-
tion 1assumes that the clues in the board are honestly generated, using honestly
generated clue keys. In that case, there is a natural ground-truth notion of per-
tinent messages, defined by which clue key pkclue each clue was generated for;
hence soundness and completeness are defined in reference to that ground truth.

Now, however, clues may be maliciously generated and may not obviously
correspond to any specific clue key (e.g., consider the wildcard ciphertext above).
We thus require the existence of an indicator predicate I(c,pkclue) that serves as
a ground truth for whether a given clue c is pertinent to a given user specified by
their clue key pkclue. This predicate should give the natural answer for honestly-
generated clues and arbitrary but determined answer for otherwise-generated
clues (i.e., not claiming more than one honest recipient, except with small prob-
ability) and we call this property collision resistance. The stronger completeness
and soundness are defined w.r.t such an indicator.

Soundness and completeness are then redefined w.r.t the indicator I, as be-
low. Note that to facilitate tight analysis, the completeness (false negative rate)
bound εn in the definition is broken up into two components: the rate εi at
which the indicator fails to detect truly pertinent messages (which may be non-
negligible because a indicator with high thresholds may help achieve collision
resistance), and the rate εn − εi at which the scheme fails to retrieve messages
flagged by the indicator (which may be on-negligible because of error sources in
the concrete scheme).

Definition 4 (DoS-resistant OMR). Let OMR be an OMR scheme for error
rates εn, εp (as in Definition 1). An indicator with an indicator false negative
rate εi ≤ εn for OMR is a function b← I(pp, x, c, pkclue, sk) on a public parameter
pp, a message (x, c), a clue key pkclue, and its corresponding secret key sk, outputs
b ∈ {0,1}, such that:
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– (Indicator completeness) For pp ← GenParams(1λ, εp, εn), honest-generated
key pair (sk, pk = (pkclue,·)) ← KeyGen(), for any payload x, and honest-
generated clue c← OMR.GenClue(pkclue, x), it holds that:

Pr[I(pp, x, c, pkclue, sk) = 1] ≥ 1− εi − negl(λ) .

– (Collision resistance) For any PPT adversary A, let pp← GenParams(1λ, εp, εn),
two honest-generated key pairs (sk, pk = (pkclue, ·)) ← OMR.KeyGen() and
(sk′, pk′ = (pk′clue, ·)) ← OMR.KeyGen(), and adversarially-generated (x,c) ←
A(pk, pk′), for b← I(pp, x, c, pkclue, sk) and b′ ← I(pp, x, c, pk′clue, sk′):

Pr[b = 1 ∧ b′ = 1] ≤ εp + negl(λ) .

An OMR scheme OMR is DoS-resistant for εn and εp if there exists an in-
dicator I with an indicator false negative rate εi for OMR such that for any
PPT adversary A, for pp← GenParams(1λ, εp, εn), (sk, pk = (pkclue, pkdetect))←
OMR.KeyGen(), and adversarially-generated board BB ← A(pp,pk) where BB =
( (x1,c1), . . . , (xN ,cN ) ) and (xi)i∈[N ] are unique, for any 0 < k̄ ≤ N , letting
M ← Retrieve(D, pkdetect, k̄), PL← Decode(M, sk):

– (DoS-completeness) Let k =
∑N
i=0 I(pp, xi, ci, pkclue, sk). Then either k > k̄

and PL = overflow, or Pr[xj ∈ PL | I(pp, x, c, pkclue, sk) = 1] ≥ 1− (εn − εi)−
negl(λ) for all j ∈ [N ].

– (DoS-soundness) Pr[xj ∈ PL | I(pp, x, c, pkclue, sk) = 0] ≤ negl(λ) for all
j ∈ [N ].

Note that DoS-completeness implies the (weaker) completeness of Defini-
tion 1 with the same false negative rate εn, and DoS-soundness implies the
(weaker) soundness of Definition 1 with false positive rate εp + εn. Completeness
is trivial, and soundness is given by the following lemma (proof deferred to the
full version):

Lemma 1. Any tuple of algorithms OMR that is εp-DoS-sound by Definition 4
is (εp + εn)-sound by Definition 1.

The proof of Lemma 1 is deferred to the full version.
The Oblivious Message Detection definition is analogously strengthened for DoS.

