
An Algebraic Framework for Universal and
Updatable SNARKs

Carla Ràfols?,1,2 and Arantxa Zapico??,1

1 Universitat Pompeu Fabra
2 Cybercat

Abstract. We introduce Checkable Subspace Sampling Arguments, a
new information theoretic interactive proof system in which the prover
shows that a vector has been sampled in a subspace according to the ver-
ifier’s coins. We show that this primitive provides a unifying view that
explains the technical core of most of the constructions of universal and
updatable pairing-based (zk)SNARKs. This characterization is extended
to a fully algebraic framework for designing such SNARKs in a modu-
lar way. We propose new constructions of CSS arguments that lead to
SNARKs with different performance trade-offs.

1 Introduction

Zero-Knowledge proofs [23], and in particular, non-interactive ones [7] have
played a central role in both the theory and practice of cryptography. A long line
of research [32,34,25,22,26] has led to efficient pairing-based zero-knowledge Suc-
cinct Non-interactive ARguments of Knowledge or SNARKs. These arguments
are succinct, in fact, they allow to prove that circuits of arbitrary size are sat-
isfied with a constant-size proof. They are also extremely efficient concretely (3
group elements in the best construction for arithmetic circuits [26]).

Despite this impressive performance, some aspects of these constructions of
SNARKs are still unsatisfactory. Probably the most problematic and not fully
solved issue is their reliance on long trusted, structured, and circuit dependent
parameters (a circuit dependent SRS, for structured reference string).

Albeit the significant research effort in finding alternatives to bypass the need
of a trusted third party by constructing transparent arguments, i.e in the uniform
random string model (URS) [11,8,3,2,4,15,40,39], pairing-based SNARKs such
as [26] still seem the most practical alternative in many settings due to their
very fast verification, which is a must in many blockchain applications. On the
other hand, multiparty solutions for the problem are not fully scalable [9,10].

? This paper is part of a project that has received funding from the European Unions
Horizon 2020 research and innovation programme under grant agreement No 856879.

?? The project that gave rise to these results received the support of a fellowship from la
Caixa Foundation (ID100010434). The fellowship code is LCF/BQ/DI18/11660052.
This project has received funding from the European Union’s Horizon 2020 re-
search and innovation programme under the Marie Skodowska-Curie grant agree-
ment No.71367.

As an alternative to a trusted SRS, Groth et al. [27] define the updatable
model, in which the SRS can be updated by any party, non-interactively, and
in a verifiable way, resulting in a properly generated structured reference string
where the simulation trapdoor is unknown to all parties if at least one is honest.
Further, they propose a construction where the SRS is universal and can be used
for arbitrary circuits up to a maximum given size.

Arithmetic Circuit Satisfiability can be reduced to a set of quadratic and
affine constraints over a finite field. The quadratic ones are universal and can be
easily proven in the pairing-based setting with a Hadamard product argument,
the basic core of most zkSNARKS constructions starting from [22]. On the other
hand, affine constraints are circuit-dependent, and it is a challenging task to
efficiently prove them with a universal SRS [33,14,20,13,16,37,19,38].

In Groth et al. [27] they are proven via a very expensive subspace argument
that requires a SRS quadratic in the circuit size and a preprocessing step that is
cubic. Sonic [33], the first efficient, universal, and updatable SNARK, gives two
different ways to prove the affine constraints, a fully succinct one (not so effi-
cient) and another one in the amortized setting (very efficient). Follow-up work
(most notably, Marlin [14], Plonk [20], Lunar [13]) has significantly improved
the efficiency in the fully succinct mode.

There is an important trend in cryptography, that advocates for construct-
ing protocols in a modular way. One reason for doing so is the fact that, by
breaking complicated protocols into simpler steps, they become easier to ana-
lyze. Ishai [28] mentions comparability as another fundamental motive. Specially
in the area of zero-knowledge, given the surge of interest in practical construc-
tions, it is hard not to lose sight of what each proposal achieves. As Ishai puts
it: “one reason such comparisons are difficult is the multitude of application sce-
narios, implementation details, efficiency desiderata, cryptographic assumptions,
and trust models”.

Starting from Sonic, all the aforementioned works on universal and updatable
zkSNARKs follow this trend. More concretely, they first build an information-
theoretic proof system, that is then compiled into a full argument under some
computational assumptions in bilinear groups. The main ingredient of the com-
piler is a polynomial commitment [30,12,31]. However, the information theoretic
component is still very complex and comparison among these works remains dif-
ficult, for precisely the same reasons stated by Ishai. In particular, it is hard to
extract the new ideas in each of them in the complex description of the argu-
ments, that use sophisticated tricks for improving efficiency, as well as advanced
properties of multiplicative subgroups of a finite field or bivariate Lagrange inter-
polation. Further, it is striking that all fully succinct arguments are for restricted
types of constraints (sums of permutations in Sonic, sparse matrices in Marlin,
and Lunar3) or pay a price for additive gates (Plonk). A modular, unified view
of these important works seems essential for a clearer understanding of the tech-

3 The number of non-zero entries of the matrices that encode linear constraints cannot
exceed the size of some multiplicative group of the field of definition.

2

niques. In turn, this should allow for a better comparison, more flexibility in
combining the different methods, and give insights on current limitations.

Our Contributions. We propose an algebraic framework that takes a step fur-
ther in achieving modular constructions of universal and updatable SNARKs.
We identify the technical core of previous work as instances of a Checkable Sub-
space Sampling (CSS) Argument. In this information-theoretic proof system, two
parties, prover and verifier, on input a field F and a matrix M ∈ FQ×m, agree on
a polynomial D(X) encoding a vector d in the row space of M. The interesting
part is that, even though the coefficients of the linear combination that define
d are chosen by the verifier’s coins, the latter does not need to perform a linear
(in Q, the number of rows) number of operations in order to verify that D(X)
is correct. Instead, this must be demostrated by the prover.

With this algebraic formulation, it is immediate to see that a CSS argument
can be used as a building block for an argument of membership in linear spaces.
Basically, given a matrix M, we can prove that some vector y is orthogonal to the
rows of M by sampling, after y is declared, a sufficiently random vector d in the
row space of M and checking an inner product relation, namely, whether d·y = 0.
The purpose of a CSS argument is to guarantee that the sampling process can
be checked by the verifier in sublinear time without sacrificing soundness.

Naturally, for building succinct proofs, instead of y,d, the argument uses
polynomial encodings Y (X) and D(X) (which are group elements after the
compilation step). To compute the inner product of this encoded vectors, we
introduce a new argument in Section 3, which is specific to the case where the
polynomials are encoded in the Lagrange polynomial basis, but can be easily gen-
eralized to the monomial basis. The argument is a straightforward application
of the univariate sumcheck of Aurora [5]. However, we contribute a generalized
sumcheck (that works not only for multiplicative subgroups of finite fields), with
a completely new proof that relates it with polynomial evaluation at some fixed
point v.

These building blocks can be put together as an argument for the language
of Rank1 constraint systems. For efficiency, we stick to R1CS-lite, a variant re-
cently proposed by Lunar, which is slightly simpler but still NP-complete. Our
final construction can be instantiated with any possible choice of CSS scheme, so
in particular it can essentially recover the construction of Marlin and Lunar by
isolating the CSS argument implicit in these works, or the amortized construc-
tion of Sonic. We hope that this serves to better identify the challenge behind
building updatable and universal SNARKs, and allow for new steps in improving
efficiency, as well as more easily combining the techniques.

In summary, we reduce R1CS constraint systems to three algebraic relations:
an inner product, a Hadamard product and a CSS argument. We think this
algebraic formulation is very clear, and also makes it easier to relate advances
in universal and updatable SNARKS with other works that have used a similar
language, for example, the arguments for inner product of [8], of membership in
linear spaces [29], or for linear algebra relations [24].

3

Finally, we give several constructions of CSS arguments. In Section 5.3, we
start from the representation of a matrix W as bivariate polynomial introduced
in [14], and present an alternative that comes from applying a linearization
step to it. The result is a CSS for sparse matrices, that compared to [14,13],
at a minimial increase in communication cost, significantly reduces the SRS.
We study several extensions of this argument, for example, to sums of sparse
matrices. We also identify a simple building block that allows for a modular
construction. In the full version we discuss how these CSS arguments result in
zkSNARKs with different performance trade-offs.

1.1 Related Work

Bivariate Polynomial Evaluation Arguments. As mentioned before, the
complexity of building updatable and universal zkSNARKs protocols is mainly
caused by proving affine constraints. A natural way to encode them is through a
bivariate public polynomial P (X,Y); in order to avoid having a quadratic SRS,
this polynomial can only be given to the verifier evaluated or partially evaluated
in the field. The common approach is to let the verifier chose arbitrary field
elements x, y and having the prover evaluate and send σ = P (y, x). The challenge
is to prove that the evaluation has been performed correctly. In Sonic [33], this
last step is called a signature of correct computation [36] and can be performed
by the prover or by the verifier with some help from an untrusted third party.
The drawback of the first construction is that, while still linear, prover’s work
is considerably costly; also, linear constraints are assumed to be sparse and the
protocol works exclusively for a very particular polynomial P (X,Y). The second
construction is interesting only in some restricted settings where the same verifier
checks a linear amount of proofs for one circuit. Marlin [14] bases its construction
on the univariate sum-check protocol of Aurora [5] and presents a novel way to
navigate from the naive quadratic representation P (X,Y) to a linear one. This
approach results in succinct prover and verifier work, but restricts their protocol
to the case where the number of non-zero entries of matrix W is bounded by
the size of some multiplicative subgroup of the field of definition. Lunar [13] uses
the same representation as Marlin but improves on it, among other tweaks by
introducing a new language (R1CS-lite) that can also represent arithmetic circuit
satisfiability, but has a lighter representation than other constraint systems.
Plonk [20] does not use bivariate polynomials or require sparse matrices but
the SRS size depends on the number of both multiplicative and additive gates.
Plonk, Marlin and Lunar use the Lagrange interpolation basis to commit to
vectors. Claymore [38] presents a modular construction for zkSNARKs based
on similar algebraic building blocks but in the monomial basis: inner product,
Hadamard product and matrix-vector product arguments. The latter also uses
an implicit CSS argument.

Information Theoretic Proof Systems. These previous works all follow the
two step process described in the introduction and build their succinct argu-
ment by compiling an information theoretically secure one. Marlin introduces

4

Algebraic Holographic proofs, that are variation of interactive oracle proofs
(IOPs) [6]. Holographic refers to the fact that the verifier never receives the
input explicitly (otherwise, succinctness would be impossible), but rather its
encoding as an oracle computed by an indexer or encoder. The term algebraic
refers to the fact that oracles are low degree polynomials, and malicious provers
are also bound to output low degree polynomials. This is similar to the notion
of Idealised Low Degree protocols of Plonk. Lunar refines this model by intro-
ducing Polynomial Holographic IOPs, which generalize these works mostly by
allowing for a fine grained analysis of the zero-knowledge property, including
degree checks, and letting prover and verifier send field elements.

Polynomial Commitments. Polynomial commitments allow to commit to a
polynomial p(X) ∈ F[X], and open it at any point x ∈ F. As it is common, we will
use a polynomial commitment based on the one by Kate et al. [30]. Sonic gave a
proof of extractability of the latter in the Algebraic Group Model [18], and Marlin
completed the proof to make the commitments usable as a standalone primitive,
and also have an alternative construction under knowledge assumptions. Both
Marlin and Plonk considered versions of polynomial commitments where queries
in the same point can be batched together. For this work, we use the definitions
presented in [14].

