
Limits on the Adaptive Security of Yao’s Garbling

Chethan Kamath1?, Karen Klein2??, Krzysztof Pietrzak2??, and Daniel
Wichs3? ? ?

1 ckamath@protonmail.com
2 IST Austria {kklein,pietrzak}@ist.ac.at

3 Northeastern University and NTT Research wichs@northeastern.edu

Abstract. Yao’s garbling scheme is one of the most fundamental crypto-
graphic constructions. Lindell and Pinkas (Journal of Cryptograhy 2009)
gave a formal proof of security in the selective setting where the adversary
chooses the challenge inputs before seeing the garbled circuit assuming
secure symmetric-key encryption (and hence one-way functions). This
was followed by results, both positive and negative, concerning its secu-
rity in the, stronger, adaptive setting. Applebaum et al. (Crypto 2013)
showed that it cannot satisfy adaptive security as is, due to a simple in-
compressibility argument. Jafargholi and Wichs (TCC 2017) considered
a natural adaptation of Yao’s scheme (where the output mapping is sent
in the online phase, together with the garbled input) that circumvents
this negative result, and proved that it is adaptively secure, at least for
shallow circuits. In particular, they showed that for the class of circuits
of depth δ, the loss in security is at most exponential in δ. The above
results all concern the simulation-based notion of security.
In this work, we show that the upper bound of Jafargholi andWichs is ba-
sically optimal in a strong sense. As our main result, we show that there
exists a family of Boolean circuits, one for each depth δ ∈ N, such that
any black-box reduction proving the adaptive indistinguishability of the
natural adaptation of Yao’s scheme from any symmetric-key encryption
has to lose a factor that is exponential in

√
δ. Since indistinguishability

is a weaker notion than simulation, our bound also applies to adaptive
simulation.
To establish our results, we build on the recent approach of Kamath
et al. (Eprint 2021), which uses pebbling lower bounds in conjunction
with oracle separations to prove fine-grained lower bounds on loss in
cryptographic security.

? Most of the work was done while the author was at Northeastern University, sup-
ported by the IARPA grant IARPA/2019-19-020700009, and Charles University,
funded by project PRIMUS/17/SCI/9.

?? Funded by the European Research Council (ERC) under the European Union’s Hori-
zon 2020 research and innovation programme (682815 - TOCNeT).

? ? ? Research supported by NSF grant CNS-1750795 and the Alfred P. Sloan Research
Fellowship.

1 Introduction

A garbling scheme allows one to garble a circuit C and an input x such that only
the output C(x) can be learned while everything else – besides some leakage
such as the size or topology of the circuit – remains hidden. It was originally
used by Yao as a means to achieve secure function-evaluation [17,18]. Despite its
huge impact on cryptography, it was formally defined as a stand-alone primitive
only much later by Bellare, Hoang and Rogaway [6]. In addition to a syntac-
tic definition, they propose two different security notions for garbling schemes:
simulatability and indistinguishability. They show the equivalence of the two
definitions4 in the presence of a selective adversary, which sends the circuit and
input to be garbled in one shot. In contrast, for the more general case in which
the adversary first – in an offline phase – chooses a circuit C and then (after
receiving its garbling) – in the online phase – adaptively chooses its input x, the
notion of indistinguishability turns out to be strictly weaker than simulatability.
Many applications require security in such an adaptive setting, and for the sake
of efficiency the cost during the online phase is to be kept minimal.

Prior work on security. Whilst there exist several constructions of provably-
secure (even in the adaptive sense) garbling schemes (see Section 1.3), a feature
of Yao’s scheme (and variants thereof) is that security can be proven under
the minimal assumption of one-way functions. At the same time, this scheme
offers almost-optimal online complexity, with the size of the garbled input being
linear in the input-size, and independent of the output- as well as circuit-size. A
formal security proof of Yao’s scheme in the selective setting was given by Lindell
and Pinkas [16]. There exists a generic approach to reduce adaptive security to
selective security: the adaptive reduction simply guesses the input x and then
runs the selective reduction on the adaptive adversary. This, unfortunately, leads
to a loss in security that is exponential in |x|. Furthermore, Applebaum et al. [3]
showed that the online complexity of any adaptively-simulatable garbling scheme
must exceed the output-size of the circuit, thereby proving a first limitation of
Yao’s scheme.

All of this led Jafargholi and Wichs [14] to consider a natural adaptation of
Yao’s garbling scheme (described in Section 1.1), where the mapping of output
labels to output bits is sent in the online phase as part of the garbled input
(see below for the construction). The negative result by Applebaum et al. does
not apply to this adaptation of Yao’s garbling scheme since its online complex-
ity exceeds the output size. Therefore, this adaptation is the natural version of
Yao’s garbling scheme for the case of adaptive security, and is the scheme that
we consider in this work and will simply refer to as “Yao’s garbling” from now
on. Jafargholi and Wichs [14] were able to show that it satisfies adaptive se-
curity for a wide class of circuits, including NC1 circuits. More precisely, they
4 In the security game for simulatability, the simulator has to simulate C̃ given only the
output y = C(x) and some leakage Φ(C). While equivalence of selective simulatability
and selective indistinguishability holds for the most natural leakage functions (e.g.
the size or topology of C), it does not hold for arbitrary leakage functions Φ.

2

prove adaptive security of Yao’s garbling via a black-box reduction to the IND-
CPA security of the underlying symmetric-key encryption (SKE) scheme with
a loss in security that is exponential in the depth of the circuit. Their proof
employs a specially tailored pebble game on graphs, and is an application of the
piecewise-guessing framework of Jafargholi et al. [11]. Since our work concerns
the optimality of this proof, let’s look at it in a bit more detail.

1.1 Yao’s Scheme and Adaptive Indistinguishability

Let’s first informally recall Yao’s garbling scheme. A circuit C : {0, 1}n → {0, 1}`
is garbled in the offline phase as follows:

1. For each wire w in C, choose a pair of secret keys k0
w, k

1
w ← Gen(1λ) for a

SKE (Gen,Enc,Dec).
2. For every gate g : {0, 1} × {0, 1} → {0, 1} with left input wire u, right input

wire v, and output wire w, compute a garbling table g̃ consisting of the
following four ciphertexts (in a random order).

c1 := Enck0u(Enck0v (kg(0,0)
w)) c2 := Enck1u(Enck0v (kg(1,0)

w))

c3 := Enck0u(Enck1v (kg(0,1)
w)) c4 := Enck1u(Enck1v (kg(1,1)

w))
(1)

3. If C has s wires and output wires denoted by ws−`+1, . . . , ws, assemble the
output mapping {kbw → b}i∈[s−`+1,s], b∈{0,1}.

The garbled circuit C̃ consists of all the garbling tables g̃ as well as the output
mapping. To garble an input x = (b1, . . . , bn) in the online phase, simply set

x̃ := (kb1w1
, . . . , kbnwn)

where wi denotes the ith input wire. The only difference in the variant from
[14] is that the sending of the output mapping is moved to the online phase,
which leads to an increase in the online complexity to linear in the input- and
output-size.

To evaluate the garbled circuit on the garbled input, one requires the follow-
ing special property of the SKE: For each ciphertext c ← Enck(m) there exists
a unique key – namely k – such that decryption doesn’t fail. Evaluation of the
garbled circuit given the garbled input then works starting from the gates at
the lowest level by simply trying which of the four ciphertexts can be decrypted
using the two given input keys. This allows to recover exactly one of the two keys
associated to the output wire of the respective gate and in the end the output
mapping is used to map the sequence of revealed output keys to an output string
y ∈ {0, 1}`.

Adaptive indistinguishability. A garbling scheme is adaptively indistinguishable
if no efficient adversary can succeed in the following experiment5 with non-
negligible advantage:
5 In fact, we define a weaker security notion than indistinguishability as defined in [6];
according to their definition the adversary can choose two circuits C0,C1 of the same

3

1. The adversary submits a circuit C to the challenger, who responds with C̃.
2. The adversary then submits a pair of inputs (x0, x1).
3. The challenger flips a coin b and responds with x̃b.
4. The adversary wins if it guesses the bit b correctly.

In the following, we will refer to the two games for b = 0 and b = 1 as the “left”
and “right” games, respectively.

To prove adaptive indistinguishability6 of Yao’s scheme for an arbitrary SKE
(satisfying the special property), Jafargholi and Wichs construct a black-box re-
duction from the IND-CPA security of the SKE. More precisely, they proceed by
a hybrid argument, where they define a sequence of hybrid games interpolating
between the left and the right game such that each pair of subsequent hybrid
games only differs in a single ciphertext (in the garbling table) and can be proven
indistinguishable by relying on the IND-CPA security of the SKE.

The loss in security incurred by such a reduction then depends on the length
of the sequence and the amount of information required to simulate the hybrid
games. To end up with a meaningful security guarantee, thus, the sequence of
hybrid games must not be too long and it must be possible to simulate any
of the hybrid games without relying on too much information, particularly the
knowledge of the entire input. Jafargholi and Wichs design such a sequence
of hybrid games by using an appropriate pebble game on the topology graph
underlying the circuit. In that game, a pebble on a gate indicates that the gate
is not honestly garbled (as in Equation (1)) but is, instead, garbled in some
input-dependent mode. The pebble rules, which dictate when a pebble can be
placed on or removed from a vertex, guarantee that two subsequent hybrids
can be proven indistinguishable, and the loss in security directly relates to the
number of pebbles on the graph.

Keeping this proof technique in mind, the main idea of this work is to turn
a pebble lower bound (w.r.t. an appropriate pebble game) into a lower bound
on the security loss inherent to any black-box reduction of adaptive indistin-
guishability of Yao’s scheme. Such an approach was recently adopted by Kamath
et al. [15], also in the context of adaptive security but for primitives that are
of a different flavour (e.g., multi-cast encryption). However, the case of garbled
circuits turns out very different for several reasons we will highlight later (see
Section 2.5).

1.2 Our Results

We prove a lower bound on the loss in security incurred by any black-box re-
duction proving adaptive indistinguishability of Yao’s garbling scheme [14] from
IND-CPA security of the SKE scheme. This immediately implies a similar lower

topology and inputs x0, x1 such that C0(x0) = C1(x1). Aiming at a lower bound on
the gap between the security of Yao’s scheme and the security of the underlying SKE,
the additional restriction we put on our adversary only strengthens our results.

