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Abstract. Ring signatures allow a user to sign a message on behalf of a
“ring” of signers, while hiding the true identity of the signer. As the degree
of anonymity guaranteed by a ring signature is directly proportional
to the size of the ring, an important goal in cryptography is to study
constructions that minimize the size of the signature as a function of the
number of ring members.
In this work, we present the first compact ring signature scheme (i.e.,
where the size of the signature grows logarithmically with the size of
the ring) from the (plain) learning with errors (LWE) problem. The
construction is in the standard model and it does not rely on a common
random string or on the random oracle heuristic. In contrast with the
prior work of Backes et al. [EUROCRYPT’2019], our scheme does not
rely on bilinear pairings, which allows us to show that the scheme is
post-quantum secure assuming the quantum hardness of LWE.
At the heart of our scheme is a new construction of compact and statis-
tically witness indistinguishable ZAP arguments for NP ∩ coNP, that
we show to be sound based on the plain LWE assumption. Prior to our
work, statistical ZAPs (for all of NP) were known to exist only assuming
sub-exponential LWE. We believe that this scheme might find further
applications in the future.

1 Introduction

In a ring signature scheme, (introduced in [48]) a user can sign a message with
respect to a ring of public keys. The ring can be arbitrarily chosen by the signer
and the verification keys that populate the ring can be sampled locally by each
user, i.e., no central coordination is required. No user or entity should be able
to tell which user in the ring actually produced a given signature — a property
referred to as anonymity. This is complemented with the standard notion of
unforgeability for signatures, which in this case requires that no user outside a
specified ring should be able to produce valid signatures on behalf of this ring.
A salient feature is the online or setup-free generation of ring signatures, which



requires that signatures can be generated without any prior interaction between
members of the ring. Ring signatures and their variants have found natural
applications related to whistleblowing, authenticating leaked information, and
more recently to cryptocurrencies [51,40].

There is a sizeable body of work [32,42,5,2] that construct ring signatures
under various definitions and hardness assumptions. As the degree of anonymity
guaranteed by the ring signature is directly proportional to the size of the ring,
an important property of ring signatures becomes compactness, which requires
that signatures only have a logarithmic (or lower) dependence on the size of the
ring. Recently, the work of [2] provided a compact ring signature construction
in the plain model (i.e., not needing a common random string or a setup).
Their construction assumes the existence of the following: noninteractive witness
indistinguishable proofs or NIWIs (which are known only from bilinear pairing
based assumptions or indistinguishability obfuscation), somewhere perfectly
binding (SPB) hashes, public key encryption with oblivious public key generation
and pseudorandom ciphertexts, and a standard signature scheme. While most
of these primitives are known under a variety of cryptographic assumptions
including LWE, unfortunately, we currently do not know any constructions of
NIWI proofs from LWE (please see the technical overview for related discussion).

This leads to the natural question of whether NIWIs are necessary to construct
compact ring signatures in the plain model. The looming threat of quantum
computers makes this question particularly pressing, since we would lose our
only candidate construction to quantum attacks (due to the reliance on bilinear
maps). We therefore ask the following open question:

Can we obtain compact (logarithmic size) ring signatures from the
hardness of standard learning with errors (LWE) problem?

1.1 Our Results

Our main contribution resolves the open problem stated above. In other words,
we obtain a ring signature construction from plain or standard LWE, i.e., only
assuming polynomial hardness of the LWE problem with polynomial modulus-to-
noise ratio. Our result is obtained as follows:

ZAPs for NP ∩ coNP. The first key step to our construction of ring signatures
is realization of a new argument system that we call relaxed ZAPs for extended
NP∩coNP. These are akin to ZAPs but with a few additional restrictions, and can
also be viewed as a generalization of (non-adaptive) ZAPs for languages in NP ∩
coNP. We show how to construct these ZAPs from the plain (polynomially-hard)
LWE. This is in contrast with the known constructions of ZAPs for NP [4,28,34]
that assume subexponential hardness of LWE. Our ZAP construction also enjoys
several other attractive properties such as statistical witness indistinguishability
and proof compactness; which we expect will make them useful in other application
contexts. We defer further exposition to our technical overview.
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Compact ring signatures from LWE. Next, we show that our notion of relaxed
ZAPs, along with SPB hash schemes and a special public key encryption scheme,
is sufficient to construct compact ring signatures. All these components have
constructions from plain LWE. Thus, we obtain the first construction of compact
ring signatures in the plain model from purely post-quantum assumptions in the
literature. In addition, we investigate security in the fully quantum setting, where
the adversary can query the signing oracle on a superposition of messages. Towards
this goal, we give a construction that retains unforgeability and anonymity in
this setting.

1.2 Background

Fiat-Shamir transformation, trapdoor Σ-protocols, and correlation
intractability. A trapdoor Σ-protocol [17] for a language L is a 3-move (honest
verifier) zero-knowledge protocol between a prover and a verifier, where the
prover tries to convince the verifier about the veracity of a statement x. The
protocol is instantiated with an extractable commitment scheme where there is an
extraction trapdoor td which allows extracting the plaintexts in the commitments.
In the first move of the protocol, the prover commits to a string a and sends
this commitment Com(a) to the verifier. Next, in the second move, the verifier
sends a challenge b to the prover. In the final round, based on the challenge b, the
prover computes the final message and sends it to the verifier. The distinctive
property of trapdoor sigma protocols is that for a false statement x, there is at
most one bad challenge b∗ which lets a malicious prover to successfully complete
its proof, and this bad challenge is efficiently computable given a. Consequently,
given the extraction trapdoor td, the bad challenge can be efficiently computed
from Com(a).

The Fiat-Shamir transformation [23] can convert a trapdoor Σ-protocol
(indeed any Σ-protocol) to a noninteractive protocol in the random oracle model.
The way it works is that the prover evaluates a hash function on its first message
to compute the challenge b, and then proceeds to send the full proof generated
using this challenge to the verifier. To argue soundness, notice that since the
bad challenge is unique and the hash function is modeled as a random oracle, a
malicious prover has a negligible chance of finding a first message such that the
hash of it equals the bad challenge b∗.

A line of work [17,45] builds a special type of hash functions called correlation
intractable (CI) hash functions, to securely instantiate the Fiat-Shamir heuristic in
the plain model for trapdoor Σ-protocols, thus turning them into noninteractive
protocols in the CRS model. In particular, the LWE-based CI hash functions
in [45] allow building noninteractive zero knowledege protocols for all of NP from
the LWE assumption. Informally, a hash function is CI for a class of circuits
if for any circuit C in the class, given a random hash key k, it is hard to find
an input z whose image under the hash function equals C(z). We can securely
replace CI hash functions with random oracles when we apply the Fiat-Shamir
transformation to trapdoor Σ-protocols. To see this, notice that since in trapdoor
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Σ-protocols the bad challenge is efficiently computable given the prover’s first
message, a malicious prover that can find a first message which gets mapped to
the bad challenge is breaking the correlation intractability of the hash function.

Somewhere perfectly binding hash. A somewhere perfectly binding (SPB)
hash is similar to a Merkle tree [37]: it can compress a large database of N
records into a small digest. In a SPB hash with private local openings, binding
holds perfectly for a single hidden index i ∈ [N ]. In more detail, the SPB hash
key generation algorithm takes as input a binding index i ∈ [N ] and outputs a
pair of keys (hk, shk). The hash key hk can be used to generate a digest. The
secret key shk, can be used to generate a short opening for the ith record in the
database. Perfect binding says that a valid opening for the ith location of the
database uniquely determines the value of that location. Also, the hash key hk is
index hiding, i.e, it computationally hides the binding index i.

Compact ring signatures of [2]. The construction of [2] is based on four
ingredients: a noninteractive witness indistinguishable argument system NIWI,
a public key encryption scheme PKE, a standard signature scheme Sig, and a
somewhere perfectly binding hash scheme SPB. In this scheme, each verification
key consists of two components: a uniformly chosen public key pk (not generated
through the key generation algorithm of PKE) and a standard signature verifi-
cation key vk. The signing key consists of sk, the corresponding signing key for
vk. To sign a message m using signing key ski corresponding to verification key
VKi = (vki, pki), and on behalf of ring R = (VK1, · · · ,VK`), the signer

– first generates a standard signature σ for message m as σ ← Sig.Sign(ski,m),
– encrypts σ under pki with random coins r to get ciphertext c← PKE.Enc(pki, σ; r),
– generates a binding SPB key pair for index i, (hk, shk)← SPB.Gen(i),
– hashes the ring R with hk to get a short digest h := SPB.Hash(hk,R),
– creates an opening for the ith location τ ← SPB.Open(hk, shk,R, i),
– generates a NIWI proof π which using the short opening τ proves existence

of a verification key VKi = (vki, pki) in the ring R such that under pki, c
encrypts a valid signature under verifiable with vki,

– finally, it publishes (π, c, hk) as the signature for message m.