7.2 Attaining DoS-resistant OMR

The OMRp1 scheme of Section 6 already satisfies DoS resistance (for εp =
poly(λ), with a minor change, under the natural computational assumption
stated in Conjecture 1 below). Intuitively, this is because PVW encryption has
the property that a ciphertext that decrypts to 0 can be generated by adding up
columns of the public key, but if the ciphertext is generated in any other way
(e.g., from a different public key, or “out of the blue”), then its decryption is
close to uniformly random.
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Patched OMRp1. The exception to the above intuition is trivial ciphertexts
(i.e., ciphertext (~a = 0n,~b ∈ Z`q)), so we redefine the clue space as {(~a,~b) ∈ Zn+`

q :
~a 6= 0n}. Accordingly, we change OMRp1.Retrieve to reject clues where ~a = 0n

and OMRp1.GenClue such that if generates a clue with ~a = 0n, it retries with
fresh randomness (and aborts after λ attempts).

Using the patch above, our OMRp1 scheme is DoS resistance under a natural
conjecture about LWE-based encryption.

Theorem 6. For any εp = poly(λ), OMRp1 (patched as above) is a DoS-resistant
Oblivious Message Retrieval scheme, when instantiated with any PRF f , assum-
ing the hardness of Ring-LWE and Conjecture 1 below.

To prove our constructions fulfill this stronger definition, we first define an
indicator in a natural way: given the secret key sk and a clue c = (~ua, ~ub) ∈ C,
the indicator computes ~u = ~ub− skT~ua using the secret key and outputs 1 iff the
result in range [−r, r]. This gives use completeness directly. The delicate part is
to prove the indicator collision-resistance property. Intuitively, no matter what
strategy is adopted by a PPT adversary, given two public keys it should be hard
to generate a “snake-eye” ciphertext that decrypts to 0 under both keys, except
with trivial probability (e.g., encrypting 0 to the first key and hoping to succeed
for the second). The requisite property is formalized in the following definition13

and conjecture:

Definition 5 (snake-eye-resistant encryption). An encryption scheme (KeyGen,
Enc,Dec) is δ-snake-eye-resistant if the following holds: for any PPT algorithm
A, for keys (sk, pk) ← KeyGen(1λ) and (sk′, pk′) ← KeyGen(1λ), for ciphertext
c← A(pk, pk′), it holds that Pr[Dec(sk,c) = 0 ∧ Dec(sk′,c) = 0] ≤ δ + negl(λ).

Conjecture 1 (Patched Regev05 is snake-eye-resistant). The Regev05 scheme
[57], patched such that decryption rejects any ciphertext (~a, b) where ~a = ~0 and
the decryption checks the result in range [−r, r] as introduced in Section 6.2, is
2r+1
t -snake-eye-resistant.

Snake-eye resistance is not generically implied by semantic security of the en-
cryption scheme, nor by key privacy. However, Conjecture 1 can be proven under
the standard (homogeneous) Short Integer Solution (SIS) hardness assumption
[1] combined with a natural generalization of the Knowledge of Knapsack of
Noisy Inner Products assumption [10]. We defer the high level explanation of
this statement to the full version. Alternatively the latter assumption can be re-
placed by a zk-SNARK proof [10], appended to the ciphertext, of the statement
“(~a,b) was constructed as a linear combination of public-key vectors”.14

Conjecture 1 implies a natural generalization to snake-eye resistance of PVW
encryption, which implies indicator collision resistance, and thus Theorem 6 (see
the full version for proofs).

13 We note that for encryption schems like El Gamal, the snake-eye-resistance is trivial,
as for a ciphertext to be decrypted to the same plaintext, the secret keys must be
the same as the decryption funciton is a one-to-one function.

14 Such a proof fits in 192 bytes [30, §5.4.9.2] per clue regardless of `, and in Zcash it
can be merged into pre-existing zk-SNARK proofs in the same transaction [30].
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8 Key Unlinkability

The security notions discussed thus far, and in prior works, omit another privacy
consideration: linkability of the detection and clue keys. This occurs in several
senses. Detection-key to clue-key linkability would reveal clients’ identities to
the detector serving them. Detection-key to detection-key linkability would allow
detectors to link recurring clients, facilitating traffic analysis of detection queries.
Clue-key to clue-key linkability is a concern when recipients wish to publish
several addresses that are unlinkable, but (secretly) correspond to a single secret
key which controls all of them (as in Zcash’s “diversified address” [30]).