6 To be precise, [14] prove the stronger security notion of simulatability, which implies
indistinguishability.

4

bound with respect to the (stronger) more common security notion of adaptive
simulatability. Our lower bound is subexponential in the depth d of the circuit,
hence almost matches the best known upper bound from [14].

Theorem (main, Theorem 4.1). Any black-box reduction from adaptive in-
distinguishability (and thus also simulatability) of Yao’s garbling scheme on the
class of circuits with input length n and depth δ ≤ 2n to the IND-CPA security
of the underlying SKE loses at least a factor loss = 1

q · 2
√
δ/61, where q denotes

the number of times the reduction rewinds the adversary.

Two remarks concerning the theorem are in order. Firstly, we are proving a
negation of the statement in [14], which upper bounds loss for every graph in
a class. Therefore, when we say that the class of circuits above loses at least a
factor loss, we mean that there exists some circuit G in that class such that any
reduction loses by that factor (and not that every circuit in that class loses by
that factor). The design of this circuit G is one of the main technical contributions
of this work. The second remark concerns the design of this circuit G. In addition
to some structural properties that we will come to later, we design G to output
the constant bit 0. This implies that the output mapping can easily be guessed
by a reduction, and therefore the difference, in this case, between Yao’s original
scheme and [14] is only marginal.

Comparison with Applebaum et al. [3]. The result in [3] rules out adaptively-
simulatable randomised encodings with online complexity less than the output-
size of the function it encodes. Since Yao’s garbling is one instantiation of ran-
domised encodings, their result immediately rules out its adaptive simulatability.
However, [3] does not apply to our setting for three reasons. Firstly, their re-
sult only applies to the original construction of Yao’s garbled circuits where the
garbled input can be smaller than the output size. In this work we consider the
adaptation of Yao’s garbling scheme [14] where the output mapping is sent in
the online phase, hence the online complexity always exceeds the output size.
Secondly, their result applies to circuits with large output, while our result holds
even for Boolean circuits with outputs of length 1. Finally, their result only ap-
plies to simulation security, while our result even holds for indistinguishability.

Comparison with Hemenway et al. [10]. We would like to emphasise that our
lower bound only holds for the specific construction of Yao’s garbled circuits, and
it does not rule out other constructions, even potentially from one-way functions.
In fact, the construction of Hemenway et al. already circumvents our result and
it is instructive to see how. On a high level, their idea (similar to [5]) is to take
Yao’s garbling scheme and then encrypt all the resulting garbling tables with an
additional layer of “somewhere equivocal” encryption on top. This change allows
them to prove adaptive security with only a polynomial loss in security (at the
cost of increased online complexity). The intuitive reason why our approach does
not apply to this construction is that the additional layer of encryption somehow
“blurs out” all the details about the individual garbling tables, on which our
argument depends (see Section 2.4).

5

1.3 Further Related Work on Adaptive Security

Adaptive security for garbled circuits. The problem of constructing adaptively-
secure garbling schemes was first raised by Bellare, Hoang and Rogaway in [5];
they gave a first adaptively-secure construction in the random oracle model,
which bypasses the lower bound of Applebaum et al. [3]. Bellare, Hoang and
Keelveedhi [4] then proved the previous scheme adaptively-secure in the stan-
dard model, but under non-standard assumptions on hash functions. Further
constructions from various assumption followed: Boneh et al. [7] constructed
an adaptively-secure scheme from the learning with errors (LWE) assumption,
where the online complexity depends on the depth of the circuit family. Ananth
and Sahai [2] constructed an optimal garbling scheme from iO. In [13], Jafargholi
et al. relax the simulation-based security to indistinguishability and show how
to construct adaptively-secure garbling schemes from the minimal assumption of
one-way functions, where the online complexity only depends on the pebble com-
plexity and the input-size, but is independent of the output-size. Later, Ananth
and Lombardi [1] constructed succinct garbling schemes from functional encryp-
tion. A particularly strong result in this area was due to Garg and Srinivasan
[9], who constructed adaptively-secure garbling with near optimal online com-
plexity that can be based on standard assumptions such as the computational
Diffie-Hellman (CDH), the factoring, or the LWE assumption. While this list is
far from complete, we finally mention a recent work by Jafargholi and Oechsner
[12] who analyze adaptive security of several practical garbling schemes. They
give positive as well as negative results, and argue why the techniques from [14]
cannot be applied to certain garbling schemes.

Adaptive security for other graph-based games. Jafargholi et al. gave a framework
for proving adaptive security [11], also known as piecewise guessing technique.
Beside several applications to other graph-based security games, this framework
also comprises the reduction from [14] as a special case. Kamath et al. [15]
considered optimality of this approach for certain graph-based games which arise
in the context of e.g., multicast encryption, continuous group key agreement, and
constrained PRF. They gave non-trivial fine-grained lower bounds on the loss in
adaptive security incurred by (oblivious) reductions via pebble lower bounds.

2 Technical Overview

We aim to prove fine-grained lower bounds on loss in security incurred by black-
box reductions in a setting where a primitive F is used in a protocol ΠF . In
our case F is SKE and ΠF is Yao’s garbling scheme using the SKE. In order
to bound loss, the loss in security incurred by any efficient black-box reduction
R that breaks F when given black-box access to an adversary that breaks ΠF

(i.e., from F to ΠF), we must show that for every R, there exists

– an instance F (not necessarily efficiently-implementable) of F and
– an adversary A (not necessarily efficient) that breaks ΠF

6

such that loss in security incurred by R in breaking F is at least loss.7 We next
describe how the instance and the adversary are defined in our setting.

2.1 Our Oracles

We define two oracles F and A implementing an ideal SKE and an adversary,
respectively, such that

– the SKE scheme F = (Gen,Enc,Dec) satisfies IND-CPA security information-
theoretically,

– the (inefficient) adversaryA breaks indistinguishability of the garbling scheme
ΠF , but is not helpful in breaking the IND-CPA security of F .

Ideal encryption. We will define the ideal SKE oracle F such that Enc is defined
through a random expanding function (which is injective with overwhelming
probability). Since the security of F is information-theoretic, any advantage
against IND-CPA which a reduction with oracle access to F and A obtains
must stem (almost) entirely from the interaction with A. This is true since the
reduction can only make polynomially many queries and thus the probability
that the answer to one of its oracle queries coincides with the IND-CPA challenge
is negligible. On the other hand, a computationally unbounded adversary using
an unlimited number of queries can break the scheme and (thanks to injectivity)
perfectly recover messages and secret keys from any ciphertext.

The adversary. As for the (inefficient) adversary A, we define a so-called thresh-
old adversary which does the following in the indistinguishability game:

1. A chooses a particular circuit G (see Section 2.3) which has constant output
(bit) 0 and sends G to the challenger.

2. After receiving the garbled circuit G̃, A chooses garbling inputs x0 and x1

uniformly at random and sends them to the challenger. Note that G(x0) =
G(x1) trivially holds since G has constant output.

3. On receipt of the garbled input x̃b along with an output mapping, A first
runs some initial checks on (G̃, x̃b) to verify that the garbling has the correct
syntax, and then extracts a pebble configuration P on G (see Section 2.4).
That is, every gate in G is either assigned a pebble or not, depending on the
content of its garbling table in G̃ and the garbled input x̃b. To compute this
mapping, the inefficient adversary A simply breaks the underlying encryp-
tion by brute force. Finally, A outputs 0 (denoting ‘left’) if the extracted
pebble configuration is good (defined later through some pebble game), and
1 (denoting ‘right’) otherwise.

7 This is obtained by simply negating the definition of a black-box reduction: there
exists an efficient reduction R for every implementation (not necessarily efficient) F
of F and for every (not necessarily efficient) adversary A that breaks ΠF such that
the loss in security is at most loss.

7

By design, the left indistinguishability game (where b = 0) will correspond to
a good configuration, whereas the right game will not. Therefore the above ad-
versary is a valid distinguisher for the indistinguishability game (Lemma 4.5).
Moreover, A concentrates all its distinguishing advantage at the threshold of
good and bad configurations (hence the name). Therefore, intuitively speaking,
for any reduction to exploit A’s distinguishing advantage, it must somehow em-
bed its own (IND-CPA) challenge at the threshold. All the technicality in proving
our main theorem goes into formalising this intuition, which we summarise next
in Section 2.2.

2.2 High-Level Idea

To prove a lower bound on loss (Theorem 4.1), we construct a punctured adver-
sary A[c∗] (see Section 4.5) which behaves similar to A except when it comes to
the hardcoded challenge ciphertext c∗ ← Enck∗(m) (for some arbitrary message
m). We aim to puncture A[c∗] such that it never decrypts c∗ but instead just
proceeds by assuming that c∗ decrypts to the all-0 string, and hence cannot be
of any help to a reduction that aims to break c∗. However, we have to be careful
here since the reduction embedding c∗ in G̃ will also embed other ciphertexts
under key k∗ (which it can derive through querying its IND-CPA encryption
oracle Enck∗), and hence A[c∗] would learn the key k∗ when brute-force decrypt-
ing these ciphertexts. We solve this issue by endowing A[c∗] with a decryption
oracle Deck∗ that allows to find and decrypt those ciphertexts under k∗. Since
our ideal encryption scheme actually satisfies the stronger notion of IND-CCA
security, this decryption oracle is of no help to the reduction.

The core of our lower bound is now to define the circuit G and the notion of
good pebble configurations such that the following holds:

– Our threshold adversary A indeed breaks the garbling scheme.
– It is hard to distinguish A from A[c∗].

For the latter property, note that any efficient reduction R can only distinguish
A from A[c∗] if their outputs differ, which only happens if they extract different
pebbling configurations P 6= P∗ such that one of them is good and the other bad.
Thus, to bound the success probability of R, it suffices to establish the following
two properties:

1. The pebbling configurations P and P∗ extracted by A and A[c∗] (in the
same execution of the game, using the same randomness) differ by at most
one valid pebbling move in some natural pebble game8, where a pebble can
be placed on or removed from a gate if at least one of its parent gates carries
a pebble.