To prove unforgeability, we switch to a hybrid where we generate each pki with a
corresponding secret key ski. Consequently, perfect binding of SPB and soundness
of NIWI imply that given a forgery (π, c, hk) for ring R, there exists a ski such
that PKE.Dec(ski, c) is valid forgery against Sig. Proving anonymity involves
techniques similar to [39].

1.3 Technical Overview

ZAP instead of NIWI. As already mentioned, the issue that prevents [2]
from basing their construction solely on LWE is their reliance on NIWIs. Our
starting point is the observation of [6] which proposes using two-message public
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coin argument systems, known in the literature as ZAPs [21], instead of NIWIs.
Namely, we can add a ZAP first message ρ to each verification key. The signer
now picks the lexicographically smallest verification key VK1 = (vk1, pk1, ρ1) ∈ R
in the ring and uses ρ1 to generate a proof. Using LWE-based ZAPs constructed
in [4,28,34], this approach gives us LWE based compact ring signatures. However,
there is a major caveat: none of the LWE-based ZAPs mentioned above are based
on polynomial hardness assumptions. They all need super-polynomial hardness
of LWE (in fact subexponential hardness if the goal is to achieve conventional
λ bits of security). Therefore, using lattice based ZAPs generically seems to be
unsatisfactory as the resulting construction would rely on qualitatively stronger
assumptions.

ZAPs for NP ∩ coNP. Our next insight is that we may not need ZAPs for
all of NP. Assume that in the forgery Σ∗ = (π∗, c∗, hk∗), the ciphertext c∗ is
guaranteed to be encrypted under one of the public keys pki. In the unforgeability
game we can generate pkis with corresponding secrets ski. In this case, given
ski, checking that Σ∗ is a forgery can be done efficiently, i.e., ski is a witness for
the fact that Σ∗ is not a valid signature. Therefore, ZAPs for NP ∩ coNP might
suffice for our application.

It turns out that for NP ∩ coNP we can build ZAPs based on the polynomial
hardness of LWE. We will now describe a ZAP protocol for any arbitrary language
L ∈ NP ∩ coNP. The ZAP that we describe here is constructed by following the
general framework of converting a Σ-protocol to a noninteractive protocol using a
CI hash function [17,45]. More specifically, we describe a two round commitment
scheme and use it to instantiate [17,45]. Our commitment scheme is defined with
respect to the complement language L. To commit to a bit b and generate the
second commitment message, the sender specifies a statement x. The receiver
can recover the committed bit, if, when generating the first message it specified
a (non-)witness w for the fact that x ∈ L. If x 6∈ L, the committed bit is hidden.
The commitment scheme works as follows:

– The receiver sends an arbitrary bitstring w via the first message of a statisti-
cally sender private (1 out of 2) OT, OT1(w).

– The sender garbles the following circuit: on input w, if w is a witness for
x ∈ L, output b, otherwise, output 0. The sender sends the garbled circuit
along with a OT second message containing the labels OT2({lbli,0, lbli,1}).

We instantiate [17,45] for language L with our two round witness extractable
commitment for L, to get a ZAP for NP∩coNP: the verifier sends the commitment
first message along with a key for a CI hash function, the prover uses the hash
key and the commitment scheme to proceed as in [17]. Recall that to apply the
transformation of [17,45], we have to make sure that when x 6∈ L, the commitments
used in the underlying Σ-protocol are extractable given the extraction trapdoor.
If x 6∈ L, the verifier can (undetectably) switch to generating the first commitment
message using a non-witness wx for x ∈ L and this will let the soundness proof
go through.
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Unfortunately, when trying to use our NP∩coNP ZAPs to build ring signatures
we encounter two issues:

1. The ZAPs that we need for our ring signatures need to be adaptively sound.
However, the ZAPs that we just constructed are only selectively sound. This
is because, in the soundness reduction we have to switch to a commitment
first message that depends on a non-witness w for the statement x (depends
on a w such that (x,w) ∈ R ).

2. We assumed the ciphertext c∗ in the forgery is a valid encryption under one
of the public keys of the ring. This may not be true. In particular, L might
not be in NP.

The first issue seems relatively easy to resolve. Our ZAP construction already
achieves a weak notion of adaptivity that is sufficient for our purpose: as long as
the non-witness w is fixed in advance, the cheating prover cannot come up with
a valid proof for a statement x where (x,w) ∈ R. In our case, the non-witnesses
which are the secret keys corresponding to pkis are clearly fixed in advance.

Extending the complement language. For the second issue, our solution is
to extend L to a language L̃ ∈ NP and use a witness extractable commitment
for this extended language L̃. In more detail, given a forgery Σ∗ for a ring R∗

of size `, we define statement x = (Σ∗,R∗). For a witness w̃ = (sk1, · · · , sk`)
we say that (x, w̃) ∈ L̃, if each ski is a valid secret key for pki, and decrypting
c∗ with any skj does not yield a valid standard signature corresponding to vkj .
Accordingly, in the unforgeability game, we can generate each public key pki with
a corresponding secret ski, and put these secret keys inside the witness extractable
commitment first message. With this approach we encounter a new problem:
the size of the commitment first message, and consequently the verifier’s first
message in the ZAP scheme, needs to scale at least linearly with the maximum
number of members in a ring. However, the number of members in a ring can be
arbitrarily large.

One secret key, multiple public keys. To overcome this problem we use a
public key cryptosystem which can generate multiple public keys having a single
secret key. Using such a public key scheme, the first commitment message now
only needs to hold one short secret key. Luckily, public key cryptosystems with this
property already exist in the literature. In particular, Regev’s cryptosystem [47]
already has the ability to generate multiple pseudorandom public keys having a
single uniformly chosen secret key. This cryptosystem also has another appealing
feature: it has sparse valid public keys. In other words, a randomly chosen public
key does not have a corresponding secret key (except with negligible probability).
In the ring signature context, this sparseness property will be helpful in proving
the anonymity of the scheme. Specifically, given a signature Σ for a ring R, if at
least one verification key in R is generated honestly, or in particular if at least
one public key pki ∈ R is chosen uniformly at random, then (Σ,R) 6∈ L̃, and
therefore, the commitment scheme is hiding.
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Compactness through malicious circuit private FHE. The ZAP that we
have constructed so far seems to satisfy the soundness and witness indistinguishi-
bility properties that we need in the application to our ring signature scheme.
However, upon a closer look, it seems that our resulting ZAP scheme suffers
from a major flaw. Namely, the size of our ring signatures is linear in the size of
the ring. This is because in the witness extractable commitment scheme, each
commitment contains a garbling of a circuit that computes on each verification
key in the ring separately. Specifically, while the size of the circuit for checking
membership in L is independent of the size of the ring (thanks to the properties

of SPB hashing), circuits for checking membership in L̃, and even the relevant
statements, have size that depend on the ring. It seems that to overcome this,
we need some form of a compact witness extractable commitment. Our final idea
is to use a fully homomorphic encryption scheme [24] to build such a compact
witness extractable commitment. The construction is as follows:

– The receiver generates a FHE key pair (FHE.pk,FHE.sk) and sends a cipher-
text
ct← FHE.Enc(FHE.pk, w̃) encrypting an arbitrary string w̃.

– The sender homomorphically evaluates the following circuit on ct: on input
w̃, if w̃ is a witness for x ∈ L̃, output b, otherwise, output 0. The sender
sends the evalauted ciphertext cteval.

Observe now that the compactness of the commitment scheme follows from the
compactness of the FHE scheme. Clearly, if the receiver encrypts a non-witness
for x, it can recover the committed bit b using the secret key FHE.sk. For this
commitment scheme to be hiding, it is sufficient that in the FHE scheme, the
evaluated ciphertext hides the circuit that has been evaluated on it, even if the
initial FHE ciphertext and public key are maliciously generated. Fortunately,
FHE schemes satisfying the aforementioned malicious circuit privacy have already
been constructed from LWE [41,14].

1.4 Related Existing Work

The initial construction of ring signatures by Rivest, Shamir and Kalai [48] is
in the random oracle model. Several subsequent constructions [1,10,30] were
also given in the ROM. Constructions in the standard model were first obtained
concurrently by Chow, Liu, Wei and Yuen [19] and Bender, Katz and Morselli [6].
Several works also construct schemes in the CRS model [50,13,49]. Brakerski
and Kalai [15] gave a construction based on the SIS problem in the standard
model, and there are subsequent lattice-based constructions [5,51] that give more
practical constructions (these works actually construct linkable ring signatures).
Park and Sealfon [42] give certain constructions based on SIS and others based
on verifiable random functions that satisfy new and interesting definitions of
repudiability and claimability that they develop. All of these constructions give
ring signatures linear in the ring size.