Work |srsu| |srsW| |π| KeyGen Derive Prove Verifier

Sonic
[33]

G1 4N - 20 4N 36n 273n
7PG2 4N 3 - 4N - -

F - - 16 - O(m logm) O(m logm) O(l + logm)

Plonk
[20]

G1 3N∗ 8 7 3N∗ 8n+ 8a 11n+ 11a
2PG2 1 1 - - - -

F - - 7 - O((n+ a) log(n+ a)) O((n+ a) log(n+ a)) O(l + log(n+ a))

Marlin
[14]

G1 3M 12 13 3M 12m 14n+ 8m
2PG2 2 2 - - - -

F - - 8 - O(m logm) O(m logm) O(l + logm)

Lunar
[13]

G1 M - 10 M - 8n+ 3m
7PG2 M 27 - M 24m -

F - - 2 - O(m logm) O(m logm) O(l + logm)

This
work

G1 M 4 11 M 6m 8n+ 4m
2PG2 1 1 - - - -

F - - 4 - O(m logm) O(m logm) O(l + logm)
Comparison with state of the art universal and updatable zkSNARKs. n: number of multiplicative
gates, a: number of additive gates, m = |F| + |G|, where F,G are the matrices that describe the
linear relations for the left and right inputs, respectively. N,A,M : maximum supported values for
n, a,m. N∗ = M + A.

Untrusted Setup. The original constructions of pairing-based zkSNARKs cru-
cially depend for soundness on a trusted setup, although, as was shown in [1,17],
the zero-knowledge property is still easy to achieve when the setup is subverted.
Groth et al. introduced the updatable SRS model in [27] to address the is-
sue of trust in SRS generation. There are several alternatives to achieve trans-

5

parent setup and constant-size proofs, but all of them have either linear veri-
fier [8,11,5,2], or work only for very structured types of computation [3,39]. An
exception is the work of Setty [37]. Concretely, its approach is less efficient in
terms of proof size and verification complexity compared to recent constructions
of updatable and universal pairing-based SNARKs.

2 Preliminaries

A bilinear group gk is a tuple gk = (q,G1,G2,GT , e,P1,P2) where G1,G2 and
GT are groups of prime order q, the elements P1,P2 are generators of G1,G2

respectively, e : G1 × G2 → GT is an efficiently computable, non-degenerate
bilinear map, and there is an efficiently computable isomorphism between G1 and
G2. Elements in Gγ , are denoted implicitly as [a]γ = aPγ , where γ ∈ {1, 2, T}
and PT = e(P1,P2). With this notation, e([a]1, [b]2) = [ab]T .

For n ∈ N, [n] is the set of integers {1, . . . , n}. Vectors and matrices are
denoted in boldface. Given two vectors a, b, their Hadamard product is denoted
as a ◦ b, and their inner product as a · b. The subspace of polynomials of degree
at most d in F[X] is denoted as F≤d[X]. Given a matrix M, |M| refers to the
number of its non-zero entries.

2.1 Constraint Systems

Formally, we will construct an argument for the universal relation R′R1CS-lite,
an equivalent of the relation RR1CS-lite introduced in Lunar [13]. The latter is
a simpler version of Rank 1 Constraint Systems, it is still NP complete and
encodes circuit satisfiability in a natural way:

Definition 1. (R1CS-lite) Let F be a finite field and m, l, s ∈ N. We define the
universal relation R1CS-lite as:

RR1CS-lite =

 (R, x,w) :=
(
(F, s,m, l,F,G),x,w

)
:

F,G ∈ Fm×m,x ∈ Fl−1,w ∈ Fm−l, s = max{|F|, |G|},
and for c := (1,x,w), (Fc) ◦ (Gc) = c

 .

As an equivalent formulation of this relation, we use the following:

R′R1CS-lite =


(R, x,w) :=

(
(F, s,m, l,F,G),x, (a′, b′)

)
: F,G ∈ Fm×m,x ∈ Fl−1,

a′, b′ ∈ Fm−l, s = max{|F|, |G|}, and for a := (1,x,a′), b := (1, b′)(
I 0 −F
0 I −G

) a
b

a ◦ b

 = 0

 .

To see they are equivalent, observe that, if in R′R1CS-lite we define the vector
c = a ◦ b, the linear equation reads as a = Fc and b = Gc. A formal proof is
a direct consequence of the proof that arithmetic circuit satisfiability reduces to
R1CS-lite found in Lunar([13]).

6

2.2 zkSNARKs

Let R be a family of universal relations. Given a relation R ∈ R and an instance
x we call w a witness for x if (x,w) ∈ R, L(R) = {x| ∃w : (x,w) ∈ R} is the
language of all the x that have a witness w in the relation R, while L(R)is the
language of all the pairs (x,R) such that x ∈ L(R).

Definition 2. A Universal Succinct Non-Interactive Argument of Knowledge is
a tuple of PPT algorithms (KeyGen,KeyGenD,Prove,Verify,Simulate) such that:

– (srsu, τ)← KeyGen(R): On input a family of relations R, KeyGen outputs a
universal structured common reference string srsu and a trapdoor τ ;

– srsR ← KeyGenD(srsu,R): On input R ∈ R, this algorithm outputs a relation
dependent SRS that includes srsu;

– π ← Prove(R, srsR, (x,w)): On input the relation, srsR and a pair (x,w) ∈ R,
it outputs a proof π;

– 1/0 ← Verify(srsR, x, π): Verify takes as input srsR, the instance x and the
proof and produces a bit expressing acceptance (1), or rejection (0);

– πsim ← Simulate(R, τ, x): The simulator has the relation R, the trapdoor τ
and the instance x as inputs and it generates a simulated proof πsim,

and that satisfies completeness, succinctness and ε-knowledge soundness as de-
fined below.

Definition 3. Completeness holds if an honest prover will always convince an
honest verifier. Formally, ∀ R ∈ R, (x,w) ∈ R,

Pr

[
(srsu, τ)← KeyGen(R)

Verify(srsR, x, π) = 1 srsR ← KeyGenD(srsu,R)
π ← Prove(R, srsR, (x,w))

]
= 1.

Definition 4. Succinctness holds if the size of the proof π is poly(λ + log |w|)
and Verify runs in time poly(λ+ |x|+ log |w|).

Definition 5. ε-knowledge soundness captures the fact that a cheating prover
cannot, except with probability at most ε, create a proof π accepted by the veri-
fication algorithm unless it has a witness w such that (x,w) ∈ R. Formally, for
all PPT adversaries A, there exists a PPT extractor E such that:

Pr


(srsu, τ)← KeyGen(R)
R← A(srsu)

(x,w) /∈ R ∧ Verify(srsR, x, π) = 1 srsR ← KeyGenD(srsu,R)
(x, π)← A(R, srsR)
w← E(srsR, x, π)

 ≤ ε.
Definition 6. (KeyGen,KeyGenD,Prove,Verify,Simulate) is zero-knowledge (a zk-
SNARK) if for all R ∈ R, instances x and PPT adversaries A.

Pr

[
(srsu, τ)← KeyGen(R)

A(R, srsR, π) = 1 srsR ← KeyGenD(srsu,R)
π ← Prove(R, srsR, (x,w))

]
≈

7

Pr

[
(srsu, τ)← KeyGen(R)

A(R, srsR, πsim) = 1 srsR ← KeyGenD(srsu,R)
πsim ← Simulate(R, τ, x)

]
.

Updatability. We will say a universal zkSNARK is updatable if srsu is updat-
able as defined in [21]. We remark their result states that this is the case if srsu
consists solely of monomials.

2.3 Polynomial Holographic Proofs

In this paper, we use the notion of Polynomial Holographic Interactive Oracle
Proofs (PHP), recently introduced by Campanelli et al. [13]. It is a refinement
and quite similar to other notions used in the literature to construct SNARKs
in a modular way, such as Algebraic Holographic Proofs (AHP) [14] or idealized
polynomial protocols [20].

A proof system for a relation R is holographic if the verifier does not read
the full description of the relation, but rather has access to an encoding of the
statement produced by some holographic relation encoder, also called indexer,
that outputs oracle polynomials. In all these models, the prover is restricted to
send oracle polynomials or field elements, except that, for additional flexibility,
the PHP model of [13] also lets the prover send arbitrary messages. In PHPs,
the queries of the verifier are algebraic checks over the polynomials sent by the
verifier, as opposed to being limited to polynomial evaluations as in AHPs.

The following definitions are taken almost verbatim from [13].

Definition 7. A family of polynomial time computable relations R is field de-
pendent if each relation R ∈ R, specifies a unique finite field. More precisely, for
any pair (x,w) ∈ R, x specifies the same finite field FR (simply denoted as F if
there is no ambiguity).

Definition 8 (Polynomial Holographic IOPs (PHP)). A Polynomial Holo-
graphic IOP for a family of field-dependent relations R is a tuple PHP = (rnd,
n,m, d, ne, I,P,V), where rnd, n,m, d, ne : {0, 1}∗ → N are polynomial-time com-
putable functions, and I,P,V are three algorithms that work as follows:

– Offline phase: The encoder or indexer I(R) is executed on a relation de-

scription R, and it returns n(0) polynomials {p0,j}n(0)j=1 ∈ F[X] encoding the
relation R and where F is the field specified by R.

– Online phase: The prover P(R, x,w) and the verifier VI(R)(x) are executed
for rnd(|R|) rounds, the prover has a tuple (R, x,w) ∈ R, and the verifier
has an instance x and oracle access to the polynomials encoding R. In the
i-th round, V sends a message ρi ∈ F to the prover, and P replies with m(i)

messages {πi,j ∈ F}m(i)
j=1 , and n(i) oracle polynomials {pi,j ∈ F[X]}n(i)j=1, such

that deg(pi,j) < d(|R|, i, j).
– Decision phase: After the rnd(|R|)-th round, the verifier outputs two sets

of algebraic checks of the following type:

8

• Degree checks: to check a bound on the degree of the polynomials sent by

the prover. More in detail, let np =
∑rnd(|R|)
k=1 n(k) and let (p1, . . . , pnp)

be the polynomials sent by P. The verifier specifies a vector of integers
d ∈ Nnp , which satisfies the following condition

∀k ∈ [np] : deg(pk) ≤ dk.

• Polynomial checks: to verify that certain polynomial identities hold be-
tween the oracle polynomials and the messages sent by the prover. Let

n∗ =
∑rnd(|R|)
k=0 n(k) and m∗ =

∑rnd(|R|)
k=0 m(k), and denote by (p1, . . . , pn∗)

and (π1, . . . , πn∗) all the oracle polynomials (including the n(0) ones fr-
rom the encoder) and all the messages sent by the prover. The verifier
can specify a list of ne tuples, each of the form (G, v1, . . . , vn∗), where
G ∈ F[X,X1, . . . , Xn∗ , Y1, . . . , Ym∗] and every vk ∈ F[X]. Then a tuple
(G, v1, . . . , vn∗) is satisfied if and only if F (X) ≡ 0 where

F (X) := G
(
X, {pk(vk(X))}k=1,...,n∗ , {πk}k=1,...,m∗

)
.

The verifier accepts if and only if all the checks are satisfied.

Definition 9. A PHP is complete if for any triple (R, x,w) ∈ R, the checks
returned by VI(R) after interacting with the honest prover P(R, x,w), are satisfied
with probability 1.