8 In Section 4.3 we actually consider a much more finegrained pebble game, where
different types of pebbles represent different garbling modes of a gate. For this ex-
position, it suffices to focus on this simplified game.

8

2. It is hard for any reduction to produce (G̃, x̃) such that A extracts a threshold
configuration, i.e. a pebble configuration that is good but can be switched
to a bad configuration within one valid pebbling move.

Intuitively, pebbles on gates in the circuit represent malformed gates, i.e., gates
whose garbling table is different from the honest garbling table. When consider-
ing circuits consisting only of non-constant gates, the pebbling rule in Property 1
captures the fact that a reduction cannot produce ciphertexts encrypting the key
k∗ under which its challenge ciphertext c∗ ← Enck∗(m) (for some arbitrary m)
was encrypted. Hence, in order to embed c∗ at a gate, the reduction has to first
output a malformed garbling (not encoding k∗) for its predecessor gate. Now, to
see why Property 1 holds – i.e., the pebbling configurations P and P∗ extracted
by A and A[c∗] follow the same dynamics – note that the behaviour of A and
A[c∗] can only differ if k∗ is not encrypted in any ciphertext.

The tricky part of our proof is to establish Property 2 which, on a high level,
works as follows. For a reduction R to simulate a threshold configuration we first
force it to maul – and hence pebble – several gates. Then, for this mauling to
go ‘undetected’ we force R to correctly guess the value of these gates when G
is evaluated at x0. This, intuitively, will be the source of its loss. To this end,
we design our circuit G to consist of two blocks9, G⊕ and G∧. Looking ahead,
whether there is a pebble on a gate in G⊕ will be independent of the input and
correspond to R’s attempt at guessing x0 (this relies on the properties of XOR
gates). The pebbles on G∧, in contrast, will be extractable with respect to the
input garbling x̃b and indicate whether or not the guesses on x0 in the G⊕ block
were correct (this relies on the properties of AND gates). Moreover, by definition:

– In case of a proper garbling of (G, x0) (i.e., the left game), the adversary A
will not extract any pebble on G⊕ or G∧.

– In case of a proper garbling of (G, x1) (i.e., the right game), on the other
hand, the adversary A will not extract any pebbles on G⊕, but will extract
some pebbles on G∧ (since x1 6= x0).

Accordingly, we define the good predicate such that the empty configuration is
good, whereas any configuration containing a pebble on G∧ is bad, and therefore
the above ensures that A breaks the security of the garbling scheme. Further-
more, the threshold configurations contain many pebbles on G⊕, but no pebbles
on G∧. In other words, threshold configurations require R to make many guesses
about x0 and all of them need to be correct, which is unlikely to occur. This
establishes Property 2.

2.3 The Circuit G and the Good Predicate

The design of topology of the circuit G⊕ is such that it has high pebbling com-
plexity with respect to our pebble game: i.e., every valid pebbling sequence
9 For this high-level overview, we ignore the third block G0 consisting of a binary tree
of AND gates, whose sole purpose is to guarantee constant 0 (bit) output.

9

starting from the initial empty configuration and reaching a final configuration
that has a pebble on an output gate of G⊕, must contain a “heavy” configuration
with many, say d, pebbles. To guarantee that threshold configurations contain
many pebbles, we define the good configurations as those that are reachable
with d− 1 pebbles following valid pebbling moves. Since G∧ will (topologically)
succeed G⊕ in G, any configuration with a pebble on G∧ is in particular bad
(since an output gate of G⊕ must have been pebbled first). At the same time, to
allow for our “control mechanism”, we construct G so that each gate g in G⊕ has
a ‘companion’ successor gate in G∧ that helps check correctness of g’s output.
Thus for each AND gate in G∧, one of the inputs comes from the output of G⊕

and the other from the output of its companion gate (see Figure 1). This fixes
the topology of G and we choose the type of gate as to enforce Property 2, as
explained below.

– The G⊕ circuit is composed only of XOR gates, since these gates allow us
to maintain high entropy (of the input), and hence guarantee that it is hard
to guess the outputs of the pebbled gates in G⊕ (see Section 4.2). Further-
more, XOR gates are symmetric with respect to their input in the sense that
from the garbling table alone even an inefficient adversary cannot distinguish
which keys are associated with which bits. This property allows A to extract
the pebbling configuration of G⊕ just from G̃, independently of the input
(see next section).

– The G∧ circuit, on the other hand, is composed of AND gates. Since AND
gates are asymmetric (since only (1, 1) maps to 1, while all three other input
pairs map to 0), we can use them to detect errors in the G⊕ circuit: i.e.,
looking at a garbling table of an AND gate our adversary A can exploit this
asymmetry to easily associate keys to bits. Thus, whenever during evaluation
of G̃ on input x̃ the adversary A receives wrong input keys for a (properly
garbled) AND gate, A considers this gate as malformed and associates it
with a pebble. (The case of AND gates which are not properly garbled is
rather technical and we refer the reader to Section 4.4.)

2.4 Extracting the Pebble Configuration

Since it is central to the working of our adversary A (and is a somewhat subtle
matter), here we provide a high-level description of the extraction mechanism.10
First of all, recall that pebbles on G⊕ and G∧ have different meanings: a pebbled
XOR gate indicates that its garbling table is malformed whereas a pebbled AND
gate indicates that R’s guess for the companion XOR gate is wrong. This, coupled
10 In Section 4.4 we consider a more general extraction mechanism that can be extended

to arbitrary gates and assigns different types of pebbles, representing the “distance” of
a garbling table g̃′ for a gate g from an honest garbling table g̃. For ease of exposition,
here we consider a simplified pebble game and only discuss how to extract pebbles
for XOR and AND gates, where a pebble in this simplified game would correspond
to different sets of pebbles for XOR and AND gates in the more fine-grained pebble
game.

10

with the fact that the gates have differently-structured gate tables (i.e., symmet-
ric vs. asymmetric) means that the extraction mechanism for the two gates (and
hence the blocks) is also different. In particular, as we will see, the pebble status
of an XOR gate is something that can inferred solely from the garbled circuit G̃
(and thus can be done in the offline phase) whereas the pebble status of an AND
gate is something that also depends on the garbled input x̃ and is necessarily
done in the online phase. Let’s look at how the respective extraction is carried
out. First, given G̃, A extracts a key pair for each wire in G from the encryptions
associated with its successor gates, or the output mapping; if this cannot be
done uniquely, A aborts and outputs 1 (we refer to Section 4.4 for more details).
In the following, for a gate g, let u and v denote the input wires, w the output
wire, and ku, k′u, kv, k′v, kw, k′w the corresponding keys associated with these
wires.

– If g is an XOR gate, then the honest garbling table of g can be derived from
Equation (1) as

Encku(Enckv (kw)) Enck′u(Enckv (k′w))

Encku(Enck′v (k′w)) Enck′u(Enck′v (kw)).

Whenever a garbling table g̃ differs from this representation (i.e., not sym-
metric), A assigns g a pebble and this assignment is independent of the
bits running over the wires u, v, w and the keys revealed during evaluation.
Thus, A can extract pebbles on G⊕ already before it chose the inputs x0, x1,
in particular independently of x̃.

– For an AND gate g, on the other hand, the garbling table of g consists of
four ciphertexts derived from Equation (1) as

Encku(Enckv (kw)) Enck′u(Enckv (kw))

Encku(Enck′v (kw)) Enck′u(Enck′v (k′w)).

Since the roles of the keys are asymmetric, the pebble extraction will depend
on the bits bu, bv, bw running over the wires and the keys kru, krv, krw revealed
during evaluation. A first attempt would be to simply map keys to bits as
ku, kv, kw → 0 and k′u, k′v, k′w → 1, and assign g a pebble if krη 6→ bη for some
η ∈ {u, v, w}. Unfortunately, this simple idea does not work since a reduction
R might embed its challenge ciphertext c∗ ← Enck∗(m) in the garbling of an
AND gate (recall from Section 2.3 that the gates in G∧ receive one input from
an output gate of G⊕ and the other input from their companion gate within
the circuit G⊕). Now, if R embeds the challenge key k∗ at an output wire of
G⊕, it must pebble an output gate in G⊕, hence end up with a bad pebbling
configuration independently of c∗. However, this is not true if R embeds k∗
at the other input wire of the AND gate. Thus, A must not extract a pebble
for a garbling table that can be derived from an honest garbling table by
embedding a challenge key at this wire. We show in Section 4.4 that such
malformed garblings of AND gates either involve guessing the input bits or
they can still be used for our “control mechanism”.

11

2.5 Comparison with [15]

While both, [15] and our work, model choices made by a reduction by putting
pebbles on a graph structure, the analogy basically ends there. In [15] an interac-
tive game between a “builder” and a “pebbler” is considered in which the builder
chooses edges and the pebbler decides adaptively whether to pebble them. The
goal of the pebbler is to get into a “good” configuration, and the difficulty for the
reduction (playing the role of the pebbler) there lies in the fact that the graph is
only revealed edge-by-edge. In contrast, in this work the graph structure is ini-
tially known and the game has just two rounds. The difficulty for the reduction
here comes from having to guess the bits running over a subset of wires during
evaluation of the circuit. None of the main ideas from [15] seem applicable in this
setting and vice versa. For example, most of the results in [15] are restricted to
the limited class of so-called oblivious reductions, while our setting doesn’t share
the difficulties encountered in [15]; in particular, our result holds for arbitrary
black-box reductions.

3 Preliminaries

Notation and Definitions. For integers m,n ∈ N with m < n, let [n] :=
{1, 2, . . . , n}, [n]0 := {0, 1, . . . , n}, and [m,n] := {m,m+ 1, . . . , n}. For two sets
S,S ′ we write S ⊂ S ′ if S is a (not necessarily strict) subset of S ′. Furthermore,
let log be always base 2. For the classical definitions of IND-CPA and IND-CCA
security of symmetric-key encryption (SKE) we refer the reder to the full version
of this paper.

Garbling schemes. The definitions are taken mostly from [13]; more details
can be found in [6].

Definition 3.1. A garbling scheme GC is a tuple of PPT algorithms (GCircuit,
GInput,GEval) with syntax and semantics defined as follows.