Dodis et al [20] gave the first sublinear size ring signatures in the ROM.
Since then, constructing logarithmic size ring signatures in the ROM been the
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focus of many works [29,31,32,22,7,35]. In the CRS model, [18,26,27,33] build
sublinear ring signatures under various assumptions. In the plain model, Backes
et al [3] construct sublinear ring signatures using a primitive called signatures
with flexible public key, and Malavolta and Schroder [36] construct constant size
ring signatures under a knowledge of exponent assumption, which is unfalsifiable.
Finally, as mentioned, Backes et al [2] construct the first logarithmic size ring
signatures in the plain model under standard and falsifiable assumptions, namely
DDH or LWE along with NIWI proofs.

2 Preliminaries

We denote the security parameter by λ. For any ` ∈ N, we denote the set of the
first ` positive integers by [`]. For a set S, x← S denotes sampling a uniformly
random element x from S.

2.1 Learning With Errors

We recall the Learning With Errors (LWE) problem, and its hardness based on
worst-case lattice problems.

For a positive integer dimension n and modulus q, and an error distribution χ
over Z, the LWE distribution and decision problem are defined as follows. For an
s ∈ Zn, the LWE distribution As,χ is sampled by choosing a uniformly random
a← Znq and an error term e← χ, and outputting (a, b = 〈s,a〉+ e) ∈ Zn+1

q .

Definition 1. The decision-LWEn,q,χ problem is to distinguish, with non-negligible
advantage, between any desired (but polynomially bounded) number of independent
samples drawn from As,χ for a single s← Znq , and the same number of uniformly
random and independent samples over Zn+1

q .

A standard instantiation of LWE is to let χ be a discrete Gaussian distribution
over Z with parameter r = 2

√
n. A sample drawn from this distribution has

magnitude bounded by, say, r
√
n = Θ(n) except with probability at most 2−n,

and hence this tail of the distribution can be entirely removed. For this parame-
terization, it is known that LWE is at least as hard as quantumly approximating
certain “short vector” problems on n-dimensional lattices, in the worst case, to
within Õ(q

√
n) factors [47,44]. Classical reductions are also known for different

parameterizations [43,16].
Fix a dimension n = poly(λ). For the rest of this paper, when we refer to

hardness of LWE, we mean hardness of LWE with polynomial modulus-to-noise
ratio against polynomial sized adversaries, i.e., polynomial hardness of LWEn,q,χ
where, q is a polynomial in n, and χ is the error distribution described in the
previous paragraph.

2.2 Correlation Intractable Hash Functions

We borrow the following the definition of CI hash functions from [45] verbatim.
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Definition 2. Let C = {Cλ} be a family of circuits, i.e., a set of circuits for
each λ. A hash function family Hash = (Gen,Eval) is correlation intractable (CI)
for C if for every non-uniform polynomial-size adversary A = {Aλ} there exists
a negligible function ν(λ) such that for every C ∈ Cλ,

Pr
k←Hash.Gen(1λ)

x←Aλ(k)

[Hash.Eval(k, x) = C(x)] ≤ ν(λ) . (1)

We will also use CI hash construction of [45].

Theorem 1 ([45]). Assuming hardness of LWE, there exists a polynomial m =
m(λ) such that, for every family of polynomial sized circuits C with output size at
least m bits, there exists a hash function family which is CI for C. Furthermore, the
key generation algorithm in this hash function family simply outputs a uniformly
random key from its key space.

2.3 Public Key Encryption

Similar to [2], we need a public key encryption scheme which has pseudorandom
ciphertexts and public keys. For our application, we also require additional
properties.

Definition 3. A public key encryption scheme is a tuple of PPT algorithms
PKE = (GenWithKey,Enc,Dec,Valid), with the following interfaces, where for
each security parameter λ ∈ N, PKλ, SKλ and CTλ are three sets where the
uniform distribution is efficiently sampleable,

– GenWithKey(sk), on input a secret key sk ∈ SKλ outputs a public key pk ∈
PKλ.

– Enc(pk, b), on input a public key pk, and a message b ∈ {0, 1}, outputs a
ciphertext ct ∈ CTλ.

– Dec(sk, ct), on input a secret key sk and a ciphertext ct, outputs a bit b.
– Valid(pk, sk), on input a public pk and a secret key sk, either accepts or

rejects.

We consider the following properties:

1. Completeness: for any λ ∈ N, any key pair (pk, sk) such that Valid(pk, sk)
accepts, and any message b,

Pr[Dec(sk, ct) = b] = 1,

where ct← Enc(pk,m). Furthermore, for any λ ∈ N,

Pr
sk←SKλ

pk←GenWithKey(sk)

[Valid(pk, sk) accepts] = 1.

2. Sparseness of valid public keys: for any λ ∈ N,

Pr
pk←PKλ

[∃sk : Valid(pk, sk) accepts] = negl(λ).
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3. Injectivity of key generation: for any sk,

Pr
pk←GenWithKey(sk)

[∃sk′ 6= sk : Valid(pk, sk′) accepts] = negl(λ).

4. Pseudorandomness of public keys: for every Q = poly(λ), the following two
distributions

– first, samples a uniformly random secret key sk ← SKλ, then outputs
{pki ← GenWithKey(sk)}i∈[Q]

– outputs L uniformly random public keys {pki ← PKλ}i∈[Q],
are computationally indistinguishable.

5. Closeness of ciphertexts to uniform: for every message b, the output of the
following two distributions
– first, samples a uniformly random public key pk ← PKλ, then, outputs

(pk,Enc(pk, b)),
– first, samples a uniformly random public key pk ← PKλ, then, chooses a

uniformly random ciphertext ct← CTλ and outputs (pk, ct),
are statistically indistinguishable.

Consider Regev’s public key cryptosystem [47]. For some appropriate parameters
n = poly(λ), q = poly(n),m ≥ 2n log q, B � q/4, a secret key in this scheme is a
vector s ∈ Znq and valid public keys for secret s are generated as

pk := A =

[
Ā

stĀ + et

]
∈ Z(n+1)×m

q ,

where, Ā← Zn×mq and e is chosen from some B-bounded distribution. For this
cryptosystem we define the following validity check algorithm

– Valid(pk = A, sk = s): Accept iff |(st,−1) ·A|∞ ≤ B.

Theorem 2. Assuming hardness of LWE, there exists a public key encryption
scheme satisfying all the properties in Definition 3.

Proof. We briefly argue that equipped with algorithm Valid, Regev’s cryptosystem
satisfies all the properties in Definition 3. When q is a prime number, injectivity
of key generation is an implication of Lemma 5.3 in [25]. The rest of the properties
are already established in [47,38].

2.4 Blum’s Raw Protocol

Here, we formally define and state the properties of the raw version of Blum’s
sigma protocol [8]. In this abstraction, the prover does not use any commitment
or encryption scheme to hide its first message and therefore, the protocol does
not satisfy a conventional zero knowledge property. Using a commitment scheme,
this protocol can be converted into an honest verifier zero knowledge protocol.

Definition 4. Let L ∈ NP be a language with a corresponding relation R. Blum’s
raw protocol for L, is a tuple of PPT algorithms
Π = (P1,P2,V,BadChallenge,Sim) with the following interfaces
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– P1(x,w), on input a statement witness pair (x,w) ∈ L, it outputs a first
message a, two substrings (a0, a1) of a corresponding to two subsets of in-
dices S0, S1, and an internal state ζ. We implicitly assume (a0, a1) uniquely
determine the subsets S0, S1.

– P2(a, b, ζ), on input first message a, a challenge bit b ∈ {0, 1}, and internal
state ζ, it outputs a second message c.

– V(x, b, ab, c), on input an instance x, a challenge bit b ∈ {0, 1}, an opening
ab, and a response c, it either accepts or rejects.

– BadChallenge(a), on input a first message a, it outputs a badchallenge bit
b ∈ {0, 1}.

– Sim(b, x), takes as input a challenge bit b, and an instance x, and outputs
two strings ab and c.

These algorithms satisfy the following properties:

1. Completeness: for any (x,w) ∈ L, any ` ∈ N, and any b ∈ {0, 1},

Pr[V(x, b, ab, c) accepts ] = 1,

where, (a, (a0, a1), ζ)← P1(x,w), and c← P2(a, b, ζ).
2. Soundness: if x 6∈ L, then, for any two subsets of indices S0, S1, bit b 6=

BadChallenge(a), and any c,

Pr[V(x, b, ab, c) rejects ] = 1,

where, ab denotes a subset of a specified by indices in Sb.
3. Zero knowledge: for any b ∈ {0, 1} and any (x,w) ∈ R the following two

distributions,

– outputs (b, ab, c), where (a, (a0, a1), ζ)← P1(x,w), and c← P2(a, b, ζ)
– outputs (b,Sim(b, x))

are identical.

Blum’s raw protocol exists unconditionally for any language L ∈ NP [8].

2.5 Maliciously Circuit Private FHE

We review the definition of maliciously circuit private FHE.