Linkability in Prior Work. In FMD [7], the detection keys and clue keys
are a key pair in an asymmetric encryption scheme and therefore can be linked.
Both PS schemes [44] link the detection key to the clue key by having a public
identifying number Ri for each recipient and used in each retrieval. In both
FMD and PS, the detection key and clue key are fixed for each recipient.

Defining Unlinkability. We define, in the natural way, the notion of OMR (or
OMD) that is detection-to-clue-key-unlinkable. We also define OMR (or OMD)
that is full-key-unlinkable: it offers algorithms pk∗detect ← RegenDetectKey(sk)
and pk∗clue ← RegenClueKey(sk) that generate new public keys such that cannot
be linked to other ones for the same sk. See the full version for details.

Key Unlinkability in OMRp1 and OMRp2. The OMRp1 and OMRp2
schemes are detection-to-clue-key-unlinkable, by the semantic security of BFV
(applied to ctlweSK in pkdetect). Moreover, they are full-key-unlinkable, via a key
re-generation process. To resample the detection key, we generate a fresh BFV
key pair (which is trivially unlinkable to prior keys) and encrypt the PVW se-
cret key to the new BFV key (this ciphertext is also unlinkable to prior keys,
by semantic security of BFV). To resample clue keys, we regenerate the PVW
public keys from the PVW private key; this is indeed unlinkable. We defer the
details to the full version.

Attaining Key Unlinkability for Other Schemes. Our OMRt1 scheme
can be modified to achieve full-key-unlinkability similarly. We defer details to
the full version. PS1 can be analogously modified to achieve detection-to-clue-
key unlinkability by changing its PKE and some other modifications (deferred
to the full version). It is not obvious how to achieve key-unlinkablity, for PS2,
FMD1, or FMD2.

9 Performance Evaluation

We implemented the OMRp1 scheme of Section 6.3, and the OMRp2 scheme
of Section 6.4 instantiated with SRLC2, in a C++ library (released as open
source). We used the PALISADE library [52] for PVW encryption, and the
SEAL library [47] with Intel-HEXL acceleration [12] for the BFV scheme. We
benchmarked these schemes on several parameter settings, on a Google Compute
Cloud c2-standard-4 instance type (4 hyperthreads of an Intel Xeon 3.10 GHz
CPU with 16GB RAM). This section reports and compares the results.
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Detection schemes Retrieval schemes (including detection)
ZIP-307
[27,23]

PS1
[44]

PS2
[44]

OMDp1
§6.2

Zcash full
scan [23]

FMD1
[7] / [40]

FMD2
[7]

OMRp1
§6.3

OMRp2
§6.4

Communication (bytes/msg) 116 � 1 � 1 + 3M s↔s 0.56 612 42 5.3 1.13 9.03

Detector computation
time (sec/msg)

1 thread N/A 0.06 0.25 0.021 N/A 0.011 / 0.00020 0.043 0.145 0.155
2/4 0.01/0.0099 0.075/0.065 0.085/0.072

Recipient computation
total time (sec)

1 thread 70 � 10−3 � 10−3 0.005 61 2.1 0.29 0.02 0.063

Clue size (bytes) N/A 32 32 956 N/A 68 / 64.5 318,530 956 956

Clue key size (bytes) N/A 32 N/A 133 k N/A 1.5 k 1 k 133 k 133 k

Detection key size (bytes) N/A 64 920 99 M N/A 768 512 129 M 129 M

Retrieval privacy Full Full
Partitioned

across
detectors

Full Full
pN -msg-

anonymity
p = 2−5

pN -msg-
anonymity
p = 2−8

Full Full

Env. assumptions for
privacy

None TEE (SGX)
Non-colluding

servers
None None None None None None

Env. assumptions for
Soundness+completeness

None Honest S&R Honest S&R None None Honest S&R Honest S&R None None

Table 2: Comparison of cost metrics, functionality and security attributes. Costs
are per message, per recipient. Notation is as in Table 1. The bulletin contains
N = 500,000 messages, of which k = k̄ = 50 are pertinent to the recipient.
“s↔s” means server-to-server communication. For PS1/PS2, we used the times
from [44, §9.2] (Intel Xeon Platinum 8259CL), and some costs are via private
communication from their authors. If FMD1/FMD2 are used just for detection,
the costs are essentially unchanged except that communication is ≤ 1.