(C̃,K)← GCircuit(1λ,C). On inputs a security parameter λ and a circuit C :

{0, 1}n → {0, 1}`, the garble-circuit algorithm GCircuit outputs the garbled
circuit C̃ and key K.

x̃← GInput(K,x). On input an input x ∈ {0, 1}n and key K, the garble-input
algorithm GInput outputs x̃.

y = GEval(C̃, x̃). On input a garbled circuit C̃ and a garbled input x̃, the evaluate
algorithm GEval outputs y ∈ {0, 1}`.

Correctness. There is a negligible function ε = ε(λ) such that for any λ ∈ N,
any circuit C and input x it holds that

Pr
[
C(x) = GEval(C̃, x̃)

]
= 1− ε(λ),

12

where (C̃,K)← GCircuit(1λ,C), x̃← GInput(K,x).

In this work we only consider the security notion of adaptive indistinguisha-
bility. For reference we provide the definition of the strictly stronger notion of
adaptive simulatability in the full version of this paper.

Definition 3.2 (Adaptive Indistinguishability). A garbling scheme GC is
(ε, T)-adaptively-indistinguishable for a class of circuits C, if for any probabilistic
adversary A of size T = T (λ),∣∣Pr [GameA,GC(1λ, 0) = 1

]
− Pr

[
GameA,GC(1λ, 1) = 1

]∣∣ ≤ ε(λ).

where the experiment GameA,GC,S(1λ, b) is defined as follows:

1. A selects a circuits C ∈ C and receives C̃, where (C̃,K)← GCircuit(1λ,C).
2. A specifies x0, x1 such that C(x0) = C(x1) and receives x̃b ← GInput(xb,K).
3. Finally, A outputs a bit b′, which is the output of the experiment.

In the indistinguishability game as defined in [6] the adversary can select
two circuits C0,C1 of the same topology and receives a garbling C̃b of one of
them. The choice of input x0, x1 is then restricted to satisfy C0(x0) = C1(x1).
Our notion of indistinguishability is clearly weaker, which strengthens our lower
bound.

Yao’s garbled circuit. In the full version of this paper we describe the variant
[14] of Yao’s garbling scheme ΠF based on a symmetric encryption scheme F
with the special property defined below. Recall that in contrast to the original
scheme, here the output map is sent along with the garbled input in the online
phase.

Definition 3.3 (Special Property of Encryption). We say an encryption
scheme F = (Gen,Enc,Dec) satisfies the special property if for every security
parameter λ, every key k ← Gen(1λ), every message m ∈ M, and encryption
c← Enck(m) it holds Deck′(c) = ⊥ for all k′ 6= k.

4 Lower bound for Yao’s Garbling Scheme

Let Π denote the variant of Yao’s garbling scheme as analysed in [14]. As ex-
plained in the introduction, we follow the approach in [15] and define two oracles
F and A implementing an ideal SKE scheme and an adversary, respectively, such
that A is not helpful in breaking IND-CPA security of F . For the precise de-
scription of F we refer to Section 4.5. The (inefficient) threshold adversary A
we define as follows:

1. On input the security parameter in unary, 1λ, the adversary A chooses a
circuit G with input size n = Θ(λ), constant output, and depth δ(d) ∈ O(n)
for a parameter d. The circuit G consists of three parts, i.e., G = G0◦G∧◦G⊕;
see introduction. A sends G to the challenger.

13

2. After receiving G̃, the adversary A chooses x0, x1 ← {0, 1}n uniformly at
random. Note that G(x0) = G(x1) trivially holds since G has constant output.
A sends x0, x1 to the challenger.

3. On receipt of x̃b = (k1, . . . , kn) along with an output mapping, A extracts
a pebbling configuration on the graph G \ G0 corresponding to G∧ ◦ G⊕ as
described in Section 4.4. A outputs b′ = 0 if the pebbling configuration is
good as per Definition 4.2, and b′ = 1 otherwise.

4.1 The Circuit

We construct a family of circuits G := {Gd}d∈N and show that the loss in security
for Gd is sub-exponential in d. The circuit is designed keeping our high-level idea
in mind. The circuit Gd := G0

d ◦ G∧d ◦ G⊕d consists of the three blocks G⊕d , G∧d
and G0

d, with underlying graphs denoted by G⊕d , G
∧
d and G0

d, respectively. The
graph G⊕d (see Figure 2.(b)) is a so-called tower graph [8], and is obtained from
so-called pyramid graphs of depth d (see Figure 2.(a)).

– G⊕d is obtained from G⊕d by substituting each vertex with an XOR gate as
shown in Figure 2. On a high level, the pyramid structure ensures high
pebbling complexity whereas the XOR gates preserve (most) entropy in the
input, which makes it hard for a reduction to obtain correct evaluation of
pebbled gates.

– G0
d consists of a binary tree of AND gates and its sole role is to set the output

of the circuit G to constant 0.11
– G∧d sits in between the G⊕d and G0

d blocks (see Figure 1), and consists of one
AND gate serving as “control” gate for each XOR gate in G⊕d and each input
gate. Each AND gate g in G∧d receives its inputs from (i) the output of its
companion XOR gate in G⊕d (resp. input gate) and (ii) the XOR gate in the
last layer of G⊕d in (vertical) alignment with g (see Figure 1, formal definition
in the full version of this paper). As mentioned previously, intuitively, this
block will act as an “error detection” mechanism for the G⊕d block in the
sense that it helps detect if (malformed) garblings of XOR gates evaluate
wrongly.

For a precise description of the circuit and a proof that G is indeed constant,
we refer to the appendix.

4.2 Vulnerability of the Circuit G⊕

In Section 4.5 we will prove that any black-box reduction R that aims to use
A to gain advantage in breaking the IND-CPA security of encryption scheme
F has to simulate (G̃, x̃) such that the extracted pebbling configuration on G⊕

contains d − 1 or d gray or black pebbles. Each of these pebbles implies that
11 In principle we could have used constant-0 gates in place of the AND gates, or sim-

ply a single constant-0 gate of high fan-in (which would considerably simplify the
description). But we prefer to stick to the standard Boolean basis.

14

G⊕

G∧

G0

1

d

d+ 1

d+ 2

2d+ 1

Fig. 1. Schematic diagram for the candidate circuit of width 5 and depth 4. The input
and output wires are coloured green. The layer number is indicated on the left. The
first two blocks are the XOR and AND layers respectively; the final pyramid denotes
the binary tree.

at least one of the ciphertexts associated to that gate must be malformed and
modify the output of some input key pair. In the case that all AND gates are
properly garbled, all keys can be mapped to bits and hence such a switch of the
output can be detected (cf. Lemma 4.6). Thus, we consider the following game.

– On input a circuit C and a parameter d, R chooses a circuit C′ of the same
topology as C such that all except exactly d (non-input) gates coincide with
the corresponding gates in C. R sends C′ to A.

– On receipt of C′, A samples x← {0, 1}n uniformly at random.
– R wins if for all gates in C′ the output during evaluation on input x coincides

with the corresponding output bit when evaluating C.

We now prove that for C = G⊕, no algorithm R wins the above game with
non-negligible (in d) probability.

Lemma 4.1. Let d ∈ [1, n]. For G = G⊕ and any R, the probability that R wins
the above game is at most (3

4)
√
d/4.

First, note that all except d gates in G′ are XOR gates, and in particular a
linear function over Z2. For each of the remaining d malformed gates, on the
other hand, at least one input pair is mapped to a different output bit than it
would be in an XOR operation. We call the corresponding gates in the original
circuit G⊕ pebbled. To prove Lemma 4.1, we will show that there exists a subset
of at least

√
d/4 of those d pebbled gates such that their input is determined by

15

(a) (b)

⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕

⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕

⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕

⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕

⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕

⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕

(c)

Fig. 2. The graphs and the circuit for parameter d = 6: (a) A pyramid graph of depth
d, (b) Extending the pyramid graph to get a tower graph G⊕d of depth d and (c) Circuit
G⊕d obtained replacing the vertices in G⊕d with XOR gates.

independent linear functions. This implies that instead of choosing x← {0, 1}n,
A can equivalently choose the

√
d/2 input bits uniformly at random, and then

choose x uniformly under the constraint that the values running over these wires
during evaluation of G⊕ must be consistent with the predetermined bits. Clearly,
x chosen this way is still uniformly random in {0, 1}n. By definition of the game,
R only wins the game if for all gates in G′ the output during evaluation on input
x coincides with the corresponding output bit when evaluating G, and this must
in particular also hold for the pebbled gates. Since each of the malformed gates
in G′ flips the output of at least one of the four possible input pairs, and the input
bits of

√
d/4 of the pebbled gates were chosen independently and uniformly at

random, the probability that R wins is at most (3
4)
√
d/4.

Towards proving Lemma 4.1, letM denote the linear mapping corresponding
to one layer of gates in the circuit G⊕, i.e., written in matrix notation,

M =


1 1 0 . . . 0 0 0
0 1 1 . . . 0 0 0
...

. . .
...

0 0 0 . . . 0 1 1
1 0 0 . . . 0 0 1

 .

The output of the µth layer of G⊕ on input x ∈ {0, 1}n is given by Mµ ·x, hence
we denote the degree-1 polynomial in Z2[x1, . . . , xn] which determines its ν-th
bit by Mµ

ν (for µ ∈ [0, n] and ν ∈ [1, n]). Denoting by ν + 1 the representation
of the residue class ν + 1 mod n in [n], we have e.g.,

M0
ν = xν , M1

ν = xν⊕xν+1, M2
ν = xν⊕xν+2, M3

ν = xν⊕xν+1⊕xν+2⊕xν+3

and in general it holds
Mµ
ν = Mµ−1

ν ⊕Mµ−1

ν+1
(2)

16

for all µ ∈ N, ν ∈ [1, n]. In the following we will associate gates with the corre-
sponding polynomials that determine their outputs.

If the input length n is odd – for convenience we assume n to be one less
than a power of 2 – then G⊕ maintains high entropy; to prove this, we use the
following explicit representation of the polynomials Mµ

ν .

