
SSE and SSD: Page-Efficient Searchable
Symmetric Encryption

Angèle Bossuat1, Raphael Bost2,?, Pierre-Alain Fouque1, Brice Minaud3,4, and
Michael Reichle3,4

1 Quarkslab, and Université de Rennes 1, Rennes, France.
2 Direction Générale de l’Armement, Paris, France.

3 Inria, Paris, France.
4 École Normale Supérieure, CNRS, PSL, Paris, France.

Abstract. Searchable Symmetric Encryption (SSE) enables a client to
outsource a database to an untrusted server, while retaining the ability
to securely search the data. The performance bottleneck of classic SSE
schemes typically does not come from their fast, symmetric cryptographic
operations, but rather from the cost of memory accesses. To address this
issue, many works in the literature have considered the notion of locality,
a simple design criterion that helps capture the cost of memory accesses
in traditional storage media, such as Hard Disk Drives. A common thread
among many SSE schemes aiming to improve locality is that they are
built on top of new memory allocation schemes, which form the technical
core of the constructions.
The starting observation of this work is that for newer storage media
such as Solid State Drives (SSDs), which have become increasingly com-
mon, locality is not a good predictor of practical performance. Instead,
SSD performance mainly depends on page efficiency, that is, reading
as few pages as possible. We define this notion, and identify a simple
memory allocation problem, Data-Independent Packing (DIP), that cap-
tures the main technical challenge required to build page-efficient SSE.
As our main result, we build a page-efficient and storage-efficient data-
independent packing scheme, and deduce the Tethys SSE scheme, the
first SSE scheme to achieve at once O(1) page efficiency and O(1) stor-
age efficiency. The technical core of the result is a new generalization of
cuckoo hashing to items of variable size. Practical experiments show that
this new approach achieves excellent performance.

1 Introduction

In Searchable Symmetric Encryption (SSE), a client holds a collection of docu-
ments, and wishes to store them on an untrusted cloud server. The client also
wishes to be able to issue search queries to the server, and retrieve all documents
? The views and conclusions contained herein are those of the author and should not
be interpreted as necessarily representing the official policies or endorsements, either
expressed or implied, of the DGA or the French Government.

matching the query. Meanwhile, the honest-but-curious server should learn as
little information as possible about the client’s data and queries. Searchable En-
cryption is an important goal in the area of cloud storage, since the ability to
search over an outsourced database is often a critical feature. The goal of SSE
is to enable that functionality, while offering precise guarantees regarding the
privacy of the client’s data and queries with respect to the host server.

Compared to other settings related to computation over encrypted data,
such as Fully Homomorphic Encryption, a specificity of SSE literature is the
focus on high-performance solutions, suitable for deployment on large real-world
datasets. To achieve this performance, SSE schemes accept the leakage of some
information on the plaintext dataset, captured in security proofs by a leakage
function. The leakage function is composed of setup leakage and query leakage.
The setup leakage is the total leakage prior to query execution, and typically
reveals the size of the index, and possibly the number of searchable keywords.
For a static scheme, the query leakage usually reveals the repetition of queries,
and the set of document indices matching the query. Informally, the security
model guarantees that the adversary does not learn any information about the
client’s data and queries, other than the previous leakages.

In particular, the allowed leakage typically reveals nothing about keywords
that have not yet been queried. Although this requirement may seem natural
and innocuous, it has deep implications about the storage and memory accesses
of SSE schemes. At Eurocrypt 2014, Cash and Tessaro [CT14] proved an im-
possibility result that may be roughly summarized as follows. If an SSE scheme
reveals nothing about the number of documents matching unqueried keywords,
then it cannot satisfy the following three efficiency properties simultaneously:
(1) constant storage efficiency: the size of the encrypted database is at most
linear in the size of the plaintext data; (2) constant read efficiency: the amount
of data read by the server to answer a query is at most linear in the size of the
plaintext answer; (3) constant locality: the memory accesses made by the server
to answer a query consist of a constant number of contiguous accesses. Thus, a
secure SSE scheme with constant storage efficiency and read efficiency cannot
be local : it must perform a superconstant number of disjoint memory accesses.

In practice, many SSE schemes (e.g. [CGKO06, CJJ+13, Bos16]) make one
random memory access per entry matching the search query. As explained in
[CJJ+14, MM17], making many small random accesses hampers performance:
hard disks drives (HDD) were designed for large sequential accesses, and solid
state drives (SSD) use a leveled design that does not accommodate small reads
well. As discussed e.g. in [BMO17], this results in the fact that in many settings,
the performance bottleneck for SSE is not the cost of cryptographic operations
(which rely on fast, symmetric primitives), but the cost of memory accesses.

As a consequence, SSE scheme designers have tried to reduce the number
of disk accesses needed to process a search query, e.g. by grouping entries cor-
responding to the same keywords in blocks [CJJ+14, MM17], or by using more
complex allocation mechanisms [ANSS16, ASS18, DPP18]. However, no optimal
solution is possible, due to the previously mentioned impossibility result of Cash

2

and Tessaro. In the static case, the first construction by Asharov et al. from
STOC 2016 achieves linear server storage and constant locality, at the cost of
logarithmic read efficiency (the amount of data read by the server to answer
a query is bounded by the size of the plaintext answer times O (logN), where
N is the size of the plaintext database) [ANSS16]. The logarithmic factor was
reduced to logγ N for γ < 1 by Demertzis et al. at Crypto 2018 [DPP18].

An interesting side-effect of this line of research is that it has highlighted
the connection between Searchable Encryption and memory allocation schemes
with certain security properties. The construction from [ANSS16] relies on a two-
dimensional variant of the classic balls-and-bins allocation problem. Likewise, the
construction from [DPP18] uses several memory allocation schemes tailored to
different input sizes.

1.1 Overview of Contributions

As discussed above, memory accesses are a critical bottleneck for SSE perfor-
mance. This has led to the notion of locality, and the construction of many
SSE schemes aiming to improve locality, such as [CT14, ANSS16, MM17, DP17,
DPP18]. The motivation behind the notion of locality is that it is a simple crite-
rion that captures the performance of traditional storage media such as HDDs.
In recent years, other storage media, and especially SSDs, have become more and
more prevalent. To illustrate that point, the number of SSDs shipped worldwide
is projected to overtake HDD shipments in 2021 [Sta21].

However, locality as a design target, was proposed assuming an implemen-
tation on a HDD. The starting point of our work is that for SSDs, locality is
no longer a good predictor of practical performance. This raises two questions:
first, is there a simple SSE design criterion to capture SSD performance, similar
to locality for HDDs? And can we design SSE schemes that fulfill that criterion?

The answer to the first question is straightforward: for SSDs, performance is
mainly determined by the number of memory pages that are accessed, regardless
of whether they are contiguous. This leads us to introduce the notion of page
efficiency. The page efficiency of an SSE scheme is simply the number of pages
that the server must access to process a query, divided by the number of pages
of the plaintext answer to the query. Page efficiency is an excellent predictor of
SSD performance. This is supported by experiments in Section 5. Some of the
technical reasons behind that behavior are also discussed in the full version.

The main contribution of this work is to give a positive answer to the second
question, by building a page-efficiency SSE scheme, called Tethys. Tethys achieves
page efficiency O(1) and storage efficiency O(1), with minimal leakage. Here,
O(1) denotes an absolute constant, independent of not only the database size,
but also the page size. We also construct two additional variants, Pluto and
Nilust, that offer practical trade-offs between server storage and page efficiency.
An overview of these schemes is presented on Table 1, together with a comparison
with some relevant schemes from the literature.

Similar to local SSE schemes such as [ANSS16] and its follow-ups, the core
technique underpinning our results is a new memory allocation scheme. In order

3

Table 1 – Trade-offs between SSE schemes. Here, p is the number elements per
page, k is the number of keywords, and λ is the security parameter (assuming
k ≥ λ). Page cost aX+b means that in order to process a query whose plaintext
answer is at most X pages long, the server needs to access at most aX + b
memory pages. Page efficiency is page cost divided by X in the worst case.
Client storage is the size of client storage, where the unit is the storage of one
element or address. Storage efficiency is the number of pages needed to store the
encrypted database, divided by the number of pages of the plaintext database.
Schemes Client st. Page cost Page eff. Storage eff. Source
Πbas O(1) O(Xp) O(p) O(1) [CJJ+14]
Πpack, Π2lev O(1) O(X) O(1) O(p) [CJJ+14]
1-Choice O(1) Õ(logN)X Õ(logN) O(1) [ANSS16]
2-Choice O(1) Õ(log logN)X Õ(log logN) O(1) [ANSS16]
Tethys O(p log λ) 2X + 1 3 3 + ε Section 4
Pluto O(p log λ) X + 2 3 3 + ε Full version
Nilust O(p log λ) 2tX + 1 2t+ 1 1 + (2/e)t−1 Full version

to build Tethys, we identify and extract an underlying combinatorial problem,
which we call Data-Independent Packing (DIP). We show that a secure SSE
scheme can be obtained generically from any DIP scheme, and build Tethys in
that manner.

Similar to standard bin packing, the problem faced by a DIP scheme is to
pack items of variable size into buckets of fixed size, in such a way that not too
much space is wasted. At the same time, data independence requires that a given
item can be retrieved by inspecting a few buckets whose location is independent
of the sizes of other items. That may seem almost contradictory at first: we want
to pack items closely together, in a way that does not depend on item sizes. The
solution we propose is inspired by a generalization of cuckoo hashing, discussed
in the technical overview below.

