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Abstract. Most efficient zero-knowledge arguments lack a concrete se-
curity analysis, making parameter choices and efficiency comparisons
challenging. This is even more true for non-interactive versions of these
systems obtained via the Fiat-Shamir transform, for which the security
guarantees generically derived from the interactive protocol are often too
weak, even when assuming a random oracle.

This paper initiates the study of state-restoration soundness in the al-
gebraic group model (AGM) of Fuchsbauer, Kiltz, and Loss (CRYPTO
’18). This is a stronger notion of soundness for an interactive proof or
argument which allows the prover to rewind the verifier, and which is
tightly connected with the concrete soundness of the non-interactive ar-
gument obtained via the Fiat-Shamir transform.

We propose a general methodology to prove tight bounds on state-
restoration soundness, and apply it to variants of Bulletproofs (Bootle
et al, S&P ’18) and Sonic (Maller et al., CCS ’19). To the best of our
knowledge, our analysis of Bulletproofs gives the first non-trivial concrete
security analysis for a non-constant round argument combined with the
Fiat-Shamir transform.

Keywords. Zero-knowledge proof systems, concrete security, Fiat-Shamir
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1 Introduction

The last decade has seen zero-knowledge proof systems [1] gain enormous pop-
ularity in the design of efficient privacy-preserving systems. Their concrete ef-
ficiency is directly affected by the choice of a security parameter, yet concrete
security analyses are rare and, as we explain below, hit upon technical barri-
ers, even in ideal models (such as the random-oracle [2] or the generic-group
models [3,4]). This has led to parameter choices not backed by proofs, and to
efficiency comparisons across protocols with possibly incomparable levels of se-
curity. This paper addresses the question of narrowing this gap for protocols
whose security can be analyzed in the Algebraic Group Model [5].

A CONCRETE EXAMPLE. It is convenient to start with an example to illustrate

the challenges encountered in proving concrete security of proof systems. We
focus on Bulletproofs [6], which are argument systems with applications across



the cryptocurrencies® and in verifiably deterministic signatures [9], which in turn
optimize prior work [10]. The soundness? analysis (of their interactive version)
is asymptotic, based on the hardness of the discrete logarithm problem (DLP).
Even when instantiated from 256-bit elliptic curves, due to the absence of a
tight, concrete, reduction, we have no formal guarantee on concrete security.
Indeed, recent work [11] gives concrete soundness bounds in the generic-group
model with somewhat unfavorable dependence on the size of the statement being
proved, and no better analysis is known.

Even more importantly, existing bounds are for the interactive version of the
protocol, but Bulletproofs are meant to be used non-interactively via the Fiat-
Shamir (FS) transform [12]. However, the (folklore) analysis of the FS transform
gives no useful guarantees: Namely, for a soundness bound € on the interactive
ZK proof system, the resulting NIZK has soundness ¢"¢, where ¢ is the number
of random-oracle queries, and r is the number of challenges sent by the verifier.
For Bulletproofs, we have € > 272°¢ (this is the probability of merely guessing
the discrete log), and if (say) r = ©(log(n)) = 16, we only get security for (at
best) q < 2'¢ queries, which is clearly insufficient.

OVERVIEW OF THIS PAPER. This paper studies the concrete security of succinct
proof systems in the algebraic group model (AGM) [5], with the goal of devel-
oping (near-)exact security bounds. The AGM considers in particular algebraic
provers that provide representations of group elements to the reduction (or to
the extractor), and has been successful to study security in a variety of contexts.
More specifically, this work is the first to look at multi-round public-coin proto-
cols and their non-interactive version obtained via the Fiat-Shamir transform.
For the latter, we aim for bounds with linear degradation in the number of ran-
dom oracle queries ¢ even for a large number of rounds r, as opposed to the
q" degradation obtained from naive analyses. Prior work [5] has focused on the
simpler case of linear-PCP based SNARKSs [13], which are built from two-move
interactive proofs and without the FS transform.

The soundness of non-interactive systems resulting from the FS transform is
tightly related to the state-restoration soundness [14,15] of the underlying inter-
active protocol, where the cheating prover can rewind the verifier as it pleases,
until it manages to complete a full accepting interaction with the verifier. No
non-trivial bounds on state-restoration soundness are currently known on any
non-constant round argument.

We propose a general framework to quantitatively study state-restoration
version of witness-extended emulation (wee) [16,17] (which implies both state-
restoration soundness and a proof-of-knowledge property) in the AGM. We then
and apply it to three case studies, which include two variants of Bulletproofs,
as well as Sonic [18]. These protocols have previously been analyzed only with
respect to plain soundness in the interactive setting. The analysis of Bulletproofs

! In particular, Bulletproofs have been deployed in Monero [7] and Signal’s upcoming
MobileCoin [8].

2 In this introduction, security is with respect to soundness — usually the analysis of
zero-knowledge security is much more straightforward.



relies in particular on the Forking Lemma of Bootle et al. [10], which was only
very recently made concrete [11]. We believe that our framework can be applied
to a number of other protocols, such as Hyrax [19], Dory [20] or pairing-based
instantiations of IOPs [21,22], and leave their analysis for future work.

Remark 1. We stress that our approach differs formally from prior and concur-
rent works (e.g., [18,22]) which use the AGM to give a heuristic validation of
the security of a component of a protocol, which is then however assumed to
satisfy extractability properties compatible with a standard-model proof (i.e.,
an AGM extractor is used as a standard-model extractor.) Here, we aim for full
analyses in the AGM, and as we point out in our technical overview below, these
approaches actually do not give a full-fledged proof in the AGM (beyond not
giving a proof in the standard model either).

BULLETPROOFS. We apply our framework to two instantiations of Bulletproofs —
the first is for range proofs, and the other is for general satisfiability of arithmetic
circuits. For example, in the former, a prover shows in O(logn) rounds that for
a given Pedersen commitment C' = g”h” in a cyclic group G of prime order p we
have v € [0,2"). (Here, clearly, 2™ < p.)

For the final non-interactive protocol obtained via the FS transform, our
result implies that an (algebraic) ¢-time prover making ¢ random-oracle queries
can break security as a Proof of Knowledge (when properly formalized) with
advantage roughly

e(t,q) < O(qn/p) + Advg (1) , (1)

where Advi(#) is the advantage of breaking the DLP within time . In the generic
group model, this is roughly O(t?/p), and this bound justifies the instantiation of
Bulletproofs from a 256-bit curve. For arithmetic circuit satisfiability, we obtain
a similar bound.

TIGHTNESS AND DISCUSSION. Assuming Advi(t) ~ t2/p (which is true in the
generic group model), the above bound implies in particular that for most values
of n,® the term O(gn/p) is not leading. Still, we show that the dependence on
n is necessary — in particular, we show that there exist n,p for which we can
construct a cheating prover that can break soundness with probability 2(gn/p),
meaning that this part of the bound is tight. (Our argument can be extended
to all bounds claimed in the paper.) Also, the term Advd(t) is clearly necessary,
given that breaking the DLP would directly give us an attack. This makes our
bound essentially exact (up to small constants).

AGM AND COMPOSITION. A challenging aspect of our analysis is the difficulty of
dealing with composition. The core of the Bulletproofs is indeed its O(log(n))-
round inner-product argument. In the standard model, and in the interactive
case, it is not hard to reduce the security (as a proof of knowledge) of the
full-fledged system using Bulletproofs to the analysis of the underlying inner-
product argument, but it is not that clear how to do this generically in the

3 For the circuit satisfiability version of our result, one should think of n = 22° and
p = 2256 as representative values.



AGM. In particular, in the AGM, the adversary provides representations of group
elements to the reduction (or the extractor), and these are as a function of all
priorly given group elements. The problem is that when analyzing a protocol
in isolation (such as the inner-product argument) the bases to which elements
are described are not necessarily the same as those that would be available to a
cheating algebraic prover against the full protocol. This makes it hard to use an
extractor for the inner-product argument in isolation as a sub-routine to obtain
an extractor for a protocol using it. Also, because we consider state-restoration
soundness, a sub-protocol can be initiated by a cheating prover several times,
with several choices of these basis elements.

The downside of this is that our analyses are not modular, at least not at
a level which considers sub-protocols are isolated building blocks — we give two
different analyses for two different instantiations of Bulletproofs, and the shared
modularity is at the algebraic level.

We discuss this further at the end of our technical overview below.

SoNIC. As a second application, we study Sonic [18]. This is a constant-round
protocol, and in particular with 3M + 2 challenges for some constant M > 1.
In this case, the folklore analysis of the F'S transform can be used to obtain a
non-trivial bound, incurring a multiplicative loss of ¢ *2 from the soundness
of the interactive version. Here, we want to show that this loss is not necessary
and also obtain a bound which degrades linearly in q. Moreover, no concrete
bound on the concrete soundness of Sonic was given in the interactive setting.

We ignore the stronger requirement of updatable witness-extended emulation
because our pedagogical point here is that our framework can improve soundness
even for constant-round protocols.

We also note that Sonic’s proof already uses the AGM to justify security of
the underlying polynomial commitment scheme, but follows a (heuristic) pat-
tern described above where the resulting extractor is expected to behave as a
standard-model one, and is used within a standard-model proof.