Lemma 4.2 (explicit formula for the polynomials Mµ
ν). Let n = 2κ − 1,

κ ∈ N, M defined above, µ ∈ N, and ν ∈ [1, n]. For µ 6= n and βk ∈ {0, 1} its
binary decomposition, i.e. µ =

∑
k∈[0,κ−1] βk2k, it holds:

Mµ
ν =

⊕
i∈[1,n]

αixi, where αi =

{
1 if i ∈ ν +

∑
k∈[0,κ−1] {0, βk} · 2k mod n,

0 else.

(3)
Note, Mµ

ν only depends on µ, not on µ. For µ = n = 2κ − 1, it holds:

Mµ
ν =

⊕
i∈[1,n]

αixi, where αi =

{
1 if i 6= ν,

0 else.
(4)

A proof of Lemma 4.2 can be found in the full version of this paper. Lemma 4.2
directly implies several useful properties, which we summarize in the following
corollary.

Corollary 4.1 (Properties of M and G⊕). For M defined as above, n =
2κ − 1, κ ∈ N, it holds

1. M2κ = M , which implies rank(Mk) = n− 1 for all k ≥ 1, i.e., G⊕ = Md is
2-to-1 for any d.

2. Any n− 1 output bits of Mk (k ≥ 1) are determined by linearly independent
degree-1 polynomials.

3. Image(G⊕) = {x = (x1, . . . , xn) ∈ {0, 1}n |
⊕

i∈[1,n] xi = 0}, i.e., all vectors
in the image of G⊕ contain an even number of 1s.

The first property immediately follows from Lemma 4.2 since for µ = 2κ we
have µ = 1. The second property then follows from rank(Mk) = n − 1. For
the last property, note that the set ν +

∑
k∈[0,κ−1] {0, βk} · 2k mod n is even

whenever a single bit βk is nonzero (which is true for all µ > 0), and also the
set {i ∈ [n] | i 6= ν} is even since n is odd.

The following Lemma immediately implies Lemma 4.1, a proof can be found
in the full version of this paper.

Lemma 4.3. Any subset S ⊂ {Mµ
ν }µ∈[0,n],ν∈[1,n] of polynomials in Z2[x1, . . . , xn]

with s := |S| contains a subset S ′ of size
√
s/4 such that |parents(S ′)| =

√
s/2

and parents(S ′) is linearly independent, where parents(Mµ
ν) := {Mµ−1

ν ,Mµ−1

ν+1
}.

Lemma 4.1 now follows, since for any set of d pebbled gates, by Lemma 4.3
there exists a subset S ′ of

√
d/4 pebbled gates such that their parents are distinct

and form a linearly independent set.

17

4.3 Pebbling Game and Threshold

Recall that in Yao’s garbling scheme, each gate g is associated with a (honest)
garbling table g̃, which consists of four double encryptions that encode g’s gate
table. However, a reduction is free to alter the contents of the honest garbling
table in any way. In fact, the upper bounds in [16,14] crucially rely on the ability
to do this in an indistinguishable manner: in the real game the garbling tables
are all honest, whereas in the simulated game the garbling tables all encode the
constant-0 gate, and the hybrids involve replacing the honest garbling tables
one by one with that of the constant-0 gate.12 We introduce a pebble game to
precisely model such different simulations of the garbled circuit G̃ (by the reduc-
tion). Loosely speaking, the extracted pebble configuration is an abstract repre-
sentation of the simulation (G̃, x̃b), and the pebbling rules model the reduction’s
ability to maul garbling tables in G̃ without being noticed (indistinguishability).

The pebbles. Intuitively, the pebble on a gate g encodes how “different” the
garbling table g̃′ which A receives is from an honest garbling g̃. To this end, we
employ three different pebbles: white, gray and black.

– A white pebble on g indicates that g̃′ and g̃ are at “distance” 0 (defined
below), i.e., g̃ is (distributed identically to) an honest garbling table of g.

– A gray or black pebble on g indicates that g̃′ is malformed. What differenti-
ates gray from black is the degree of malformation: loosely speaking, a gray
pebble indicates that g̃′ is at a distance 1 from g̃, whereas a black pebble
indicates that g̃′ is at a distance 2 (or more).

To understand what we mean by distance, we need to take a closer look at the
structure of a garbling table. An honest garbling table g̃ consists of the four
double encryptions shown in Table 1.(a). We assign a gray pebble to a gate g if
the garbling table of g in G̃ can be proven indistinguishable from g̃ by embedding
a single IND-CPA challenge key (among k0

u, k1
u, k0

v and k1
v). For example, let’s

consider an AND gate and its honest garbling table (Table 1.(b)): a malformed
table that is at distance one (via the key k1

u or k1
v) from it is, e.g., a garbling

table that encodes the constant-0 gate (Table 1.(d)). A garbling of an XOR gate,
in contrast, is at distance 2 from a garbling of a constant gate: If kau and kbv are
the keys revealed during evaluation, then the garbling of an XOR gate can be
proven indistinguishable from the constant-(a⊕ b) gate only by first embedding
a challenge key at k1−a

u and then a second challenge key at k1−b
v , or vice versa;

i.e. the reduction needs to embed challenges at each input wire.

12 Note, this simulation crucially relies on the fact that keys can be equivocated : While
the output keys are all associated to 0, when altering the output mapping accordingly
evaluation will still succeed. Note that in the selective setting for Yao’s original
scheme as well as in the adaptive setting for the modified scheme [14] the input is
known before the output mapping is sent.

18

Ek0
u
(Ek0

v
(k

g(0,0)
w)) Ek0

u
(Ek0

v
(k0w)) Ek0

u
(Ek0

v
(k0w)) Ek0

u
(Ek0

v
(k0w))

Ek1
u
(Ek0

v
(k

g(1,0)
w)) Ek1

u
(Ek0

v
(k0w)) Ek1

u
(Ek0

v
(k1w)) Ek1

u
(Ek0

v
(k0w))

Ek0
u
(Ek1

v
(k

g(0,1)
w)) Ek0

u
(Ek1

v
(k0w)) Ek0

u
(Ek1

v
(k1w)) Ek0

u
(Ek1

v
(k0w))

Ek1
u
(Ek1

v
(k

g(1,1)
w)) Ek1

u
(Ek1

v
(k1w)) Ek1

u
(Ek1

v
(k0w)) Ek1

u
(Ek1

v
(k0w))

(a) (b) (c) (d)

Table 1. Garbling tables for (a) general gate g, (b) AND gate, (c) XOR gate, and (d)
constant-0 gate. u and v denote the two input wires, whereas w denotes the output
wire.

Pebbling rules. To complete the description of a pebble game, we need to describe
the pebbling rules. These rules essentially capture the following observation:
a reduction (with overwhelming probability) cannot possess encryptions of its
(IND-CPA) challenge key. Therefore, whenever the garbling table g̃ of a gate g
has been switched to a malformed garbling g̃′ (say) at distance one, (at least)
one of the garbling tables associated to its predecessor gates, say gu, must have
been first switched to a garbling that encodes only one of gu’s output keys. This
is required to “free up” one of gu’s output keys (so that it can now be set as
the challenge key). Looking ahead, we will be interested in pebbling the circuit
G⊕ which consists of XOR gates only. Hence, the pebbling rules are designed to
capture the structure of XOR gates. Recall that an XOR gate is at distance 2
from a constant gate, thus, we end up with the following rules (where gu and gv
denote the two predecessors of g):

1. a gray pebble can be placed on or removed from a gate g only if (at least)
one of its predecessor gates (say gu) carries a black pebble; and

2. a gray pebble on a gate g can be swapped with a black pebble if the other
predecessor gate (i.e., gv) carries a black pebble.

The actual game. The above white-gray-black (WGB) pebble game is a simplified
version of the (WG3B) pebble game we end up using, but it is sufficient to con-
vey the essential ideas that we use. The actual game, defined in Definition 4.1
(Section 4.3), is more fine-grained: in order to keep track of the inner and outer
encryptions, we introduce three types of gray pebbles (gray-left, gray-right and
gray-free), and the pebbling rules are also modified accordingly.

Definition 4.1 (Reversible WG3B pebbling game for indegree-2 graphs).
Consider a directed acyclic graph G = (V, E) with V = [1, S] and let X =
{W, G∗, GL, GR, B} denote the set of colours of the pebbles. Consider a sequence
P := (P0, . . . ,Pτ) of pebbling configurations for G, where Pi ∈ XV for all i ∈
[0, τ]. We call such a sequence a WG3B pebbling strategy for G if the following
two criteria are satisfied:

1. In the initial configuration all the vertices are pebbled white (i.e., P0 =
(W, . . . , W)) and in the final configuration at least one sink of G is pebbled
gray (i.e., Pτ = (. . . , G·, . . .)), where G. denotes an arbitrary type of gray,
i.e. G. ∈ {G∗, GL, GR}.

19

2. Two subsequent configurations differ only in one vertex and the following
rules are respected in each move:
(a) W↔ G∗: a white pebble can be replaced by a G∗ pebble (and vice versa) if

one of its parents is black-pebbled
(b) W/G∗ ↔ GL: a white or G∗ pebble can be replaced by a GL pebble (and vice

versa) if its left parent is black-pebbled
(c) W/G∗ ↔ GR: a white or G∗ pebble can be replaced by a GR pebble (and vice

versa) if its right parent is black-pebbled
(d) GL ↔ B: a GL pebble can be replaced by a black pebble (and vice versa)

if its right parent is black-pebbled
(e) GR ↔ B: a GR pebble can be replaced by a black pebble (and vice versa)

if its left parent is black-pebbled

The space-complexity of a WG3B pebbling strategy P = (P0, . . . ,Pτ) for a DAG
G is defined as

σG(P) := max
i∈[0,τ]

|{j ∈ [1, S] : Pi(j) ∈ {G∗, GL, GR, B}}|.

For a subgraph G′ induced on vertex set V ′ ⊂ V, the space-complexity of P
restricted to G′ is defined as

σ|G′(P) := max
i∈[0,τ]

|{j ∈ V ′ : Pi(j) ∈ {G∗, GL, GR, B}}|.

The space-complexity of a DAG G is the minimum space-complexity over all of
its strategies PG:

σ(G) := min
P∈PG

σG(P). (5)

The following lemma gives a lower bound on the WG3B pebbling complexity
of the graph G \ G0 underlying the first two blocks G∧ ◦ G⊕ of our candidate
circuit G. A proof can be found in the full version of this paper.