We note that the DIP scheme we build in this way has other applications
beyond the scope of this article. One side result is that it can also be used to
reduce the leakage of the SSE scheme with tunable locality from [DP17]. Also,
we sketch a construction for a length-hiding static ORAM scheme that only has
constant storage overhead.

Finally, we have implemented Tethys to analyze its practical performance.
The source code is publicly available (link in Section 5). The experiments show
two things. First, experimental observations match the behavior predicted by the
theory. Second, when benchmarked against various existing static SSE schemes,
Tethys achieves, to our knowledge, unprecedented performance on SSDs: without
having to rely on a very large ciphertext expansion factor (less than 3 in our
experiments), we are able to stream encrypted entries and decrypt them from a
medium-end SSD at around half the raw throughput of that SSD.

4

1.2 Technical Overview

In single-keyword SSE schemes, the encrypted database is realized as an inverted
index. The index maps each keyword to the (encrypted) list of matching docu-
ment indices. The central question is how to efficiently store these lists, so that
accessing some lists reveals no information about the lengths of other lists.

Page efficiency asks that in order to retrieve a given list, we should have to
visit as few pages as possible. The simplest solution for that purpose is to pad all
lists to the next multiple of one page, then store each one-page chunk separately
using a standard hashing scheme. That padding approach is used in some classic
SSE constructions, such as [CJJ+14]. While the approach is page-efficient, it is
not storage-efficient, since all lists need to be padded to the next multiple of p.

In practice, with a standard page size of 4096 bytes, and assuming 64-bit
document indices, we have p = 512. Regardless of the size of the database,
if it is the case that most keywords match few documents, say, less than 10
documents, then server storage would blow up by a factor 50. More generally,
whenever the dataset contains a large ratio of small lists, padding becomes quite
costly, up to a factor p = 512 in storage in the worst case. Instead, we would like
to upper-bound the storage blowup by a small constant, independent of both
the input dataset, and the page size.

Another natural approach is to adapt SSE schemes that target locality. It is
not difficult to show that an SSE scheme with locality L and read efficiency R
has page efficiency O(L+R) (Theorem 2.1). However, due to Cash and Tessaro’s
impossibility result, it is not possible for any scheme with constant storage ef-
ficiency and locality O(1) (such as [ANSS16] and its follow-ups) to have read
efficiency O(1); and all such schemes result in superconstant page efficiency.

Ultimately, a new approach is needed. To that end, we first introduce the no-
tion of data-independent packing (DIP). A DIP scheme is a purely combinatorial
allocation mechanism, which assigns lists of variable size into buckets of fixed
size p. (Our definition also allows to store a few extra items in a stash.) The
key property of a DIP scheme is data independence: each list can be retrieved
by visiting a few buckets, whose locations are independent of the sizes of other
lists.

We show that a secure SSE scheme SSE(D) can be built generically from
any DIP scheme D. The page efficiency and storage efficiency of the SSE scheme
SSE(D) can be derived directly from similar efficiency measures for the underly-
ing DIP scheme D. All SSE schemes in this paper are built in that manner.

We then turn to the question of building an efficient DIP scheme. Combinato-
rially, what we want is a DIP scheme with constant page efficiency (the number
of buckets it visits to retrieve a list is bounded linearly by the number of buckets
required to read the list), and constant storage efficiency (the total number of
buckets it uses is bounded linearly by the number of buckets required to store
all input data contiguously). The solution we propose, TethysDIP, is inspired by
cuckoo hashing. For ease of exposition, we focus on lists of size at most one page.
Each list is assigned two uniformly random buckets as possible destinations. It
is required that the full list can be recovered by reading the two buckets, plus a

5

stash. To ensure data independence, all three locations are accessed, regardless
of where list elements are actually stored. Since the two buckets for each list are
drawn independently and uniformly at random, data independence is immediate.

Once each list is assigned its two possible buckets, we are faced with two
problems. The first problem is algorithmic: how should each list be split between
its two destination buckets and the stash, so that the stash is as small as possible,
subject to the constraint that the assignment is correct (all list elements are
stored, no bucket receives more than p elements)? We prove that a simple max
flow computation yields an optimal solution to this optimization problem. To see
this, view buckets as nodes in a graph, with lists corresponding to edges between
their two destination buckets, weighted by the size of the list. Intuitively, if we
start from an arbitrary assignment of items to buckets, we want to find as many
disjoint paths as possible going from overfull buckets to underfull buckets, so
that we can “push” items along those paths. This is precisely what a max flow
algorithm provides.

The second (and harder) problem we face is analytic: can we prove that a valid
assignment exists with overwhelming probability, using only O(n/p) buckets (for
constant storage efficiency), and a stash size independent of the database size?
Note that a negligible probability of failure is critical for security, because the
probability of failure depends on the list length distribution, which we wish to
hide. Having a small stash size, that does not grow with the database size, is
also important, because in the final SSE scheme, we will ultimately store the
stash on the client side.

In the case of cuckoo hashing, results along those lines are known, see for ex-
ample [ADW14]. However, our situation is substantially different. Cuckoo hash-
ing with buckets of capacity p > 1 has been analyzed in the literature [DW05],
including in the presence of a stash [KMW10]. Such results go through the
analysis of the cuckoo graph associated with the problem: similar to the graph
discussed earlier, vertices are buckets, and each item gives rise to one edge con-
necting the two buckets where it can be assigned. A crucial difference in our
setting compared to regular cuckoo hashing with buckets of capacity p is that
edges are not uniformly distributed. Instead, each list of length x generates x
edges between the same two buckets.

Thus, we need an upper bound that holds for a family of non-uniform edge
distributions (those that arise from an arbitrary number of lists with an arbi-
trary number of elements each, subject only to the total number of elements
being equal to the database size n). Moreover, we want an upper bound that
holds simultaneously for all members of that family, since we want to hide the
length distribution. What we show is that the probability of failure for any such
distribution can be upper-bounded by the case where all lists have the maximum
size p, up to a polynomial factor. Roughly speaking, this follows from a convex-
ity argument, combined with a majorization argument, although the details are
intricate. We are then able to adapt existing analyses for the standard cuckoo
graph.

6

In the end, TethysDIP has the following features: every item can be retrieved
by visiting 2 data-independent table locations (and the stash), the storage effi-
ciency is 2 + ε, and the stash size is pω(log λ). All those quantities are the same
as regular cuckoo hashing, up to a scaling factor p in the stash size, which is
unavoidable (see full version for more details). Since regular cuckoo hashing is a
special case of our setting, the result is tight.

In the full version, we present two other DIP schemes, PlutoDIP and NilusDIPt.
Both are variants of the main TethysDIP construction, and offer trade-offs of
practical interest between storage efficiency and page efficiency. In particular,
NilusDIP rests on the observation that our main analytical results, regarding the
optimality and stash size bound of TethysDIP, can be generalized to buckets of
size tp rather than p, for an arbitrary integer t. This extension yields a storage
efficiency 1 + (2/e)t−1, which tends exponentially fast towards the information
theoretical minimum of 1. The price to pay is that page efficiency is 2t, because
we need to visit two buckets, each containing t pages, to retrieve a list.

1.3 Related Work

Our work mainly relates to two areas: SSE and cuckoo hashing. We discuss each
in turn.

In [ANSS16], Asharov et al. were the first to explicitly view SSE schemes as an
allocation problem. That view allows for very efficient schemes, and is coherent
with the fact that the main bottleneck is the IO and not the cryptographic
overhead, as observed by Cash et al. [CJJ+13]. Our work uses the same approach,
and builds an SSE scheme on top of an allocation scheme.

As proved by Cash and Tessaro [CT14], no SSE scheme can be optimal simul-
taneously in locality, read efficiency, and storage efficiency (see also [ASS18]).
Since then, many papers have constructed schemes with constant locality and
storage efficiency, while progressively improving read efficiency: starting from
O(logN log logN) in [ANSS16] to O(logγ N) in [DPP18] for any fixed γ > 2/3,
and finally O(log logN log2 log logN) when all lists have at most N1−1/ log logN

entries [ANSS16], or O(log log logN) when they have at most N1−1/o(log log logN)

entries [ASS18]. On the other hand, some constructions achieve optimal read effi-
ciency, and sublinear locality, at the cost of increased storage, such as the family
of schemes by Papamanthou and Demertzis [DP17].

Contrary to the previous line of work, we aim to optimize page efficiency
and not locality. At a high level, there is a connection between the two: both
aim to store the data matching a query in close proximity. A concrete connec-
tion is given in Theorem 2.1. Nevertheless, to our knowledge, no previous SSE
scheme with linear storage has achieved page efficiency O(1). The Πpack scheme
from [CJJ+14] achieves page efficiency O (1) by padding all lists to a multiple
of the page size, and storing lists by chunks of one page. However, this approach
has storage efficiency p in the worst case. The Π2lev variant from [CJJ+14] in-
curs the same cost, because it handles short lists in the same way as Πpack. In
practice, such schemes will perform well for long lists, but will incur a factor up
to p when there are many small lists, which can be prohibitive, as a typical value

7

of p is p = 512 (cf. Section 1.2). On the other hand, Πpack and its variants are
dynamic schemes, whereas Tethys is static.

TethysDIP is related to one of the allocation schemes from [DPP18], which
uses results by Sanders et al. [SEK03]. That allocation scheme can be gener-
alized to handle the same problem as TethysDIP, but we see no way of doing
so that would achieve storage and page efficiency O(1). Another notable differ-
ence is that we allow for a stash, which makes it possible to achieve a negligible
probability of failure (the associated analysis being the most technically chal-
lenging part of this work). An interesting relationship between our algorithm in
the algorithm from [SEK03] is discussed in Section 4.1.