ADAPTIVE VS NON-ADAPTIVE SOUNDNESS. It is important to understand that
one can consider both adaptive and non-adaptive provers, where the former also
chooses the input for which it attempts to provide a proof. Clearly, one expects
adaptive provers to be harder to handle, but this is not necessarily true for alge-
braic provers — in particular, if the input contains group elements, the extractor
can obtain useful information (and, possibly, directly extract) from their group
representation. While this does not render the proof trivial at all, it turns out
that for non-adaptive security, the proof is even harder. In this paper, we deal
mostly with adaptive provers, but for the case of range proofs (where the inputs
are commitments in a group), we also give a proof for non-adaptive security —
the resulting bound is increased to the square root of the adaptive bound, due
to our limited use of rewinding.

RELATED WORK: PROOFS VS ARGUMENTS. We clarify that state-restoration
soundness has been studied for several forms of interactive proofs [14,15,23,24],
also in its equivalent form of “round-by-round” soundness. Some proof systems
satisty it directly (such as those based on the sumcheck protocol [25]), whereas



any proof with non-trivial (plain) soundness can be amplified into one with
sufficient stare-restoration soundness (e.g., with parallel repetition). This is be-
cause (similar to our statement about the Fiat-Shamir transform above) one
can naively infer that a concrete soundness bound e implies a state-restoration
soundness bound ¢"e, where r is the number of challenges, and thus ¢ needs to
be smaller than ¢~".

However, we do not know of any non-trivial bounds on state-restoration
soundness for multi-round arguments based on computational assumptions (as
opposed to, say, arguments in the ROM), and moreover, soundness amplifica-
tion (e.g., [26,27,28,29]) does not reduce soundness beyond the largest negligible
function, and this is insufficient to absorb the ¢" loss.

BEYOND THE AGM. Our results are inherently based on online extraction, which
is only meaningful in ideal models or using knowledge assumptions. One scenario
where ideal models are inherently used is in the compilation of IOPs into NIZKs
in the ROM via the BCS transform [14] — it is unclear whether our technique
can be used to give tight state-restoration soundness bounds for systems such as
Aurora [30] and STARK [31].

CONCURRENT WORK. In a recently updated version of [32], Biinz et. al. analyse
the soundness of the non-interactive inner-product argument of Bulletproofs in
the AGM. We provide a brief comparison with their result in the full version [34],
but note here that their analysis is asymptotic, and gives weaker concrete security
(insufficient for instantiations on 256-bit curves) when made concrete.

1.1 Overview of our Techniques

We give a general framework to derive tight bounds on state-restoration sound-
ness in the AGM. In fact, we will target the stronger notion of witness-extended
emulation [16,17], which we adapt to state-restoration provers. Recall first that
the main characteristic of the AGM is that it allows the reduction, or in our
case the extractor, to access representations of group elements. A contribution
of independent interest is to set up a formal framework to define extraction in
the AGM.

PREFACE: ONLINE EXTRACTION IN THE AGM. In the AGM, the reduction
(or an extractor) obtains representations of each group element in terms of all
previously seen group elements. A useful feature of the AGM is that it often (but
not always) allows us to achieve online witness extraction, as already observed
in [5,33]. In other words, by looking at the representation of the group elements
provided by the prover in a single interaction, the extractor is able to extract a
witness, without the need of rewinding.

Online extraction however immediately appears to be very useful to tame
the complexity of state-restoration provers. Indeed, one can visualize an in-
teraction of an adversarial state-restoration prover P* with the verifier V as
defining an execution tree. In particular, P* wins if it manages to create a
path in the execution tree associated with an accepting (simple) transcript 7 =
(a1,¢1,0a9,...,Cr,are1),where ar,as, .. .,a,+1 are P*’s messages, and ¢y, ...,



are the verifier’s challenges. (We focus on public-coin protocols here.) Online
extraction from a single transcript 7 directly implies extraction here, because a
witness can directly be extracted locally from the path 7 (and the corresponding
representations of group elements), disregarding what happened in the rest of
the execution tree. In particular, the probability that P* succeeds equals the
probability that a witness is extracted. Without online extraction, we would
have to use rewinding — but current techniques [10,11] do not seem to easily
extend to state-restoration provers.

However, this only holds for perfect online extraction — in general, we may be
able to generate transcripts which are accepting, but for which no witness can
be extracted. This is typically because of two reasons:

- Bad Challenges. A bad choice of challenges may prevent witness extrac-
tion.

- Violating an assumption. A transcript is accepting, but the resulting
interaction corresponds to a violation of some underlying assumption (i.e.,
one can extract a non-trivial discrete logarithm relation).

Our framework will exactly follow this pattern. For an r-challenge public-coin
protocol, we identify bad challenges, i.e., for each i € [r], input z, and partial
transcript 7' = (a1,c¢1,...,a,-1,¢i—1,a;), we define a set of bad challenges ¢;
which would make extraction impossible. Crucially, these sets are defined ac-
cording to a simple interaction transcript (i.e., not a state-restoration one) and
can be defined according to the representation of group elements in the transcript
so far. Then, given a transcript 7 with no bad challenges, we show that:

- We can either extract a witness for  from 7 (and the representations of the
group elements in 7).

- We can use 7 (and the representation of the group elements in terms of the
public parameters) to break some underlying assumption.

To illustrate this, we give a non-trivial example next, which considers a simplified
instance of the inner product argument at the core of Bulletproofs, but which
already captures all subtleties of the model.

INNER-PRODUCT ARGUMENT OF BULLETPROOFS. In the inner product argu-
ment the prover proves that a group element P € G is a well-formed commitment
to vectors a, b € Z; and their inner-product {a,b).* More precisely, the prover
wants to prove to the verifier that P = g2hPu® where ge G, he G",ue G
are independent generators of G.

Here, we shall focus on the special case n = 2 first, and below discuss chal-
lenges in scaling our analysis up to any n. The prover first sends to the verifier
group elements L, R where

I = ggl hlizumbz , R= g?zhglumbl ]
4 We use boldface to denote vectors. For two vectors a = (ai,...,an),8 = (g1,..-,gn),

n
we use g* to denote || g7*.
i=1



The verifier samples = uniformly at random from Z; and sends it to the prover.
We then define

P'=L"PR"" ¢ =gi g5, W =hih .

The prover sends @’ = a1z + asz™! and b = bz~ + byx to the verifier, which
in turns accepts if and only if

P = (gl)a’(h/)b’ua’b' )

EXTRACTION FOR n = 2. For this discussion, we focus in particular on the notion
of adaptive soundness — i.e., the prover provides P along with its representation,
ie, we get @’ = (pg,,Pg,), ' = (Phy,Ph,) and p, such that P = g hP uPu. At
first, it looks like we are done — after all, we can just check whether (a’, b’y = p,,
and if so, output (a’, b’) as our witness. Unfortunately, things are not that simple
— we need to ensure that no accepting transcript 7 = ((L, R), z, (a’, b)), i.e., such
that P’ = (¢')% (h')"u®?, is ever produced if (a’, b’y # p,, for otherwise our
naive extraction would fail.

To this end, we will prove that if the cheating prover can produce an accept-
ing interaction such while {a’, b’y # p,, then we can solve the discrete logarithm
problem in the group G. We construct an adversary 4 that takes as inputs
g1, 92, h1, he,u and attempts to return a non-trivial discrete logarithm relation
between them. (Breaking this is tightly equivalent to breaking the discrete log-
arithm problem.) Concretely, the adversary A gives g1, g2, hi, he,u as input to
the cheating prover P, which first returns an adaptively chosen input P € G,
along with is algebraic representation

_ Pgy Pgo 3 PhyjpPhy p
P =g,"gy" hy " hy 2 ul

The adversary then simulates the execution of P with a honest verifier further,
and assumes it generates an accepting transcript 7 = ((L, R), z, (a/,b")) — this

. . . lgy lgoqlng ol
transcript contains the representations of L, R such that L = g,"* go"> hy"" hy'* ul
and R = g;gl g;” h;hl h;hg u™ and since it is an accepting transcript we have

La:QPRw_2 _ gw_la'gzla'hwlb'hx_lb'ua'b'
- J1 2 1 2 .

We can plug in the representations of L, R into the equality and obtain values
€g15€ga» Chy s Ehy, €y SUCh that

g =1 ®
For example e,, = 27 ta' — 1y, 2% —r,, 272 —py, and e, = a'b/ =1, 2% — 1,272 —py.

The adversary A then simply outputs (eg,,€g,,€n,,€n,,€y) — it has found
a non-trivial discrete logarithm relation if (eg,, €g,,€n,;€ny,€n) # (0,0,0,0,0),
which we next show happens with very high probability if p,, # pg,Dh, + DgoPhs,-

Suppose (€g,,€qy;€hy s €hy»€u) = (0,0,0,0,0). From ey, = 0, we have that
z7ta =g x® —rg 7% — pg, = 0. Since = # 0, we get that o’ = ;2% +rg 27! +



pg,x. Similarly from e,, = 0, we would get @’ = lg,x + pg,x™" + rg,x™3. With
high probability over the choice of z’s, by the Schwartz-Zippel Lemma, we can
infer by equating both right-hand sides that

a =xp,, +x7 ' py, -
Similarly, from ep, = 0 and ep, = 0, we obtain that
V =a""pp, +zpn,
for most z’s. Finally, from e, = 0, we similarly learn that
a't =2l + py + 1720, .
Hence from the above

x2lu +pu + x72ru = pg1ph1 +pg2ph2 +pg1ph21'2 +pg2ph11'72

Since we have that pg,pn, + Pg.Dh, # Pu, the above equality holds with very
small probability over the choice of z’s.