Parameters. We set the total number of messages to N = 500,000 (roughly
the number of Bitcoin payments per day), and set the cap on the number of
pertinent message to k̄ = 50. We set a false positive rate εp = 2−21 (including
decryption failure) and a false negative rate εn = 2−30. The payload size is
612 bytes, as in Zcash. The internal parameter choice for PVW, BFV and other
settings in OMRp1/OMRp2 are deferred to the full version of this paper.

Representative Costs. Table 2 summarizes the main cost metrics and func-
tionality/security attributes of our scheme, compared to related ones, for the
above parameters. (See also Table 1 for additional functional/security attributes
and the full version for asymptotic costs,).

We see that in both communication and recipient computation, OMRp1 is
better than any other scheme with retrieval functionality, thereby making it
attractive for recipients that are limited in bandwidth, computation speed, or
energy. Furthermore, OMRp1/OMRp2 provide the strongest form of security, and
under the least assumptions.

Retrieval Scaling with #Messages. Fig. 2 evaluates how the recipient’s
total cost of retrieval scales with increasing N , keeping k̄ constant. As can be
seen, our scheme OMRp1 outperforms all prior constructions starting at moder-
ate bulletin sizes, in both digest size and recipient computation time.

For N > 8 · 106, our compact OMR scheme OMRp2 takes the lead and
achieves an amortized digest size of less than 1 bit per message. In general, the
crossover point grows with k (due to the growing number of buckets in OMRp2),
so OMRp2 outperforms when N is large but k is small.

The detector computation time in OMRp1/OMRp2 is worse than for FMD
and full-scan. It is linear in N for all schemes, and thus follows from Table 2.
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(a) Digest size vs. number of messages. (b) Total recipient computation time vs.
number of messages.

Fig. 2: Retrieval cost comparison (total digest size and recipient computation)
for up to k̄ = 50 pertinent messages.

Detection Key. The detection key size is 129 MB , using the techniques of
Section 6.5. (Without these optimizations, the detection key size is ∼13.5 GB.)
Note that the detection key can be sent to the detector via an insecure channel,
authenticated by a hash. After the one-time cost of transmission, it can then be
used to detect an arbitrary number of messages.

Memory Use. For simplicity, our implementation stores the detection key and
all intermediate results in RAM, for a total memory use of ∼3.5 GB per thread.

Streaming Finalization Cost. Using the streaming approach of Section 6.5,
we can reduce the response time to recipients For OMRp1, the finalization is
only ∼ 2.1 ms/msg. It can be further reduced to ∼ 0.35 ms/msg , since we have
fixed γ. Similar results hold for OMRp2.

10 Integration and Limitations

We proceed to discuss systems aspect of integrating OMR in real-world applica-
tions, and limitations of our current constructions. For concreteness, we consider
integration of OMRp1 or OMRp2 with the Zcash cryptocurrency [30] to solve the
problem of receiver metadata leakage [32] from its light wallet protocol [27]. This
prospective integration illustrates several hurdles and how they can be resolved.
We use the same scheme parameters as in Section 9.

Clue Key Distribution. In our OMR approach (as for FMD [7] and single-
server PS [44]), senders need to obtain the recipient’s clue key to generate clues.
It is natural to consider the clue key to be an extension of the public address,
shared by the same trusted channels. Zcash’s Unified Addresses mechanism [31]
indeed allows such data to be included with public addresses in a backwards-
compatible way, and payment URIs [59,49] can be similarly extended. The clue
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key size of 133 kB (PVW public key) has usability issues. Alternatively, the
Unified Address can contain a URL from which the clue key can be fetched.
Zcash diversified addresses [30] can be accompanied by different clue keys while
preserving address unlinkability, using the full-key-unlinkability property.

Clue Embedding. Clues of size 956 bytes need to be attached to every payload.
This is comparable to the roughly 1.3 kB of data already on-chain per such
payment. The transaction format can be extended with a dedicated clue field,
or clues can be embedded into OP RETURN data or dummy output descriptions.