As Data-Indepdent Packing scheme, TethysDIP is naturally viewed as a pack-
ing algorithm with oblivious lookups. The connection between SSE and oblivious
algorithms is well-known, and recent works have studied SSE with fully oblivious
accesses [MPC+18, KMO18].

We now turn to cuckoo hashing [PR04]. As noted earlier, TethysDIP (resp.
NilusDIPt) includes standard cuckoo hashing with a stash (resp. with buckets of
size t > 1) as a special case, and naturally extends those settings to items of
variable size. Moreover, our proof strategy essentially reduces the probability of
failure of TethysDIP (resp. NilusDIPt) to their respective cuckoo hashing special
cases. As such, our work relies on the cuckoo hashing literature, especially works
on bounding stash sizes [KMW10, ADW14]. While TethysDIP generalizes some
of these results to items of variable size, we only consider the static setting.
Extending TethysDIP to the dynamic setting is an interesting open problem.

Finally, some aspects of TethysDIP relate to graph orientability. Graph ori-
entability studies how the edges of an undirected graph may be oriented in
order to achieve certain properties, typically related either to the in- or outde-
gree sequence of the resulting graph, or to k-connectivity. This is relevant to our
TethysDIP algorithm, insofar as its analysis is best formulated as a problem of
deleting the minimum number of edges in a certain graph, so that every vertex
has outdegree less than a given capacity p (cf. Section 4). As such, it relates to
deletion orientability problems, such as have been studied in [HKL+18]. Many
variants of this problem are NP-hard, such as minimizing the number of vertices
that must be deleted to achieve the same property, and most of the literature is
devoted to a more fine-grained classification of their complexity. In that respect,
it seems we are “lucky” that our particular optimization target (minimizing the
so-called overflow of the graph) can be achieved in only quadratic time. We did
not find mention of this fact in the orientability literature.

Organization of the paper. Section 2 provides the necessary background and
notation, and introduces definitions of storage and page efficiency. Section 3
introduces the notion of data-independent packing (DIP), and presents a generic
construction of SSE from a DIP scheme. Section 4 gives an efficient construction
of DIP. Section 5 concludes with practical experiments.

8

2 Background

2.1 Notation

Let λ ∈ N be the security parameter. For a distribution probability X, we
denote by x← X the process of sampling a value x from the distribution. If X
is a set, x← X denotes the process of sampling x uniformly at random from X .
Logarithm in base 2 is denoted by log(·). A function f(λ) is negligible in λ if it
is O(λ−c) for every c ∈ N. If so, we write f = negl(λ).

Let W = {w1, . . . , wk} be the set of keywords, where each keyword wi is rep-
resented by a machine word, each of O(λ) bits, in the unit-cost RAM model, as
in [ANSS16]. The plaintext database is regarded as an inverted index. To each
keyword wi is associated a list DB(wi) = (ind1, . . . , ind`i) of document identi-
fiers matching the keyword, each of length O(λ) bits. The plaintext database is
DB = (DB(w1), . . . ,DB(wk)). UppercaseN denotes the total number of keyword-
document pairs in DB, N = |DB| =

∑k
i=1 `i, as is usual in SSE literature.

We now introduce multi-maps. Amulti-map M consists of k pairs {(Ki, valsi) :
1 ≤ i ≤ k}, where valsi = (ei,1, . . . , ei,`i) consists of `i values ei,j . (Note that
in this context, a key is an identification key in a key-value store, and not a
cryptographic key.) We assume without loss of generality that the keys Ki are
distinct. Throughout, we denote by n the total number of values n = |M| :=∑k
i=1 `i, following the convention of allocation and hashing literature. For the

basic TethysDIP scheme, n = N . We assume (without loss of generality) that
values ei,j can be mapped back unambiguously to the key of origin Ki. This
will be necessary for our SSE framework, and can be guaranteed by assuming
the values contain the associated key. As this comes with additional storage
overhead, we discuss some encoding variants in the full version (some of these
encodings result in n > N).

Throughout the article, the page size p is treated as a variable, independent
of the dataset size n. Upper bounds of the form f(n, p) = O(g(n, p)), where the
function f under consideration depends on both n and p, mean that there exist
constants C, Cn, Cp such that f(n, p) ≤ Cg(n, p) for all n ≥ Cn, p ≥ Cp.

2.2 Searchable Symmetric Encryption

At setup, the client generates an encrypted database EDB from the plaintext
database DB and a secret key K. The client sends EDB to the server. To issue
a search query for keyword w, the client sends a search token τw. The server
uses the token τw and the encrypted database EDB to compute DB(w). In some
cases, the server does not recover DB(w) directly; instead, the server recovers
some data d and sends it to the client. The client then recovers DB(w) from d.

Formally, a static Searchable Symmetric Encryption (SSE) scheme is a tuple
of algorithms (KeyGen,Setup,TokenGen,Search,Recover).

– K ← KeyGen(1λ): the key generation algorithm KeyGen takes as input the
security parameter λ in unitary notation and outputs the master key K.

9

– EDB← Setup(K,DB): the setup algorithm takes as input the master key K
and a database DB, and outputs an encrypted database EDB.

– (τ, ρ)← TokenGen(K,w): the token generation algorithm takes as input the
master key K and a keyword w, and outputs a search token τ (to be sent to
the server), and potentially some auxiliary information ρ (to be used by the
recovery algorithm).

– d ← Search(EDB, τ): The search algorithm takes as input the token τ and
the encrypted database EDB and outputs some data d.

– s← Recover(ρ, d): the recovery algorithm takes as input the output d of the
Search algorithm, and potentially some auxiliary information ρ, and outputs
the set DB(w) of document identifiers matching the queried keyword w.

The Recover algorithm is used by the client to decrypt the results sent by
the server. In many SSE schemes, the server sends the result in plaintext, and
Recover is a trivial algorithm that outputs s = d.

Security Definition. We use the standard semantic security notion for SSE. A
formal definition is given in [CGKO06]. Security is parametrized by a leakage
function L, composed of the setup leakage LSetup, and the search leakage LSearch.
Define two games, SSEReal and SSEIdeal. At setup, the adversary sends
a database DB. In SSEReal, the setup is run normally; in SSEIdeal, the
setup is run by calling a simulator on input LSetup(DB). The adversary can then
adaptively issue search queries for keywords w that are answered honestly in
SSEReal, and simulated by a simulator on input LSearch(DB, w) in SSEIdeal.
The adversary wins if it correctly guesses which game it was playing.

Definition 2.1 (Simulation-Based Security). Let Π be an SSE scheme, let
L be a leakage function. We say that Π is L-adaptively semantically secure if for
all PPT adversary A, there exists a PPT simulator S such that

|Pr[SSERealΠ,A(λ) = 1]− Pr[SSEIdealΠ,S,L,A(λ) = 1]| = negl(λ).

2.3 Locality and Page Efficiency

The notions of locality and read efficiency were introduced by Cash and Tes-
saro [CT14]. We recall them, followed by our new metrics of page cost and page
efficiency. We start with the definition of the read pattern. In the following def-
initions, the quantities EDB, τ are assumed to be computed according to the
underlying SSE scheme, i.e. given a query for keyword w on the database DB,
set K ← KeyGen(1λ), EDB← EDBSetup(K,DB), τ ← TokenGen(K,w).

Definition 2.2 (Read Pattern). Regard server-side storage as an array of
memory locations, containing the encrypted database EDB. When processing the
search query Search(EDB, τ) for keyword w, the server accesses memory loca-
tions m1, . . . ,mh. We call these locations the read pattern and denote it with
RdPat(τ,EDB).

10

Definition 2.3 (Locality). An SSE scheme has locality L if for any λ, DB,
and keyword w, RdPat(τ,EDB) consists of at most L disjoint intervals.

Definition 2.4 (Read Efficiency). An SSE scheme has read efficiency R if
for any λ, DB, and keyword w, |RdPat(τ,EDB)| ≤ R ·P , where P is the number
of memory locations needed to store document indices matching keyword w in
plaintext (by concatenating indices).

Definition 2.5 (Storage Efficiency). An SSE scheme has storage efficiency
S if for any λ, DB, |EDB| ≤ S · |DB|.

Optimizing an SSE scheme for locality requires that each read query accesses
few non-contiguous memory locations, thus making this operation efficient for
HDDs. In the case of SSDs, it is sufficient to optimize for few page accesses (as
SSDs efficiently read entire pages of memory). For this reason, we introduce the
notions page cost and page efficiency to measure the efficiency of read queries
performed on SSDs. More background is provided in the full version, together
with experiments showing that page efficiency is an excellent predictor of SSD
read performance (this is also supported by the experiments of Section 5).

Definition 2.6 (Page Pattern). If server-side storage is regarded as an array
of pages, when searching for a keyword w, the read pattern RdPat(τ,EDB) in-
duces a number of page accesses p1, . . . , ph′ . We call these pages the page pattern,
denoted by PgPat(τ,EDB).

Definition 2.7 (Page Cost). An SSE scheme has page cost aX + b, where
a, b are real numbers, and X is a fixed symbol, if for any λ, DB, and keyword
w, |PgPat(τ,EDB)| ≤ aX + b, where X is the number of pages needed to store
documents indices matching keyword w in plaintext.

Definition 2.8 (Page Efficiency). An SSE scheme has page efficiency P if
for any λ, DB, and keyword w, |PgPat(τ,EDB)| ≤ P ·X, where X is the number
of pages needed to store documents indices matching keyword w in plaintext.