Lemma 4.4 (Pebbling lower bound on G \ G0). Let G \ G0 be the graph
underlying the circuit G∧ ◦ G⊕. To gray-pebble a gate on layer d′ ∈ [1, d+ 1]
following the reversible WG3B pebbling rules from Definition 4.1, one requires
space-complexity at least d′ − 1. Furthermore, to GL- or B-pebble a gate on layer
d′ ≥ d + 1, one requires at least d gray or black pebbles simultaneously on the
first d layers.

The following definition now gives a cut in the configuration graph; our ad-
versary A will be a threshold adversary with respect to this cut.

Definition 4.2 (Good pebbling configurations). A pebbling configuration
P on DAG G \ G0 is called good if it is reachable by reversible WG3B pebbling
moves using less than d gray or black pebbles on the first d layers simultaneously,
i.e., there exists a WG3B pebbling strategy P := (P0, . . . ,P) for G such that
σ|G⊕(P) ≤ d− 1.

In particular, by Lemma 4.4, any pebbling configuration P with a GL or B
pebble on a gate in G∧ is bad.

20

4.4 Extraction of Pebbling Configuration on G \ G0

In this section we will discuss how to extract such a pebbling configuration.
Note, that A is computationally unbounded, hence can extract messages and
keys from ciphertexts by brute-force search.

1. First, check whether (G̃, x̃) evaluates correctly , i.e., GEval(G̃, x̃) = G(x0).
If the evaluation check passes, check whether G̃, x̃ have the correct syntax :
Check whether G̃ consists of four ciphertexts for each gate, which have the
following form

c1 = Enck1(Enck3(k5)), c2 = Enck1(Enck4(m2)),

{c3, c4} = {Enck2(m3),Enck2(m4)},
(6)

for distinct keys k1, k2, k3, k4, k5 and arbitrary (not necessarily distinct) mes-
sagesm2,m3,m4, where keys k1 and k3 are revealed during evaluation GEval(G̃, x̃).
I.e., two of the four ciphertexts are encryptions under the same left secret
keys k1 and k2, respectively, one of them is a double encryption Enck1(Enck3(k5))
under left key k1 and some right key k3 of an output key k5 (all these being
revealed throughout evaluation), and the second encryption under k1 en-
crypts an encryption under a second right key k4 (of an arbitrary message
m2).
Finally, check consistency of keys: For each gate, extract key pairs (k1, k2)
and (k3, k4) corresponding to left and right input wires, and check whether
they are consistent with the keys extracted from sibling gates: If gate g is
the left sibling of g′, then g’s right input key pair must coincide with the
left key pair extracted from g′, i.e., (k3, k4) = (k′1, k

′
2). Note, if this check

passes, then all wires in the circuit can be uniquely associated with a key
pair. Finally, check that all extracted keys are distinct.
If any of these checks fails, map (G̃, x̃) to a bad pebbling configuration, e.g.,
to the pebbling configuration on G where all gates at levels [d+ 1, 2d+ 1]
are black pebbled13 and quit.

Remark 4.1. Note, syntax and consistency checks allow a reduction to distin-
guish

– a ciphertext from a non-ciphertext,
– a ciphertext under key k from a ciphertext under key k′ 6= k.

We will argue in Section 4.5 that this is of no help to the reduction for breaking
IND-CPA security of the information-theoretic encryption scheme F .

For all garblings (G̃, x̃) that pass correctness, syntax, and consistency checks, A
will extract a pebbling configuration on G \G0 by mapping each gate to a color
in {W, G∗, GL, GR, B}.
13 This choice was made for convenience (see Lemmas 4.6 to 4.8), but in principle could

be an arbitrary bad configuration, and should simply guarantee that no reduction
can gain any advantage by departing from the protocol in an obvious way.

21

2. For each XOR gate gj (j ∈ [1, d] · n + [0, n]): Check whether gj is garbled
correctly with respect to input x0. To this aim, let bl, br, and bo = gj(bl, br) =
bl ⊕ br denote the left/right input and the output bit of gj , respectively,
when evaluating G on x0. We use the same notation as in Equation 6 above;
furthermore, let k6 be the second key associated with the output wire (which
was extracted from the garbling tables of the successor gates).
– If gj is garbled similar to the case of an honest garbling of (G, x0), i.e.,
m2 = k6, m3 = Enck3(k6), and m4 = Enck4(k5) (or the roles of m3,m4

permuted), then associate gj with a W pebble.
– If m2 and m3 are as in the previous case, but m4 = Enck4(m) for some

message m 6= k5, then associate gj with a G∗ pebble. Similarly for the
case where the roles of m3,m4 are permuted.

– If m3 is as in the first case, m4 = Enck4(m) for an arbitrary message m,
but m2 6= k6, then associate gj with a GR pebble. Similarly for the case
where the roles of m3,m4 are permuted.

– If m2 = k6 is as in the first case, but {m3,m4} differs from the previous
cases, then associate gj with a GL pebble.

– For all other cases, associate gj with a B pebble.

Remark 4.2. Due to symmetry of the XOR operation, whether a gate is consid-
ered properly garbled (i.e. mapped to a white pebble) or not (i.e. mapped to
gray or black) does not depend on the input keys. Thus, the set of black and
gray pebbles on G⊕ can be extracted independently of x0 and x̃.

3. For each AND gate gj (j ∈ [d+ 1, 2d+ 1] · n + [0, n]): Similar to the case of
XOR gates, check whether the gate is correctly garbled with respect to x0.
Using the same notation as above, associate gj with a pebble as follows:
– If gj is garbled similar to the case of an honest garbling of (G, x0), i.e.,

for
(bl, br) = (0, 0), we havem2 = k5,m3 = Enck3(k5), andm4 = Enck4(k6),
(bl, br) = (0, 1), we havem2 = k5,m3 = Enck3(k6), andm4 = Enck4(k5),
(bl, br) = (1, 0), we havem2 = k6,m3 = Enck3(k5), andm4 = Enck4(k5),
(bl, br) = (1, 1), we havem2 = k6,m3 = Enck3(k6), andm4 = Enck4(k6),

(or the roles of m3,m4 permuted) then associate gj with a W pebble.
– If m2 and m3 are as in the previous case, but m4 = Enck4(m) for some

message m that differs from above, then associate gj with a G∗ pebble.
(Similarly for the case where the roles of m3,m4 are permuted.)

– If m3 is as in the first case, m4 = Enck4(m) for an arbitrary message m,
but m2 differs from the previous case, then associate gj with a GR pebble.
(Similarly for the case where the roles of m3,m4 are permuted.)

– If m2 is as in the first case, but {m3,m4} differs from the previous cases,
then associate gj with a GL pebble.

– For all other cases, associate gj with a B pebble.

Remark 4.3. At first sight, it might seem counterintuitive that the mapping from
gates to colours not only depends on the associated ciphertexts, but also on the

22

input x0. This however is unavoidable since the adversary A cannot simply map
keys to bits, but can only relate them to the keys it learned from x̃, which might
be properly garbled or not.

In the following lemma, we prove that the adversary A using the above
pebbling extraction indeed breaks indistinguishability of Yao’s garbling scheme.
A proof can be found in the full version of this paper.

Lemma 4.5. A breaks indistinguishability of the garbling scheme with probabil-
ity 1− 1/2n−1.

Since A extracts the pebble mode of a gate with regard to the garbled input
(i.e., the keys it learns through evaluation), the reduction can still change the
mode of a gate after it output G̃ by choosing different input keys for x̃. In the
following lemmas we prove that this flexibility of choosing the input keys is of
not much help to a reduction aiming at a good pebbling configuration, where in
particular all gates at layers [d+ 1, 2d+ 1] are mapped to W, G∗, or GR pebbles.

First, we consider the case of a properly garbled AND gates. In this case, due
to the asymmetry of the AND operation, input keys can be associated with bits
and hence a properly garbled layer of AND gates has a similar function as an
output mapping. A proof can be found in the full version of this paper.

Lemma 4.6. For any garbling of an AND gate on layer [d+ 1, 2d+ 1], and any
input bits bl, br, there exists at most one input key pair (k1, k3) such that the
gate will be mapped to a W pebble.

The situation becomes a bit more involved if AND gates are not properly
garbled, since in this case asymmetry might be broken. However, if the left
input keys can be mapped to bits, then we can still obtain some meaningful
guarantees. We first consider the case that an AND gate is garbled in G∗ mode,
i.e. one ciphertext is malformed and there exist some input bits (bl, br) such that
it will be mapped to a G∗ pebble. In the following Lemma we prove that for a
different right input bit 1− br the gate will be mapped to a GL pebble instead.
A proof can be found in the full version of this paper.

Lemma 4.7. For any garbling of an AND gate, any left input bit bl, and fixed
left input key, there exists at most one br ∈ {0, 1} such that there exists a (not
necessarily unique) right input key such that the gate will be mapped to a G∗
pebble. If such a right input bit br exists, then for right input bit 1− br the gate
will be mapped to a GL pebble.

Next we consider the case of an AND gate that is garbled in GR mode w.r.t.
some input bits (bl, br). In this case we have to distinguish two different ways to
garble a gate such that it will be mapped to a GR pebble. For one type of GR
pebble we can map keys to bits, just as in the case of properly garbled gates. For
the second type of GR pebble we obtain a similar guarantee as for G∗ pebbles. A
proof can be found in the full version of this paper.

23

Lemma 4.8. For any garbling of an AND gate on layer [d+ 1, 2d+ 1], any left
input bit bl, and fixed left input key, one of the following is true:

1. For any right input bit br ∈ {0, 1} there exists at most one right input key
such that the gate will be mapped to a GR pebble. If such a key exists, then
for any other right input key the gate will be mapped to a B pebble.

2. There exists at most one input bit br ∈ {0, 1} such that there exists a right
input key kr such that the gate will be mapped to a GR pebble. If such a bit
exists, then for right input bit 1− br and any right input key the gate will be
mapped to a B pebble.

These two cases characterize two different types of GR pebbled gates, where we
denote a gate as GR-type-1 if case 1 is true, and GR-type-2 if only case 2 is true.