Hence we have shown that (eg,,€g,,€n,;€ny,€n) = (0,0,0,0,0) with very

small probability. Therefore A succeeds with high probability.
NON-ADAPTIVE SECURITY. The above proof exploits the fact that the prover
provides a representation of P — this corresponds to the case of an adaptive
prover. But there are scenarios where the prover may be non-adaptive and not
be able to do that — for example, the input P has been generated by another
party, and the prover tries to prove knowledge with respect to this P. It turns
out that in this case, one needs a different proof. In fact, one could give an
extraction strategy which does not require knowing an initial representation for
P, but it is then hard to give a reduction to the discrete logarithm problem to
show correctness.

We stress that non-adaptive provers and adaptive provers are equivalent in
many applications — they only differ when the input includes group elements.
We give a formalization and a case study (for Bulletproofs range proofs) in
the full version [34].. There, we can actually give a reduction to the discrete
logarithm problem (to bound the probability of failing to extract), but this
requires rewinding once — this allows us to prove a bound which is the square
root of the bound for adaptive provers.

THE RECURSIVE PROTOCOL FOR n = 4. Scaling the protocol to an arbitrary n
proceeds via recursion. For concreteness, let us focus on the case n = 4. The
prover first sends to the verifier group elements L, R where

_ 01 ,a273b37b4, a1bstazby _ a3z _asypbipba, asbi+asbs
L = g5"g4*hy* hy'u s R=97%g5"hg' hy*u :

The verifier samples = uniformly at random from Z; and sends it to the prover.
The prover and the verifier both compute

P'=L"PR" " | gi=g7 g%, dy=095 ¢b,hl=hihs | hy=hin% .



The prover also computes a} = ajx +azx™!, ah = agxr +ag2™1, V) = bz~ + bz
and by = boxz ! + byz. Observe that P’ = (g})® (gh)® (R))" (hf)P2uibitazbs,
Now, the prover and the verifier engage, recursively, in the protocol for n = 2 with
inputs (g1, 95), (hh, hs),u, P, (a}, ah), (b, b5). The difficulty in analyzing this is
that we would like our proof strategy to be recursive, i.e., given we analyzed the
protocol for n secure, we can now infer that the one for 2n also is secure. This will
not be so direct, unfortunately. One major technical issue is for example that the
recursive call uses different generators than the ones used for the calling protocol
— in our case, here, (g1, 95), (b}, hs) — however, when looking at the combined
protocol in the AGM, all element representations would be with respect to the
generators gi, . .., g4, b1, .- ., hq, and this makes it difficult to directly recycle the
above analysis.

THE CHALLENGES WITH COMPOSITION. The inability to leverage recursion to
simplify the approach from the previous paragraph is not an isolated incident.
We note that a non-trivial aspect of our analyses is due to the lack of easy compo-
sition properties in the AGM. In particular, we encounter the following problem
— if we have a protocol II’ (e.g., the inner-product argument) which is used as
a sub-protocol for IT (a Bulletproofs range proof), and we prove extractability
for IT’, it is not clear we can infer extractability for IT in a modular way by just
calling the extractor for I1’. This is because a stand-alone analysis of II’ may
assume group elements output by a malicious prover P’ are represented with re-
spect to some set of basis elements — say, the generators g1,...,9n,h1,..., bn, u
in the concrete example of inner-product argument described above. However,
when II’ is used within II, the generators of the inner-product argument are
functions of different group elements. When studying a prover P attacking I7,
then, representations of group elements are with respect to this different set of
group elements, and this makes it hard to use an extractor for II’ directly, as it
assumes different representations.

This is a problem we encounter in our analyses, and which prevents us from
abstracting a theorem for the inner-product argument which we could use, in
a plug-and-play way, to imply security of higher-level protocols using it. The
flip side is that this lack of composability also comes to our advantage — our
extractors will in fact not even need to extract anything from the transcript of
an accepting execution of the inner-product argument, but only use the fact that
it is accepting to infer correctness of the extracted value.

THE ISSUE WITH PRIOR AGM ANALYSES. Composition issues seemingly affect
existing analyses of proof systems in the literature (e.g., [18,22]), whenever some
components are analyzed in the AGM (typically, a polynomial commitment
scheme), but the overall proof is expressed in the standard model. As far as
we can tell, unlike this work, one cannot directly extract a full AGM analysis
from these works — let us elaborate on this.

Obviously, from a purely formal perspective, the standard model and the al-
gebraic group model cannot be quite mixed, as in particular the AGM extractor
for the component cannot be used in the standard model — the only formally cor-
rect way to interpret the analysis is as fully in the AGM, but part of the analysis



does not leverage the full power of the model, and is effectively a standard-
model reduction. Yet, in order for composition to be meaningful, it is important
to verify that the basis elements assumed in the AGM analysis of the compo-
nents are the same available to a prover attacking the complete protocol. While
we cannot claim any issues (in fact, we give an analysis of Sonic in this paper
with a concrete bound), it does appear that all existing works do not attempt
to provide a formal composition — they use the existence of an AGM extractor
as a heuristic validation for the existence of a standard-model extractor, rather
than making formally correct use as an AGM extractor within an AGM proof.
Making this composition sound is potentially non-trivial. Having said this, for
pairing-based polynomial commitment schemes, the basis elements are generally
the same, and thus this can likely be made rigorous fairly easily (unlike the case
of inner-product arguments).

2 Preliminaries

Let N = {0,1,2,...} represent the set of all natural numbers and let N* = N\{0}.
For N € N, let [N] = {1,...,N}. We use Pr[G] to denote the probability that
the game G returns true. Let G be a cyclic group of prime order p with identity
1 and let G* = G\{1} be the set of its generators. We use boldface to denote a
vector, e.g., g € G™ is a vector of n group elements with its i*" element being g;,
ie, g =1(91,.-.,9n) For two vectors a = (a1,...,an),8 = (g1,---,9n), We use
g? to denote [ I gi". We use python notation to denote slices of vectors:

gL = (gla s 7gl) € Gl ) B[] = (gl+17' e 7gn) € anl .

For z € Z;, we use z" to denote the vector (1,z,22,..., 2" 1). Similarly, we use
z~" to denote the vector (1,271, 272, ..., 27 "*1). If Z is a variable, Z" represents
the vector (1,7, Z2,...,Z"1). Our vectors are indexed starting from 1, so ZF;:F]I
is the vector (z,2%,...,2"). The operator o denotes the Hadamard product of
two vectors, i.e., a = (a,...,an),b = (b1,...,b,),a0b = (a1by,...,anb,). We

use capitalized boldface letters to denote matrices, e.g., W € Z;*™ is a matrix
with n rows and m columns.
We denote the inner product of two vectors a, b € Z;; using {(a,b). We also

define vector polynomials, e.g., f(X) = Zf:o f; X, where each coefficient f; is a
vector in Zjy.

The function bit(k, 4, t) returns the bit k; where (kq, ..., k) is the ¢-bit rep-
resentation of k.
SCHWARTZ-ZIPPEL LEMMA. The polynomial ring in variables Xy, ..., X, over
the field F is denoted by F[ X1, ..., X,].

Lemma 1 (Schwartz-Zippel Lemma). Let F be a finite field and let f €

F[X1,...,X,] be a non-zero n variate polynomial with mazimum degree d. Let
S be a subset of F.Then Pr[f(z1,...,2,) = 0] < d/|S|, where the probability is
over the choice of x1,...,x, according to x; «s S.
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Game G&(A, \): Game GZ (A, \): Game GL(A, \):
gesG*; hesGx g1,...,9n <3Gy gsGy*
a«s Ax(g,h) (a1, an) < Ax(g1,.-.,9n) T 3 Zp(n)

a __ d
Return (g% = h) Return ([] g% =1 A (a1,...,an) #0") @' s Ax({g” }i__,)
i=1 Return (z = ')

Fig. 1. The games used to define the advantage of a non-uniform adversary A =
{Ax} en+ against the discrete logarithm problem, the discrete logarithm relation prob-
lem and the ¢-DLOG problem in a family of cyclic groups G = {G},cy+ with prime
order order p = p(\). The set G»* is the set of generators of G..

In particular if p is a prime and f € Z,[X] is a polynomial of degree d and z is
sampled uniformly at random from Zy, then Pr[f(x) = 0] < d/(p — 1). Further
this implies that if g(X) = f(X)/X* for i € N and « is sampled uniformly at
random from Z7, then Pr[g(z) = 0] = Pr[f(z) = 0] < d/(p—1).

THE DISCRETE LOGARITHM PROBLEM. The game Gﬁ}' in Figure 1 is used for
is used for defining the advantage of a non-uniform adversary A = {A)}\en+
against the discrete logarithm problem in a family of cyclic groups G = {G } en+
of prime order p = p(\) with identity 1 and set of generators G* = {G}} en+ =

{GA\{1}} ren+. We define Advd(A4, ) = Pr [Gg(A A)].

THE DISCRETE LOGARITHM RELATION PROBLEM. The game G&'f’ in Figure 1
is used for defining the advantage of a non-uniform adversary A = {Ax}xen+
against the discrete logarithm relation problem in a family of cyclic groups G =
{Ga}aens - We define A = {Aybrens as AdvET(A, ) = Pr [Gg;j,;e'(A, )\)].The
following lemma shows that hardness of the discrete logarithm relation problem
in G is tightly implied by the hardness of discrete logarithm problem in a family
of cyclic groups G = {G }ren+-

Lemma 2. Let n € NT. Let G = {Gy}ren+ be a family of cyclic groups with
order p = p(X). For every non-uniform adversary A = {Ayx} en+ there exists a
non-uniform adversary B = {Bx}xen+ such that for all A\ € NT| Advﬁé':;e'(A, A) <

AdvE (B, \) 4+ 1/p. Moreover, B is nearly as efficient as A.