Definition 5 ([41]). A maliciously circuit private leveled FHE scheme is a tuple
of algorithms
FHE = (Gen,Enc,Eval,Dec,Sim), where, except for Sim the rest of the algorithms
are PPT, having the following interfaces

– Gen(1λ, 1d), given a security parameter λ ∈ N and a depth parameter d ∈ N,
outputs a public and private key pair (pk, sk).

– Enc(pk, b), given a public key pk and a message b ∈ {0, 1}, outputs a ciphertext
ct ∈ {0, 1}`ct(λ,d).
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– Eval((ct1, · · · , ctk), C; r), given k ciphertexts ct1, · · · , ctk, a boolean circuit
C : {0, 1}k → {0, 1}, and random coins r, outputs an evaluated ciphertext
cteval ∈ {0, 1}`eval .

– Dec(sk, ct), given a secret key sk and a ciphertext ct, outputs a bit b ∈ {0, 1}.
– Sim(pk∗, (ct∗1, · · · , ct∗k), b), on input a (not necessarily honestly generated)

public-key pk∗ and k (not necessarily honestly generated) ciphertexts ct∗1 ∈
{0, 1}`ct(λ,d), ..., ct∗k ∈ {0, 1}`ct(λ,d), and a bit b, outputs a simulated ciphertext
ctsim.

We consider FHE schemes that satisfy the following properties:

1. Completeness: for every λ, d ∈ N, every circuit C : {0, 1}k → {0, 1} of depth
at most d and every input m ∈ {0, 1}k,

Pr[Dec(sk, cteval) = C(m)] = 1,

where, (pk, sk)← Gen(1λ, 1d), cti ← Enc(pk,mi) for every i ∈ [`],
and cteval ← Eval((ct1, · · · , ct`), C).

2. Compactness: there exists fixed polynomials `eval = `eval(λ, d) and `rand =
`rand(λ, d), such that evaluated ciphertexts have size `eval(λ, d) and the size
of the randomness used in Eval algorithm is `rand(λ, d), i.e., the size of
evaluated ciphertexts and the size of randomness in the evaluation algorithm
only depend on the depth of the circuit being evaluated.

3. Pseudorandomness of public keys: the public key pk output by the Gen algo-
rithm is pseudorandom.

4. Pseudorandomness of ciphertexts: for every non-uniform polynomial-size
adversary A, every d ∈ N and every b ∈ {0, 1}, the probabilities

Pr[A(pk, ct) = 1], (2)

in the following two experiments differ by only negl(λ):

– in experiment 1, (pk, sk)← Gen(1λ, 1d), ct← Enc(pk, b)

– in experiment 2, (pk, sk)← Gen(1λ, 1d), ct← {0, 1}`ct(λ,d)

5. Malicious circuit privacy: for every (not necessarily honestly generated) public-
key pk∗, every k ∈ N, and every k (not necessarily honestly generated)
ciphertexts ct∗1 ∈ {0, 1}`ct(λ,d), ..., ct∗k ∈ {0, 1}`ct(λ,d), there exists a m∗ ∈
{0, 1}k such that, for every circuit C : {0, 1}k → {0, 1} of depth at most d,

Eval((ct∗1, · · · , ct∗k), C)
s
≈ Sim(pk∗, (ct∗1, · · · , ct∗k), C(m∗))

.

Theorem 3 ([41,14]). Assuming hardness of LWE, there exists a maliciously
circuit private leveled FHE, where the size of evaluated ciphertexts and secret
keys only depend on the security parameter λ.
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2.6 Somewhere Perfectly Binding Hash

We next define the notion of somewhere perfectly binding hash or SPB schemes,
which are very similar to somewhere statistically binding hash schemes (as can be
surmised, the only change from the latter is that here we expect the somewhere
binding property to hold with probability 1). As in the scheme of [2], we will only
define and employ a slightly weaker primitive denoted as somewhere perfectly
binding hash with private local openings, which is what we will need for our
signature scheme as well. We direct the reader to [2] for further details. The
definition is essentially identical to that in [2], and is as follows.

Definition 6 (SPB Hash). A somewhere perfectly binding hash scheme with
private local openings, denoted by SPB, consists of a tuple of probabilistic polyno-
mial time algorithms (Gen,Hash,Open,Verify), with the following syntax:

– Gen(1λ, n, ind), given a security parameter λ, a database size n, and index
ind as input, outputs a hash and secret key pair (hk, shk).

– Hash(hk, db), given a hash key hk and database db as input, outputs a hash
value h.

– Open(hk, shk, db, ind), given a hash key hk, secret key shk, database db and
index ind as input, outputs a witness τ .

– Verify(hk, h, ind, x, τ), given as input a hash key hk, a hash value h, an index
ind, a value x and a witness τ , either accepts or rejects.

To maintain clarity, we will not explicitly specify the block size of databases as
input to Gen, but assume that this is clear from the specific usage and hardwired
into the algorithm. We ask that the SPB scheme satisfies the following properties:

1. Correctness: for all λ ∈ N, n = poly(λ), all databases db of size n, and all
indices ind ∈ [n], we have,

Pr[Verify(hk, h, ind, dbind, τ) accepts ] = 1,

where, (hk, shk)← Gen(1λ, n, ind), h← Hash(hk, db) and τ ← Open(hk, shk, db, ind).
2. Efficiency: any hash keys hk and witnesses τ corresponding to size n databases,

are of size log(n) · poly(λ). Further, for size n databases, Verify can be com-
puted by a circuit of size log(n) · poly(λ).

3. Somewhere perfectly binding: for all λ, n ∈ N, all databases db of size n,
all indices ind ∈ [n], all purported hashing keys hk, all purported witnesses
τ , all h in the support of Hash(hk, db), if Verify(hk, h, ind, x, τ) accepts, then
x = dbind.

4. Index hiding, for any n ∈ N and any ind0, ind1 ∈ [n],

{hk : (hk, shk)← Gen(1λ, n, ind0)}
c
≈ {hk : (hk, shk)← Gen(1λ, n, ind1)}

Theorem 4 ([2]). Assuming hardness of LWE, there exists a SPB hash.
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2.7 Ring Signatures

We review the definition of compact ring signatures as presented in [2].

Definition 7 (Compact Ring Signature [2]). A compact ring signature
scheme RS is described by a triple of PPT algorithms (Gen,Sign,Verify) that have
the following interface:

– Gen(1λ, N), given a security parameter λ and the maximum number of mem-
bers in a ring N , outputs a verification and signing key pair (VK,SK).

– Sign(SK,m,R), given a secret key SK, a message m ∈ Mλ. and a list of
verification keys (interpreted as a ring) R = (VK1, · · · ,VK`) as input, outputs
a ring signature Σ.

– Verify(R,m,Σ), given a ring R = (VK1, . . . ,VK`), message m ∈Mλ and ring
signature Σ as input, either accepts or rejects.

Further, we require that the ring signature satisfies the following properties:

1. Completeness: for all λ ∈ N, N ∈ N, ` ≤ N , i ∈ [`] and m ∈Mλ, we have:

Pr[RS.Verify(R,m,Σ) accepts] = 1,

where, (VKi,SKi)← Gen(1λ, N), Σ ← Sign(SKi,m,R) (where R = (VK1, . . . ,VK`)).
2. Unforgeability: for any N ∈ N, and any Q = poly(λ), any PPT adversary A

has negligible advantage in the following game:

Experiment RS−ForgeQ(A): This experiment is run by a challenger that
proceeds as follows:
– For each i ∈ [Q], the challenger generates key pairs (VKi,SKi)← Gen(1λ, N ; ri),

and stores these key pairs along with their corresponding randomness. It
then sets VK = {VK1, . . . ,VKQ} and initializes C = ∅.

– The challenger sends VK to A.
– A can now make the following two kinds of queries: signing queries sign

to get signatures signed by a particular entity on a particular message
with respect to a ring of its choice, and corruption queries corrupt to
corrupt a particular entity. The challenger responds as follows:
• Signing query (sign, i,m,R): The challenger first checks if VKi ∈ R.

If so, it computes Σ ← Sign(SKi,m,R) and sends this to A. It also
keeps a list of all such queries made by A.
• Corruption query (corrupt, i): The challenger adds VKi to the set C

and returns the randomness ri to A.
– Finally, A outputs a forgery attempt, namely a purported ring signature
Σ∗ with respect to a ring R∗ and message m∗. The challenger checks if:
• R∗ ⊆ VK \ C,
• A never made a signing query with respect to m∗ and R∗ (together,

i.e. of the form (sign, ·,m∗,R∗)), and
• Verify(R∗,m∗, Σ∗) accepts.

If so, the challenger outputs 1, otherwise, it outputs 0.
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The advantage of the adversary A is defined to be AdvRS−ForgeQ(A) =

Pr[RS−ForgeQ(A) = 1].
3. Anonymity: for all Q = poly(λ), any PPT adversary A has negligible advan-

tage in the following game:

Experiment RS−AnonQ(A): This experiment is run by a challenger that
proceeds as follows:
– For each i ∈ [Q], the challenger generates key pairs (VKi,SKi)← Gen(1λ; ri).