A scheme with page cost aX+ b has page efficiency at most a+ b. Compared
to page efficiency, page cost is a more fine-grained measure that can be helpful
when comparing the performance of different SSE schemes. It is clear that page
efficiency is a direct counterpart of read efficiency, viewed at the page level, but
it is also related to locality: a scheme with good locality and read efficiency
immediately yields a scheme with good page efficiency, as formalized in the
following theorem.

Theorem 2.1. Any SSE scheme with read efficiency R and locality L has page
efficiency at most R+ 2L.

The impossibility result of Cash and Tessaro [CT14] states (with some ad-
ditional assumptions) that no SSE scheme can have simultaneously storage effi-
ciency, read efficiency and locality O(1). As a consequence, no scheme with stor-
age efficiency O(1) can have R + 2L = O(1). Nevertheless, our Tethys scheme

11

has storage efficiency O (1) and page efficiency O (1). This shows that Theo-
rem 2.1, while attractive in terms of genericity and simplicity, is not the best
way to build a page-efficient scheme. In the full version, we show that the upper
bound from Theorem 2.1 is tight.

Proof of Theorem 2.1. View server-side storage as an array of pages, without
modifying the behavior of the scheme in any way. To process keyword w, the
scheme makes at most L contiguous memory accesses of lengths a1, . . . , aL. We
have

∑
ai ≤ Rx, where x denotes the amount of memory needed to store the

plaintext answer (concatenation of document indices matching the query). Each
memory access of length ai covers at most ai/p+ 2 pages, where the two extra
page accesses account for the fact that the start and end points of the access
may not be aligned with server pages. Thus, the number of pages read is at
most

∑
(ai/p+2) ≤ Rx/p+2L. It remains to observe that the number of pages

needed to store the plaintext answer is at least x/p. Hence, the scheme has page
cost (at most) RX + 2L, and page efficiency R+ 2L.

3 SSE from Data-Independent Packing

In this section, we define data-independent packing, and based on this notion,
provide a framework to construct SSE schemes. In Section 4, we will instantiate
the framework with an efficient data-independent packing scheme.

3.1 Data-Independent Packing

A data-independent packing (DIP) scheme takes as input an integerm (the num-
ber of buckets), and a multi-map M (mapping keys to lists of values). Informally,
it will assign the values of the multi-map into m buckets, each containing up to
p values, and a stash. It provides a search functionality Lookup that, for a given
key, returns the indices of buckets where the associated values are stored. In
this section, p denotes the size of a bucket. To ease notation, it is implicitly a
parameter of all methods. (In the concrete application to page-efficient SSE, p
is the size of a page.)

Definition 3.1 (Data-Independent Packing).
A DIP scheme is a triplet of algorithms (Size,Build, Lookup):

– m ← Size(n): Takes as input a number of values n. Returns a number of
buckets m.

– (B,S)← Build(M): Takes as input a multi-map M = {(Ki, (ei,1, . . . , ei,`i)) :
1 ≤ i ≤ k}. Letting n = |M| =

∑
1≤i≤k `i and m ← Size(n), returns a pair

(B,S), where B is an m-tuple of buckets (B[1], . . . , B[m]), where each bucket
B[i] is a set of at most p multi-map values; and the stash S is another set
of multi-map values.

– I ← Lookup(m,K, `): Takes as input the total number of buckets m, a multi-
map key K, and a number of items `. Returns a set of bucket indices I ⊆
[1,m].

12

Correctness asks that all multi-map values (ei,1, . . . , ei,`i) associated with key
Ki are either in the buckets whose indices are returned by Lookup(m,Ki, `i), or
in the stash. Later on, we will sometimes only ask that correctness holds with
overwhelming probability over the random coins of Build.

Definition 3.2 (Correctness). A DIP scheme is correct if for all multi-map
M = {(Ki, (ei,1, . . . , ei,`i)) : 1 ≤ i ≤ k}, the following holds. Letting m ←
Size(|M|), and (B,S)← Build(M):

∀i ∈ [1, k] : M(Ki) ⊆ S ∪
⋃

j∈Lookup(m,Ki,`i)

B[j].

Intuitively, the definition of DIP inherently enforces data independence, in
two ways. The first is that the number of buckets m← Size(n) used for storage
is solely a function of the number of values n in the multi-map. The second is that
Lookup only depends on the queried key, and the number of values associated
with that key. Thus, neither Size nor Lookup depend on the multi-map at the
input of Build, other than the number of values it contains. It is in that sense
that we say those two functions are data-independent : they do not depend on
the dataset M stored in the buckets, including the sizes of the lists it contains.
Looking ahead, when we use a DIP scheme, we will pad all buckets to their
maximum size p, and encrypt them, so that the output of Build will also leak
nothing more than the number of buckets m.

We supply Lookup with the number of values ` associated to the queried
key. This is for convenience. If the number of values of the queried key was
not supplied as input, it would have to be stored by the DIP scheme. We have
found it more convenient to allow that information to be stored in a separate
structure in future constructions. Not forcing the DIP scheme to store length
information also better isolates the main combinatorial problem a DIP scheme is
trying to capture, namely how to compactly store objects of variable size, while
being data-independent. How to encode sizes introduces its own separate set of
considerations.

Efficiency Measures. Looking ahead to the SSE construction, a bucket will be
stored in a single page, and contain some document identifiers of the database.
The goal is to keep the total number of bucketsm small (quantified by the notion
storage efficiency), and to ensure that Lookup returns small sets (quantified by
the notion lookup efficiency). Intuitively, those goals will imply good storage
efficiency (with a total storage of m pages, plus some auxiliary data), and good
page efficiency (reading from the database requires few page accesses) for the
resulting SSE scheme. Finally, the stash will be stored on the client side. Thus,
the stash size should be kept small. These efficiency measures are formally defined
in the following.

Definition 3.3 (Lookup Efficiency). A DIP scheme has lookup efficiency L
if for any multi-map M, any (m,B, S)← Build(M) and any key K for which the
values M(K) require a minimal number of buckets x, we have |Lookup(m,K, `)| ≤
L · x.

13

Definition 3.4 (Storage Efficiency). A DIP scheme has storage efficiency
E if for any multi-map M and any (m,B, S) ← Build(M), it holds that m ≤
E · (n/p).

Definition 3.5 (Stash size). A DIP scheme has stash size C if for any multi-
map M and any (m,B, S) ← Build(M), it holds that the stash contains at most
C values.

It is trivial to build a DIP scheme that disregards one of these properties.
For example for good lookup and storage efficiency, we can store all values in
the stash. For good storage efficiency and small stash size, it suffices to store
all values in m = dn/pe buckets and return all bucket indices {1, · · · ,m} in
Lookup. Lastly, for good lookup efficiency and stash size, we can pad every list
to a multiple of p in size and subsequently split each list into chunks of size p.
Each chunk can be stored in a bucket fixed by a hash function. But this scheme
has a storage efficiency of p (this last approach is discussed in more detail in
Section 1.2).

Ensuring good performance with respect to all properties at the same time
turns out to be a hard problem. We refer to Section 4 for a concrete construction.

SSE from Data-Independent Packing. In this section, we give a framework to
build an SSE scheme SSE(D) generically from a DIP scheme D with a bucket size
p equal to the page size.

We now describe the construction in detail. Let PRF be a secure pseudo-
random function mapping to {0, 1}2λ+dlog(N)e. Let Enc be an IND-CPA secure
symmetric encryption scheme (assimilated with its encryption algorithm in the
notation). We split the output of the PRF into a key of 2λ bits and a mask of
dlog(N)e bits. Pseudo-code is provided in Algorithm 1.

Setup. The Setup algorithm takes as input a database DB, and the client’s
master secret key K = (KPRF,KEnc). For each keyword wi, we have a list DB(wi)
of `i indices corresponding to the documents that match wi. First, setup samples
(Ki,mi)← PRFKPRF

(wi) which will serve as token for wi later on. To each list is
associated the key Ki and the DIP scheme D is then called on the key-list pairs.
Recall that D assigns the values to m buckets and a stash. Once that is done,
each bucket is padded with dummy values until it contains exactly p values.
Then, a table T with N entries is created which stores the length of each list in
an encrypted manner. Concretely, T mapsKi to `i⊕mi and is filled with random
elements until it contains N entries. Note that `i is encrypted with mask mi and
can be decrypted given mi. The padded buckets are then encrypted using Enc
with key KEnc, and sent to the server in conjunction with the table T . The stash
is stored on the client side.

Search. To retrieve all documents matching keyword wi, the client generates
the access token (Ki,mi) ← PRFKPRF

(wi) and forwards it to the server. The
server retrieves `i ← T [Ki] ⊕ mi and queries D to retrieve the indices I ←
Lookup(Ki, `i) of the encrypted buckets. The server sends the respective buckets

14

Algorithm 1 SSE(D)

KeyGen(1λ)

1: Sample keys KPRF, KEnc for PRF, Enc with security parameter λ
2: return K = (KPRF,KEnc)

Setup(K,DB)
1: Initialize empty set M, empty table T
2: N ← |DB|
3: for all keywords wi do
4: (Ki,mi)← PRFKPRF(wi)
5: `i ← |DB(wi)|
6: T [Ki]← `i ⊕mi

7: M← {Ki,DB(wi) : 1 ≤ i ≤ k}
8: m,B, S ← Build(M)
9: Fill T up to size N with random values

10: Store the stash S on the client
11: return EDB = (EncKEnc(B[1]), . . . ,EncKEnc(B[m]), T)

TokenGen(K,wi)

1: (Ki,mi)← PRFKPRF(wi)
2: return τi = (Ki,mi)

Search(EDB, τi)

1: Initialize empty set R
2: Parse τi as (Ki,mi)
3: Set `i = T [Ki]⊕mi

4: I ← Lookup(m,Ki, `i)
5: for all j ∈ I do
6: Add encrypted buckets B[j] to R
7: return R

back to the client, who decrypts them to recover the list elements. Finally, the
client checks its own stash for any additional elements matching wi.