We refer the reader to [11] for a proof of this lemma.

THE ¢-DLOG PROBLEM. The game Gg}_dl in Figure 1 is used for defining the ad-
vantage of a non-uniform adversary A = {A)} en+ against the ¢-DLOG problem

in a family of groups G = {G} en+. We define Advgdl(.A, A) =Pr [Gg}_dl(.A )\)]

We note that there are other problems known as ¢-DLOG which are not
equivalent to the one we use here. We use the version stated above because it
was the version used in the analysis of Sonic [18] which we analyse in this paper.
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Game SRS@()\): Oracle Ocx: (T = (a1,¢1,...,0i-1,Ci—1), G;):

win < false; tr « ¢ If 7 € tr then
pp «s IP.Setup(1*) If ¢ < r then
(z,stp) «s Px(pp) ¢i <3 Chy; tr < tr | (7, a4, ¢;); Return ¢;
Run PL* (stp) Else if i = r + 1 then
Return win d — IP.V(pp,z, (1,a:)); tr — tr | (7, a;)
If d = 1 then win « true
Return d
Return L

Fig. 2. Definition of state-restoration soundness. The game SRS defines state-
restoration soundness for a non-uniform prover P and a public-coin interactive proof
IP. Here, IP has r = r()) challenges and the i-th challenge is sampled from Ch;.

3 Interactive Proofs and State-restoration Soundness

We introduce our formalism for handling interactive proofs and arguments, which
is particularly geared towards understanding their concrete state-restoration
soundness.

INTERACTIVE PROOFS. An interactive proof [1] IP is a triple of algorithms: (1)
the setup algorithm IP.Setup which generates the public parameters pp, (2) the
prover IP.P and (3) the verifier IP.V. In particular, the prover and the verifier are
interactive machines which define a two-party protocol, where the prover does
not produce any output, and the verifier outputs a decision bit d € {0,1}. We let
{IP.P(z),IP.V(y)) denote the algorithm which runs an execution of the prover
and the verifier on inputs = and y, respectively, and outputs the verifier’s decision
bit. We say that IP is public coin if all messages sent from IP.V to IP.P are fresh
random values from some understood set (which we refer to as challenges).

COMPLETENESS. A relation R is (without loss of generality) a subset of {0, 1}* x
{0,1}* x {0,1}*. We denote a relation R that uses specified public parameters
pp, instance x and witness w as {(pp, z,w) : fr(pp,z,w)} where fr(pp,z,w) is
a function that returns true if (pp,x,w) € R and false otherwise. For every
A € NT and every A, define the following experiment:

pp s IP.Setup(1*) , (z,w) s A(pp) , d<s{IP.P(pp,z,w),IP.V(pp,z)) .

Then, we say that IP is an interactive proof for the relation R if for all A and
all A e Nt in the above experiment the event (d = 1) v ((pp,z,w) ¢ R) holds
with probability one.

STATE-RESTORATION SOUNDNESS. We target a stronger notion of soundness —
state-restoration soundness (SRS) [14,15] — which (as we show below) tightly
reduces to the soundness of the non-interactive proof obtained via the Fiat-
Shamir transform. The SRS security game allows the cheating prover to rewind
the verifier as it pleases, and wins if and only if it manages to produce some
accepting interaction. We only consider an r(A)-challenge public-coin interac-
tive proof IP, and consider the case where challenges are drawn uniformly from
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some sets Chy, ..., Ch,. We also assume that the verifier is described by an algo-
rithm which given pp, x, and a transcript 7 = (a1, c1, ..., ar, Cr, Gre1), OUtputs
a decision bit d € {0,1}. We overload notation and write IP.V(pp, z,7) for this
output.

Our definition considers a game SRS/p(\) (which is formalized in Figure 2)
that involves a non-uniform cheating prover P = {Py}en. (Henceforth, when-
ever we have any non-uniform adversary A, it is understood A = {Ax}ren — we
shall not specify this explicitly). The prover is initially responsible for generat-
ing the input  on which it attempts to convince the verifier on some execution.
Its rewinding access to the verifier is ensured by an oracle Oeyg, to which it has
access. Roughly speaking, the oracle allows the prover to build an execution tree,
which is extended with each query to it by the prover. This execution tree can be
inferred from tr, which sequentially logs all (valid) queries to Oeyt by the prover.
For a partial transcript 7/, we write 7/ € tr to mean that a partial execution
corresponding to 7' can be inferred from tr.

We then associate the probability of winning the game with the srs advantage

metric, Advis (P, A) = Pr [SRS';()\)].For notational convenience, we do not re-

strict the input x not to have a witness. Therefore, if IP is an interactive proof for
arelation R, we cannot hope to show that Advip (P, A) is small for all P. Clearly,
if P outputs (z,a) such that (pp,z,a) € R, then a is a witness and P can simply
(honestly) convince the verifier. The classical notion of state-restoration sound-
ness is recovered by only considering P’s which output x such that (pp,z,w) ¢ R
for any w.

4 Proofs of Knowledge in the AGM

THE ALGEBRAIC GROUP MODEL. We start here with a brief review of the
AGM [5]. For an understood group G with prime order p, an algebraic algorithm
A.ig is an interactive algorithm whose inputs and outputs are made of distinct
group elements and strings. Furthermore, each (encoding) of a group element X
output by A, is accompanied by a representation (xa,,%a,,...,Ta,) € lef such

that X = Hle AfAi, where Aq,..., Ay are all group elements previously input
and output by A,g. Generally, we write [X] for a group element X enhanced
with its representation, e.g.,[X] = (X,24,,%4,,-..,%4,). In particular, when

we use a group element X output by A, e.g. it is input to a reduction or used
in a cryptographic game, we write [ X] to make explicit that the representation is
available, whereas write X only when the representation is omitted. The notation
extends to a mix of group elements and strings a — [a] enhances each group
element with its representation.

DEFINING AGM EXTRACTION. We formalize a notion of proof-of-knowledge
(PoK) security in the AGM, following the lines of witness-extended emula-
tion [16,17], which we extend to provers that can rewind the verifier.

We will be interested in cases where the AGM allows for online extraction, i.e.,
the additional group representations will allow for extraction without rewinding
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Game WEE-l?;a'g’D()\): Oracle Oéxt(r = (a1,€1,y...,0i—1,Ci—1),a5):

tre—¢ If 7 € tr then
pp «s IP.Setup(1*) If ¢ < r then
([z] ,stp) <3 Paig,A(pPP) ¢i <3 Chy; tr « tr | (7, as, ¢;); return ¢
Run Pa(l)é);\t (stp) Else if ¢ = r 4+ 1 then
b s D(ir) d — IP.V(pp,x, 7| as)
Return (b =1) Return d
P D Return L
Game WEE-0,; 7" ()): Oracle Q% (7 = (a1,¢1,...,ai_1,¢i—1),ai):
tre—¢ If 7 € tr then
pp < IP.Setup(1*) If ¢ < r then
([z] , stp) < Paig,x(PP) (resp, ste) < E(ste, [(7, ai)])
ste < (1%, pp, [z]) tr « tr | (7, as, resp)
Run P?g’y (stp) Return resp
w s & (ste, 1) Else if i = + 1 then
b s D(tr) d — IP.V(pp,x, 7| as)
Return (b=1) A Return d

(Acc(tr) = (pp,z,w) € R) Return L

Fig.3. Definition of online srs-wee security in the AGM. The games
WEE-1, WEE-0 define online srs-wee security in the AGM for a non-uniform algebraic
prover Pag, a distinguisher D, an extractor £ and a public-coin interactive proof IP.
We assume here that IP has r = 7(\) challenges and the i-th challenge is sampled from
Ch;.

the prover. We target an adaptive notion of security, where the input is generated
by the adversarial prover itself, depending on the public parameters pp, and can
contain group elements.

ONLINE SRS-WEE SECURITY. The definition consists of two games — denoted

WEE-1|7,J;'g’D and WEE-O;SP’Z-Z'E’D, and described in Figure 3. The former captures

the real game, lets our prover P = {Py} en interact with an oracle O}, as in
the state-restoration soundness game defined above, which additionally stores
a transcript tr. The latter is finally given to a distinguisher D which outputs a
decision bit. In contrast, the ideal game delegates the role of answering P’s oracle
queries to a (stateful) extractor £. The extractor, at the end of the execution,
also outputs a witness candidate for w. The extractor in particular exploits here
the fact that P is algebraic by learning the representation of every input to the
oracle QY. (This representation can be thought, without loss of generality, as
being in terms of all group elements contained in pp.) Here, the final output of
the game is not merely D’s decision bit — should the latter output 1, the output
of the game is true only if additionally the extracted witness is correct assuming
the interaction with O resulted in an accepting execution — a condition we
capture via the predicate Acc(tr).
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For an interactive proof IP and an associated relation R, non-uniform alge-
braic prover P,g, a distinguisher D, and an extractor £, we define

AdViE 2 (Poig, D, E,A) = Pr [WEE-lr;a'g’D()\)] —Pr [WEE-Oﬁ;E'g’D(A)] G

One can consider also scenarios where the prover may be non-adaptive — for
example, the input has been generated by another party, and the prover tries to
prove knowledge with respect to this input. For this reason, introduce the notion
of non-adaptive srs-wee in the full version [34].