Definition 10. A PHP is ε-sound if for every relation-instance tuple (R, x) /∈
L(R) and polynomial time prover P∗ we have

Pr
[
〈P∗,VI(R)(x)〉 = 1

]
≤ ε.

Definition 11. A PHP is ε-knowledge sound if there exists a polynomial time
knowledge extractor E such that for any prover P∗, relation R, instance x and
auxiliary input z we have

Pr
[
(R, x,w) ∈ R : w← EP

∗
(R, x, z)

]
≥ Pr

[
〈P∗(R, x, z),VI(R)(x)〉 = 1

]
− ε,

where E has oracle access to P∗, it can query the next message function of P∗
(and also rewind it) and obtain all the messages and polynomials returned by it.

Definition 12. A PHP is ε-zero-knowledge if there exists a PPT simulator S
such that for every triple (R, x,w) ∈ R, and every algorithm V∗, the following
random variables are within ε-statistical distance:

View (P(R, x,w),V∗) ≈c View
(
SV
∗
(R, x)

)
,

where View (P(R, x,w),V∗) consists of V∗’s randomness, P’s messages (which
do not include the oracles) and V∗’s list of checks, while View

(
SV
∗
(R, x)

)
consists

of V∗’s randomness followed by S’s output, obtained after having straightline access to
V∗, and V∗’s list of checks.

9

We assume that in every PHP scheme there is an implicit maximum degree
for all the polynomials used in the scheme. Thus, we include only degree checks
that differ from this maximum. In all our PHPs, the verifier is public coin.

The following definition captures de fact that zero-knowledge should hold
even when the verifier has access to a bounded amount of evaluations of the poly-
nomials that contain information about the witness. Let Q be a list of queries;
we say that Q is (b,C)-bounded for b ∈ Nnp and C a PT algorithm, if for every
i ∈ [np], |{(i, z) : (i, z) ∈ Q}| ≤ bi, and for all (i, z) ∈ Q, C(i, z) = 1.

Definition 13. A PHP is (b,C)-zero-knowledge if for every triple (R, x,w) ∈
R, and every (b,C)-bounded list Q, the follow random variables are within ε
statistical distance:(

View
(
P(F,R, x,w),V

)
, (pi(z))(i,z)∈Q

)
≈ε S (F,R, x,V(F, x),Q) ,

where the pi(X) are the polynomials returned by the prover.

Definition 14. A PHP is honest-verifier zero-knowledge with query bound b if
there exists a PT algorithm C such that PHP is (b,C)-zero-knowledge and for all
i ∈ N, Pr[C(i, z) = 0] is negligible, where z is uniformly sampled over F.

2.4 Cryptographic Assumptions

Once we compile the PHP through a polynomial commitment into a zkSNARK,
the latter will achieve its security properties in the Algebraic Group Model of
Fuchsbauer et al. ([18]). In this model adversaries are restricted to be algebraic,
namely, when an adversary A gets some group elements as input and outputs
another group element, it can provide some algebraic representation of the latter
in terms of the former.

Definition 15 (Algebraic Adversary). Let G be a cyclic group of order p.
We say that a PPT adversary A is algebraic if there exists an efficient extractor
EA that, given the inputs ([x1], . . . , [xm]) of A, outputs a representation z =
(z1, . . . , zm)> ∈ Fm, where F is the finite field of p elements, for every group
element [y] in the output of A such that:

AdvalgG,A(λ) =

 [y]← A([x1], . . . , [xm]), z← EA([y], [x1], . . . , [xm]),

and [y] 6=
m∑
j=1

zj [xj]

 = negl(λ).

The security of our final argument for R1CS-lite (after compilation) is proven
in the algebraic group model under the following assumption:

Definition 16 (q-dlog Asymmetric Assumption). The q(λ)-discrete loga-
rithm assumption holds for gk ← G(1λ) if for all PPT algorithm A

Advq−dloggk,A (λ) = Pr [x← A(gk, [x]1,2, . . . , [x
q]1,2)] = negl(λ).

10

3 Generalized Univariate Sumcheck

In this section, we revisit the sumcheck of Aurora [5]. As presented there, this
argument allows to prove that the sum of the evaluations of a polynomial in some
multiplicative4 set H of a finite field F sum to 0. We generalize the argument to
arbitrary sets H ⊂ F, solving an open problem posed there. Additionally, we give
a simpler proof of the same result by connecting the sumcheck to polynomial
evaluation and other basic properties of polynomials.

Given some finite field F, let H be an arbitrary set of cardinal m, with some
predefined canonical order, and hi refers to the ith element in this order. The
ith Lagrange basis polynomial associated to H is denoted by λi(X). The vector
λ(X) is defined as λ(X)> = (λ1(X), . . . , λm(X)). The vanishing polynomial of
H will be denoted by t(X). When H is a multiplicative subgroup, the following
properties are known to hold:

t(X) = Xm − 1, λi(X) =
hi
m

(Xm − 1)

(X − hi)
, λi(0) =

1

m
,

for any i = 1, . . . ,m. This representation makes their computation particu-
larly efficient: both t(X) and λi(X) can be evaluated in O(logm) field operations.

We prove a generalized sumcheck theorem below, and derive the sumcheck of
Aurora as a corollary for the special case where H is a multiplicative subgroup.
The intuition is simple: let P1(X) be a polynomial of arbitrary degree in F[X],
and P2(X) =

∑m
i=1 λi(X)P1(hi). Note that P1(X), P2(X) are congruent modulo

t(X), and the degree of P2(X) is at most m− 1. Then, when P2(X) is evaluated
at an arbitrary point v ∈ F, v /∈ H, P2(v) =

∑m
i=1 λi(v)P1(hi). Thus, P2(v) is

“almost” (except for the constants λi(v)) the sum of the evaluations of P1(hi).
Multiplying by a normalizing polynomial, we get rid of the constants and obtain
a polynomial that evaluated at v is the sum of any set of evaluations of interest.
The sum will be zero if this product polynomial has a root at v.

Theorem 1 (Generalized Sumcheck). Let H be an arbitrary subset of some
finite field F and t(X) the vanishing polynomial at H. For any P (X) ∈ F[X], S ⊂
H, and any v ∈ F, v /∈ H,

∑
s∈S P (s) = σ if and only if there exist polynomials

H(X) ∈ F[X], R(X) ∈ F≤m−2[X] such that

P (X)NS,v(X)− σ = (X − v)R(X) + t(X)H(X),

where NS,v(X) =
∑
s∈S λs(v)−1λs(X) and λs(X) is the Lagrange polynomial

associated to s and the set H.

4 In fact, the presentation is more general as they also consider additive cosets, but
we stick to the multiplicative case which is the one that has been used in other
constructions of zkSNARKs.

11

Proof. Observe that P (X) =
∑

h∈H P (h)λh(X) mod t(X). Therefore,

P (X)NS,v(X)− σ =
(∑

h∈H
P (h)λh(X)

)(∑
s∈S

λs(v)−1λs(X)
)
− σ

=
(∑
s∈S

P (s)λs(v)−1λs(X)
)
− σ mod t(X).

Let Q(X) =
(∑

s∈S P (s)λs(v)−1λs(X)
)
−σ. Note that Q(v) =

∑
s∈S P (s)−σ.

Thus,
∑
s∈S P (s) = σ if and only if Q(X) is divisible by X−v. The claim follows

from this observation together with the fact that Q(X) is the unique polynomial
of degree m− 1 that is congruent with P (X)NS,v(X)− σ. ut

Lemma 1. If S = H is a multiplicative subgroup of F, NH,0(X) = m.

Proof. Recall that, as H is a multiplicative subgroup, λi(0) = 1/m for all i =
1, . . . ,m. Therefore, NH,0(X) =

∑m
i=1 λi(0)−1λi(X) = m

∑m
i=1 λi(X) = m. ut

As a corollary of Lemma 1 and the Generalized Sumcheck, we recover the uni-
variate sumcheck: if H is a multiplicative subgroup,

∑
h∈H P (h) = σ if and only

if there exist polynomials R(X), H(X) with deg(R(X)) ≤ m − 2 such that
P (X)m− σ = XR(X) + t(X)H(X).

3.1 Application to Linear Algebra Arguments

Several works [5,14,13] have observed that R1CS languages can be reduced to
proving a Hadamard product relation and a linear relation, where the latter con-
sists on showing that two vectors x,y are such that y = Mx, or equivalently,
that the inner product of (y,x) with all the rows of (I,−M) is zero. When ma-
trices and vectors are encoded as polynomials for succinctness, for constructing
a PHP it is necessary to express these linear algebra operations as polynomial
identities.

For the Hadamard product relation, the basic observation is that, for any
polynomials A(X), B(X), C(X), the equation

A(X)B(X)− C(X) = H(X)t(X), (1)

holds for some H(X) if and only if (A(h1), . . . , A(hm)) ◦ (B(h1), . . . , B(hm)) −
(C(h1), . . . , C(hm)) = 0. In particular, A(X) = a>λ(X), B(X) = b>λ(X)
encode vectors a, b, then C(X) mod t(X) encodes a◦b. This Hadamard product
argument is one of the main ideas behind the zkSNARK of Gentry et al. [22]
and follow-up work.

For linear relations, the following Theorem explicitly derives a polynomial
identity that encodes the inner product relation from the univariate sumcheck.
This connection in a different formulation is implicit in previous works [5,14,13].

12

Theorem 2 (Inner Product Polynomial Relation). For some k ∈ N, let
y = (y1, . . . ,yk), yi = (yij), d = (d1, . . . ,dk) be two vectors in Fkm, yi,di ∈
Fm, and H a multiplicative subgroup of F of order m. Then, y ·d = 0 if and only
if there exist H(X), R(X) ∈ F[X], R(X) of degree at most m − 2 such that the
following relation holds:

Y (X) ·D(X) = XR(X) + t(X)H(X), (2)

where Y (X) = (Y1(X), . . . , Yk(X)) is a vector of polynomials of arbitrary de-
gree such that Yi(hj) = yij for all i = 1, . . . , k, j = 1, . . . ,m, and D(X) =
(D1(X), . . . , Dk(X)) is such that Di(X) = d>i λ(X).

Proof. Since Yi(hj) = yij , for all i, j, Yi(X) = y>i λ(X) mod t(X). There-
fore, Yi(X)Di(X) = (y>i λ(X))(d>i λ(X)) mod t(X), and by the aforementioned
properties of the Lagrange basis, this is also congruent modulo t(X) to (yi ◦
di)
>λ(X). Therefore,

Y (X) ·D(X) =

k∑
i=1

Yi(X)Di(X) =

k∑
i=1

(yi ◦ di)>λ(X)

=

(
k∑
i=1

(yi ◦ di)>
)
λ(X) mod t(X).

By Theorem 1,
((∑k

i=1(yi ◦di)>
)
λ(X)

)
NH,0(X) is divisible by X if and only if

the sum of the coordinates of
∑k
i=1(yi◦di) is 0. The implication is also true after

dividing by NH,0(X) = m. The jth coordinate of
∑k
i=1(yi ◦ di) is

∑k
i=1 yijdij ,

thus the sum of all coordinates is
∑m
j=1

∑k
i=1 yijdij = y ·d, which concludes the

proof. ut

In the rest of the paper H will always be a multiplicative subgroup, both for
simplicity (as NH,0 = m), and efficiency (due to the properties that Lagrange and
vanishing polynomials associated to multiplicative subgroups have). However,
Theorem 2 can be easily generalized to arbitrary sets H (just multiplying the
left side of Eq. (2) by NH,0).