It sends these key pairs along with their corresponding randomness to A.
– Eventually A sends a challenge to the challenger of the form (R,m, i0, i1).

We stress that R might have keys that are not generated by the challenger
in the previous step. In particular, it might contain maliciously generated
keys. The challenger checks if VKi0 ,VKi1 ∈ R. If so, it first samples a
uniform bit b← {0, 1}, then computes Σ ← Sign(SKib ,m,R), and sends
this to A.

– A sends back its guess bit b′. The challenger outputs 1 if b′ = b, otherwise
it outputs 0.

The advantage of the adversary A in this game is defined as

AdvRS−AnonQ(A) = |Pr[RS−AnonQ(A) = 1]− 1

2
|.

4. Compactness: the size of a signature is upper-bounded by a polynomial in λ
and logN .

We mention that the unforgeability and anonymity properties defined in Def-
inition 7 correspond respectively to the notions of unforgeability with insider
corruption and anonymity with respect to full key exposure presented in [6].

3 Compact Witness Extractable Commitments

In this section we define witness extractable commitments. A witness extractable
commitment for a language L ∈ NP with corresponding NP relation R is a two
round commitment protocol. The receiver’s message is generated using a witness
w, and the sender’s commitment to a bit b is generated using a statement x.
Informally speaking, the bit b can be efficiently extracted when (x,w) ∈ R,
however, when x 6∈ L, b is statistically hidden.

For our application in this paper, we are interested in witness extractable
commitments that are compact. This means that the size of a commitment second
message does not depend on the size of the NP verifier circuit (except for maybe
its depth).

3.1 Definition

Definition 8. Fix a language L ∈ NP. By R and {Cn,` : {0, 1}n × {0, 1}` →
{0, 1}}n,`∈N denote the NP relation and the NP verification circuit corresponding
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to L respectively. Also, let d = d(n, `) be the depth of Cn,`. When it is clear
from the context, we use d instead of d(n, `). A witness extractable commitment
scheme for L, is a tuple of PPT algorithms (Com1,Com2,Verify,Extract) having
the following interfaces:

– Com1(1λ, 1D, w), given a security parameter λ, circuit depth upper bound D,
and a witness w ∈ {0, 1}`, outputs the commitment first message com1 ∈
{0, 1}`com1=`com1(λ,D,`) and a string st ∈ {0, 1}`st representing the internal
state.

– Com2(com1, x, b; r), given a commitment first message com1, a statement
x, a bit b to commit, and randomness r ∈ {0, 1}`r , outputs a commitment
com2 ∈ {0, 1}`com2 .

– Verify(com1, com2, x, b, r), given a commitment transcript com1, com2, a state-
ment x, a bit b, and random coins r, it either accepts or rejects.

– Extract(com2, st), given a commitment com2 and internal state st, outputs a
bit b.

We consider the following properties:

1. Completeness: for every λ ∈ N, bit b, every statement x, every witness w,
every D ≥ d,

Pr[Verify(com1, com2, x, b, r) accepts ] = 1,

where, com1← Com1(1λ, 1D, w), r ← {0, 1}`r , and com2← Com2(com1, x, b; r).

2. Statistical hiding: if x 6∈ L, then, for any ` ∈ N, any D ≥ d(|x|, `), and any
sequence of strings {com1λ ∈ {0, 1}`com1(λ,D,`)}λ∈N,

com1λ,Com2(com1λ, x, 0)
s
≈ com1λ,Com2(com1λ, x, 1) (3)

3. Pseudorandomness of first message: for any w and any D,

Com1(1λ, 1D, w)
c
≈ U`com1

(4)

4. Extractability: if (x,w) ∈ R, then, for any bit b, any D ≥ d, any com1, st in
the support of Com1(1λ, 1D, w), any randomness r, and any com2 such that
Verify(com1, com2, x, b, r) accepts,

Pr[Extract(com2, st) = b] = 1. (5)

5. Compactness: the parameters `com2,`r and `st are upper-bounded by some
language-independent fixed polynomials in λ and D. In particular, they are
independent of the size of the NP verifier circuit Cn,` and the size of the
statement x.
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3.2 Construction

We will use the maliciously circuit private FHE scheme FHE = (FHE.Gen,FHE.Enc,FHE.Eval)
of [41].

Construction 1. Here we use the same notation as in Definition 8.

– Com1(1λ, 1D, w): run (FHE.pk,FHE.sk)← FHE.Gen(1λ, 1D+1). Output com1←
FHE.Enc(FHE.pk, w). Keep st := FHE.sk as internal state. Notice that for any
circuit C of depth D, the circuit constructed in Figure 1 has depth D + 1.

– Com2(com1, x, b): on input first message com1 and bit b, output

com2← FHE.Eval(com1, Gx,b; r),

where, Gx,b is the circuit defined below and r represents the random coins
used in the FHE evaluation algorithm.

– Extract(com2, st = FHE.sk): output FHE.Dec(FHE.sk, com2).
– Verify(com1, com2, x, b, r): accept iff com2 is equal to FHE.Eval(com1, Gx,b; r).

procedure Gx,b(w)
if C(x,w) = 1 then

Output b
else

Output 0

Fig. 1: Description of Gx,b

Extractability and completeness of Construction 1 follow immediately from
completeness of FHE. Compactness also follows from compactness of FHE. In
fact, using the FHE in [41], both `st and `com2 only depend on λ. Finally, pseudo-
randomness of FHE ciphertext and public keys imply pseudorandomness of the
first message in Construction 1.

Theorem 5. If FHE is maliciously circuit private, then, the commitment scheme
in Construction 1 is statistically hiding.

4 Compact Relaxed ZAPs for Extended NP ∩ coNP

In this section, we define and construct a 2-round public-coin argument system.
Our argument system can be viewed as a generalization of ZAPs for NP∩coNP. To
describe this generalization, first we introduce the notion of super-complement of
a language. A super-complement of a language is an extension of the complement
of that language. Notably, the complement of a language is a super-complement
of it.

17



Definition 9 (Super-Complement). Let L, L̃ be two languages where the

elements of L̃ are represented as pairs of bit strings. We say L̃ is a super-
complement of L, if

L̃ ⊆ ({0, 1}∗ \ L)× {0, 1}∗,

i.e., L̃ is a super complement of L if for any x = (x1, x2),

x ∈ L̃⇒ x1 6∈ L.

Our argument system is defined for two NP languages L, L̃, where, L̃ is a super-
complement of L. Notice that, while the complement of L might not be in
NP, however we require that L̃ ∈ NP. The language L̃ is used to define the
soundness property. Namely, producing a proof for a statement x = (x1, x2) ∈ L̃,

should be hard. We also use the fact that L̃ ∈ NP to mildly strengthen the
soundness property. In more detail, instead of having selective soundness where
the statement x ∈ L̃ is fixed in advance, now, we fix a non-witness w̃ and let the
statement x be adaptively chosen by the malicious prover from all statements
which have w̃ as a witness to their membership in L̃.

For our application to compact ring signatures, we further require the size of
the proofs to be compact with respect to L̃. Roughly speaking, this means that
size of a proof for a statement x = (x1, x2) only depends on the size of x1.

4.1 Definition

Definition 10. Let L, L̃ ∈ NP be two languages such that L̃ is a super com-
plement of L. By R and R̃ denote the NP relations corresponding to L and L̃
respectively. Let {Cn,`}n,`∈N and {C̃n,`}n,`∈N be the NP verification circuits for

L and L̃ respectively. Let d̃ = d̃(n, `) be the depth of C̃n,`. A compact relaxed

ZAP for L, L̃ is a tuple of PPT algorithms (V,P,Verify) having the following
interfaces (where 1n, 1λ are implicit inputs to P, Verify):

– V(1λ, 1n, 1
˜̀
, 1D̃), given a security parameter λ, statement length n for L,

witness length ˜̀ for L̃, and NP verifier circuit depth upper-bound D̃ for L̃,
outputs a first message ρ.

– P(ρ, x = (x1, x2), w), given a string ρ, a statement (x1 ∈ {0, 1}n, x2), and a
witness w such that (x1, w) ∈ R, outputs a proof π.

– Verify(ρ, x = (x1, x2), π), given a string ρ, a statement x, and a proof π,
either accepts or rejects.

We consider the following properties:

1. Completeness: for every (x1, w) ∈ L, every x2 ∈ {0, 1}∗, every ˜̀∈ N, every

D̃ ≥ d̃(|x1|+ |x2|, ˜̀), and every λ ∈ N,

Pr[Verify(ρ, x = (x1, x2), π) accepts ] = 1,

where, ρ← V(1λ, 1|x1|, 1
˜̀
, 1D̃) and π ← P(ρ, x, w).
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2. Public coin: V(1λ, 1n, 1
˜̀
, 1D̃) simply outputs a uniformly random string.