4.1 The Basic Framework

We develop a general framework that we will use, via Theorem 1, to derive
concrete AGM bounds on srs-wee security. Our goal, in particular, is to give
conditions on single path executions — i.e., executions not involving any rewind-
ing of the verifier by the prover, which could be seen as root-to-leaf paths in an
execution tree generated by the interaction of a state-restoration prover.

TRANSCRIPTS. From now on, let us fix an interactive public-coin proof IP =
(IP.Setup, IP.P,IP.V) for a relation R. Assume further this protocol has ex-
actly r rounds of challenges. Then, we represent a (potential) single-execution
transcript generated by an algebraic prover in different forms, depending on
whether we include the representations of group elements or not. Specifically,

we let the (plain) transcript be 7 = (pp,x, a1, c1,az2,¢2, ..., ap, ¢y ari1), Where
pp are the generated parameters, x is the input produced by Pag, ¢; € Ch;
for all ¢ € {1,...,r} are the challenges, and ay,...,a,41 are the prover’s mes-

sages. The corresponding eztended transcript with representations is denoted as
[T] = (pp7 [.’,E] ) [al] ) €1y [a2] 12500y [ar] » Cry [ar+1])'

In particular, the representation of each group element contained in a; is

with respect to all elements contained in pp,z,a1,...,a;—1. We let 7'F be the
set of all possible extended transcripts [7]. We also let TP < T'® be the set of
accepting transcripts [7], i.e., IP.V(7) = 1.
PATH EXTRACTION. We now would like to define a function e which extracts a
witness from any accepting transcript [7] € TAF . For a particular function e we
now define the set of extended transcripts on which it succeeds in extracting a
valid witness, i.e.,

Teonecr = {11 = (pp.[2],...) € TAee = w —e([7]), (pp,z,w) € R} .

Therefore, a natural extractor £ just answers challenges honestly, and applies
e to a path in the execution tree which defines an accepting transcript, and
returns the corresponding witness w. The probability of this extractor failing can
be upper bounded naively by the probability that the prover generates, in its
execution tree, a path corresponding to an extended transcript [7] € 72&\72'5;:;?.
This is however not directly helpful, as the main challenge is to actually estimate
this probability.
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BAD CHALLENGES. In all of our examples, the analysis of the probability of
generating a transcript in 7;'2\7;5;:&? will generally consist of an information-
theoretic and a computational part.

The information-theoretic part will account to choosing some bad challenges.
We capture such choices of bad challenges by defining, for any partial extended
transcript [7'] = (pp, [#],[a1],¢1,- - ., |ai]),a set BadCh(7’) € Ch; of such bad
challenges. (Crucially, whether a challenge is bad or not only depends on the
extended transcript so far.) We now denote as Tab,, the set of all extended
transcripts which contain at least one bad challenge. It turns out that the prob-
ability of generating such a bad challenge is easily bounded by ¢ - € for a prover
making ¢ oracle queries, assuming |BadCh(7')|/ |Ch;| < e.

The only case that the extractor can now fail is if the execution tree contains
an extended transcript [7] in the set Tor®™ = TP \ (TR G TIP. ). We denote
the probability that this happens in SRS,%'g (A) as prait(IP, Paig, €, R, A). Generally,
in all of our applications, upper bounding this probability for a suitably defined
extractor will constitute the computational core of the proof — i.e., we will prove
(generally tight) reductions to breaking some underlying assumption.

THE MASTER THEOREM. We are now ready to state our master theorem, which
assumes the formal set up.

Theorem 1 (Master Theorem). Let P be an r = r(\)-challenge public coin
interactive proof for a relation R. Assume there exist functions BadCh and e
for IP as described above, and let pri be as defined above. Let ' be a partial
transcript such that the challenge that comes right after is sampled from Ch;.
Assume that for all i € {1,...,r}, we have |BadCh(7")|/|Ch;| < €, for some
e € [0,1]. Then, there exists an extractor £ that uses e such that for any non-
uniform algebraic prover Pag making at most ¢ = q(\) queries to its oracle, and
any (computationally unbounded) distinguisher D, for all A € NT,

AdViE B (Paig, D, €, A) < ge + prail(IP, Paig, €, R, )

The time complexity of the extractor £ is O(q - ty + te) where ty is the time
required to run IP.V and t. is the time required to run e.

The proof of this theorem is straightforward has been deferred to the full ver-
sion [34].

4.2 The Fiat-Shamir Transform

The Fiat-Shamir transform uses a family of hash functions H to convert a
r-challenge public coin interactive protocol (proof or argument) IP to a non-
interactive argument FS[IP, #]. When H is modelled as a random oracle, we de-
note the non-interactive argument using FS®[IP]. In FS[IP, #], a hash function
H is first sampled from H. A proof on public parameters pp and input z is 7 =
(a1,c1,a2,¢2, ..., Qp, Cryary1), such that ¢; = H(pp,x,a1,¢1,...,a;-1,¢i—1,a;)[:
cLen;] for i € {1,...,r}, and IP.V returns 1 on input (pp,z, 7).
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Game FS-EXT-1/2%°()):

pp < IP.Setup(1*); ([2] ,stp) <=5 Paigx(PP); H <=5 Lnien(n)

[7] «s Pﬁ;’)‘(stp); (a1,€1y . QryCryQry1) &

accept « (IP.V(pp,z,m) =1) A (Vi€ [r] : ¢; = H(pp,z,a1,c1,-..,a:)[: cLen;])
w s E(1*, pp, [z], [7]); Return (accept A (pp, z,w) ¢ R)

Fig. 4. Definition of fs-ext-1 security in the AGM. The game FS-EXT-1 defines
fs-ext-1 security in the AGM for a non-uniform algebraic prover P,g, an extractor £
and a non-interactive argument obtained by applying the Fiat-Shamir transform to

an interactive protocol IP. Here, IP has r = r()\) challenges where the " challenge is

of length cLen; = cLen;(\) such that sLen(\) < cLen;(A\) < hLen()). The set 2nen)
contains all functions mapping {0, 1}* to {0, 1},

FS-EXT-1 SECURITY. We formalize a notion of proof-of-knowledge (PoK) secu-
rity in the AGM for non-interactive arguments obtained by applying the Fiat-
Shamir transform to an interactive protocol IP. For simplicity, this notion just
captures extractability instead of witness-extended emulation. We define a no-
tion of soundness called fs-ext-1 that captures the setting where the prover has
to commit to the instance beforehand. It is formally defined using the game
FS-EXT-1 in Figure 4.

For an interactive proof IP and an associated relation R, algebraic prover Pjjq,

and an extractor £, we define Advf:sgf{gﬁp]ﬁ(?mg, E,N)=Pr [FS-EXT—lZ;a";’,S()\)].
The following theorem connects the online srs-wee security of a public-coin

protocol IP and the fs-ext-1 soundness of non-interactive protocol FSRO[IP],
obtained by applying the Fiat-Shamir transform using a random oracle.

Theorem 2. Let R be a relation. Let IP be a r = r(\)-challenge public coin
interactive protocol for the relation R where the length of the i™ challenge is
cLen;(A\) such that sLen(A) < cLen;(\) < hLen(X) forie {1,...,7}. Let € be an
extractor for IP. We can construct an extractor £* for FSRO[IP] such that for
every non-uniform algebraic prover a*lg against FSRO[IP] that makes ¢ = q(\)
random oracle queries, there exists a non-uniform algebraic prover Pag and D

such that for all A\ € N7,
AdVESRS i (Pl €%, ) < AdVip 7 (Parg, D, €, 0) + (g +1)/2%7 )

Moreover, Pag makes at most q queries to its oracle and is nearly as efficient as
Pag- The extractor E* is nearly as efficient as €.

This proof of this theorem is deferred to the full version [34].

In the above theorem we considered challenges in IP to be bitstrings — how-
ever, this can be adapted to protocols where the challenges are from sets that
are not bitstrings. The denominator of the fraction of the bound would become
the size of smallest set from which the challenges are sampled, e.g., if the chal-
lenges in the a protocol were all from the set Zy, the fraction would become

(¢+1)/(p—1).
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Game FS-EXT-2/2%°()):

pp = IP.Setup(1*); H s Ohiencn); ([2], [7]) < Pii 5 (PP)

(a1,¢1y. . Qr,CryQry1) <« T

accept « (IP.V(pp,z,m) =1) A (Vi€ [r] : ¢s = H(pp,z, a1, c1,-..,a:)[: cLen;])
w s E(1%, pp, [2] , [7]); Return (accept A (pp, z, w) ¢ R)

Fig. 5. Definition of fs-ext-2 security in the AGM. The game FS-EXT-2 defines
fs-ext-2 security in the AGM for a non-uniform algebraic prover P,g, an extractor £
and a non-interactive argument obtained by applying the Fiat-Shamir transform to

an interactive protocol IP. Here, IP has r = r()\) challenges where the " challenge is

of length cLen; = cLen;(\) such that sLen(\) < cLen;(A\) < hLen()). The set 2nen)
contains all functions mapping {0, 1}* to {0, 1},

We can also consider an adaptive notion of soundness where the prover can
output the instance and proof together — we call this notion fs-ext-2. It is for-
mally defined using the game FS-EXT-2 in Figure 5. Unlike fs-ext-1, here the
prover need not commit to the instance beforehand and can output the instance
and proof together. For an interactive proof IP and an associated relation R,
algebraic prover P, and an extractor £, we define Advfs;g((t)_ﬁpL r(Pag, E,A) =

Pr [FS-EXT-zf:;'gg ()\)] .