4.5 Lower Bound on Security Loss for any Reduction

In this section we will combine all previous results to prove a lower bound on
adaptive security of Yao’s garbling scheme. More precisely, we will prove that any
black-box reduction which aims to exploit A’s distinguishing advantage to break
IND-CPA security of the underlying encryption scheme loses a factor subexpo-
nential in the depth of the circuit.

Let R be an arbitrary PPT reduction which has black-box access to an ad-
versary A that breaks indistinguishability of Yao’s garbling scheme, and at-
tempts to solve an IND-CPA challenge with respect to an encryption scheme
(Gen,Enc,Dec). Following the approach of Kamath et al. [15], we define an
information-theoretically secure encryption scheme F = (Gen,Enc,Dec) as fol-
lows: For l ∈ {1, 6}, let El : {0, 1}(l+2)λ → {0, 1}2(l+2)λ be a random expanding
function (which is injective with overwhelming probability).

– Key generation Gen(1λ): On input a security parameter λ in unary, output
a key k ← {0, 1}∗ uniformly at random.

– Encryption Enc(k,m): On input a key k ∈ {0, 1}λ and a message m ∈
{0, 1}l·λ with l ∈ {1, 6}, sample randomness r ← {0, 1}λ, and output El(k,m; r).

– Decryption Dec(k, c) is simulated to be consistent with Enc: On input a key
k ∈ {0, 1}λ and a ciphertext c ∈ {0, 1}2(l+2)λ with l ∈ {1, 6}, check whether
c lies in the image of El(k, ·; ·), if so extract m ∈ {0, 1}l·λ, r ∈ {0, 1}λ such
that c = El(k,m; r) and output m, otherwise output ⊥.

Choosing El (l ∈ {1, 6}) to be random functions implies that F is information-
theoretically IND-CCA secure. Thus, since R only makes polynomially many
queries, the only non-negligible advantage R has in breaking the IND-CPA se-
curity of F must stem from its interaction with A. Furthermore, with all but
negligible (in λ) probability F satisfies the special property (Definition 3.3),
hence can be used in Yao’s garbling scheme.

We first argue that neither checking correctness, syntax, nor consistency (cf.
Section 4.4) is of any help to R. Obviously, this is true for the correctness check,
since R can efficiently evaluate GEval(G̃, x̃). However, we have to argue a bit

24

more to prove that also syntax and consistency checks are of no help to R. To
this aim, we construct an oracle O that allows to distinguish

– a ciphertext from an arbitrary string in {0, 1}2(l+2)λ for l ∈ {1, 6},
– a ciphertext under key k ∈ {0, 1}λ from a ciphertext under key k′ 6= k.

More precisely,O takes as input two strings s ∈ {0, 1}2(l+2)λ and s′ ∈ {0, 1}2(l′+2)λ

(l, l′ ∈ {1, 6}) and checks whether s, s′ lie in the image of El,El′ , respectively. If
this check fails for one of the strings, then O outputs ⊥. Otherwise, it extracts
preimages (k,m, r) ∈ {0, 1}(l+2)λ under El and (k′,m′, r′) ∈ {0, 1}(l

′+2)λ under
El′ . If k = k′, O outputs 1, otherwise 0.

In the full version of this paper we first show that access to oracle O allows
R to efficiently carry out syntax and consistency checks, and then prove that
F remains information-theoretically IND-CPA secure even against adversaries
that have access to O.

Now, to prove that any black-box reduction from indistinguishability of Yao’s
garbling scheme to IND-CPA security of the underlying encryption scheme suf-
fers from a loss that is subexponential in the depth δ of the circuit, we construct
an adversary A[c∗] that behaves just like A but doesn’t decrypt challenge ci-
phertext c∗. More precisely, A[c∗] with input a ciphertext c∗, has oracle access
to O, F , as well as an IND-CCA decryption oracle Deck∗ that it can query on
any ciphertext c 6= c∗. We construct A[c∗] such that it never decrypts c∗ unless
it already knows the encryption key k∗ from other keys and ciphertexts in G̃, x̃:

– First A[c∗] runs evaluation, syntax, and consistency checks using oracle O. If
these checks pass, similar to A, the algorithm A[c∗] uses brute-force search
to decrypt all ciphertexts except for those encrypted under k∗ (to check
whether a ciphertext is encrypted under k∗ it uses O and c∗). Ciphertexts
c 6= c∗ encrypted under k∗ it decrypts using oracle Deck∗ . For c∗, there are
two cases:
• If the key k∗ was learned from previous decryptions (this can be checked

by decrypting c∗ under all known keys), A[c∗] simply decrypts c∗ using
k∗.

• If the k∗ is not known to A[c∗], then it simply assumes c∗ ∈ {0, 1}2(l+2)λ

with l ∈ {1, 6} would decrypt to 0l·λ.
A[c∗] then continues analogous to A by mapping (G̃, x̃) to a pebbling con-
figuration and outputting 0 whenever the pebbling configuration is good per
Definition 4.2, and 1 otherwise.

Clearly, since A[c∗] never decrypts c∗ except if k∗ is known, there is no chance
for R to use A[c∗] to break IND-CPA security of F .14 It remains to bound the
success probability of any PPT distinguisher D to distinguish A[c∗] from A.15
To this aim, we will first show how the WG3B pebbling game relates to this issue.
A proof of the following Lemma can be found in the full version of this paper.
14 Recall that our ideal encryption scheme F is IND-CCA secure, hence access to the

oracle Deck∗ used by A[c∗] is of no help to R.
15 Note, we assume that A[c∗] has private access to its oracles and D cannot observe

its oracle queries to distinguish it from A.

25

Lemma 4.9. Let c∗ ← Enck∗(m) be an arbitrary ciphertext and let P, P∗ be the
two pebbling configurations extracted by A and A[c∗], respectively, in the same
execution of the game, i.e. using the same randomness. Then P∗ differs from P
by at most one valid WG3B pebbling move.

We will now bound the distinguishing advantage of DF . Recall that a pebbling
configuration on G \ G0 is good per Definition 4.2 if it can be reached by WG3B
pebbling moves using at most d − 1 pebbles on the first d layers. Thus, by
Lemma 4.9, any successful distinguisher D has to simulate G̃ and x̃ such that
the pebbling configurations P,P∗ on G extracted by A and A[c∗], respectively,
contain exactly d−1 or d black and gray pebbles on the first d layers (depending
on the IND-CPA challenge bit b∗), contain only W, G∗, and GR pebbles on higher
layers, and differ by a valid WG3B pebbling move within layers [1, d+ 1].

In the following we will first restrict our analysis to non-rewinding distin-
guishers and assume x0, x1 were chosen uniformly at random by A after it sees
G̃. Finally we will discuss how to slightly modify our adversary A to also cover
the case that D chooses A’s randomness and rewinds A.

To bound the success probability of D, let r be arbitrary random coins and
consider two cases:

(1) there exists s such that the output ofA(s) andA[c∗](s) after interaction with
D(r, c∗) differs and in P and P∗ there are more than d̄ G∗ and GR-type-2 (as
defined in Lemma 4.8) pebbles in layers [d+ 2, 2d+ 1],

(2) there exists s such that the output of A(s) and A[c∗](s) after interaction
with D(r, c∗) differs and in P and P∗ there are at most d̄ G∗ and GR-type-2
pebbles in layers [d+ 2, 2d+ 1].

We leave the parameter d̄ < d/3 undefined for now and optimze it later. In Lem-
mas 4.10 and 4.11, we will argue that, intuitively, in both cases the distinguisher
D must have correctly guessed many of the input bits in x0.

Lemma 4.10. Let r be arbitrary coins such that case (1) is true. Then the
probability (over uniformly random coins s) that the output of A(s) and A[c∗](s)

differs after interaction with D(r, c∗) is at most (3/4)
√
d̄/7.

Proof. To prove this lemma, we will use Lemmas 4.6 to 4.8. First, note that D
can only succeed if at most one of the gates at layer d+ 1 is not mapped to a W
pebble, since the adversary A outputs 1 whenever any gate at layer d+1 is not W
pebbled. Now, by Lemma 4.6, there is at most one pair of input keys to an AND
gate that leads to this gate being mapped to a W pebble. As the input to all but
one gate at layer d+ 1 comprises all input to layer d+ 1, this implies that D can
only succeed, if it properly garbles all gates at layer d + 1 and the input keys
which are revealed through GEval(G̃, x̃) are associated with the corresponding
bits in G⊕(x0).

Next, consider the AND gates at layers [d+ 2, 2d+ 1]. For D to succeed, these
gates must not end up GL or B pebbled. Since all these gates have their left input
from layer d and by the previous argument all these keys are fixed, we can apply

26

Lemmas 4.7 and 4.8: Let S denote the set of d̄ gates in layers [d+ 2, 2d+ 1] that
are mapped to G∗ or GR-type-2 pebbles (for some random coins s such that (1)
is true). Then by Lemma 4.3 there exists a subset S ′ ⊆ S of size

√
d̄/4 such

that the set of right parents SR of S ′ is linearly independent over Z2; and for
each gate g ∈ S ′ left and right parent are linearly independent. To see that the
latter is true, note that any subset smaller than n of gates within one layer or
within one column is linearly independent (cf. Lemma 4.2). It directly follows
that left and right parents of any gate g ∈ S ′ since they lie in the same column.
Furthermore, the set of left parents SL to S ′ is linearly independent since it is a
subset of ≤ d̄ < n gates at layer d.

To argue that D must have guessed many of the right input bits to S∧

correctly, we use the following simple result from linear algebra. A proof can be
found in the full version of this paper.

Claim. Let m ∈ [1, n] and S1 = {ui}i∈[1,m] a subset of {0, 1}n that is linearly
independent over Z2. Let S2 = {vi}i∈[1,m] be a multiset of elements in {0, 1}n
such that S2 as a set is linearly independent over Z2. Furthermore, assume
{ui, vi} is linearly independent for all i ∈ [1,m]. Then there exists an index set
I ⊂ [1,m] of size |I| = bm/4c such that

⋃
i∈I{ui}∪{vi} is linearly independent.