4 Checkable Subspace Sampling: Definition and
Implications

In a Checkable Subspace Sampling (CSS) argument prover and verifier interac-
tively agree on a polynomial D(X) representing a vector d in the row space of
a matrix M. The fiber of the protocol is that D(X) is calculated as a linear
combination of encoding of the rows of M with some coefficients determined by
the verifier, but the verifier does not need to calculate D(X) itself (this would
require the verifier to do linear work in the number of rows of M). Instead, the

13

prover can calculate this polynomial and then convince the verifier that it has
been correctly computed.

Below we give the syntactical definition of Checkable Subspace Sampling.
Essentially, a CSS scheme is similar to a PHP for a relation RM, except that the
statement (cns, D(X)) is decided interactively, and the verifier has only oracle
access to the polynomial D(X). A CSS scheme can be used as a building block
in a PHP, and the result is also a PHP.

Definition 17 (Checkable Subspace Sampling, CSS). A checkable subspace
sampling argument over a field F defines some Q,m ∈ N, a set of admissible
matricesM, a vector of polynomials β(X) ∈ (F[X])m, a coinspace C, a sampling
function Smp : C → FQ, and a relation:

RCSS,F =

{ (
M, cns, D(X)

)
: M ∈M ⊂ FQ×m, D(X) ∈ F[X], cns ∈ C,
s = Smp(cns), and D(X) = s>Mβ(X)

}
.

For any M ∈M, it also defines:

RM =
{(

cns, D(X)
)

:
(
M, cns, D(X)

)
∈ RCSS,F

}
.

It consists of three algorithms:

– ICSS is the indexer: in an offline phase, on input (F,M) returns a set WCSS

of n(0) polynomials {p0,j(X)}n(0)j=1 ∈ F[X]. This algorithm is run once for
each M.

– Prover and Verifier proceed as in a PHP, namely, the verifier sends field
elements to the prover and has oracle access to the polynomials outputted by
both the indexer and the prover; this phase is run in two different stages:

• Sampling: PCSS and VCSS engage in an interactive protocol. In some
round, the verifier sends cns ← C, and the prover replies with D(X) =
s>Mβ(X), for s = Smp(cns).

• ProveSampling: PCSS and VCSS engage in another interactive protocol to
prove that (cns, D(X)) ∈ RM.

– When the proving phase is concluded, the verifier outputs a bit indicating
acceptance or rejection.

The vector β(X) = (β1(X), . . . , βm(X)) defines an encoding of vectors as
polynomials: vector v is mapped to the polynomial v>β(X) =

∑m
i=1 viβi(X).

When using a CSS for constructing an argument of membership in linear spaces
as in the next section, we choose a characterization of inner product that is
compatible with Lagrange polynomials. Thus, in this work, βi(X) is defined as
λi(X), the ith Lagrange polynomial associated to some multiplicative subgroup
H of F. Still, it also makes sense to consider also CSS arguments for other
polynomial encodings, e.g. the monomial basis or Laurent polynomials.

We require a CSS argument to satisfy the following security definitions:

14

Perfect Completeness. If both prover and verifier are honest the output of the
protocol is 1:

Pr
[
〈PCSS(F,M, cns),VWCSS

CSS (F)〉 = 1
]

= 1.

where the probability is taken over the random coins of prover and verifier.

Soundness. A checkable subspace sampling argument (ICSS,PCSS,VCSS) is ε-
sound if for all M and any polynomial time prover P∗CSS:

Pr

[
D∗(X) 6= s>Mβ(X) (cns, D∗(X))← Sampling〈P∗CSS(F,M, cns),VWCSS(F)〉;

s = Smp(cns); 〈P∗CSS(F,M, cns),VWCSS
CSS (F)〉 = 1

]
≤ ε.

The soundness of the CSS argument will ensure that the vector is sampled as
specified by the coins of the verifier so the prover cannot influence its distribution.
For a CSS argument to be useful, we additionally need that distribution induced by
the sampling function is sufficiently “good”. This is a geometric property that can be
captured in the Elusive Kernel property defined below.

Definition 18. A CSS argument is ε-elusive kernel5 if

max
t∈FQ,t6=0

Pr
[
s · t = 0 s = Smp(cns); cns← C

]
≤ ε.

In practice, for most schemes, s is a vector of monomials or Lagrange basis polyno-
mials evaluated at some point x = cns, and this property is an immediate application
of Schwartz-Zippel lemma, so we will not explicitly prove it for most of our CSS argu-
ments.

4.1 Linear Arguments from Checkable Subspace Sampling

In this section we build a PHP for the universal relation of membership in linear
subspaces:

RLA =
{

(F,W,y) : W ∈ FQ×km,y ∈ Fkm s.t. Wy = 0
}
,

using a CSS scheme as building block. That is, given a vector y, the argument allows
to prove membership in the linear space W⊥ = {y ∈ Fkm : Wy = 0}. Although
relation RLA is polynomial-time decidable, it is not trivial to construct a polynomial
holographic proof for it, as the verifier has only an encoding of W and y.

A standard way to prove that some vector y is in W⊥ is to let the verifier sample
a sufficiently random vector d in the row space of matrix W, and prove y · d = 0.
Naturally, the vector y must be declared before d is chosen. We follow this strategy to
construct a PHP for RLA, except that the vector d is sampled by the prover itself on
input the coins of the verifier through a CSS argument.

As we have seen in Section 2.1, it is natural in our application to proving R1CS to
consider matrices in blocks. Thus, in this section we prove membership in W⊥ where
the matrix is written in k blocks of columns, that is, W = (W1, . . . ,Wk). The vectors
y,d ∈ Fkm are also written in blocks as y> = (y>1 , . . . ,y

>
k) and d> = (d>1 , . . . ,d

>
k).

5 The name is inspired by the property of t-elusiveness of [35].

15

Each block of W, as well as the vectors y,d can be naturally encoded, respectively,
as a vector of polynomials or a single polynomial multiplying on the right by λ(X).
However, we allow for additional flexibility in the encoding of y: our argument is
parameterized by a set of valid witnesses WY and a function EY : WY → (F[X])k that
determines how y is encoded as a polynomial. Thanks to this generalization we can use
the argument as a black-box in our R1CS-lite construction. There, valid witnesses are of
the form (a, b,a◦b) and, for efficiency, its encoding will be (A(X) = a>λ(X), B(X) =
b>λ(X), A(X)B(X)), which means that the last element does not need to be sent.

The argument goes as follows. The prover sends a vector of polynomials Y (X)
encoding y. The CSS argument is used to delegate to the prover the sampling of d>i ,
i = 1, . . . , k in the row space of Wi. Then, the prover sendsD(X) together with a proof
that y · d = 0. For this inner product argument to work, we resort to Theorem 2 that
guarantees that, if EY is an encoding such that if EY (y) = Y (X), then Yi(hj) = yij ,
the inner product relation holds if and only if the verification equation is satisfied for
some Ht(X), Rt(X).

Because of the soundness property of the CSS argument, the prover cannot influence
the distribution of d, which is sampled according to the verifier’s coins. Therefore, if
Y (X) passes the test of the verifier, y is orthogonal to d. By the Elusive Kernel
property of the CSS argument, d will be sufficiently random. As it is sampled after y
is declared, this will imply that y is in W⊥.

Offline Phase: ILA(F,W): For i = 1, . . . , k, run the indexer ICSS on input

(F,Wi) to obtain the set WCSSi and output WLA =
⋃k
i=1WCSSi.

Online Phase: PLA: On input a witness y ∈WY ⊂ (Fm)k, output Y (X) =
EY (y).

PLA and VLA run in parallel k instances of the CSS argument, with inputs
(F,Wi) and F, respectively, and where the verifier is given oracle access to
WCSSi. The output is a set {(cns, Di(X))}ki=1, where cns are the same for all
k instances. Define D(X) = (D1(X), . . . , Dk(X)).

PLA: Outputs Rt(X) ∈ F≤m−2[X], Ht(X) such that

Y (X) ·D(X) = XRt(X) + t(X)Ht(X). (3)

Decision Phase: Accept if and only if (1) deg(Rt) ≤ m − 2, (2) ViCSS
accepts (cns, Di(X)), and (3) the following equation holds:

Y (X) ·D(X) = XRt(X) + t(X)Ht(X).

Fig. 1. Argument for proving membership in W⊥, parameterized by the polynomial
encoding EY : WY → F[X]k, and the set WY ⊂ Fkm.

16

Theorem 3. When instantiated using a CSS scheme with perfect completeness, and
when the encoding EY : WY → F[X]k satisfies that, if EY (y) = Y (X), then Yi(hj) =
yij, the PHP of Fig. 1 has perfect completeness.

Proof. By definition,D(X) = (s>W1λ(X), . . . , s>Wkλ(X)), for s = Samp(cns). Note
that this is because the k instances of the CSS scheme are run in parallel and the same
coins are used to sample each of the di. Thus, D(X) is the polynomial encoding of
d = (s>W1, . . . , s

>Wk) = s>W. Therefore, if y is in W⊥, d · y = s>Wy = 0.
By the characterization of inner product, as explained in Section 3, this implies that
polynomials Ht(X), Rt(X) satisfying the verification equation exist. ut

Theorem 4. Let CSS be ε-sound and ε′-Elusive Kernel, and EY : WY → F[X]k an
encoding such that if EY (y) = Y (X), Yi(hj) = yij. Then, for any polynomial time
adversary A against the soundness of PHP of Fig. 1:

Adv(A) ≤ ε′ + kε.

Further, the PHP satisfies 0-knowledge soundness.

Proof. Let Y ∗(X) = (Y ∗1 (X), . . . , Y ∗k (X)) be the output of a cheating P∗LA and y∗ =
(y∗1, . . . ,y

∗
k) the vector such that Y ∗i (hj) = y∗ij . As a direct consequence of Theorem 2,

Y ∗(X) ·D(X) = XRt(X)+ t(X)Ht(X) only if y∗ ·d = 0, where d is the unique vector
d such that D(X) = (d>1 λ(X), . . . ,d>k λ(X)).

On the other hand, the soundness of the CSS scheme guarantees that, for each i, the
result of sampling Di(X) corresponds to the sample coins sent by the verifier, except
with probability ε. Thus, the chances that the prover can influence the distribution
of D(X) so that so that y∗ · d = 0 are at most kε. Excluding this possibility, a
cheating prover can try to craft y∗ in the best possible way to maximize the chance
that y∗ · d = 0. Since d> = s>W, and in a successful attack y∗ /∈ W⊥, we can see
that this possibility is bounded by the probability:

max
y∗ /∈W⊥

Pr

 cns← C;
d · y∗ = 0 s = Smp(cns);

d = s>W

 = max
y∗ /∈W⊥

Pr

[
cns← C;

s>Wy∗ = 0 s = Smp(cns)

]
Since s>Wy∗ = s · (Wy∗), and Wy∗ 6= 0, this can be bounded by ε′, by the

elusive kernel property of the CSS scheme.
For knowledge soundness, define the extractor E as the algorithm that runs the

prover and, by evaluating Yi(X) in {hj}mj=1 for all i ∈ [k], recovers y. If the verifier
accepts with probability greater than ε′ + kε, then y is such that Wy = 0 with the
same probability. ut

Extension to other polynomial encodings. As mentioned, the construction is specific
to the polynomial encoding defined by interpolation. However, the only place where
this plays a role is in the check of equation (3). Now, if the polynomial encoding
β(X)> associated to the CSS argument for W was set to be for instance the monomial
basis, i.e. β(X)> = (1, X, . . . ,Xm−1), the argument can be easily modified to still
work. It suffices to choose the “reverse” polynomial encoding for y, that is define
Y (X) = (y>1 β̃(X), . . . ,y>k β̃(X)), where β̃(X)> = (Xm−1, . . . , X, 1), and require the
prover to find Rt(X), Ht(X), with Rt(X) of degree at most m− 2 such that:

Y (X) ·D(X) = Rt(X) +XmHt(X). (4)

Indeed, observe that this check guarantees that Y (X) ·D(X) does not have any term
of degree exactly m− 1, and the term of degree m− 1 is exactly

∑k
i=1 yi · di = y · d.