3. Selective non-witness and adaptive statement soundness: for every non-
uniform polynomial-size “cheating” prover P ∗ = {P ∗λ} there exists a negligible

function ν(λ) such that for any n, D̃ ∈ N and any non-witness w̃ ∈ {0, 1}∗,

Pr
ρ←V(1λ,1n,1|w̃|,1D̃)

(x=(x1,x2),π
∗)←P∗λ (ρ)

[Verify(ρ, x, π∗) accepts∧D̃ ≥ d̃(|x|, |w̃|)∧(x, w̃) ∈ R̃] ≤ ν(λ).

(6)
4. Statistical witness indistinguishability: for every (possibly unbounded) “cheat-

ing” verifier V ∗ = (V ∗1 , V
∗
2 ), and every n, ˜̀, D̃ ∈ N the probabilities

Pr[V ∗2 (ρ, x, π, ζ) = 1 ∧ (x,w) ∈ R ∧ (x,w′) ∈ R]

in the following two experiments differ only by negl(λ):
– in experiment 1, (ρ, x, w,w′, ζ)← V ∗1 (1λ, 1n, 1

˜̀
, 1D̃), π ← P(ρ, x, w)

– in experiment 2, (ρ, x, w,w′, ζ)← V ∗1 (1λ, 1n, 1
˜̀
, 1D̃), π ← P(ρ, x, w′)

5. Compactness: bit-size of proof π is a fixed polynomial in n, ˜̀, D̃, |C| and λ.

In particular, it is independent of the size of C̃ and x2.

4.2 Construction

For languages L, L̃, we give the tuple of algorithms (V,P,Verify) that make up
our relaxed ZAP scheme. In the construction we will use the following ingredients:

– A witness extractable commitment Com = (Com1,Com2,Verify,Extract) for

L̃. We denote the sizes of the first commitment message, second commitment
message, the internal state output by Com1, and the randomness for Com2,
by `com1 ,`com2, `st and `r respectively.

– Blum’s raw protocol Π = (P1,P2, V,BadChallenge,Sim) for L. We denote
the size of the first and second prover messages by `p1 and `p2 respectively.
For any ` ∈ N , Π` means repeating the protocol Π, ` times in parallel and
interpreting the inputs to the algorithms accordingly. When it is clear from
the context, we drop the superscript `.

– A hash family Hashn,`rep = (Gen,Eval) that for any n ∈ N, and any polynomial
`rep = `rep(λ) that is larger than the polynomial m(λ) in Theorem 1, is CI
for a circuit family Cn,`rep which we will define next. The circuit family is
defined as

Cn,`rep = {Cn,`repλ }λ∈N,
where for each λ ∈ N,

Cn,`repλ = {fst : {0, 1}`rep·`p1·`com2 → {0, 1}`rep}st∈{0,1}`st(λ) ,

where, fst is defined as

fst(x) = Π`rep .BadChallenge(Com.Extract(x, st)),

i.e., fst extracts a message from the input commitment and outputs the bad
challenge corresponding to that message. We will drop the indices n, `rep
when they are clear from the context.
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Construction 2. Let `rep = `rep(λ) be a polynomial that is larger than the
polynomial m(λ) in Theorem 1.

– V(1λ, 1n, 1
˜̀
, 1D̃): first, pick a uniformly random commitment first message

com1← {0, 1}`com1(λ,D̃,˜̀), then, generate CI-hash key k ← Hashn,`rep .Gen(1λ).
Output ρ := (com1, k).

– P(ρ = (com1, k), x = (x1, x2), w): first, compute

(a, {ai,b}i∈[`rep],b∈{0,1}, ζ)← Π`rep .P1(x1, w),

and then send

π = (com2 = Com.Com2(com1, x,a; r), I = Hash.Eval(k, com2), c = Π.P2(a, I, ζ), rI ,aI)

to the verifier, where, aI = {ai,Ii}i∈[`rep] and rI denotes the subset of ran-
domness used to commit to aI . Also, com2I denotes the chunks of com2
which commit to aI .

– Verify(ρ, x = (x1, x2), π): parse π = (com2, I, c, rI , aI). Accept iff both
Π.V(x, I,aI , c) and Com.Verify(com1, com2I , x,aI , rI) accept.

Completeness of Construction 2 follows directly from the completeness of Π and
Com. It is also public coin because the CI hash keys are uniform. Compactness
also follows from the compactness of Com, namely, it follows from the fact that
`com2, `st and `r may only polynomially depend on the depth D̃ of C̃ and not
its size.

Theorem 6. The protocol described in Construction 2 satisfies selective non-
witness adaptive statement soundness.

Theorem 7. The protocol described in Construction 2 is statistically witness
indsitinguishable.

5 Compact LWE-based Ring Signature Scheme

In this section, we present our compact ring signature scheme. First, we briefly
list the ingredients in our construction:

– A standard signature scheme Sig= (Gen, Sign, Verify) with EUF−CMA secu-
rity.

– A public key encryption scheme PKE = (GenWithKey, Enc, Dec, Valid) as
defined in Definition 3.

– A somewhere perfectly binding hash function SPB = (Gen, Hash, Open, Verify)
with private local openings.

– A compact relaxed ZAP scheme ZAP = (V, P, Verify) as described in section 4.

Next, we define the languages L and L̃ that we will instantiate our relaxed
ZAP construction for. The language L is identical to the language L used in the
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ring signature construction of [2]. For a statement y1 = (m, c, hk, h) and witness
w = (VK = (vk, pk, ρ), i, τ, σ, rc), define relations R1, R2 and R3 as follows:

(y1, w) ∈ R1 ⇔ SPB.Verify(hk, h, i,VK, τ) accepts

(y1, w) ∈ R2 ⇔ PKE.Enc(pk, (σ, vk); rc) = c

(y1, w) ∈ R3 ⇔ Sig.Verify(vk,m, σ) accepts

Next, define the relation R′ as

R′ := R1 ∩R2 ∩R3.

Let L′ be the language corresponding to R′. For statements of the form
(m, c1, c2, hk1, hk2, h1, h2), define the language L as

L = {(m, c1, c2, hk1, hk2, h1, h2)|(m, c1, hk1, h1) ∈ L′ ∨ (m, c2, hk2, h2) ∈ L′}.

Now, we define the language L̃ and prove that it is a super-complement of
L. Let x2 = R = (VK1, . . . ,VK`), y = (y1, x2), and w̃ = s. Define the following
relations:

(y, w̃) ∈ R4 ⇔ ∀j ∈ [`] : PKE.Valid(pkj , s) accepts ∧ h = SPB.Hash(hk,R)

(y, w̃) ∈ R5 ⇔ PKE.Dec(s, c) = (σ, vk) ∧ Sig.Verify(vk,m, σ) accepts

∧ ∃VK ∈ R : VK = (vk, pk, ρ) for some pk and ρ

where, for each j ∈ [`], pkj is the public key in VKj . Let L4, L5 be the languages
corresponding to R4, R5 respectively.

Define further the relation R̂ according to

R̂ := R4 \R5,

and let L̂ be the corresponding language. Finally, for statements of the form
x = (x1 = (m, c1, c2, hk1, hk2, h1, h2), x2 = R), let L̃ be the language given by

L̃ = {(m, c1, c2, hk1, hk2, h1, h2,R)|(m, c1, hk1, h1,R) ∈ L̂∧(m, c2, hk2, h2,R) ∈ L̂}.

Given the properties of the SPB and PKE we can quickly prove the following
lemma.

Lemma 1. If SPB is somewhere perfectly binding and PKE is complete, L̃ is a
super-complement of L.

We will employ the relaxed ZAP scheme for the languages L and L̃.

5.1 Construction

Construction 3. Let D̃ = D̃(λ,N) be the maximum depth of the NP verifier

circuit for language L̃ restricted to statements where the the ring has at most
N members, and the security parameter corresponding to SPB hash keys and
values and PKE ciphertext is λ. By n = n(λ, logN) denote the maximum size of
the statements of language L where the ring has at most N members and the
security parameter is λ. Recall that for security parameter λ, secret keys in PKE
have size ˜̀= `sk(λ). We now describe our ring signature construction:
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– Gen(1λ, N):

• sample signing and verification keys (vk, sk)← Sig.Gen(1λ),
• sample pk uniformly from the keyspace of PKE,

• compute the first message ρ← ZAP.V(1λ, 1n, 1
˜̀
, 1D̃) for the relaxed ZAP

scheme,
• output the verification key VK = (vk, pk, ρ) and signing key SK =

(sk, vk, pk, ρ).