Since the multiset SL and the set SR of left and right parents of S ′ are linearly
independent (as sets), respectively, and for any g ∈ S ′ left and right input to
G are linearly independent, we can apply the claim to obtain a subset S ′′ ⊂ S ′
of size |S ′|/4 such that the union of the parents of S ′′ is linearly independent.
For S ′′, we can now use Lemmas 4.7 and 4.8 to see that any successful D must
have correctly guessed all right input bits to S ′′; i.e., for s sampled uniformly at
random, the probability that D succeeds is at most (1/2)|S

′′|. As |S ′| ≥
√
d̄/4, the

probability that D succeeds can be upper-bounded by (1/2)
√
d̄/16 < (3/4)

√
d̄/7.
ut

Lemma 4.11. Let r be arbitrary coins such that case (2) is true. Then the
probability (over uniformly random coins s) that the output of A(s) and A[c∗](s)

differs after interaction with D(r, c∗) is at most (3/4)
√
d−3d̄/4.

Proof. Recall that whenever the consistency check passes, each wire in G̃ can be
uniquely associated with two keys. Now, in case (2), for all but d̄ wires in G\G0

the following holds: By Lemmas 4.6 and 4.8, for each bit running over the wire
w in G, there exists at most one key associated with w in G̃

⊕
such that the AND

gates with right input wire w is mapped to a “good” (W or GR-type-1) pebble,
while for the other key associated to w it would be mapped to a “bad” pebble
(GL or B). Note that in the latter case D immediately fails.

This allows us to map keys associated with wires in G̃
⊕
to bits, hence implies

a mapping from (G̃, x̃) to a circuit Ĝ and input x̂, where Ĝ contains at most 3d̄
“undefined” gates (note, each internal wire effects 3 gates in G⊕). Now, for D to
succeed, it has to simulate (G̃, x̃) such that at least d′ := d − 3d̄ “well-defined”
gates in the circuit Ĝ differ from XOR gates and x̂ = x0. At the same time, all

27

input and output wires of the well-defined gates have to carry the correct bits
during evaluation (for “evaluation” of Ĝ on x̂ we apply the mapping from keys to
bits to Eval(G̃, x̃) to extract a bit for all wires connected to well-defined gates).

Ignoring the undefined gates in Ĝ, this exactly corresponds to the game in-
troduced in Section 4.2: D simulates a circuit such that all but d′ gates are
garbled correctly as XOR gates, and D succeeds, if for all gates the (input and)
output bits correspond to the respective bits during evaluation of G⊕ on input
x0. Lemma 4.1 now implies an upper bound on D’s success probability in case
(2): Pr[D succeeds in case (2)] ≤ (3/4)

√
d′/4 = (3/4)

√
d−3d̄/4. ut

Thus, Lemmas 4.10 and 4.11 imply the following bound on any non-rewinding
PPT distinguisher D (choose d̄ = d/4):

Corollary 4.2. No non-rewinding PPT distinguisher DF can distinguish A[c∗]

from A with probability larger than (3/4)
√
d/14.

To handle arbitrary – potentially rewinding – distinguishers D, we modify A
as follows: Instead of sampling x0, x1 using random coins s, we assume a pseu-
dorandom function fk with uniformly random key k was hardcoded in A, which
takes as input a garbled circuit G̃ and coins s, and outputs a tuple (x0, x1). Since
D only has black-box access to A/A[c∗], the secret key k is hidden from D, thus
for two different inputs (G̃, s), (G̃

′
, s′) to A/A[c∗] the input pairs (x0, x1), (x′0, x

′
1)

look like independently sampled uniformly random strings.
With this modification in place, we finally arrive at the following lower bound

on the security loss of any black-box reduction R (where we used δ < 3d, hence√
d/14 >

√
δ/25). Note that our bounds naturally only apply to d ≤ n, hence

we assume δ < 2n in our theorem statement.

Theorem 4.1. Any black-box reduction from the indistinguishability of Yao’s
garbling scheme (or its variant from [14]) on the class of circuits with input
length n and depth δ ≤ 2n to the IND-CPA security of the underlying encryption
scheme loses at least a factor 1

q ·(
4
3)
√
δ/25 > 1

q ·2
√
δ/61, where q denotes the number

of times the reduction rewinds the adversary.

5 Discussion and Open Problems

In this work we prove that any black-box reduction from indistinguishability of
(the modification [14] of) Yao’s garbling scheme to IND-CPA security of the un-
derlying encryption scheme must involve a loss in security that is sub-exponential
in the depth of the circuit. This clearly also implies limitations to the stronger
and more common simulation-based security and shows that the approach of
[14] is essentially optimal. However, we leave it to future work if our fine-grained
separation can be turned into an actual attack against Yao’s garbling scheme.

Beside this most exciting open problem, one can also consider if our ap-
proach can be optimized. It might be possible to push our lower bound to an

28

exponential loss, which would exactly match the upper bound from [14]. Fol-
lowing our approach, this requires a more sophisticated pebbling lower bound.
Another interesting question would be if an even stronger bound can be found
for the original construction of Yao, where the output mapping is sent in the
offline phase, and certain limitations are already known from [3].

Acknowledgements. We would like to thank the anonymous reviewers of Crypto’21
whose detailed comments helped us considerably improve the presentation of the
paper.

References

[1] P. Ananth and A. Lombardi. Succinct garbling schemes from functional encryption
through a local simulation paradigm. In A. Beimel and S. Dziembowski, editors,
TCC 2018, Part II, volume 11240 of LNCS, pages 455–472. Springer, Heidelberg,
Nov. 2018.

[2] P. V. Ananth and A. Sahai. Functional encryption for turing machines. In
E. Kushilevitz and T. Malkin, editors, TCC 2016-A, Part I, volume 9562 of LNCS,
pages 125–153. Springer, Heidelberg, Jan. 2016.

[3] B. Applebaum, Y. Ishai, E. Kushilevitz, and B. Waters. Encoding functions with
constant online rate or how to compress garbled circuits keys. In R. Canetti
and J. A. Garay, editors, CRYPTO 2013, Part II, volume 8043 of LNCS, pages
166–184. Springer, Heidelberg, Aug. 2013.

[4] M. Bellare, V. T. Hoang, and S. Keelveedhi. Instantiating random oracles via
UCEs. In R. Canetti and J. A. Garay, editors, CRYPTO 2013, Part II, volume
8043 of LNCS, pages 398–415. Springer, Heidelberg, Aug. 2013.

[5] M. Bellare, V. T. Hoang, and P. Rogaway. Adaptively secure garbling with appli-
cations to one-time programs and secure outsourcing. In X. Wang and K. Sako,
editors, ASIACRYPT 2012, volume 7658 of LNCS, pages 134–153. Springer, Hei-
delberg, Dec. 2012.

[6] M. Bellare, V. T. Hoang, and P. Rogaway. Foundations of garbled circuits. In
T. Yu, G. Danezis, and V. D. Gligor, editors, ACM CCS 2012, pages 784–796.
ACM Press, Oct. 2012.

[7] D. Boneh, C. Gentry, S. Gorbunov, S. Halevi, V. Nikolaenko, G. Segev, V. Vaikun-
tanathan, and D. Vinayagamurthy. Fully key-homomorphic encryption, arithmetic
circuit ABE and compact garbled circuits. In P. Q. Nguyen and E. Oswald, editors,
EUROCRYPT 2014, volume 8441 of LNCS, pages 533–556. Springer, Heidelberg,
May 2014.

[8] S. Dziembowski, T. Kazana, and D. Wichs. Key-evolution schemes resilient to
space-bounded leakage. In P. Rogaway, editor, CRYPTO 2011, volume 6841 of
LNCS, pages 335–353. Springer, Heidelberg, Aug. 2011.

[9] S. Garg and A. Srinivasan. Adaptively secure garbling with near optimal online
complexity. In J. B. Nielsen and V. Rijmen, editors, EUROCRYPT 2018, Part II,
volume 10821 of LNCS, pages 535–565. Springer, Heidelberg, Apr. / May 2018.

[10] B. Hemenway, Z. Jafargholi, R. Ostrovsky, A. Scafuro, and D. Wichs. Adaptively
secure garbled circuits from one-way functions. In M. Robshaw and J. Katz,
editors, CRYPTO 2016, Part III, volume 9816 of LNCS, pages 149–178. Springer,
Heidelberg, Aug. 2016.

[11] Z. Jafargholi, C. Kamath, K. Klein, I. Komargodski, K. Pietrzak, and D. Wichs.
Be adaptive, avoid overcommitting. In J. Katz and H. Shacham, editors,
CRYPTO 2017, Part I, volume 10401 of LNCS, pages 133–163. Springer, Hei-
delberg, Aug. 2017.

[12] Z. Jafargholi and S. Oechsner. Adaptive security of practical garbling schemes.
In K. Bhargavan, E. Oswald, and M. Prabhakaran, editors, Progress in Cryp-
tology – INDOCRYPT 2020, pages 741–762, Cham, 2020. Springer International
Publishing.

[13] Z. Jafargholi, A. Scafuro, and D. Wichs. Adaptively indistinguishable garbled
circuits. In Y. Kalai and L. Reyzin, editors, TCC 2017, Part II, volume 10678 of
LNCS, pages 40–71. Springer, Heidelberg, Nov. 2017.

[14] Z. Jafargholi and D. Wichs. Adaptive security of Yao’s garbled circuits. In M. Hirt
and A. D. Smith, editors, TCC 2016-B, Part I, volume 9985 of LNCS, pages 433–
458. Springer, Heidelberg, Oct. / Nov. 2016.

[15] C. Kamath, K. Klein, K. Pietrzak, and M. Walter. On the cost of adaptivity in
graph-based games. Cryptology ePrint Archive, Report 2021/059, 2021. https:
//eprint.iacr.org/2021/059.

[16] Y. Lindell and B. Pinkas. A proof of security of Yao’s protocol for two-party
computation. Journal of Cryptology, 22(2):161–188, Apr. 2009.

[17] A. C.-C. Yao. Protocols for secure computations (extended abstract). In 23rd
FOCS, pages 160–164. IEEE Computer Society Press, Nov. 1982.

[18] A. C.-C. Yao. How to generate and exchange secrets (extended abstract). In 27th
FOCS, pages 162–167. IEEE Computer Society Press, Oct. 1986.

30

https://eprint.iacr.org/2021/059
https://eprint.iacr.org/2021/059

	Limits on the Adaptive Security of Yao's Garbling
	References