17

4.2 R1CS-lite from Linear Arguments

In this section we give a PHP for R1CS-lite by combining our linear argument with other
well known techniques. In this section, W is the block matrix defined in Section 2.1.

Offline Phase: Ilite
(
W,F

)
runs ILA(W,F) to obtain a list of polynomials

WLA and outputs Wlite =WLA.

Online Phase: Plite(F,W,x, (a′, b′)) defines a = (1,x,a′), b = (1l, b
′),

and computes

A′(X) =

 m∑
j=l+1

ajλj(X)

/tl(X), B′(X) =

 m∑
j=1

bjλj(X)

− 1

/tl(X),

for tl(X) =
∏`
i=1(X − hi). It outputs

(
A′(X), B′(X)

)
.

Vlite and Plite instantiate VWLA

LA (F) and PLA(F,W, (a, b,a ◦ b)). Let
Y (X) = (A(X), B(X), A(X)B(X)) be the polynomials outputted by
PLA in the first round.

Decision Phase: Define Cl(X) = λ1(X) +
∑l−1
j=1 xjλj+1(X) and accept if

and only if (1) A(X) = A′(X)tl(X) + Cl(X), (2) B(X) = B′(X)tl(X) + 1,
and (3) VLA accepts.

Fig. 2. PHP for R′R1CS-lite from PHP for RLA. The PHP for RLA should
be instantiated for WY = {(a, b,a ◦ b) : a, b ∈ Fm}, E(a, b,a ◦ b) =
(a>λ(X), b>λ(X), (a>λ(X))(b>λ(X))).

Theorem 5. When instantiated with a complete, sound and knowledge sound lin-
ear argument, the PHP of Fig. 2 satisfies completeness, soundness and knowledge-
soundness.

Proof. Completeness follows directly from the definition of A′(X), B′(X), A(X), B(X)
and completeness of the linear argument. Soundness and knowledge soundness hold
if the linear argument is sound as well, because Vlite accepts if VLA accepts, meaning
W(̇a, b,a ◦ b)> = 0 and R′R1CS-lite holds, and for extraction it suffices to use the
extractor of the linear argument. ut

4.3 Adding Zero Knowledge

To achieve zero-knowledge, it is common to several works on pairing-based zkSNARKS
[13,14,22] to randomize the polynomial commitment to the witness with a polynomial
that is a multiple of the vanishing polynomial. That is, the commitment to a vector
a is A(X) =

∑
aiλi(X) + t(X)h(X), where t(X), λi(X) are defined as usual, and

the coefficients of h(X) are the randomness. In [22], h(X) can be constant, since the
commitment A(X) in the final argument is evaluated at a single point. In other works

18

where the commitment needs to support queries at several point values, h(X) needs
to be of higher degree. In Marlin, it is suggested to choose the degree according to the
number of oracle queries to maximimize efficiency, and in Lunar this idea is developed
into a fine-grained analysis and a vector with query bounds is specified for the compiler.
Additionally, for this technique, the prover needs to send a masking polynomial to
randomize the polynomial R(X) of the inner product check. The reason is that this
polynomial leaks information about (A(X), B(X), A(X)B(X)) ·D(X) mod t(X).

In this section, we show how to add zero-knowledge to the PHP for R1CS-lite
of Section 4.2 without sending additional polynomials. The approach is natural and
a similar technique has also been used in [38]. Let (bA, bB , bRt , bHt) be the tuple of
bounds on the number of polynomial evaluations seen by the verifier after compiling for
the polynomials A(X), B(X), Rt(X), Ht(X). To commit to a vector y ∈ Fm, we sample
some randomness r ∈ Fn, where n is a function of (bA, bB , bRt , bHt) to be specified
(a small constant when compiling). The cardinal of H is denoted by m̃ in this section.
A commitment is defined in the usual way for the vector (y, r), i.e.

∑m
i=1 yiλi(X) +∑m+n

i=m+1 riλi(X), and, naturally, we require m+n ≤ m̃. Our idea is to consider related
randomness for A(X), B(X) so that the additional randomness sums to 0 and does
not interfere with the inner product argument. The novel approach is to enforce this
relation of the randomness by adding one additional constraint to W. The marginal
cost of this for the prover is minimal. Starting from the PHP of Fig. 2 we introduce
the changes described in Fig. 3.

Offline Phase: For m̃ = m+ n, the matrix of constraints is:

W̃ =

 Im 0m×n 0m×m 0m×n −F 0m×n
0m×m 0m×n Im 0m×n −G 0m×n

0>m 1>n 0>m 1>n 0>m 0>n


Online Phase: Plite samples ra ← Fn, rb ← Fn conditioned on

∑n
i=1 ra,i+

rb,i = 0 and uses ã := (1,x,a′, ra), b̃ := (1l, b
′, rb), to construct Ã(X) and

B̃(X), Ã′(X) and B̃′(X) as before.

Fig. 3. Modification of the PHP for R′R1CS-lite to achieve zero-knowledge. The omitted
parts are identical.

Theorem 6. With the modification described in Fig. 3 the PHP of Fig. 2 is per-
fectly complete, sound, knowledge-sound, perfect zero-knowledge and (bA, bB , bRt , bHt)-
bounded honest-verifier zero-knowledge if n ≥

(
bA + bB + bRt + bHt + 1

)
/2, and

n ≥ max(bA, bB).

Proof. The only difference with the previous argument is the fact that the matrix of
constraints has changed, which is now W̃. For completeness, observe that the additional
constraint makes sure that

∑n
i=1 ra,i + rb,i = 0, and an honest prover chooses the

randomness such that this holds. On the other hand, the sumcheck theorem together
with this equation guarantee that the randomness does not affect the divisibility at 0
of (Ã(X), B̃(X), Ã(X)B̃(X)) ·D(X) mod t(X).

19

For soundness, note that W̃
(
ã>, b̃>, (ã ◦ b̃)>

)
, is equivalent to 1) a = F(a◦b), 2)

b = G(a◦b), and 3)
∑n
i=1 ra,i+rb,i = 0, for a := (1,x,a′) b := (1l, b

′). This is because
the first two blocks of constraints have 0s in the columns corresponding to ra, rb, and
the other way around for the last constraint. Therefore, by the soundness of the linear
argument

∑n
i=1 ra,i + rb,i = 0, and the randomness does not affect divisibility at 0

of (A(X), B(X), A(X)B(X))> ·D(X) mod t(X), so the same reasoning used for the
argument of Fig. 2 applies.

Perfect zero-knowledge of the PHP is immediate, as all the messages in the CSS
procedure contain only public information and the rest of the information exchanged
are oracle polynomials.

We now prove honest-verifier bounded zero-knowledge. The simulator is similar to
[13](Th. 4.7), but generalized to the distribution of D(X) induced by the underlying
CSS scheme. The simulator gets access to the random tape of the honest verifier and
receives x and the coins of the CSS scheme, as well as a list of its checks. It creates
honestly all the polynomials of the CSS argument, since these are independent of the
witness.

For an oracle query at point γ, the simulator samples uniform random values
A′γ , B

′
γ , Rγ,t in F and declares them, respectively, as A′(γ), B′(γ), Rt(γ). It then de-

fines the rest of the values to be consistent with them. More precisely, let D(X)> =
s>Wλ(X) = (Da(X), Db(X), Dab(X)) be the output of the CSS argument, which the
simulator can compute with the CSS coins. Then, the simulator sets:

Aγ = A′γtl(γ) +

l∑
i=1

xiλi(γ), Bγ = B′γtl(γ) + 1,

pγ = Da(γ)Aγ +Db(γ)Bγ +Dab(γ)AγBγ Htγ = (pγ − γRt,γ)/t(γ),

where Qγ for Q ∈ {A′, B′, Rt, Ht} is declared as Q(γ). The simulator keeps a table of
the computed values to answer consistently the oracle queries.

We now argue that the queries have the same distribution as the evaluations of the
prover’s polynomials if all the queries γ are in F\H. Since the verifier is honest, and |H|
is assumed to be a negligible fraction of the field elements, we can always assume this is
the case. In this case, the polynomial encoding of ra, rb acts as a masking polynomial
for A′(X), B′(X), Rt(X), Ht(X) and taking into account that

∑n
i=1 ra,i + rb,i = 0 to

have the same distribution it is sufficient that 2n − 1 ≥ bA + bB + bRt + bHt , and
n ≥ max(bA + bB), as stated in the theorem. Therefore, bounded zero-knowledge is
proven. ut

4.4 Combining CSS schemes

Since a CSS scheme outputs a linear combination of the rows of a matrix M, differ-
ent instances of a CSS scheme can be easily combined with linear operations. More

precisely, given a matrix M that can be written as

(
M1

M2

)
, we can use a different

CSS arguments for each Mi
6 Since all current constructions of CSS arguments have

limitations in terms of the types of matrices they apply to, this opens the door to
decomposing the matrix of constraints into different blocks that admit efficient CSS

6 The naive approach would run both CSS arguments in parallel, but savings might
be possible batching the proofs.

20

arguments. For instance, matrices with a few very dense constraints (i.e. with very
few rows with a lot of non-zero entries) and otherwise sparse could be split to use the
scheme for sparse matrices of Section 3 for one part, and the trivial approach (where
one polynomial for each row is computed by the indexer, and the verifier can sample
the polynomial D(X) computing the linear combination itself) for the rest. That is,
one reason to divide the matrix M into blocks is to have a broader class of admissible
matrices. Another reason is efficiency, since if a block that is either 0 or the identity
matrix, the verifier can open the polynomial D(X) itself, saving on the number of poly-
nomials that need to be sent. More specifically, for our final construction, we will often

split a matrix into two blocks of m rows, M =

(
M1

M2

)
, use the same CSS argument for

each matrix with the same coins, and combine them to save on communication. More
precisely, if s = Smp(cns), and D1(X) = s>M1λ(X) and D2(X) = s>M2λ(X) are
the polynomials associated to M1,M2, we will modify the CSS argument so that it
sends D1(X) + zD2(X) for some challenge z chosen by the verifier, instead of D1(X)
and D2(X) individually. Note that D1(X) + zD2(X) = (s>, zs>)Mλ(X), that is, this
corresponds to a CSS argument where the sampling coefficients depend on z also.

This cannot be done generically, it depends on the underlying CSS argument and
the type of admissible matrices. Intuitively, this modification corresponds to implicitly
constructing a CSS argument for the matrix M1 + zM2, so it is necessary that: a)
the polynomials computed by the indexer of the CSS argument for M1,M2 can be
combined, upon receiving the challenge z, to the CSS indexer polynomials of M1+zM2,
and b) that M1 + zM2 is an admissible matrix for this CSS argument. For instance,
if M1,M2 has K non-zero entries each, and the admissible matrices of a CSS instance
must have at most K non-zero entries, then M1 + zM2 is not generally an admissible
matrix. We will be using this optimization for our final PHP for sparse matrices, and
we will see there that these conditions are met in this case.