– Sign(SK,m,R = (VK1, . . . ,VKl)):

• parse SK = (sk, vk, pk, ρ),
• compute σ ← Sig.Sign(sk,m),
• let VK = VKi ∈ R be the verification key corresponding to SK,
• sample hash keys (hk1, shk1) ← SPB.Gen(1λ, |R|, i), and compute the

hash h1 ← SPB.Hash(hk1,R),
• compute the opening τ1 ← SPB.Open(hk1, shk1,R, i) to position i,
• compute c1 ← PKE.Enc(pk, (σ, vk); rc1)
• sample hash keys (hk2, shk2) ← SPB.Gen(1λ, |R|, i) and compute the

hash h2 ← SPB.Hash(hk2,R),
• sample c2 randomly from the ciphertext space of PKE,
• let VK1 = (vk1, pk1, ρ1) denote the lexicographically smallest member of
R (as a string; note that this is necessarily unique).,

• fix statement x1 = (m, c1, c2, hk1, hk2, h1, h2), witness w = (vk, pk, i, τ1, σ, rc1),
and statement x2 = R,

• Compute π ← ZAP.P(ρ1, x = (x1, x2), w),
• output Σ = (c1, hk1, c2, hk2, π).

– Verify(Σ,m,R):

• identify the lexicographically smallest verification key VK1 in R,
• compute h′1 = SPB.Hash(hk1,R),
• compute h′2 = SPB.Hash(hk2,R),
• fix x1 = (m, c1, c2, hk1, hk2, h

′
1, h
′
2), and x2 = R,

• determine ρ1 in VK1,
• compute and output ZAP.Verify(ρ1, x, π).

Completeness of Construction 3 follows by the completeness of SPB and ZAP.
For compactness, notice that D̃ is upper-bounded by a polynomial in λ and logN ,
and therefore, since Construction 2 is compact, Construction 3 is also compact.

5.2 Unforgeability

Here, we prove that our ring signature scheme possesses the unforgeability
property as defined in Definition 7. The proof strategy is as follows: we leverage
the selective non-witness adaptive statement soundness of ZAP to conclude that
there must be a valid signature σ in the forgery attempt, and essentially try to
obtain this signature with significantly high probability so that we can devise a
reduction to the existential unforgeability of Sig.
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Theorem 8. Construction 3 is unforgeable, assuming Sig is EUF−CMA secure,
PKE has injective key generation and pseudorandom public keys, SPB is some-
where perfectly binding, and ZAP satisfies selective non-witness adaptive statement
soundness.

Proof. We start by considering a PPT adversary A that participates in the
unforgeability game. Let Q = poly(λ) be an upper bound on the number of key
queries made by A.

We proceed with a hybrid argument to set up our reduction to the unforge-
ability of Sig. Consider the following hybrids:

Hybrid H0: This is just the standard unforgeability game. In particular, for
all i ∈ [Q], the challenger in the game generates pki by sampling an element
uniformly from the keyspace of PKE.

Hybrid H1: In this experiment, the only difference is that, the challenger
first picks a uniformly random secret key skPKE for PKE, and then generates
the corresponding public keys for the adversary using this, namely pki ←
PKE.GenWithKey(skPKE), for all i ∈ [Q]. The challenger now stores skPKE.

Lemma 2. Assuming PKE has pseudorandom public keys, H0
c
≈ H1.

Proof. Let A be a PPT adversary attempting to distinguish H0 and H1. We use
A to build an adversary A′ having the same advantage against the pseudorandom-
ness of public keys of PKE. Here, A′ is either given {pki ← GenWithKey(sk)}i∈[Q]

for a sk chosen uniformly at random or {pki ← PKλ}i∈[Q]. We define A′ to
proceed exactly as in H0 but using the public keys that is given to it as input.
Clearly, if pkis are chosen with a single uniformly chosen secret key, then, the
view of A is identical to H1, whereas, if pkis are chosen uniformly at random,
the view of A is identical to H0.

Now, we will proceed to show that unforgeability holds in H1. Consider the
adversary’s forgery attempt (Σ∗ = (c∗1, hk

∗
1 , c
∗
2, hk

∗
2 , π
∗),m∗,R∗). Define x∗1 as

the statement corresponding to Σ∗ as x∗1 = (m∗, c∗1, c
∗
2, hk

∗
1 , hk

∗
2 , h
∗
1, h
∗
2), where

h∗1 = SPB.Hash(hk∗1 ,R
∗) and h∗2 = SPB.Hash(hk∗2 ,R

∗). Let VK∗1 = (vk∗1 , pk
∗
1 , ρ
∗
1)

be the lexicographically smallest verification key in R∗.
Our next step is to show that if π∗ is a valid proof for x∗ = (x∗1, x

∗
2 = R∗)

under ρ∗1, then, with overwhelming probability, x∗ 6∈ L̃.

Lemma 3. In H1, assuming ZAP satisfies selective non-witness adaptive state-
ment soundness, and PKE has injective key generation,

Pr[x∗ ∈ L̃ ∧ ZAP.Verify(ρ∗1, x
∗, π∗) accepts ] = negl(λ).

Proof. It is enough to show that for each j ∈ [Q],

Pr[x∗ ∈ L̃ ∧ ZAP.Verify(ρj , x
∗, π∗) accepts ] = negl(λ),
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where ρj denotes the ZAP first message corresponding to the jth verification key
VKj generated in the game.

Let A be an adversary attempting to output a forgery such that x∗ ∈
L̃ ∧ ZAP.Verify(ρj , x

∗, π∗) accepts. We build an adversary A′ against the selective

non-witness adaptive statement soundness of ZAP for languages L and L̃ with
fixed non-witness w̃ = skPKE. The algorithm A′ proceeds as follows:

– on input ZAP first message ρ̂, it sets ρj = ρ̂ and then proceeds exactly as H1.
– upon recieving the forgery attempt Σ∗ fromA, it constructs the corresponding
x∗ and π∗, and outputs (x∗, π∗).

To finish the proof of this lemma, we observe that if x∗ ∈ L̃, then, except with
negligible probability, (x∗, skPKE) ∈ R̃. This is because, if x∗ ∈ L̃, then, by

definition of L̃, there exists a non-witness w̃∗ such that,

∀(vk∗i , pk∗i , ρ∗i ) ∈ R∗ : PKE.Valid(pk∗i , w̃
∗) accepts,

and since PKE has injective key generation, it follows that except with negligible
probability, w̃∗ = skPKE.

In the next lemma we show that if x∗ 6∈ L̃, then, by decrypting c∗1 or c∗2, we
can find a forgery for Sig.

Lemma 4. In H1, assuming Sig is EUF−CMA secure, PKE has injective key
generation, and SPB is somewhere perfectly binding,

Pr[x∗ 6∈ L̃] = negl(λ).

Proof. Let A be an adversary attempting to output a forgery such that x∗ 6∈ L̃.
We build an algorithm A′ against the EUF−CMA security of Sig. The algorithm
A′ proceeds as follows,

– on input v̂k, first picks an index j ← [Q] uniformly at random, and then sets

vkj = v̂k. It then proceeds as in H1,
– when A sends a signing query, if it is using keys from a party other than

the jth party, it proceeds as in H1, otherwise, it uses the EUF−CMA game’s
signing oracle to obtain a signature for the jth party and then continues
exactly as in H1.

– if A tries to corrupt the jth party, A′ aborts.
– upon recieving the forgery attempt Σ∗ from A, it decrypts c∗1 using skPKE to

recover σ∗1 .
If Sig.Verify(vkj ,m

∗, σ∗1) accepts, it sets σ̂ := σ∗1 . Otherwise, it decrypts c∗2
with skPKE to recover σ∗2 , and sets σ̂ = σ∗2 . It outputs (m∗, σ̂).

To finish the proof, we show that with probability at least

1

Q
(Pr[x∗ 6∈ L̃]− negl(λ)),
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(m∗, σ̂) is a valid forgery for key vkj . Without loss of generality assume that

(m∗, c∗1, hk
∗
1 , h
∗
1,R
∗) 6∈ L̂.

Observe that due to the way H1 generates the public keys and also by definition
of h∗1,

(m∗, c∗1, hk
∗
1 , h
∗
1,R
∗) ∈ L4.

Therefore, by definition of L̂, there exists a string w̃ such that,

((m∗, c∗1, hk
∗
1 , h
∗
1,R
∗), w̃) ∈ R5.

By an argument similar to the one presented in Lemma 3, it follows that except
with negligible probability w̃ = skPKE. Consequently, (i) PKE.Dec(skPKE , c

∗
1) =

(σ∗, vk∗), (ii) due to the somewhere perfectly binding property of SPB, there exists
VK∗ = (vk∗, pk∗, ρ∗) such that VK∗ ∈ R∗, and finally (iii) Sig.Verify(vk∗,m∗, σ∗)
accepts. We conclude that the adversary uses a verification key VK∗ ∈ R∗ and
that c∗1 encrypts (among other things) a signature σ∗ that is valid for the forgery
message m∗ w.r.t. key vk∗. Since index j is chosen uniformly at random, vkj = vk∗

with probability 1/Q.