We assume that IP has BadCh, e functions as described previously. Further,

we assume 7'B'§dCh is defined as above. We use pfa”’FS(FSRO[IP],Pa|g,e,R7>\) to
denote the probability that in FS—EXT-2,7;aJ§%’8, Paig outputs ([z],[7]), accept is
true, ™ ¢ Tabuc, but e on input ([z],[n]) fails to produce a valid witness.
The following theorem upper bounds the fs-ext-2 soundness of non-interactive

protocol FSROTIP].

Theorem 3. Let IP be an r = r(\)-challenge public coin interactive proof for a
relation R where the length of the it" challenge is cLen;()\) such that sLen()\) <
clen;(A\) < hLen(\) fori e {1,...,r}. Assume there exist functions BadCh and
e as described previously and let peirs be as described above. Let 7' be a partial
transcript such that the challenge that comes right after is sampled from Ch;.
Assume that for alli e {1,...,r}, we have that |BadCh(7')|/|Ch;| < € for some
e € [0,1]. Then, there exists an extractor E* that uses e such that for any non-
uniform algebraic prover P for FSRO[IP] making at most ¢ = q(\) queries to

alg
its random oracle, for all A € NT,

AVESRS oy 1 (Piig €% A) < g€ + prainps(FSTO[IP], Plig, e, R, N) .

alg»

The time complexity of the extractor E* is O(q -ty + te.) where ty is the time
required to run IP.V and t. is the time required to run e.

The proof of this theorem is similar to Theorem 1 and has been omitted.
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Fig. 6. Bulletproofs inner-product argument InPrd.
5 Online srs-wee Security of Bulletproofs

In this section, we shall apply our framework to prove online srs-wee security in
the AGM for two instantiations of Bulletproofs- range proofs (RngPf) and proofs
for arithmetic circuit satisfiability (ACSPf). We first introduce the Bulletproofs
inner product argument (InPrd) in Section 5.1 which forms the core of both
RngPf and ACSPf. Then, in Sections 5.2 and 5.3 we introduce and analyze online
srs-wee security of RngPf and ACSPf respectively.

5.1 Inner Product Argument InPrd

We shall assume that InPrd = InPrd[G] is instantiated on an understood family
of groups G = {G,} en+ of order p = p(\). Using InPrd, a prover can convince a
verifier that P € G is a well-formed commitment to vectors a,b € Z; and their
inner-product {a,b). More precisely, the prover wants to prove to the verifier
that P = g2hPu®®> where g € G",h € G, u € G are independent generators of
G. We assume that n is a power of 2 without loss of generality since if needed,
one can pad the input appropriately to ensure that this holds. The prover and
the verifier for InPrd is formally defined in Figure 6.

5.2 Online srs-wee Security of RngPf

We shall assume that RngPf = RngPf[G] is instantiated on an understood family
of groups G = {Gy}en+ of order p = p()A). The argument RngPf is an argument
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RngPf.P(((n,g,h, g, h,u), V), (v,7)) RngPf.V((n,g,h,g,h,u),V)
ar < BinRep(v,n);ar « ar — 1"

o s Zp; A — h®g?Lh®R

Sr, <5 Zy;SR <5 Ly

p s Ly; S  hog hen s
PR ILE Y,z S Z;’:

I(X)e—(ar—2-1")+s.- X 5(y,2) « (2 —2%) - A", y™)
r(X)«—y"o(ar+2-1" +sr - X) -2 .am,2n

+22 .27
HX) «— A(X),r(X)) =to + 11 X +12X?
B, B2 s Zyp
T; « g'ihPi for i € {1,2} ATEN

PR x<—$Z;

l—i(z);r « r(x);f<— q,r)

ﬁz(_BQ'I2+51'$+227;M<—a+p.J; Bt
— wes Zy
h! « h}’*ﬂ;u’ — ¥ h' — hyfn;u, oy
P « Aszg—z.1nh1z-y"+z2.2n P ASzg_2_17zh,z_yn+z2_2n
P« h*”P(u’)'g P h—up(u/)f

InPrd.P((g,h’, 2, P'),(l,r)) &= InPrd.V(g,h’, v/, P') > b
R« V= guarrry’
Ifb=1 A g'h%* = R then
Return 1
Return 0

Fig. 7. Prover and Verifier for RngPf. The function BinRep(v,n) outputs the n-bit
representation of v. The symbol <= denotes the interaction between InPrd.P and
InPrd.V with the output of the InPrd.V being b.

of knowledge for the relation
R= {((neN,gﬁeG),VeG,(vmeZp)) LgR =V Ave [0,2"—1]} . (4)

DESCRIPTION OF RngPf. RngPf.Setup returns g € G, h € G", g, h,u € G where
g,h are vectors of independent generators and g, h,u are other independent
generators of the group G. The prover and verifier for RngPf are defined in
Figure 7.

In Theorem 4, we analyze the online srs-wee security for RngPf. Since RngPf
has a group element V in its input, the analysis of non-adaptive srs-wee security
would differ from the online srs-wee analysis. In the full version [34], we analyse
the non-adaptive srs-wee security of RngPf — it turns out that the proof is even
harder for this case because the function e does not have the representation of
V. The resulting bound is increased to the square root of the adaptive bound,
due to our limited use of rewinding.
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Theorem 4. Let G = {G)}ren+ be a family of groups of order p = p(X\). Let
RngPf = RngPf[G] be the interactive argument as defined in Figure 7, for the re-
lation R in (4). We can construct an extractor € such that for any non-uniform
algebraic prover Pag making at most ¢ = q(\) queries to its oracle, there ex-
ists a non-uniform adversary F with the property that for any (computationally
unbounded) distinguisher D, for all A\ € NT,

Adviee 1 (Pag, D, E, ) < (14n + 8)g/(p — 1) + AdvE (F,\) + 1/p .

Moreover, the time complexity of the extractor € is O(q-n) and that of adversary

F is O(q-n).

We show that the bound above is tight in Theorem 5. Using Theorem 2, we get
the following corollary.

Corollary 1. Let G = {G)} en+ be a family of groups of order p = p(X\). Let
RngPf = RngPf[G] be the interactive argument as defined in Figure 7, for the
relation R in (4). Let FS®C[RngPf] be the non-interactive argument obtained by
applying the Fiat-Shamir transform to RngPf using a random oracle. We can
construct an estractor £ such that for any non-uniform algebraic prover Paig
making at most ¢ = q(\) queries to the random oracle there exists a non-uniform
adversary F with the property that for all A € N*,

AVERE fhngpry 1 (Paig: €, A) < (140 + 9)g +1)/(p — 1) + AdvE (F, A) + 1/p .

Moreover, the time complexity of the extractor £ is O(q-n) and that of adversary
Fis O(q - n).

In order to prove Theorem 4, we invoke Theorem 1 by defining BadCh and e and
showing that ¢ < (14n + 8)/(p — 1) and there exists an adversary F such that
Prail(RngPf, Pag, e, R, \) < Adv%}'(}')—i-l/p. In more detail, we construct a function
h such that for an accepting transcript 7 ¢ Taeer if e([7]) fails to produce a
valid witness, then h([7]) returns a non-trivial discrete logarithm relation with
respect to the generators. This h is used to construct an adversary H against
the discrete logarithm relation problem and we invoke Lemma 2 to transform
into adversary JF against the discrete logarithm problem, thus upper bounding
Prail(RNgPF, Paig, €, R, \) using Adv: (F).

Proof (Theorem /). We extend the notation for representation of group ele-
ments introduced in Section 4 for representation with respect to vector of group
elements like g. The representation of a group element A = g%z g% with respect
to (g, 9) is [A] = (A, ag,ay) where ag = (ag,, - ,aq,).

DEFINING BadCh AND UPPER BOUNDING €. To start off, we define BadCh(7') for
all partial transcripts 7'. Let Ch be the set from which the challenge that just
follows 7' is sampled. We use a helper function CheckBad to define BadCh(7').
The function CheckBad takes as input a partial extended transcript [7'] and a
challenge ¢ € Ch and returns true if and only if ¢ € BadCh(7’). For each verifier
challenge in RngPf, there is a definition of CheckBad in Figure 8. Every CheckBad
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function defines several bad conditions that depend on 7/ — most of these bad
conditions are checked using the predicate SZ. This predicate takes as input
a vector of polynomials and a corresponding vector of points to evaluate the
polynomial on and returns true iff any of the polynomials is non-zero but its
evaluation at the corresponding point is zero. One can safely ignore the details
of the definitions of CheckBad functions for now — the rationale behind their
definitions shall become apparent later on.

The following lemma establishes an upper bound of (14n +8)/(p —1) on
|BadCh(7")|/|Ch].

Lemma 3. Let 7’ be a partial transcript for RngPf. Let Ch be the set from which
the challenge that comes right after 7' is sampled. Then, |BadCh(7")|/|Ch| <
(14n +8)/(p — 1).

The proof of this lemma has been deferred to the full version [34].
DEFINING e. Let 7 be a transcript of RngPf as defined below.