Efficiency. The efficiency of SSE(D) heavily relies on the efficiency of D. The
server stores the encrypted database EDB consisting of a table of size N = |DB|
and m buckets. The concrete value of m depends on the storage efficiency S of
D. By definition, the scheme SSE(D) has storage efficiency S + 1. During the
search process, SSE(D) accesses one entry of table T and |I| buckets, where I
is the set of indices returned by Lookup. As each bucket is stored in a single
page, a bucket access requires a single page access. The access to T requires an
additional page access. In total, the page efficiency of SSE(D) is L+1, where L is
the lookup efficiency of D. Note that we assume that Lookup does not make any
additional page accesses, as is guaranteed by our construction. Lastly, the client
stores the key K and the stash S locally. Thus, the client storage is C + O(1),
where C is the stash size of D.

Security. The leakage profile of the construction is the standard leakage pro-
file of a static SSE scheme. Recall that xi is the minimal number of pages for the

15

list of documents matching keyword wi. The leakage during setup is LSetup(DB) =
|DB| = N . The leakage during search is LSearch(DB, wi) = (`i, sp), where sp is
the search pattern, that is, the indices of previous searches for the same keyword
(a formal definition is given in [CGKO06]). Let L = (LSetup,LSearch).

Theorem 3.1 (SSE Security). Let D be a DIP scheme with storage efficiency
S, lookup efficiency L, and stash size C. Assume that Lookup does not make any
page accesses, Enc is an IND-CPA secure encryption scheme and PRF is a secure
pseudo-random function. Then SSE(D) is a L-adaptively semantically secure SSE
scheme with storage efficiency S + 1, page efficiency L + 1, and client storage
C +O(1).

The full proof is given in the full version. It is straightforward, and we sketch
it here. For Setup, the simulator creates the required number m of buckets,
derived from N = LSetup(DB), and fills each one with the encryption of arbitrary
data using Enc. Similarly, it creates a table T mapping N random values κ
to random entries χ. It then creates the simulated database EDB consisting of
the buckets and the table. The IND-CPA security of Enc guarantees that the
adversary cannot distinguish the simulated buckets from the real ones. Also, the
simulated table is indistinguishable from the real table, since the concrete values
`i are masked with a random mask mi. Thus, the unqueried table entries appear
random.

For a (new) search query, the simulator receives from the leakage function the
number `i, and simulates the token τi = (Ki, `i⊕T [Ki]) by choosingKi uniformly
from the unqueried keys κ of table T . The PRF security of PRF guarantees that
the adversary cannot distinguish the simulated token from the real one. Note
that the adversary recovers the correct value `i = T [Ki] ⊕ (`i ⊕ T [Ki]). This
concludes the proof.

While the proof is simple, it relies heavily on the data independence of the
DIP scheme. Namely, Lookup does not take the database as input, but only its
size. As a consequence, the simulator need not simulate any of the Lookup inputs.
Another subtle but important point is that the security argument requires that
the correctness of the DIP scheme holds with overwhelming probability over the
random coins of Build. Indeed, the probability of a correctness failure may be
dependent on the dataset at the input of Build, and thus leak information. More-
over, if a correctness failure occurs, it is not acceptable to run Build again with
fresh random coins, as the random coins of Build would then become dependent
on the dataset. The same subtlety exists in the proofs of some Oblivious RAM
constructions, and has led to flawed proofs when overlooked, as well as concrete
distinguishing attacks exploiting this flaw [GM11, Appendix D], [FNO20].

4 Efficient Data-Independent Packing

In this section, we introduce an efficient DIP scheme. As a reminder, a DIP
scheme allocates the values of a multi-map into m buckets or a stash. Recall
that a multi-map consists of k keys Ki, where each key Ki maps to `i values

16

(ei,1, . . . , ei,`i). At first, we restrict ourselves to at most p (one page) values per
key for simplicity, i.e. `i ≤ p. The restriction will be removed at the end of the
section.

The construction is parametrized by two hash functionsH1,H2, mapping into
the buckets, i.e. mapping into {1, . . . ,m}. H1 is uniformly random among func-
tions mapping into {1, . . . ,m/2}, and H2 is uniformly random among functions
mapping into {m/2 + 1, . . . ,m}. (The distribution of H1 and H2, and the fact
they have disjoint ranges, is not important for the description of the algorithm;
it will only become relevant when bounding the stash size in Theorem 4.3.)

To the i-th key Ki are associated two possible destination buckets for its
values, H1(Ki) and H2(Ki). Not all values need to be allocated to the same
bucket, i.e. some values can be allocated to bucket H1(Ki), and other values to
bucket H2(Ki). If both destination buckets are already full, some values may also
be stored in the stash. In the end, for each key Ki, some a values are allocated
to bucket H1(Ki), b values to bucket H2(Ki), and c values to the stash, with
a+ b+ c = `i.

The goal of the TethysDIP algorithm is to determine, for each key, how many
values are assigned to each bucket, and how many to the stash, so that no bucket
receives more than p values in total, and the stash is as small as possible. We
shall see that the algorithm is optimal, in the sense that it minimizes the stash
size subject to the previous constraint.

Algorithm description. Pseudo-code is provided in Algorithm 2. The al-
gorithm takes as input the number of buckets m, and the multi-map M =
{(Ki, (ei,1, . . . , ei,`i)) : 1 ≤ i ≤ k}. It outputs a dictionary B such that B[i]
contains the values ei,j that are stored in bucket number i, for i ∈ {1, . . . ,m},
together with a stash S.

The algorithm first creates a graph similar to the cuckoo graph in cuckoo
hashing: vertices are the buckets, and for each value ei,j , an edge is drawn be-
tween its two possible destination buckets H1(Ki) and H2(Ki). Note that there
may be multiple edges between any two given vertices. Edges are initially ori-
ented in an arbitrary way. Ultimately, each value will be assigned to the bucket
at the origin of its corresponding edge. This means that the load of a bucket is
the outdegree of the associated vertex.

Intuitively, observe that if we have a directed path in the graph, and we flip
all edges along this path, then the load of intermediate nodes along the path
is unchanged. Meanwhile, the load of the bucket at the origin of the path is
decreased by one, and the load of the bucket at the end of the path is increased
by one. Hence, in order to decrease the number of values sent to the stash, we
want to find as many disjoint paths as possible going from overfull buckets to
underfull buckets, and flip all edges along these paths. To find a maximal set
of such paths, TethysDIP runs a max flow algorithm (see full version for more
details). Then all edges along the paths are flipped. Finally, each value is assigned
to the bucket at the origin of its associated edge. If a bucket receives more than
p values, excess values are sent to the stash.

17

Algorithm 2 TethysDIP

Build(m,M = {(Ki, (ei,1, . . . , ei,`i)) : 1 ≤ i ≤ k})
1: B ← m empty buckets, S ← empty stash
2: Create an oriented graph G with m vertices numbered {1, . . . ,m}
3: for all values ei,j do
4: Create an oriented edge (H1(Ki), H2(Ki)) with label ei,j
5: Add separate source vertex s and sink vertex t
6: for all vertex v do
7: Compute its outdegree d.
8: if d > p then
9: Add d− p edges from the source s to v

10: else if d < p then
11: Add p− d edges from v to the sink t
12: Compute a max flow from s to t
13: Flip every edge that carries flow
14: for all vertex v ∈ {1, . . . ,m} do
15: B[v]← {ei,j : origin of edge ei,j is v}
16: for all vertex v ∈ {1, . . . ,m} do
17: if |B[v]| > p then
18: |B[v]| − p values are moved from B[v] to S
19: return (B,S)

Lookup(m,K, ` ≤ p)
1: returns {H1(K), H2(K)}

Efficiency. We now analyze the efficiency of TethysDIP. Note that each key
still maps to at most p values for now. In order to store a given multi-map
M, TethysDIP allocates a total number of m = (2 + ε)n/p buckets. Thus, it
has storage efficiency 2 + ε = O(1). For accessing the values associated to key
K, TethysDIP returns the result of the evaluation of the two hash functions
at point K. Hence, TethysDIP has lookup efficiency 2 = O(1). The analysis of
the stash size is much more involved. In Section 4.1, we show that a stash size
p · ω(log λ)/ log n suffices. In particular, the stash size does not grow with the
size of the multi-map M.

Handling Lists of Arbitrary Size. The previous description of the al-
gorithm assumes that all lists in the multi-map M are at most one page long,
i.e. `i ≤ p for all i. We now remove that restriction. To do so, we are going to
preprocess the multi-map M into a new multi-map M′ that only contains lists of
size at most p.

In more detail, for each key-values pair (Ki, (ei,1, . . . , ei,`i)), we split (ei,1, . . . ,
ei,`i) into xi = b`i/pc sublists (ei,1, . . . , ei,p), . . . , (ei,p(xi−1)+1, . . . , ei,pxi) of size
p, plus one sublist of size at most p containing the remaining values (ei,pxi+1, . . . ,
ei,`i). We associate the j-th sublist to a new key Ki‖j (without loss of generality,
assume there is no collision with a previous key). The new multi-map M′ consists
of all sublists generated in this way, with the j-th sublist of key Ki associated
to key Ki ‖ j.