Detection Latency. Detectors needs to see all blockchain data, facilitating de-
tection in several ways: in the single-shot model, the recipient makes a stateless
query to the detector. Response latency is high: about 0.145 sec/msg (cf. Ta-
ble 2). The subscribe and finalize model utilizes a streaming version of OMRp1,
as in Section 6.5, taking 0.0005 core-sec/msg.

Detection Key. Our OMRp1 and OMRp2 schemes requires recipient to send
large detection keys (∼129 MB) to detectors. Conversely, OMRt1 instantiated
with TFHE reduces detection key size to ∼16 MB, but with much slower detec-
tion. Combining the best of these is an open problem.

Detection Cost. The detector cost is ∼$1.02 per million payments scanned
(per recipient), using commodity cloud computing.15 This implies $0.02/month
detection cost for Zcash’s current shielded payments usage, or $1.66/month for
the current usage rate of Monero (the highest-volume privacy-enhanced cryp-
tocurrency). If all of Bitcoin’s payments were instead done as Zcash shielded
payments, detection cost would grow to $15.3/month; and even higher for mas-
sive private messaging applications such as Signal. Acceleration via GPU, FPGA
or ASIC can improve costs by orders of magnitudes [56,2]. For cryptocurrency
applications, the recipient can directly pay the server for this anonymously.
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46. Matetic, S., Wüst, K., Schneider, M., Kostiainen, K., Karame, G., Capkun, S.:

BITE: Bitcoin lightweight client privacy using trusted execution. In: (USENIX
Security 19). pp. 783–800. USENIX (Aug 2019)

47. Microsoft SEAL (release 3.6). https://github.com/Microsoft/SEAL (Nov 2020),
Microsoft Research, Redmond, WA.

48. Noether, S.: Ring signature confidential transactions for monero. IACR Cryptology
ePrint Archive 2015, 1098 (2015)

49. Nuttycombe, K., Hopwood, D.: Zcash improvement proposal 321: Payment request
URIs. https://zips.z.cash/zip-0321 (Aug 2020)

50. Oblivious message retrieval implementation. https://github.com/

ZeyuThomasLiu/ObliviousMessageRetrieval (Dec 2021)
51. Ostrovsky, R., Skeith, W.E.: Private searching on streaming data. In: CRYPTO

(2005)
52. PALISADE lattice cryptography library (release 11.2). https://

palisade-crypto.org/ (Jun 2021)
53. Paterson, M., Stockmeyer, L.: On the number of nonscalar multiplications neces-

sary to evaluate polynomials. SIAM J. Comput. pp. 60–66 (03 1973)
54. Peikert, C., Vaikuntanathan, V., Waters, B.: A framework for efficient and com-

posable oblivious transfer. In: CRYPTO 2008. pp. 554–571. Springer (2008)
55. Player, R.: Parameter selection in lattice-based cryptography. Ph.D. thesis, Royal

Holloway, University of London (2018)
56. Reagen, B., Choi, W.S., Ko, Y., Lee, V.T., Lee, H.H.S., Wei, G.Y., Brooks, D.:

Cheetah: Optimizing and accelerating homomorphic encryption for private infer-
ence. In: 2021 IEEE HPCA. pp. 26–39 (2021)

57. Regev, O.: On lattices, learning with errors, random linear codes, and cryptogra-
phy. J. ACM (Sep 2009)

58. Salmond, D., Grant, A.J., Grivell, I., Chan, T.: On the rank of random matrices
over finite fields. CoRR (2014), http://arxiv.org/abs/1404.3250

59. Schneider, N., Corallo, M.: Bitcoin improvement proposal 21: URI scheme. https:
//github.com/bitcoin/bips/blob/master/bip-0021.mediawiki (Jan 2012)

60. Tassi, A., Chatzigeorgiou, I., Lucani, D.: Analysis and optimization of sparse ran-
dom linear network coding for reliable multicast services. IEEE Transactions on
Communications pp. 285–299 (01 2016)

61. Wolinsky, D.I., Corrigan-Gibbs, H., Ford, B., Johnson, A.: Dissent in numbers:
Making strong anonymity scale. In: OSDI 12. pp. 179–182. USENIX (Oct 2012)
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