T :((n7g7hau>ga h)7V7 (A7S)7 (yaz)a (T17T2)7xa (61,,“4,7?)3707 (LlaRl)axh

(LQ’ R2)7 T2, .., (Llogm Rlogn)? Tlogns (av b)) . (5)
Let us represent using 7. the prefix of 7 just before the challenge c¢. For exam-
ple 7|y . = ((n,g7 h,u,g,h),V, (A, S)) The function e simply returns (vg, vg).
However, its output is a valid witness only if vg = vy, = 0",v, = 0 and
vg € [0,2" —1].
PROVING AN UPPER BOUND ON pgil(RngPf, Paig, e, R, X). We construct an adver-
sary ‘H against the discrete logarithm relation problem that takes as input inde-
pendent generators g, h, g, h, u of the group G and works as follows. It simulates
the game SRSgrngps to Paig using public parameters n, g, h, g, h, u. If P, manages
to produce an accepting transcript 7, H calls a helper function h on input [7] and
outputs whatever h outputs. We shall define h in such a way that for 7 ¢ Ezzgcif
if e([7]) does not return a valid witness, then h([7]) returns a non-trivial discrete
logarithm relation. In other words, we have that whenever e([7]) fails to extract a
valid witness for an accepting transcript 7 ¢ 7;:;%?, ‘H succeeds. So we have that
Prail(RngPf, Paig, e, R, \) < Advg;,ljéfl'%(?—l). Using Lemma 2 we would have that
there exists an adversary F such that pei(RngPf, Pag, e, R, A) < Adv%,'(}“) +1/p.
We also have that F is nearly as efficient as H.

DEFINING h. We next describe the h function. Let 7, as defined in (5), be an
accepting transcript. szg‘s(y’z)Ti"”TQI2 = gfhﬁl' . must hold since 7 is an accepting
transcript.

The function h can plug in the representations of 77,75,V into the above
equation and compute eg), efll) , egl), e,(ll), eq(}) such that get(zl)heil)geél)heg)ueg) =
1. If not all of these are zero, h returns eg)7 es), e_(gl), 621)7 e,(}).

Again since 7 is an accepting transcript, InPrd.V must have returned 1
and hence P{og™) = (gllogn)ya(pllogn))byab must hold. All the terms in the

above equality can be expressed in terms of g, h, g, h,u and one can compute
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Procedure CheckBad( [ ]
//[TI] = ((n7g7hvu797 ) [ ] ([A] [ ]))
f(Y’Z)(_ZQ(Ug_<a372 >) Z<a’g_ah_lann>_<agOah’Yn>
Return SZ(f(Y, Z), (y, z))

Procedure CheckBad([7'], z):

//[7'] = ((n.g,h,u,g,0), [V], ([A], [S]), (4, 2), ([T1] . [T2]))

J1(X) — vg2® + t1g X +t2g X% f2(X) — vnz® + t1n X + ton X

f3(X) = vuz® + t1u X + t2u X% 8(y, 2) « (2 = 2°)QA", y") — 2°(1", 27)
I(X)e—(ag—2-1") 4+ 55 - X;r(X)—y"o(an+2z 1"+ sp - X) + 222"
Fi(X) 092" +0(y, 2) + t1g X + b2 X? — (I(X), (X))

Return SZ(f1(X),z) v SZ(f2(X),z) v SZ(f3(X),z) v SZ(fa(X), x)

Procedure CheckBad([7'], w):

//[TI] = ((nv g,h,u,g, h)7 [V] ) ([A] ) [S])1 (y7 Z)a ([Tl] ) [TQ])wrv (ﬁraﬂw i)) R
1 (ag —2-1™) + 8¢ - &; T < (an + 280 + 21™) o y™ + 222" f(W) « Wi — W<l r)
Return SZ(f (W), w)

Procedure CheckBad([7'],zm):

//[7'] = ((n, g, h,u, g, ), [V], ([A], [S]), (¥, 2), (IT1], [T2]), @, (Ba, s £), w0
([Ll]v[Rl])7x177([Lm]7[Rm])) R
Py < Qg + Sg — 21" Pl —an+asn+y "o (zy" + 2%2™); pl, — Gy + TS5y + wi
For j=0,...,n—1do
_ m—1 _
JB X)) gy yy + X2+ gy X 24P+ 207 (ligy ;@7 + gy 27 %)
le:z,j(X) «— lmh1+j X%+ rmh1+jX72 +plhl+j + Z;i_ll(lihl-{-jm? + Tihg g xz—2)
X)) = b X+ Tma X 72+ Pl + 27 (liw? + riuzy ?)
flag « false
Fort=1,...,m—1dofor j=0,...,n/2" — 1 do
flag — flagv SZ(F5 | (X)a3— 5 2 (X),2m) v SZ(F(X) = f1 0ot (X) 22, )
For 7 =0,...,n/2™ —1do
ﬂag «— ﬂag \4 Sz(fi,]( ) X2 fm Jj+n/2m (X),ij) \4 SZ(fv?@,J(X) - frl:z,j+n/2m (X) :
XQ,IJm)
flag « flag v SZ(fis(X) —w - X737 £5 () f (X0 o)
Return flag

Fig. 8. The functions CheckBad function for the RngPf.

Procedure ¢([7]):

//[T] = ((n7g7hau 9, )v[V]v([A 7[ ]) ( Y, )a([Tl] [TQ]),ZE, (ﬁlvﬂaf)vw
([ ] [Rl]) x1>-“7([L10g"]7[R10g"])7x10g’ﬂ7(a7b))
v¥* —vg; ¥ «— vp; Return (v*,~*)

Fig. 9. The function e for RngPf.

62)

eg) ef), 652), 6’22) (2) such that ger(;)he(2 ? peil

putes and returns eg), ef), 6;2), 622),678) We define the function h formally in

= 1. The function h com-
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Procedure h([7]):

//17] = ((n, g, h,u, g,h), [V1; ([A], [S]), (v, 2), (ITA], [T2]), @, (Ba, o, £), w,
([Ll] ) [Rl])7x17 ceey ([Llog’ﬂ] ) [Rlog’ﬂ])axlogna (CL7 b))
8(y, 2) « (2= 2)A",y") — 2°Q", 2")
e(g1> — vg2® + tigT + togx®; eg) —on2? + ting + tonz?; el — 0,22 F tix + toua®
el —0g22 + 8(y, 2) + trgx + toga® — & el — w2 + tinx + tona® — Ba
If (e(gl),es),eg),e(gl),eg)) # (0™,0",0,0,0) then return (e(gl),eill),egl),e(gl),eg))
P < (ag) + x8g — 21™; Pl < an + xsp +y "o (2y" + 222™)
Py < Qg + TSg; Pl — an + TSKH — W Py, — Qy + xSy + wit
Fork=0ton—1do

logn logn 1—bit(k,i,log n)
2) , ) 2 _ 2 (-1) sivlog n
€9ry1 < Pgiyy + Z l191+kxi + Tigi4pL; — @ l_[ €Z;
i=1 i=1
log n log n bit(k,i,log 1)
(2) / ) 2 ) —2 (= (k) (=1)Prmelos
Chirr © Phigr + »Zl llh1+’<xi tTinggy T2 — by ' 1_[1 i
1= 1=
logn
(2) (2) (2)y. ,(2) (2) (2)y. ,(2) ’ 2 -2
€g (_(6913'-"6971)’ €h (_(ehla“-vehn)v ey’ Py + Z liuxi+riuxi —w-ab
=1

@) logn 5 5 @) logn 2 9
—_ / —_ /
ey’ — X ligxi +rigr; " +py; e — X Linxi +ranz; T + P
i=1 i=1

Return (eg), ef), e, 65;2)7 ef))

Fig. 10. The function h for RngPf.

Figure 10. It follows from the description of h that it runs in time O(n). The
running time of H consists of the time required to answers ¢ queries, run RngPf.V
in at most ¢ paths in the execution tree and the time required to run h. Hence
its time complexity is O(g-n). Using Lemma 2, time complexity of F is O(q-n).

RELATING h,e. In order to complete the proof of Theorem 4, in the following
lemma we show that — for an accepting transcript 7 such that 7 ¢ 7%23%? if

e([r]) does not return a valid witness, then h([7]) returns a non-trivial discrete
logarithm relation. Proving this lemma would conclude the proof of Theorem 4.

Lemma 4. Let 7, as defined in (5), be an accepting transcript of RngPf such
that T ¢ 713?;%?. If e([7]) returns (v*,~v*) such that at least one of the following

hold: g"* h?™ # V or v* ¢ [0,2" — 1], then h([7]) returns a non-trivial discrete
logarithm relation.

Proof (Lemma 4). For simplicity, we shall prove the contrapositive of the state-
ment, i.e., assuming h([7]) returns a trivial discrete logarithm relation, then
¢* " =V and v* € [0,2" —1].

In order to prove ¢g**hY* = V and v* € [0,2" — 1], it suffices to show that
vg = vh = 0", v, = 0 and v, € [0,2" — 1]. Let us denote using 7|. the partial
transcript that is the prefix of 7 just before the challenge c. For example 7|, .) =
((n, g, h u,g,h),V, (A, S)).Since we assumed that h([7]) returns (0™,0",0,0,0),

we have that for i = 1,2, (eg),eg),eg),eg),eg)) = (0™,0™,0,0,0).
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Writing out the expression for eg
. ¢ Rnng

! we get vg2? + tigx + tog?