18

The TethysDIP algorithm is then applied to the multi-map M′, which only
contains lists of size at most p. In order to retrieve the values associated to key
Ki in the original multi-map M, it suffices to query the buckets H1(Ki ‖ j),
H2(Ki ‖ j) for j ≤ d`i/pe. Correctness follows trivially. (This approach can be
naturally generalized to transform a DIP scheme for lists of size at most p into
a general DIP scheme.)

Note that the total number of values in M′ is equal to the total number of
values n in M, as we only split the lists into sublists. Hence the scheme retains
storage efficiency 2 + ε and stash size p · ω(log λ)/ log n. Similarly, for a list of
size `, we require at minimum x = d`/pe buckets. As we return x evaluations of
each hash function, the storage efficiency remains 2.

The Tethys SSE scheme. We can instantiate the framework given in Sec-
tion 3.1 with TethysDIP. This yields a SSE scheme Tethys := SSE(TethysDIP).
As the TethysDIP has constant storage and lookup efficiency, Tethys also has
constant storage and page efficiency and the same stash size. This is formalized
in the following theorem. Let LSetup(DB) = |DB| and LSearch(DB, wi) = (`i, sp),
where sp is the search pattern. Let L(LSetup,LSearch).

Theorem 4.1. Assume that Enc is an IND-CPA secure encryption scheme,
PRF is a secure pseudo-random function, and H1, H2 are random oracles. Then
Tethys is an L-adaptively semantically secure SSE scheme with storage efficiency
O(1), page efficiency O(1), and client storage O(p · ω(log λ)/ log n).

The TethysDIP scheme inside Tethys requires two hash functions H1 and
H2. The stash size bound analysis assumes those two functions are uniformly
random. In practice, standard hash functions can be used. Formally, to avoid an
unnecessary use of the Random Oracle Model, the hash functions can be realized
by a PRF, with the client drawing the PRF key and sending it to the server
together with the encrypted dataset. By standard arguments, the correctness
of TethysDIP still holds with overwhelming probability, assuming the PRF is
secure.

4.1 Stash Size Analysis

We now analyze the stash size of TethysDIP. We proceed by first showing that
the stash size achieved by TethysDIP is optimal, in the sense given below. We
then prove a stash size bound that holds for any optimal algorithm.

Optimality. Given the two hash functions H1 and H2, and the multi-map M
at the input of TethysDIP, say that an assignment of the multi-map values to
buckets is valid if every value associated to key K is assigned to one of its two
destination buckets H1(K) or H2(K), or the stash, and no bucket receives more
than p values. TethysDIP is optimal in the sense that the assignment it outputs
achieves the minimum possible stash size among all valid assignments. In other
words, TethysDIP optimally solves the optimization problem of minimizing the
stash size, subject to the constraint that the assignment is valid. This holds

19

true regardless of the choice of hash functions (which need not be random as
far as this property is concerned), regardless of the number of buckets m, and
regardless of the initial orientation of the graph before the max flow is computed.
To formalize this, let us introduce some notation.

The problem solved by TethysDIP is naturally viewed as a graph orientability
problem (see related work in Section 1). The input of the problem is the graph
built in lines 2–4: vertices are buckets V = {1, . . . ,m}, and each list i gives rise
to `i edges from vertex H1(Ki) to H2(Ki). Recall that the outdegree out(v) of
a vertex v is the load of the corresponding bucket. Define the overflow of the
graph as the quantity

∑
v∈V max(0, out(v) − p). Observe that this quantity is

exactly the number of values that cannot fit into their assigned bucket, hence
the number of values that are sent to the stash in line 18. The problem is to
orient the edges of the graph so as to minimize that quantity. In the following
theorem, TethysDIP is viewed as operating on graphs. Its input is the undirected
graph G described just above, and its output is a directed graph D arising from
G by orienting its edges according to Algorithm 2.

Theorem 4.2 (Optimality of TethysDIP). Let G be an undirected graph. Let
D be the directed graph output by TethysDIP on input G. Then overflow(D) is
minimal among all directed graphs arising from G.

The proof of Theorem 4.2 is given in the full version. In short, the proof
uses the max-flow min-cut theorem to partition the vertices into two sets S
(containing the source) and T (containing the sink), such that after flipping the
direction of the flow in line 13, there is no edge going from S to T . Further, it is
shown that all overflowing values are in S, and all buckets in S are at capacity or
over capacity. Intuitively, the number of overflowing values cannot be decreased,
because flipping edges within S can only increase the overflow, and there is no
edge going from S to T . We refer to the full version for the full proof.

This shows that TethysDIP finds an optimal solution. Before continuing, we
note that the max flow approach of TethysDIP was inspired by a result of Sanders
et al. [SEK03], which uses a similar algorithm. The relationship between the al-
gorithm by Sanders et al. and TethysDIP is worth discussing. The two algorithms
have different optimization targets: the goal of the algorithm by Sanders et al. is
not to minimize the overflow, but to minimize the max load (the load of the most
loaded bucket). Another notable difference is that we allow for a stash, which
allows us to reach a negligible probability of failure (the associated analysis is
the most technically challenging part of this work). Nevertheless, if we disregard
the stash, the algorithm from [SEK03] can be reinterpreted in the light of our
own algorithm, as follows. Given an algorithm A that minimizes the overflow,
one can build an algorithm B that minimizes the max load, using a logarithmic
number of black-box calls to A. Indeed, A yields an overflow of zero if and only
if the capacity p of buckets is greater than or equal to the smallest attainable
max load. Hence, it suffices to proceed by dichotomy until the smallest possi-
ble value of the max load is reached. Although it is not presented in this way
in [SEK03], the algorithm by Sanders et al. can be reinterpreted as being built in

20

that manner, with TethysDIP playing the role of algorithm A. (As a side effect,
our proof implies a new proof of Sanders et al.’s result.)

Stash size bound. The security of Tethys relies on the fact that memory ac-
cesses are data-independent. Data independence holds because the two buckets
where a given list can be assigned are determined by the two hash functions,
independently of the length distribution of other lists. In practice, we want to
fix an upper bound on the size of the stash. If the bound were exceeded (so
the construction fails), we cannot simply draw new random hash functions and
start over. Indeed, from the perspective of the SSE security proof, this would
amount to choosing a new underlying DIP scheme when some aspect of the first
DIP scheme fails (namely, when the stash is too large). But the choice of DIP
scheme would then become data-dependent, invalidating the security argument.
It follows that we want to find a bound on the stash size that guarantees a
negligible probability of failure in the cryptographic sense, and not simply a low
probability of failure. We prove that this can be achieved using only m = O(n)
buckets, and a stash size that does not grow with the size of the multi-map.

Theorem 4.3 (Stash size bound). Let ε > 0 be an arbitrary constant, and
let p, n ≥ p,m ≥ (2 + ε)n/p, s = no(1) be integers. Let L be an arbitrary vector
of integers such that maxL ≤ p and

∑
L = n.

Pr[Failm,p,s(L,H)] = O
(
p · n−s/(2p)

)
.

In particular, a stash of ω(log λ)/ log n pages suffices to ensure that TethysDIP
succeeds, except with negligible probability.

In that statement, the vector L represents a multi-map with keys mapping to
p or less values, H is the pair of hash functions (H1, H2), and s is the stash size.
Failm,p,s(L,H) denotes the probability that it is impossible to orient the edges
of the graph G discussed earlier in such a way that the overflow of the resulting
orientation is less than s. By Theorem 4.2, as long as such an orientation exists,
TethysDIP finds one, so Failm,p,s(L,H) is equal to the probability of failure of
TethysDIP. The bottom line is that, under mild assumptions about the choice
of parameters, a stash of ω(log λ)/ log n pages suffices to ensure a negligible
probability of failure. If n ≥ λ, log λ pages suffice.

Note that the probability of failure decreases with n. This behavior is reflected
in practical experiments, as shown in Section 5. The inverse dependency with n
may seem counter-intuitive, but recall that the number of bucketsm > (2+ε)n/p
increases with n. In practice, what matters is that the stash size can be upper-
bounded independently of the size n of the database, since it does not increase
with n. Ultimately, the stash will be stored on the client side, so this means that
client storage does not scale with the size of the database.

The factor 2+ε for storage efficiency matches the cuckoo setting. Our problem
includes cuckoo hashing as a special case, so this is optimal (see full version for
more details). The constant ε can be arbitrarily small. However, having non-zero

21

ε has important implications for the structure of the cuckoo graph: there is a
phase transition at ε = 0. For instance, if we set ε = 0, the probability that
the cuckoo graph contains a component with multiple cycles (causing standard
cuckoo hashing to fail) degrades from O(1/n) to

√
2/3 + o(1) [DK12]. Beyond

cuckoo hashing, this phase transition is well-known in the theory of random
graphs: asymptotically, if a random graph has m vertices and n = cm edges for
some constant c, its largest component has size log n when c < 1/2 a.s., whereas
it blows up to Ω(n) as soon as c > 1/2 [Bol01, chapter 5]. This strongly suggests
that a storage overhead factor of 2 + ε is inherent to the approach, and not an
artifact of the proofs.