5 Constructions of Checkable Subspace Sampling
Arguments

Given the results of the previous sections, for our R1CS-lite argument it is sufficient to
design a CSS argument for matrices M ∈ Fm×m and then use it on all the blocks of
W. In this section, we give several novel CSS arguments for different types of square
matrices.

We consider two disjoint sets of roots of unity, H,K of degree m and K, respectively.
For H we use the notation defined in Section 3. The elements of K are assumed to
have some canonical order, and we use k` for the `th element in K, µ`(X) for the
`th Lagrangian interpolation polynomial associated to K, and u(X) for the vanishing
polynomial.

Matrices M ∈ Fm×m can be naturally encoded as a bivariate polynomial as P (X,Y) =
α(Y)>Mβ(X), for some α(Y) ∈ F[Y]m,β(X) ∈ F[X]m. Let m>i be the ith row of M,
and Pi(X) = m>i β(X). Then,

P (X,x) = α(x)>Mβ(X) =
m∑
i=1

αi(x)Pi(X).

That is, the polynomial P (X,x) is a linear combination of the polynomials associated
to the rows of M via the encoding defined by β(X), with coefficients αi(x). This

21

suggests to define a CSS scheme where, in the sampling phase, the verifier sends the
challenge x and the prover replies with D(X) = P (X,x), and, in the proving phase,
the prover convinces the verifier that D(X) is correctly sampled from coins x. This
approach appears, implicitly or explicitly, in Sonic and most follow-up work we are
aware of.

In Sonic, α(Y),β(X) are vectors of Laurent polynomials. In Marlin, Lunar and in
this work, we set α(Y) = λ(Y), and β(X) = λ(X). The choice of β(X) is to make the
encoding compatible with the inner product defined by the sumcheck, and the choice
of α(Y) is necessary for the techniques used in the proving phase of the CSS scheme
that will be detailed in this Section.

For the proving phase, the common strategy is to follow the general template
introduced in Sonic: the verifier samples a challenge y ∈ F, checks that D(y) is equal to
a value σ sent by the prover, and that σ = P (y, x) (through what is called a signature
of correct computation, as in [36]). This proves that D(X) = P (X,x). The last one is
the challenging step, and is in fact, the main technical novelty of each of the mentioned
previous works. In all of them, this is achieved by restricting the sets of matrices M to
have a special structure: in Sonic they need to be sums of permutation matrices, and
in Marlin, as later also Lunar, arbitrary matrices with at most K non-zero entries.

This section is organized as follows. We start by giving an overview of our new
techniques in Section 5.1. In Section 5.2, we explain our basic CSS scheme, that works
only for matrices with at most one non-zero element per column. In Section 5.3, we see
how to compose these checks to achieve a CSS argument for arbitrary sparse matrices
M. In Section 5.4, we give an extension of the basic construction that can be used
to generalize the CSS argument from basic matrices to sum of basic matrices without
increasing the communication complexity. In the full version we explain how this can
be used to extend the CSS argument for sparse matrices to matrices that are sums of
sparse matrices without increasing the communication complexity.

5.1 Overview of New Techniques

Our main result of this section is a CSS scheme for any matrix M = (mi,j) ∈ Fm×m
of at most K non-zero entries. Assuming the non-zero entries are ordered, this matrix
can be represented, as proposed in Marlin, by three functions v : K → F, r : K →
[m], c : K → [m] such that P (X,Y) =

∑K
`=1 v(k`)λr(k`)(Y)λc(k`)(X), where the `th

non-zero entry is v(k`) = mr(k`),c(k`). If the matrix has less than K non-zero entries
v(k`) = 0, for ` = |M|+1, . . . ,K, and r(k`), c(k`) are defined arbitrarily. We borrow this
representation but design our own CSS scheme by following a “linearization strategy”.

To see that P (y, x) is correctly evaluated, we observe that it can be written as:

P (y, x) =
(
λr(k1)(x), . . . , λr(kK)(x)

)
·
(
v(k1)λc(k1)(y), . . . , v(kK)λc(kK)(y)

)
.

We define low degree extensions of each of these vectors respectively as:

ex(X) =

K∑
`=1

λr(k`)(x)µ`(X), ey(X) =

K∑
`=1

v(k`)λc(k`)(y)µ`(X).

If the prover can convince the verifier that ex(X), ey(X) are correctly computed, then
it can show that P (y, x) = σ by using the inner product argument to prove that the
sum of ex(X)ey(X) mod t(X) at K is σ.

22

Observe that ex(X) = λ(x)>Mxµ(X), ey(X) = λ(y)>Myµ(X), for some matrices
Mx,My with at most one non-zero element per column. To prove they are correctly
computed it suffices to design a CSS argument for these simple matrices. This can
be done in a much simpler way than in Marlin (and as in Lunar, that uses a similar
technique), who prove directly that a low degree extension of ex(X)ey(X) is correctly
computed (intuitively, theirs is a quadratic check that requires the indexer to pub-
lish more information, as verifiers can only do linear operations in the polynomials
output by it). Still, our technique is similar to theirs: given an arbitrary polynomial
ex(X) =

∑K
`=1 v(k`)λf(k`)(x)µ`(X), for some function f : K→ [m], we can “complete”

the Lagrange λf(k`)(x) with the missing term (x− hf(k`)) to get the vanishing polyno-
mial t(x). The key insight is that the low degree extension of these “completing terms”
is x− v1(X), where v1(X) =

∑K
`=1 hf(k`)µ`(X) can be computed by the indexer.

The encoding for sparse matrices requires K to be at least |M|, and generating a
field with this large multiplicative subgroup can be a problem. In the full version, we
consider a generalization to matrices M of a special form with sparsity KV , for any
V ∈ N. The interesting point is that communication complexity does not grow with V ,
and only the number of indexer polynomials grows (as 2V + 2). This generalization is
constructed from the argument for sums of basic matrices presented in Section 5.4.

We stress the importance of the linearization step: it not only allows for a simple
explanation of underlying techniques for the proving phase, but also for generalizations
such as the one in Section 5.4.

5.2 CSS Argument for Simple Matrices

Our basic building block is a CSS argument for matrices M = (mij) ∈ Fm×K with
at most one non-zero value in each column, in particular, |M| ≤ K. We define two
functions associated to M, v : K → F, f : K → [m]. Given an element k` ∈ K, v(k`) =
mf(k`),` 6= 0, i.e., function v outputs the only non zero value of column ` and f the corre-
sponding row; if such a value does not exist set v(k`) = 0 and f(k`) arbitrarily. We define
the polynomial P (X,Y) such that D(X) = P (X,x) as P (X,Y) = λ(Y)>Mµ(X). Ob-
serve that, by definition of v and f, P (X,Y) =

∑K
`=1 v(k`)λf(k`)(Y)µ`(X).

Offline Phase: ICSS
(
F,M

)
outputs WCSS = {v1(X), v2(X)}, where

v1(X) =

K∑
`=1

hf(k`)µ`(X), v2(X) = m−1
K∑
`=1

v(k`)hf(k`)µ`(X).

Online Phase: Sampling: VCSS outputs x ← F and PCSS sends D(X) =
P (X,x). ProveSampling: PCSS finds and outputs Hu(X) such that

D(X)
(
x− v1(X)

)
= t(x)v2(X) +Hu(X)u(X)

Decision Phase: Accept if and only if (1) degD(X) ≤ K − 1, and (2) D(X)
(
x−

v1(X)
)

= t(x)v2(X) +Hu(X)u(X).

Fig. 4. A simple CSS scheme for matrices with at most one non-zero element per
column.

23

Theorem 7. The argument of Figure 4 satisfies completeness and perfect soundness.

Proof. When evaluated in any k` ∈ K, the right side of the verification equation is
t(x)v2(k`) = t(x)v(k`)hf(k`)m

−1. Completeness follows from the fact that the left side
is:

D(k`)(x− v1(k`)) =
(
v(k`)λf(k`)(x)

)(
x− hf(k`)

)
= t(x)v(k`)m

−1hf(k`).

For soundness, note that the degree of D(X) is at most K − 1 and that the left side
of the verification is D(k`)(x − v1(k`)), so D(k`) = t(x)v(k`)m

−1hf(k`)(x − hf(k`))
−1 =

v(k`)λf(k`), for all k` ∈ K. Thus, D(X) =
∑K
`=1 v(k`)λf(k`)µ`(X). ut

5.3 CSS argument for Sparse Matrices

In this section, we present a CSS argument for matrices M that are sparse without any
restriction on the non-zero entries per column. We assume a set of roots of unity K such
that |M| ≤ K and define P (X,Y) =

∑K
`=1 v(k`)λr(k`)(Y)λc(k`)(X). As explained in the

overview, P (y, x) can be written as the inner product of two vectors that depend only
on x and y, and the low degree extensions of these vectors, ex(X), ey(X), are nothing
but the encodings of new matrices Mx and My in Fm×K that have at most one non-zero
element per column, so the basic CSS of Section 5.2 can be used to prove correctness.

Theorem 8. The argument of Figure 5 satisfies completeness and (2K+1)/|F|-soundness.

Proof. Completeness follows immediately and thus we only prove soundness. Although
it does so in a batched form, the prover is showing that the following equations are
satisfied,

ex(X)(x− vr(X)) = t(x)m−1vr(X) +Hu,x(X)u(X)

ey(X)(y − v1,c(X)) = t(y)v2,c(X) +Hu,y(X)u(X)

Kex(X)ey(X)− σ = XRu(X) + u(X)Hu,x,y(X),

Now, since all the left terms of the equations are defined before the verifier sends
z, by the Schwartz-Zippel lemma, with all but probability 3/|F|, the verifier accepts if
and only such Hu,x(X), Hu,y(X), Hu,x,y(X), Ru(X) exist.

Assuming they do, the rest of the proof is a consequence of (1) soundness of the pro-
tocol in Fig. 4, which implies that ex(X), ey(X) correspond to the correct polynomials
modulo u(X), and (2) Lemma 2 (see below) shows that if the last equation is satisfied,
and ex(X), ey(X) coincide with the honest polynomials modulo u(X), then σ = P (y, x).
Because the prover sends D(X) before receiving y and D(y) = σ, from the Schwartz-
Zippel lemma we have that, except with negligible probability, P (X,x) = D(X) and
the argument is sound. ut

Lemma 2. Given ex(X), ey(X) such that ex(X) =
∑K
`=1 λr(k`)(x)µ`(X) and ey(X) =∑K

`=1 v(k`)λc(k`)(y)µ`(X), P (y, x) =
∑K
`=1 v(k`)λc(k`)(y)λr(k`)(x) = σ if and only if

there exist polynomials Ru(X) ∈ F≤m−2[X], Hu,x,y(X) such that:

ex(X)ey(X)− σ/K = XRu(X) +Hu,x,y(X)u(X).

Proof. Note that ex(X)ey(X) =
K∑̀
=1

v(k`)λc(k`)(y)λr(k`)(x)µ`(X) mod u(X). By the

univariate sumcheck (Lemma 1), ex(X)ey(X) − σ/K is divisible by X if and only if
P (y, x) = σ, which concludes the proof. ut

24

Offline Phase: ICSS outputs WCSS =
(
vr(X), v1,c(X), v2,c(X)

)
, where:

vr(X) =

K∑
`=1

hr(k`)µ`(X),

v1,c(X) =

K∑
`=1

hc(k`)µ`(X), v2,c(X) = m−1
K∑
`=1

v(k`)hc(k`)µ`(X).