Lemma 3 and Lemma 4 show that any efficient adversary has negligible chance
of winning the RS−FORGE game in hybrid H1. We observe that winning the
RS−FORGE game is an event that can be efficiently tested, therefore, by Lemma 2
no efficient adversary can win the RS−FORGE game in hybrid H0, i.e., Construc-
tion 3 is unforgeable.

5.3 Anonymity

We now prove that our construction satisfies anonymity. Recall that this cor-
responds to an experiment where the adversary recieves the secret keys and
randomness of all the existing parties, and then recieves a challenge signature
created using the keys of one of two possible parties (of course, the challenge
ring may also include parties that were created by the adversary). Our task is
to show that the adversary cannot distinguish between a signature created by
party i0 and one created by party i1 (for any distinct i0, i1). We will do this
using a sequence of hybrids. Our strategy will be roughly as follows: we start
with a signature produced using the signing key of party i0. First, we switch
c2 to valid encryptions of a signature under vki1 (along with vki1) and hk2 to
a valid SPB hash key to the index for VKi1 in the ring respectively. Next, we
switch the witness used in π to use these values (instead of c1 and hk1). Then,
we change c1 to valid encryption of a signature under vki1 and a valid SPB hash
key to the index for VKi1 in the ring respectively. Finally, we change c2 to a junk
ciphertext, as in the honest signing algorithm. The final hybrid just outputs a
signature using the keys for party i1, and thus we only have to show that the
adversary cannot detect any of the individual changes outlined above.
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Theorem 9. Assume PKE has close to uniform ciphertexts and sparse valid
public keys as described in Definition 3, SPB is index hiding, and ZAP is statisti-
cally witness indistinguishable. Then the ring signature scheme in Construction 3
satisfies the anonymity property described in Definition 7.

Proof. Let A be a PPT adversary participating in the anonymity game. Let
Q = poly(λ) be an upper bound on the number of key queries made by A. Suppose
that the adversary’s eventual challenge is (R,m, i0, i1). Let t0, t1 be the indices of
VKi0 , VKi1 in R respectively. Denote by ρ the ZAP first message corresponding
to the lexicographically smallest VK in R. As pointed out, it suffices to show that
a signature prepared using SKi0 is indistinguishable from one prepared using
SKi1 , even when A has all the keys VK1, · · · ,VKQ and the randomness used in
creating them. We do so using the following hybrids:

Hybrid H0: This hybrid simply runs the anonymity game honestly as the
challenger, and sends an honest signature generated using SKi0 , namely Σ =
(c1, hk1, c2, hk2, π), as the challenge to the adversary.

Hybrid H1: The only change in this hybrid is that it samples hk2 in the signature
with index t1, i.e. (hk2, shk2)← SPB.Gen(1λ, |R|, t1).

Hybrid H2: The only difference between this hybrid and H1 is that here, instead
of sampling c2 uniformly from the PKE ciphertext space, it generates c2 as
c2 ← PKE.Enc(pki1 , (σ

′, vki1); rc2), where, σ′ ← Sig.Sign(ski1 ,m).

Hybrid H3: This hybrid works exactly like the previous one, except that it uses
a witness corresponding to (c2, hk2) to generate the proof π. Namely, it computes
witness w′ = (vki2 , pki2 , t1, τ

′
2, σ
′, rc2), where, τ ′2 = SPB.Open(hk2, shk2,R, t1),

and proof π is generated as π ← ZAP.P(ρ, x, w′).

Hybrid H4: This hybrid is similar to H3, except that it now computes c1 by
sampling it uniformly from the ciphertext space of PKE.

Hybrid H5: This hybrid works exactly like the previous, with the only differ-
ence being that it generates hk1 with respect to index t1, i.e., (hk1, shk1) ←
SPB.Gen(1λ, |R|, t1).

Hybrid H6: It is identical toH5, except that here, c1 ← PKE.Enc(pki1 , (σ
′, vki1); rc1)

where σ′ ← Sig.Sign(ski1 ,m).

Hybrid H7: The only change in this hybrid is that, it uses a witness corre-
sponding to (c1, hk1) to generate the ZAP proof. Namely, it computes w′′ =
(vk, pk, t1, τ

′
1, σ, rc1 , ), where τ ′1 = SPB.Open(hk1, shk1,R, t1), and π = ZAP.P(ρ, x, w′′),

and uses this in Σ.

Hybrid H8: This hybrids works exactly like the previous, except that it now
computes c2 by sampling it uniformly from the ciphertext space of Enc. Notice
that this hybrid corresponds to generating the signature using SKi1 .
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Lemma 5. Assuming SPB is index hiding, H0
c
≈ H1.

Proof. Let A be an adversary attempting to distinguish H0 and H1. We use A
to build an adversary A′ having the same advantage against the index hiding
property of SPB. A′ runs A and interacts with it exactly like H0, till the point
where A sends its challenge (R,m, i0, i1). At this point, A′ sends (t0, t1, |R|)
to its index hiding challenger. A′ then receives a SPB hash key hk∗, which is
either SPB.Gen(1λ, |R|, t0) or SPB.Gen(1λ, |R|, t1). It uses hk∗ as the key hk2 for
generating the challenge signature Σ for A. If hk∗ is generated for index t0 then
A’s view is identical to its view in H0. Otherwise, if hk∗ corresponds to t1, A’s
view is identical to its view in H1.

Lemma 6. If PKE has close to uniform ciphertexts, H1
s
≈ H2.

Proof. This follows directly from the definition of close to uniform ciphertexts
property described in Definition 3.

Lemma 7. If ZAP is statistically witness indistinguishable, and PKE has sparse

valid public keys, H2
s
≈ H3.

Proof. At least two of the public-keys in R, pki0 and pki1 are generated uniformly
at random. Consequently, since PKE has sparse valid public keys, except with
negligible probability,

6 ∃sk : (∀(vk, pk, ρ) ∈ R : PKE.Valid(pk, sk) accepts ).

Thus, x1 6∈ L̃, and consequently, the lemma follows from the definition of witness
indistinguishability described in Definition 3.

Lemma 8. If PKE has close to uniform ciphertexts, H3
s
≈ H4.

Proof. This follows directly from the definition of close to uniform ciphertexts
property described in Definition 3.

Lemma 9. Assuming SPB is index hiding, H4
c
≈ H5.

Proof. The proof of the lemma is almost identical to Lemma 5.

Lemma 10. If PKE has close to uniform ciphertexts, H5
s
≈ H6.

Proof. This follows directly from the definition of close to uniform ciphertexts
property described in Definition 3.

Lemma 11. If ZAP is statistically witness indistinguishable, and PKE has sparse

valid public keys, H6
s
≈ H7.

Proof. The proof for this lemma is very similar to Lemma 5.3 and we won’t
repeat it.

Lemma 12. If PKE has close to uniform ciphertexts, H7
s
≈ H8.

Proof. This follows directly from the definition of close to uniform ciphertexts
property described in Definition 3.

This completes the proof of Theorem 9
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learning with errors. In: STOC. pp. 575–584 (2013)

17. Canetti, R., Chen, Y., Holmgren, J., Lombardi, A., Rothblum, G.N., Rothblum,
R.D., Wichs, D.: Fiat-Shamir: From practice to theory. In: STOC (2019), to appear

18. Chandran, N., Groth, J., Sahai, A.: Ring signatures of sub-linear size without
random oracles. In: ICALP. pp. 423–434 (2007)

19. Chow, S.S.M., Wei, V.K., Liu, J.K., Yuen, T.H.: Ring signatures without random
oracles. In: ASIACCS. pp. 297–302 (2006)

20. Dodis, Y., Kiayias, A., Nicolosi, A., Shoup, V.: Anonymous identification in ad hoc
groups. In: EUROCRYPT. pp. 609–626 (2004)

21. Dwork, C., Naor, M.: Zaps and their applications. SIAM J. Comput. 36(6), 1513–
1543 (2007)

22. Esgin, M.F., Zhao, R.K., Steinfeld, R., Liu, J.K., Liu, D.: Matrict: Efficient, scalable
and post-quantum blockchain confidential transactions protocol. In: CCS. pp. 567–
584 (2019)

23. Fiat, A., Shamir, A.: How to prove yourself: Practical solutions to identification
and signature problems. In: CRYPTO. pp. 186–194 (1986)

24. Gentry, C.: A fully homomorphic encryption scheme. Ph.D. thesis, Stanford Uni-
versity (2009), http://crypto.stanford.edu/craig

25. Gentry, C., Peikert, C., Vaikuntanathan, V.: Trapdoors for hard lattices and new
cryptographic constructions. In: STOC. pp. 197–206 (2008)

26. Ghadafi, E.: Sub-linear blind ring signatures without random oracles. In: IMACC.
pp. 304–323 (2013)
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