The proof of Theorem 4.3 is given in the full version. In a nutshell, the idea
is to use a convexity argument to reduce to results on cuckoo hashing, although
the details are intricate. We now provide a high-level overview. The first step
is to prove that the expectancy of the stash size for an arbitrary distribution
of list lengths is upper-bounded by its expectancy when all lists have length
p (while n and m remain almost the same), up to a polynomial factor. The
core of that step is a convexity argument: we prove that the minimal stash size,
as a function of the underlying graph, is Schur-convex, with respect with the
natural order on graphs induced by edge inclusion. The result then follows using
some majorization techniques (inspired by the analysis of weighted balls-and-
bins problems in [BFHM08]). In short, the first step shows that, for expectancy
at least, the case where all lists have length p is in some sense a worst case (up
to a polynomial factor). The second step is to show that in that worse case, the
problem becomes equivalent to cuckoo hashing with a stash. The third and final
step is to slightly extend the original convexity argument, and combine it with
some particular features of the problem, to deduce a tail bound on the stash size,
as desired. The final step of the proof reduces to stash size bounds for cuckoo
hashing. For that purpose, we adapt a result by Wieder [Wie17].

5 Experimental Evaluation

All evaluations and benchmarks have been carried out on a computer with an
Intel Core i7 4790K 4.00GHz CPU with 4 cores (8 logical threads), running Linux
Debian 10.2. We used a 250GiB Samsung 850 EVO SSD and a 4TiB Seagate
IronWolf Pro ST4000NE001 HDD, both connected with SATA, and formatted in
ext4. The SSD page size is 4KiB. The HDD was only used for the benchmarks
(see full version), and we use the SSD for the following evaluation.

We chose the setting where document identifiers are encoded on 8 bytes and
tags on 16 bytes. This allows us to support databases with up to 264 documents
and 248 distinct keywords, with a probability of tag collision at most 2−32. A
page fits p = 512 entries.

5.1 Stash Size

Although the theory in Section 4.1 gives the asymptotic behavior of the size of
the stash in TethysDIP, concrete parameters are not provided. We implemented

22

10
20
30
40
50
60

215 216 217 218 219 220 221 222

N

Average stash size

3000

3500

4000

4500

5000 Maximum stash size
87707/ logN

(a) Maximum and average stash size for
fixed ε = 0.1.

1

10−7

10−6

10−5

10−4

10−3

10−2

10−1

0 512
1024

1536
2048

2560
3072

3584
4096

4608
5120

Stash size

N = 4194304
N = 2097152
N = 1048576
N = 524288
N = 262144
N = 131072
N = 65536

(b) Experimental probability masses of
the stash size for fixed ε = 0.1.

Fig. 1 – Experimental evaluation of the stash size made over 6× 106 worst-case
random TethysDIP allocations.

TethysDIP in Rust in order to run a large number of simulations, and evaluate
the required stash size in practice. We want an evaluation of the stash size for
page size p and an input multi-map with total value count N and bucket count
m. A multi-map MM that maps N/p keys to exactly p values is the worst-case
for the stash size (see section 4.1). Thus, we evaluate the stash size of TethysDIP
on the input MM for given p,N,m.

In Figure 1a, we fix the parameter ε = 0.1 and look at the maximum size of
the stash for various values of N . We can see that it fits a C/ logN curve (except
for low values of N , where the asymptotic behavior has not kicked in yet), as
predicted by the theory. This confirms that the stash size does not increase (and
in fact slightly decreases) with N , hence does not scale with the size of the
database. In Figure 1b, for the same experiments, we plot the probability of
having a stash of a given size. As was expected from Theorem 4.3, we can see
that this probability drops exponentially fast with the size of the stash.

In the full version, we present data that clearly shows the transition phase
at ε = 0, also predicted by the theory. The code of these experiments is publicly
available [Bos21b].

5.2 Performance

We implemented Tethys in C++, using libsodium as the backend for crypto-
graphic operations (HMAC-Blake2 for PRF and ChaCha20 for Enc), and using
Linux’ libaio library for storage accesses. Using libaio makes it possible to
very efficiently parallelize IOs without having to rely on thread pools: although
it does bring a few constraints in the way we access non-volatile storage, it allows
for the performance to scale very cheaply, regardless of the host’s CPU. As a
consequence, our implementation uses only two threads: one for the submission

23

214

216

218

220

222

224

226

Plaintext DB

Π
pack−

512

Π
pack−

128

Π
pack−

64

Π
bas

OCA
N
=
2 20

OCA
N
=
2 30

TCA
N
=
2 20

TCA
N
=
2 30

Tethys (sim.)

Tethys (real)

1

2−12

2−10

2−8

2−6

2−4

2−2

T
hr
ou

gh
pu

t
(e
nt
ri
es
/s
)

In
ve
rs
e
effi

ci
en
cy

Throughput
page eff.−1

read eff.−1

storage eff.−1

Fig. 2 – Throughput, inverse page efficiency, inverse read efficiency, and inverse
storage efficiency for various SSE schemes, in log scale. Higher is better. Πpack−n
corresponds to Πpack with n entries per block.

of the queries, and the other one to reap the completion queue, decrypt and
decode the retrieved buckets.

At setup, the running time of TethysDIP is dominated by a max flow compu-
tation on a graph with n edges and m = (1+ε)n/p vertices. We use a simple im-
plementation of the Ford-Fulkerson algorithm [FF56], with running time O(nf),
where f ≤ n is the max flow. This yields a worst-case bound O(n2). Other max
flow algorithms, such as [GR98] have running time Õ

(
n3/2

)
; because this is a

one-time precomputation, we did not optimize this step. We have experimented
on the English Wikipedia database, containing about 140 million entries, and
4.6 million keywords. TethysDIP takes about 90 minutes to perform the full allo-
cation. This is much slower than other SSE schemes, whose setup is practically
instant. However, it is only a one-time precomputation. Using Pluto rather than
Tethys makes a dramatic difference: most of the database ends up stored in HT
(see full version), and TethysDIP completes the allocation in about 4 seconds.

Regarding online performance, comparing our implementation with available
implementations of SSE schemes would be unfair: the comparison would be bi-
ased in our favor, because our implementation is optimized down to low-level IO
considerations, whereas most available SSE implementations are not. To provide
a fair comparison, for each SSE scheme given in the comparison, we analyzed its
memory access pattern to deduce its IO workload. We then replayed that work-
load using the highly optimized fio Flexible I/O Tester (version 3.19) [Axb20].
While doing so, we have systematically advantaged the competition. For exam-
ple, we have only taken into account the IO cost, not the additional cryptographic
operations needed (which can be a significant overhead for some schemes, e.g. the
One/Two Choice Allocation algorithms). Also, we have completely ignored the
overhead induced by the storage data structure: for Πbas and Πpack, we assume a

24

perfect dictionary, that only makes a single access per block of retrieved entries.
Although this is technically possible, it would very costly, as it requires either a
Minimal Perfect Hash Function, a very small load factor, or a kind of position
map that is small enough to fit into RAM (that last option does not scale). Sim-
ilarly, for the One-Choice Allocation (OCA) and Two-Choice Allocation (TCA)
algorithms, we used the maximum read throughput achieved on our evaluation
hardware, and assumed that this throughput was attained when reading con-
secutive buckets of respective size Θ(logN) and Θ(log logN) required by the
algorithms. In practice, we fixed the read efficiency of OCA to 3 logN log logN
and the one of TCA to 8 log logN(log log logN)2, following [ANSS16]. The code
is OpenSource and freely accessible [Bos21a].

We also computed the expected performance of Tethys using the same work-
load replay technique. The resulting performance measures are very close to our
optimized full implementation (less than 0.1% difference on 220 queries over 219
distinct keywords). As that result illustrates, we argue that using simulated IO
workloads to compare the performance of SSE schemes is quite accurate. The
comparison between Tethys and other SSE schemes is given on Figure 2, includ-
ing both the full implementation of Tethys, and its simulated workload.

We observe that Tethys compares very well with previous schemes. It vastly
outperforms the One-Choice and Two-Choice allocation algorithms, as well as
Πbas, with over 170 times higher throughput. It also competes with all the Πpack

variants, its throughput being only exceeded by Πpack−512 with a twofold in-
crease, due to the fact that Tethys needs to read two pages for every query.
However, Πpack incurs a huge storage cost in the worst case (up to a factor
p = 512), leaving Tethys as the only scheme that performs well in both metrics.
In addition, as explained earlier, our simulation of Πpack does not account for
the cost of the hash table implementation it relies on. For example, if we were to
choose cuckoo hashing as the underlying hash table in Πpack, the throughputs of
Πpack−512 and of Tethys would be identical. The Π2lev variant from [CJJ+14] is
not included in the comparison, because its worst-case storage efficiency is the
same as Πpack (it handles short lists in the same way), and its throughput is
slightly lower (due to indirections).

Our experiments show that Tethys is competitive even with insecure, plain-
text databases, as the throughput only drops by a factor 2.63, while increasing
the storage by a factor 4+2ε in the worst case (a database with lists of length 2
only, using the encoding EncodeSeparate from the full version). When sampling
lists length uniformly at random between 1 and the page size, the storage effi-
ciency is around 2.25 for ε = 0.1 and a database of size 227. For the encryption of
Wikipedia (4.6 million keywords and 140 million entries), the storage efficiency
is 3. (The extra cost beyond 2 + ε is mainly due to using the simpler, but sub-
optimal EncodeSeparate scheme from the full version.) In the full version, we
further present the end-to-end latency of a search query on Tethys.

Finally, we have also plotted inverse read efficiency and inverse page efficiency
for each scheme. As is apparent on Figure 2, inverse page efficiency correlates
very strongly with throughput. When computing the correlation between the

25

two across the various experiments in Figure 2, we get a correlation of 0.98,
indicating a near-linear relationship. This further shows the accuracy of page
efficiency as a predictor of performance on SSDs.