Online Phase: Sampling: VCSS sends x ← F, and P outputs D(X) = P (X,x),

for P (X,Y) =
K∑̀
=1

v(k`)λr(k`)(Y)λc(k`)(X).

ProveSampling: VCSS sends y ← F and PCSS outputs σ = D(y) and ex(X), ey(X),
where ex(X) =

∑K
`=1 λr(k`)(x)µ`(X), ey(X) =

∑K
`=1 v(k`)λc(k`)(y)µ`(X), VCSS sends

z ← F and PCSS computes Hu,x(X), Hu,y(X), Ru(X), Hu,x,y(X) such that:

ex(X)(x− vr(X)) = m−1t(x)vr(X) +Hu,x(X)u(X)

ey(X)(y − v1,c(X)) = t(y)v2,c(X) +Hu,y(X)u(X)

Kex(X)ey(X)− σ = XRu(X) + u(X)Hu,x,y(X),

It also defines Hu(X) = Hu,x,y(X) + zHu,x(X) + z2Hu,y(X), and outputs(
Ru(X), Hu(X)

)
.

Decision Phase: Accept if and only if (1) deg(Ru) ≤ K − 2, (2) D(y) = σ, and
(3) for ix(X) = (x− vr(X)), iy(X) = (y − v1,c(X))

(ex(X) + z2iy(X))(ey(X) + zix(X))− z3ix(X)iy(X)

− z2t(y)v2,c(X)− σ/K − zt(x)m−1vr(X) = XRu(X) +Hu(X)u(X).

Fig. 5. CSS argument for M, with K such that |M| ≤ |K|.

5.4 CSS Argument for Sums of Basic Matrices

In this section, we use M for a matrix in Fm×K that can be written as
∑V
i=1 Mi, with

each Mi having at most one non-zero element in each column. We define two functions
associated to each Mi, vi : K→ F, fi : K→ [m] as in Section 5.2. This type of matrices
will be used to design a generalization of the CSS argument for sums of sparse matrices
in the full version.

Define P (X,Y) = λ(Y)>Mµ(X), and D(X) = P (X,x). Observe that P (X,Y) =∑V
i=1

∑K
`=1 vi(k`)λfi(k`)(Y)µ`(X). Let S` = {fi(k`) : i ∈ [V]}, and Sc` = [K]− S`. The

intuition is that, since there are at most V non zero vi(k`) for each `, we can factor as:

P (k`, x) =

V∑
i=1

vi(k`)λfi(k`)(x) =
∏
s∈Sc

`

(x− hs)R`(x),

where R`(X) is a polynomial of degree V . So, to “complete” P (k`, x) to be a multiple
of t(x), we need to multiply it by

∏
s∈S`

(x− hs), and the result will be t(x)R`(x). The

trick is that Î`(Y) =
∏
s∈S`

(Y − hs), and R`(X) are polynomials of degrees V , V − 1,

25

respectively. Thus, if the indexer publishes the coefficients of these polynomials in the
monomial basis, they can be reconstructed by the verifier with coefficients 1, x, . . . , xV .

Offline Phase: ICSS
(
F,M

)
: Define the polynomials R̂`(Y), Î`(Y), and its coeffi-

cients R̂`j , Î`j :

R̂`(Y) =
1

m

V∑
i=1

vi(k`)hfi(k`)
∏

s∈S`−{fi(k`)}

(Y − hs) =

V−1∑
j=0

R̂`jY
j ,

Î`(Y) =
∏
s∈S`

(Y − hs) =

V∑
j=0

Î`jY
j .

Define

vR̂j (X) =

K∑
`=1

R̂`jµ`(X), vÎj (X) =

K∑
`=1

Î`jµ`(X).

Output WCSS =
{
{vÎj (X)}Vj=0, {vR̂j (X)}V−1

j=0

}
.

Online Phase: Sampling: VCSS outputs x ← F and PCSS computes D(X) =
P (X,x).

ProveSampling: PCSS finds and outputs Hu(X) such that, if R̂x(X) =∑V−1
j=0 xjvR̂j (X), and Îx(X) =

∑V
j=0 x

jvÎj (X),

D(X)Îx(X) = t(x)R̂x(X) +Hu(X)u(X).

Decision Phase: Accept if and only if (1) deg(D) ≤ K−1, and (2) D(X)Îx(X) =
t(x)R̂x(X) +Hu(X)u(X).

Fig. 6. A CSS scheme for matrices with at most V non-zero elements per column.

Theorem 9. The argument of Figure 6 satisfies completeness and perfect soundness.

Proof. When evaluated in any k` ∈ K, the right side of the verification equation is:

t(x)R̂x(x) =
t(x)

m

V∑
i=1

vi(k`)hfi(k`)
∏

s∈S`−{fi(k`)}

(x− hs)

=

V∑
i=1

vi(k`)
hfi(k`)
m

t(x)

x− hfi(k`)

∏
s∈S`

(x− hs) =
∏
s∈S`

(x− hs)
V∑
i=1

vi(k`)λfi(k`)(x).

The left side of the equation is D(k`)Îx(k`) =
(∑V

i=1 vi(k`)λfi(k`)(x)
)(∏

s∈S`
(x −

hs)
)
, so completeness is immediate. For soundness, if the verifier accepts D(X), then

D(k`)Îx(k`) = t(x)R̂x(k`) and Îx(k`) = Î`(x), therefore:

D(k`) = Î`(x)−1t(x)R̂`(x) =
(∏
s∈Sc

`

(x− hs)
)
R̂x(x) =

V∑
i=1

vi(k`)λfi(k`)(x).

26

We conclude that D(X) = P (X,x) mod u(X). Since both have degree at most K−1,
soundness is proven. ut

6 A zkSNARK for R1CS-lite

The PHP for R1CS-lite can be compiled to a (zk)SNARK for this relation via standard
techniques. Formally, since we have used the model of PHPs, this follows from The-
orem 6.1 in [13]. Concretely, when using for compilation the polynomial commitment
presented in Marlin (the variant secure in the AGM) and our PHP for R1CS-lite, the
theorem states that it is sufficient to prove that the PHP is honest-verifier bounded
zero-knowledge, where the bound for each oracle polynomial is the number of oracle
queries plus one.

The universal SRS of the zkSNARK will be srsu =
(
{[τ i]1}ρi=1, [τ]2

)
, and the derived

one srsW consists of the evaluation in x of the polynomials that ICSS outputs. Prover
and Verifier instantiate Plite and Vlite (for the PHP of Fig. 2 that achieves zero-knowledge
through the changes presented in Fig. 3), and all oracle polynomials output by Plite

are translated into polynomials evaluated (in the source group) at τ . For all degree
checks with deg(p) < dg, dg < ρ, the prover sends a single extra polynomial and field
element, while checks for dg ≥ ρ are for free. For each polynomial equation, prover
sends extra field elements corresponding to evaluations (or openings) of some of the
polynomials involved on it (maximum one per quadratic term, due to the procedure
stated in [20] attributed to M. Maller). There are several ways to do this compilation
check, but to optimize efficiency the choices are quite standard (for instance, only
A′(X) or B′(X), should be opened). All the openings at one point as well as the
degrees of the opened polynomials can be proven with one group element and verified
with one pairing. Prover’s work includes running Plite as well as the computation of
the polynomial commitment opening procedures. Verifier work is also Vlite plus the
(batched) verification procedure of the polynomial commitments. The vector of queries
is (bA, bB , bRt , bHt) = (1, 0, 1, 0).

On the other hand, we write the matrix W that expresses the constraints as:

W =

 Im 0m×n 0m×m 0m×n −F 0m×n
0m×m 0m×n Im 0m×n −G 0m×n

0>m 1>n 0>m 1>n 0>m×m 0>m×n

 =

I′ 0 F′

0 I′ G′

w w 0

 ,

where I′,F′,G′ are of size m× (m+ n), w is a row vector of length m+ n.
Our PHP is built generically for any CSS scheme, but concrete efficiency depends

on the specifics of the latter and also how the blocks of rows of W are combined
into it. The last constraint will always be treated separately (to exploit the symmetry
of the other blocks), and because of its simple form, the verifier can compute the
corresponding D(X) = (

∑m+n
i=m+1 λi(x),

∑m+n
i=m+1 λi(x), 0) itself, and combine it with

the rest by adding (see Section 4.4). Below we discuss concrete costs of each of the CSS
arguments for the other two blocks.

For the sparse matrice construction of Fig. 5, we assume that K ≥ 2m, which sets
ρ = K − 1. This eliminates the degree checks for ex(X), ey(X), Ru(X). Assuming K ≥
|F|+|G|, the indexer is run for a matrix F+ZG, where Z is a variable and thus outputs
one polynomial vr(X), one polynomial v1,c(X) but two polynomials vF2,c(X), vG2,c(X)
that will let the verifier construct v2,c(X) = vF2,c(X)+zvG2,c(X) after choosing challenge
z. For I′ it is not necessary to run a CSS argument, as for this block the corresponding

27

polynomial D(X) is DI′(X) =
∑m
i=1 λi(x)λi(X) and thus DI′(y) can be calculated by

the verifier in logm time as (xt(y)− yt(x))/(x− y)−
∑m+n
i=m+1 λi(x)λi(y).

References

1. B. Abdolmaleki, K. Baghery, H. Lipmaa, and M. Zajac. A subversion-resistant
SNARK. In T. Takagi and T. Peyrin, editors, ASIACRYPT 2017, Part III, vol-
ume 10626 of LNCS, pages 3–33, Hong Kong, China, Dec. 3–7, 2017. Springer,
Heidelberg, Germany. 5

2. S. Ames, C. Hazay, Y. Ishai, and M. Venkitasubramaniam. Ligero: Lightweight
sublinear arguments without a trusted setup. In B. M. Thuraisingham, D. Evans,
T. Malkin, and D. Xu, editors, ACM CCS 2017, pages 2087–2104, Dallas, TX,
USA, Oct. 31 – Nov. 2, 2017. ACM Press. 1, 6

3. E. Ben-Sasson, I. Bentov, Y. Horesh, and M. Riabzev. Scalable, transparent, and
post-quantum secure computational integrity. Cryptology ePrint Archive, Report
2018/046, 2018. https://eprint.iacr.org/2018/046. 1, 6

4. E. Ben-Sasson, I. Bentov, Y. Horesh, and M. Riabzev. Scalable zero knowledge
with no trusted setup. In A. Boldyreva and D. Micciancio, editors, CRYPTO 2019,
Part III, volume 11694 of LNCS, pages 701–732, Santa Barbara, CA, USA,
Aug. 18–22, 2019. Springer, Heidelberg, Germany. 1

5. E. Ben-Sasson, A. Chiesa, M. Riabzev, N. Spooner, M. Virza, and N. P. Ward. Au-
rora: Transparent succinct arguments for R1CS. In Y. Ishai and V. Rijmen, editors,
EUROCRYPT 2019, Part I, volume 11476 of LNCS, pages 103–128, Darmstadt,
Germany, May 19–23, 2019. Springer, Heidelberg, Germany. 3, 4, 6, 11, 13

6. E. Ben-Sasson, A. Chiesa, and N. Spooner. Interactive oracle proofs. In M. Hirt
and A. D. Smith, editors, TCC 2016-B, Part II, volume 9986 of LNCS, pages
31–60, Beijing, China, Oct. 31 – Nov. 3, 2016. Springer, Heidelberg, Germany. 5