BadCh+ WC have that « ¢ BadCh(7|,). Therefore, SZ(f1(X),

= 0".Since

x) is false

where f; is as defined in CheckBad(7/,z). Since we have here that fi(z) = 0,

the polynomial fi(X

e = 0". Similarly using egll)

v, = 0 respectively. Writing out the expression for eg

t14 + tagz? —t = 0. Hence,

Using e(g2) = 0™ we get for all k € {0,...

logn

/
pgl+k + Z 1gl+k z +Tt91+kxz

) is the zero vector polynomial. Since z # 0 it follows that
= 0™ and 65}) = 0 we can show that v, = 0™ and

() we have vg2? +6(y, 2) +

t =022 +8(y, 2) + tigx + tyga” . (6)

7n_1}

logn

2 - H x 1)1 bit(k,i,log n) _ O . (7)

1=1
Using e( ) = 0" we get for all ke {0,...,n — 1}
’ logn —(K)) . logn blt(k i,log n)
ph1+k + Z lh1+k 7 + rzh1+k 7 H .Z' = O . (8)
Using e( ) =0 we get that
logn
P+ Z (liwz? + 1iya;?) —w-ab=0. (9)
i=1

We shall next use the following lemma which essentially says that if all of

e e ) 2 2

are zero and 7 ¢

RngPf A
7—BadCh’ then w - <pg’ph oyn> =

Lemma 5. Let 7, as shown in (5), be an accepting transcript of RngPf such

RngPf
that 7 ¢ Tgucp, - Let
Pg = ag + T5g — 21"
Suppose, the for all k € {0,...,n— 1}

logn

( Z (l191+k it Tigi T ) +p91+k> —a-

i=1

logn

( Z (lihuk it Tih1yr Ty ) +ph1+k) - by (kD) .

=1

logn
Also, | Y (Liwa? + riyz;

i=1

,Ph=an+xsp+y "o

(zy™ + 222") | p, = ay + x5, +wi .

logn o
(_1)17blt(k,z,log n)
[T =0,

i=1
but(k i,log n)
=0.

logn
[T

2)) +p, —w-ab=0. Then w - {p,py, 0 y") = i,



The proof of this lemma is a generalization of the proof that we gave for the
inner product argument for n = 2 in the technical overview. We defer the proof
of Lemma 5 to the full version [34].

Since 7 is an accepting transcript of RngPf and 7 ¢ 7';’:,%? and (7) to (9)
hold, using Lemma 5, we get w(pg,py, 0y") = p,. Plugging in the values of
P Ph Pl We get

w-{ag + x5g — 21", (ap + Tsp + 21™) o y" + 222" = a, + w5, + Wl .

Since 7 ¢ T we have that w ¢ BadCh(r|,,). Therefore, SZ(f(W), w) is false
where f is as defined in CheckBad(7/,w). Since we have here that f(w) = 0, the
polynomial f(W) must be the zero polynomial. In particular its W term must
be zero, i.e., (ag + 55 — 21", (an + T5n + 21™) 0 y™ + 222") = {. Plugging in
the value of  obtained in (6) and using « ¢ BadCh(7|,), we have that

vy2% 4+ 0(y, 2) — {ag — 21", (ap + 21™) o y™ + 222"y =0 .
Plugging in the value of §(y, z), rearranging and simplifying we get
22(7}9 —{ag,2")) — z{ag —ap — 1", y") —{agoan,y") =0.

Using (y, z) ¢ BadCh(7|,,)), we get that v, — {ag,2") = 0, ag —ap — 1" = 0",
ag © an, = 0". Note that ag — an — 1" = 0" and ag o ap, = 0" imply that
ag € {0,1}". Further vy — {ag,2") =0, i.e., v, = {ag,2™). So, v, € [0,2" —1].
Therefore, v*,v* output by e([r]) satisfy V = g**h?" and v* € [0,2" — 1]. This
concludes the proof of Lemma 4 and Theorem 4.

o
Further for a prover P, for FSRO[Rnng], and the e we define in the proof of
Theorem 4, we can upper bound pfa”,FS(FSRO[Rnng],Pa|g,e,R, A) using tech-
niques very similar to those used in the proof of Theorem 4. This is because
we can prove that if the prover outputs an instance and an accepting proof and
e fails to produce a valid witness, then we can compute a non-trivial discrete
logarithm relation from the representation of the transcript and instance unless
one of the challenges in the transcript are bad which we can show happens with
small probability. Then using Theorem 3 we obtain a bound for the fs-ext-2
security of FS®©[RngPf] similar to the one we obtained for fs-ext-1 security in
Corollary 1.

TIGHTNESS OF THEOREM 4. We next argue that the factor O(ng/(p — 1)) in
Theorem 4 is tight. We first note that the protocol RngPf can be used for the
following relation

R’={(neN,g,V€G,veZp):g”zV/\ve[O,Q”—l]}, (10)
by fixing ~ to 0.

We shall construct a cheating prover P (that makes O(q) queries to Ocxt)
for the relation R’ that outputs an instance V' = g¥ such that v ¢ [0,2" — 1] but
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can still convince the RngPf verifier with probability £2(ng/(p — 1)) if n divides
p — 1. This would imply that the bound in Theorem 4 is tight up to constant
factors.

Theorem 5. Let G = {G)}ren+ be a family of groups of prime order p = p(X).
Let RngPf = RngPf[G] be the interactive argument for the relation R’ in (10)
obtained by setting v = 0 in the protocol defined in Figure 7. If n divides p — 1,
we can construct a non-uniform prover P making at most q + logn + 1 queries
to its oracle, such that for all A € N*, Advispe(P,A) = (n —1)g/(p — 1).

The proof of this theorem has been deferred to the full version [34].

5.3 Online srs-wee Security for ACSPf

In this section, we introduce ACSPf and apply our framework to prove online srs-
wee security. As shown in [10], any arithmetic circuit with n multiplication gates
can be represented using a constraint system that has three vectors ar,ar,ap €
Z,, representing the left inputs, right inputs, and outputs of multiplication gates
respectively, so that ay o ap = ap, with additional Q < 2n linear constraints.
The linear constraints can be represented as ay, - Wy +ar-Wgr+ap-Wp =c,
where W, Wgr, Wp € ZZ?X".

We shall assume that ACSPf = ACSPf[G] is instantiated on an understood
family of groups G = {Gy} en+ of order p = p(A). The argument ACSPf is an
argument of knowledge for the relation

R Z{ (n,QeN), (WL, Wr, Wo e Z9*" ce Z3), (aL,ar,a0 € Z))) :
(11)

aLoaRzaoAWL-aL+WR-aR+WO-aO=c}.

The description of ACSPf is deferred to the full version [34]. We prove the follow-
ing theorem that gives an upper bound on the advantage against online srs-wee
security of ACSPf.

Theorem 6. Let G = {Gy}ren+ be a family of groups of order p = p(X\). Let
ACSPf = ACSPf[G] be the Bulletproofs interactive argument system for arith-
metic circuit satisfiability for the relation R in (11). We can construct an ex-
tractor € such that for any non-uniform algebraic prover P,g making at most
q = q(\) queries to its oracle, there exists a non-uniform adversary F with
the property that for any (computationally unbounded) distinguisher D, for all
A€ NT, Advacsps r(Paig, D, €, A) < ((14n +8)q)/p — 1 + AdVE(F, \) + 1/p.

Moreover, the time complexity of the extractor € is O(q - n) and that of
adversary F is O(q - n).

We can show that the bound in Theorem 6 is tight by constructing a cheating
prover like we did in Theorem 5. Using Theorem 2, we can get a corollary
about fs-ext-1 security of FS®[ACSPf] which we include in the full version [34].
Additionally, using techniques similar to those in the proof of Theorem 6, we
can prove a similar bound for fs-ext-2 security of FSRC [ACSPf]. The proof of
Theorem 6 is similar to the proof of Theorem 4 and has been deferred to the full
version [34].
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6 Online srs-wee Security of Sonic

We apply our framework to prove srs-wee security of Sonic [18] which is an inter-
active argument for arithmetic circuit satisfiability based on pairings (we refer
to this argument as SnACSPf). The argument SnACSPf is again an argument of
knowledge for the relation (11). The description of SnACSPf has been deferred
to the full version [34]. We prove the following theorem that establishes an upper
bound on the advantage against online srs-wee security of SnACSPf.

Theorem 7. Let G = {Gy}yen+ be a family of groups with order p = p(\). Let
Gr = {Grr}aen+ be a family of groups such that there exists a bilinear map
e: G x G — Gr. Let SnACSPf = SnACSPf[G, Gr,e] be the Sonic interactive
arqument system for the relation R in (11). We can construct an extractor € such
that for any non-uniform algebraic prover Pag making at most ¢ = q(\) queries
to its oracle, there exist non-uniform adversaries Fi,Fa, F3 with the property
that for any (computationally unbounded) distinguisher D, for all A € N*,

) 18 -
AN Ao (Patg D €,0) < - AV (1, ) HADE (o ) A (F, )

Moreover, the time complezities of the extractor £ and adversaries Fi, Fa, F3
are all O(q - n).

We can show that the bound in Theorem 7 is tight by constructing a cheating
prover like we did in Theorem 5. Using Theorem 2, we can get a corollary
about fs-ext-1 security of FS®[SnACSPf] which we state in the full version [34].
Additionally, using techniques similar to those in the proof of Theorem 7, we
can prove a similar bound for fs-ext-2 security of FS®[SnACSPf]. The proof of
Theorem 7 has been deferred to the full version [34].
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