6 Conclusion

To conclude, we point out some problems for future work. First, like prior work
on locality, Tethys only considers the most basic form of SSE: single-keyword
queries, on a static database. A generalization to the dynamic setting opens up
a number of interesting technical challenges. (A generic conversion from a static
to a dynamic scheme may be found in [DP17], but would incur a logarithmic
overhead in both storage efficiency and page efficiency.) A second limitation is
that the initial setup of our main DIP algorithm, TethysDIP, has quadratic time
complexity in the worst case. This is only a one-time precomputation, and prac-
tical performance is better than the worst-case bound would suggest, as shown
in Section 5. Nevertheless, a more efficient algorithm would be welcome. Lastly,
when querying a given keyword, Tethys returns entire pages of encrypted indices,
some of which might not be associated to the keyword. Using an appropriate en-
coding, the matching keywords can be identified. While reducing volume leakage,
this induces an overhead in communication, unlike other schemes such as Πbas

from [CJJ+14], where only matching identifiers are returned. Due to the prac-
tical relevance of page efficiency, the intent of this work is that the notion will
spur further research.

Acknowledgments

The authors thank Jessie Bertanier for his explanations on the inner workings of
SSDs, which motivated our investigation. This work was supported by the ANR
JCJC project SaFED and ANR Cyberschool ANR-18-EURE-0004.

References

ADW14. Aumüller, M., Dietzfelbinger, M., and Woelfel, P. Explicit and efficient
hash families suffice for cuckoo hashing with a stash. Algorithmica,
vol. 70(3):(2014), pp. 428–456.

ANSS16. Asharov, G., Naor, M., Segev, G., and Shahaf, I. Searchable symmetric
encryption: optimal locality in linear space via two-dimensional balanced
allocations. In: D. Wichs and Y. Mansour (eds.), 48th ACM STOC, pp.
1101–1114. ACM Press (Jun. 2016).

ASS18. Asharov, G., Segev, G., and Shahaf, I. Tight tradeoffs in searchable sym-
metric encryption. In: H. Shacham and A. Boldyreva (eds.), CRYPTO 2018,
Part I, LNCS, vol. 10991, pp. 407–436. Springer, Heidelberg (Aug. 2018).

Axb20. Axboe, J. Flexible I/O Tester (2020). URL https://github.com/axboe/
fio.

26

https://github.com/axboe/fio
https://github.com/axboe/fio

BFHM08. Berenbrink, P., Friedetzky, T., Hu, Z., and Martin, R. On weighted balls-
into-bins games. Theoretical Computer Science, vol. 409(3):(2008), pp. 511–
520.

BMO17. Bost, R., Minaud, B., and Ohrimenko, O. Forward and backward private
searchable encryption from constrained cryptographic primitives. In: B.M.
Thuraisingham, D. Evans, T. Malkin, and D. Xu (eds.), ACM CCS 2017,
pp. 1465–1482. ACM Press (Oct. / Nov. 2017).

Bol01. Bollobás, B. Random Graphs. Cambridge Studies in Advanced Mathemat-
ics. Cambridge University Press, 2 ed. (2001).

Bos16. Bost, R. Σoφoς: Forward secure searchable encryption. In: E.R. Weippl,
S. Katzenbeisser, C. Kruegel, A.C. Myers, and S. Halevi (eds.), ACM CCS
2016, pp. 1143–1154. ACM Press (Oct. 2016).

Bos21a. Bost, R. Implementation of Tethys, and Pluto (2021). URL https:
//github.com/OpenSSE/opensse-schemes.

Bos21b. Bost, R. Supplementary materials (2021). URL https://github.com/
rbost/tethys-sim-rs.

CGKO06. Curtmola, R., Garay, J.A., Kamara, S., and Ostrovsky, R. Searchable
symmetric encryption: improved definitions and efficient constructions. In:
A. Juels, R.N. Wright, and S. De Capitani di Vimercati (eds.), ACM CCS
2006, pp. 79–88. ACM Press (Oct. / Nov. 2006).

CJJ+13. Cash, D., Jarecki, S., Jutla, C.S., Krawczyk, H., Rosu, M.C., and Steiner, M.
Highly-scalable searchable symmetric encryption with support for Boolean
queries. In: R. Canetti and J.A. Garay (eds.), CRYPTO 2013, Part I, LNCS,
vol. 8042, pp. 353–373. Springer, Heidelberg (Aug. 2013).

CJJ+14. Cash, D., Jaeger, J., Jarecki, S., Jutla, C.S., Krawczyk, H., Rosu, M.C., and
Steiner, M. Dynamic searchable encryption in very-large databases: Data
structures and implementation. In: NDSS 2014. The Internet Society (Feb.
2014).

CT14. Cash, D. and Tessaro, S. The locality of searchable symmetric encryption.
In: P.Q. Nguyen and E. Oswald (eds.), EUROCRYPT 2014, LNCS, vol.
8441, pp. 351–368. Springer, Heidelberg (May 2014).

DK12. Drmota, M. and Kutzelnigg, R. A precise analysis of cuckoo hashing. ACM
Transactions on Algorithms - TALG, vol. 8.

DP17. Demertzis, I. and Papamanthou, C. Fast searchable encryption with tunable
locality. In: Proceedings of the 2017 ACM International Conference on
Management of Data, pp. 1053–1067. ACM (2017).

DPP18. Demertzis, I., Papadopoulos, D., and Papamanthou, C. Searchable encryp-
tion with optimal locality: Achieving sublogarithmic read efficiency. In:
H. Shacham and A. Boldyreva (eds.), CRYPTO 2018, Part I, LNCS, vol.
10991, pp. 371–406. Springer, Heidelberg (Aug. 2018).

DW05. Dietzfelbinger, M. and Weidling, C. Balanced allocation and dictionaries
with tightly packed constant size bins. In: L. Caires, G.F. Italiano, L. Mon-
teiro, C. Palamidessi, and M. Yung (eds.), ICALP 2005, LNCS, vol. 3580,
pp. 166–178. Springer, Heidelberg (Jul. 2005).

FF56. Ford, L.R. and Fulkerson, D.R. Maximal flow through a network. Canadian
journal of Mathematics, vol. 8:(1956), pp. 399–404.

FNO20. Falk, B.H., Noble, D., and Ostrovsky, R. Alibi: A flaw in cuckoo-hashing
based hierarchical oram schemes and a solution. Cryptology ePrint Archive,
Report 2020/997 (2020). https://eprint.iacr.org/2020/997.

27

https://github.com/OpenSSE/opensse-schemes
https://github.com/OpenSSE/opensse-schemes
https://github.com/rbost/tethys-sim-rs
https://github.com/rbost/tethys-sim-rs
https://eprint.iacr.org/2020/997

GM11. Goodrich, M.T. and Mitzenmacher, M. Privacy-preserving access of out-
sourced data via oblivious RAM simulation. In: L. Aceto, M. Henzinger,
and J. Sgall (eds.), ICALP 2011, Part II, LNCS, vol. 6756, pp. 576–587.
Springer, Heidelberg (Jul. 2011).

GR98. Goldberg, A.V. and Rao, S. Beyond the flow decomposition barrier. Journal
of the ACM (JACM), vol. 45(5):(1998), pp. 783–797.

HKL+18. Hanaka, T., Katsikarelis, I., Lampis, M., Otachi, Y., and Sikora, F. Param-
eterized orientable deletion. In: SWAT (2018).

KMO18. Kamara, S., Moataz, T., and Ohrimenko, O. Structured encryption
and leakage suppression. In: H. Shacham and A. Boldyreva (eds.),
CRYPTO 2018, Part I, LNCS, vol. 10991, pp. 339–370. Springer, Heidelberg
(Aug. 2018).

KMW10. Kirsch, A., Mitzenmacher, M., and Wieder, U. More robust hashing: Cuckoo
hashing with a stash. SIAM Journal on Computing, vol. 39(4):(2010), pp.
1543–1561.

MM17. Miers, I. and Mohassel, P. IO-DSSE: Scaling dynamic searchable encryption
to millions of indexes by improving locality. In: NDSS 2017. The Internet
Society (Feb. / Mar. 2017).

MPC+18. Mishra, P., Poddar, R., Chen, J., Chiesa, A., and Popa, R.A. Oblix: An
efficient oblivious search index. In: 2018 IEEE Symposium on Security and
Privacy, pp. 279–296. IEEE Computer Society Press (May 2018).

PR04. Pagh, R. and Rodler, F.F. Cuckoo hashing. Journal of Algorithms,
vol. 51(2):(2004), pp. 122–144.

SEK03. Sanders, P., Egner, S., and Korst, J. Fast concurrent access to parallel disks.
Algorithmica, vol. 35(1):(2003), pp. 21–55.

Sta21. Statista. Shipments of hard and solid state disk (hdd/ssd) drives world-
wide from 2015 to 2021. https://www.statista.com/statistics/285474/
hdds-and-ssds-in-pcs-global-shipments-2012-2017/ (2021).

Wie17. Wieder, U. Hashing, load balancing and multiple choice. Foundations and
Trends in Theoretical Computer Science, vol. 12(3–4):(2017), pp. 275–379.

28

https://www.statista.com/statistics/285474/hdds-and-ssds-in-pcs-global-shipments-2012-2017/
https://www.statista.com/statistics/285474/hdds-and-ssds-in-pcs-global-shipments-2012-2017/

	SSE and SSD: Page-Efficient Searchable Symmetric Encryption
	Introduction
	Overview of Contributions
	Technical Overview
	Related Work

	Background
	Notation
	Searchable Symmetric Encryption
	Locality and Page Efficiency

	SSE from Data-Independent Packing
	Data-Independent Packing

	Efficient Data-Independent Packing
	Stash Size Analysis

	Experimental Evaluation
	Stash Size
	Performance

	Conclusion