7. M. Blum, P. Feldman, and S. Micali. Non-interactive zero-knowledge and its ap-
plications (extended abstract). In 20th ACM STOC, pages 103–112, Chicago, IL,
USA, May 2–4, 1988. ACM Press. 1

8. J. Bootle, A. Cerulli, P. Chaidos, J. Groth, and C. Petit. Efficient zero-knowledge
arguments for arithmetic circuits in the discrete log setting. In M. Fischlin and
J.-S. Coron, editors, EUROCRYPT 2016, Part II, volume 9666 of LNCS, pages
327–357, Vienna, Austria, May 8–12, 2016. Springer, Heidelberg, Germany. 1, 3, 6

9. S. Bowe, A. Gabizon, and M. D. Green. A multi-party protocol for constructing the
public parameters of the pinocchio zk-SNARK. In A. Zohar, I. Eyal, V. Teague,
J. Clark, A. Bracciali, F. Pintore, and M. Sala, editors, FC 2018 Workshops, vol-
ume 10958 of LNCS, pages 64–77, Nieuwpoort, Curaçao, Mar. 2, 2019. Springer,
Heidelberg, Germany. 1

10. S. Bowe, A. Gabizon, and I. Miers. Scalable multi-party computation for zk-
SNARK parameters in the random beacon model. Cryptology ePrint Archive,
Report 2017/1050, 2017. http://eprint.iacr.org/2017/1050. 1

11. B. Bünz, J. Bootle, D. Boneh, A. Poelstra, P. Wuille, and G. Maxwell. Bulletproofs:
Short proofs for confidential transactions and more. In 2018 IEEE Symposium on
Security and Privacy, pages 315–334, San Francisco, CA, USA, May 21–23, 2018.
IEEE Computer Society Press. 1, 6

12. B. Bünz, B. Fisch, and A. Szepieniec. Transparent SNARKs from DARK compilers.
In A. Canteaut and Y. Ishai, editors, EUROCRYPT 2020, Part I, volume 12105
of LNCS, pages 677–706, Zagreb, Croatia, May 10–14, 2020. Springer, Heidelberg,
Germany. 2

28

https://eprint.iacr.org/2018/046
http://eprint.iacr.org/2017/1050

13. M. Campanelli, A. Faonio, D. Fiore, A. Querol, and H. Rodŕıguez. Lunar: a
toolbox for more efficient universal and updatable zkSNARKs and commit-and-
prove extensions. Cryptology ePrint Archive, Report 2020/1069, 2020. https:

//eprint.iacr.org/2020/1069. 2, 4, 5, 6, 8, 13, 19, 20, 27
14. A. Chiesa, Y. Hu, M. Maller, P. Mishra, N. Vesely, and N. P. Ward. Marlin:

Preprocessing zkSNARKs with universal and updatable SRS. In A. Canteaut and
Y. Ishai, editors, EUROCRYPT 2020, Part I, volume 12105 of LNCS, pages 738–
768, Zagreb, Croatia, May 10–14, 2020. Springer, Heidelberg, Germany. 2, 4, 5, 8,
13, 19

15. A. Chiesa, D. Ojha, and N. Spooner. Fractal: Post-quantum and transparent
recursive proofs from holography. In A. Canteaut and Y. Ishai, editors, EURO-
CRYPT 2020, Part I, volume 12105 of LNCS, pages 769–793, Zagreb, Croatia,
May 10–14, 2020. Springer, Heidelberg, Germany. 1

16. V. Daza, C. Ràfols, and A. Zacharakis. Updateable inner product argument with
logarithmic verifier and applications. In A. Kiayias, M. Kohlweiss, P. Wallden,
and V. Zikas, editors, PKC 2020, Part I, volume 12110 of LNCS, pages 527–557,
Edinburgh, UK, May 4–7, 2020. Springer, Heidelberg, Germany. 2

17. G. Fuchsbauer. Subversion-zero-knowledge SNARKs. In M. Abdalla and R. Dahab,
editors, PKC 2018, Part I, volume 10769 of LNCS, pages 315–347, Rio de Janeiro,
Brazil, Mar. 25–29, 2018. Springer, Heidelberg, Germany. 5

18. G. Fuchsbauer, E. Kiltz, and J. Loss. The algebraic group model and its applica-
tions. In H. Shacham and A. Boldyreva, editors, CRYPTO 2018, Part II, volume
10992 of LNCS, pages 33–62, Santa Barbara, CA, USA, Aug. 19–23, 2018. Springer,
Heidelberg, Germany. 5, 10, 11

19. A. Gabizon. AuroraLight: Improved prover efficiency and SRS size in a sonic-like
system. Cryptology ePrint Archive, Report 2019/601, 2019. https://eprint.

iacr.org/2019/601. 2
20. A. Gabizon, Z. J. Williamson, and O. Ciobotaru. PLONK: Permutations over

lagrange-bases for oecumenical noninteractive arguments of knowledge. Cryptology
ePrint Archive, Report 2019/953, 2019. https://eprint.iacr.org/2019/953. 2,
4, 5, 8, 27

21. S. Garg, M. Mahmoody, D. Masny, and I. Meckler. On the round complexity of
OT extension. In H. Shacham and A. Boldyreva, editors, CRYPTO 2018, Part III,
volume 10993 of LNCS, pages 545–574, Santa Barbara, CA, USA, Aug. 19–23, 2018.
Springer, Heidelberg, Germany. 8

22. R. Gennaro, C. Gentry, B. Parno, and M. Raykova. Quadratic span programs and
succinct NIZKs without PCPs. In T. Johansson and P. Q. Nguyen, editors, EURO-
CRYPT 2013, volume 7881 of LNCS, pages 626–645, Athens, Greece, May 26–30,
2013. Springer, Heidelberg, Germany. 1, 2, 13, 19

23. S. Goldwasser, S. Micali, and C. Rackoff. The knowledge complexity of interactive
proofs. In SIAM Journal on Computing, pages 186–208, 1989. 1

24. J. Groth. Linear algebra with sub-linear zero-knowledge arguments. In S. Halevi,
editor, CRYPTO 2009, volume 5677 of LNCS, pages 192–208, Santa Barbara, CA,
USA, Aug. 16–20, 2009. Springer, Heidelberg, Germany. 3

25. J. Groth. Short pairing-based non-interactive zero-knowledge arguments. In
M. Abe, editor, ASIACRYPT 2010, volume 6477 of LNCS, pages 321–340, Sin-
gapore, Dec. 5–9, 2010. Springer, Heidelberg, Germany. 1

26. J. Groth. On the size of pairing-based non-interactive arguments. In M. Fischlin
and J.-S. Coron, editors, EUROCRYPT 2016, Part II, volume 9666 of LNCS, pages
305–326, Vienna, Austria, May 8–12, 2016. Springer, Heidelberg, Germany. 1

29

https://eprint.iacr.org/2020/1069
https://eprint.iacr.org/2020/1069
https://eprint.iacr.org/2019/601
https://eprint.iacr.org/2019/601
https://eprint.iacr.org/2019/953

27. J. Groth, M. Kohlweiss, M. Maller, S. Meiklejohn, and I. Miers. Updatable and uni-
versal common reference strings with applications to zk-SNARKs. In H. Shacham
and A. Boldyreva, editors, CRYPTO 2018, Part III, volume 10993 of LNCS, pages
698–728, Santa Barbara, CA, USA, Aug. 19–23, 2018. Springer, Heidelberg, Ger-
many. 2, 5

28. Y. Ishai. Zero-knowledge proofs from information theoretic proof sys-
tems. In Zkproofs Blog, https://zkproof.org/2020/08/12/information-theoretic-
proof-systems/, 2020. 2

29. C. S. Jutla and A. Roy. Shorter quasi-adaptive NIZK proofs for linear subspaces. In
K. Sako and P. Sarkar, editors, ASIACRYPT 2013, Part I, volume 8269 of LNCS,
pages 1–20, Bengalore, India, Dec. 1–5, 2013. Springer, Heidelberg, Germany. 3

30. A. Kate, G. M. Zaverucha, and I. Goldberg. Constant-size commitments to poly-
nomials and their applications. In M. Abe, editor, ASIACRYPT 2010, volume
6477 of LNCS, pages 177–194, Singapore, Dec. 5–9, 2010. Springer, Heidelberg,
Germany. 2, 5

31. A. Kattis, K. Panarin, and A. Vlasov. RedShift: Transparent SNARKs from list
polynomial commitment IOPs. Cryptology ePrint Archive, Report 2019/1400,
2019. https://eprint.iacr.org/2019/1400. 2

32. J. Kilian. A note on efficient zero-knowledge proofs and arguments (extended
abstract). In 24th ACM STOC, pages 723–732, Victoria, BC, Canada, May 4–6,
1992. ACM Press. 1

33. M. Maller, S. Bowe, M. Kohlweiss, and S. Meiklejohn. Sonic: Zero-knowledge
SNARKs from linear-size universal and updatable structured reference strings. In
L. Cavallaro, J. Kinder, X. Wang, and J. Katz, editors, ACM CCS 2019, pages
2111–2128. ACM Press, Nov. 11–15, 2019. 2, 4, 5

34. S. Micali. The knowledge complexity of interactive proofs. In SIAM Journal on
Computing 30 (4), pages 1253–1298, 2000. 1

35. P. Morillo, C. Ràfols, and J. L. Villar. The kernel matrix Diffie-Hellman assump-
tion. In J. H. Cheon and T. Takagi, editors, ASIACRYPT 2016, Part I, volume
10031 of LNCS, pages 729–758, Hanoi, Vietnam, Dec. 4–8, 2016. Springer, Heidel-
berg, Germany. 15

36. C. Papamanthou, E. Shi, and R. Tamassia. Signatures of correct computation. In
A. Sahai, editor, TCC 2013, volume 7785 of LNCS, pages 222–242, Tokyo, Japan,
Mar. 3–6, 2013. Springer, Heidelberg, Germany. 4, 22

37. S. Setty. Spartan: Efficient and general-purpose zkSNARKs without trusted setup.
In D. Micciancio and T. Ristenpart, editors, CRYPTO 2020, Part III, volume
12172 of LNCS, pages 704–737, Santa Barbara, CA, USA, Aug. 17–21, 2020.
Springer, Heidelberg, Germany. 2, 6

38. A. Szepieniec and Y. Zhang. Polynomial iops for linear algebra relations. Cryp-
tology ePrint Archive, Report 2020/1022, 2020. https://eprint.iacr.org/2020/
1022. 2, 4, 19

39. R. S. Wahby, I. Tzialla, a. shelat, J. Thaler, and M. Walfish. Doubly-efficient
zkSNARKs without trusted setup. In 2018 IEEE Symposium on Security and Pri-
vacy, pages 926–943, San Francisco, CA, USA, May 21–23, 2018. IEEE Computer
Society Press. 1, 6

40. T. Xie, J. Zhang, Y. Zhang, C. Papamanthou, and D. Song. Libra: Succinct zero-
knowledge proofs with optimal prover computation. In A. Boldyreva and D. Mic-
ciancio, editors, CRYPTO 2019, Part III, volume 11694 of LNCS, pages 733–764,
Santa Barbara, CA, USA, Aug. 18–22, 2019. Springer, Heidelberg, Germany. 1

30

https://eprint.iacr.org/2019/1400
https://eprint.iacr.org/2020/1022
https://eprint.iacr.org/2020/1022

	An Algebraic Framework for Universal and Updatable SNARKs

