
Fluid MPC: Secure Multiparty Computation
with Dynamic Participants

Arka Rai Choudhuri1[0000−0003−0452−3426], Aarushi Goel1, Matthew Green1,
Abhishek Jain1, and Gabriel Kaptchuk2

1 Johns Hopkins University, Baltimore, USA,
{achoud,aarushig,mgreen,abhishek}@cs.jhu.edu

2 Boston University, Boston, USA, kaptchuk@bu.edu

Abstract. Existing approaches to secure multiparty computation (MPC)
require all participants to commit to the entire duration of the protocol.
As interest in MPC continues to grow, it is inevitable that there will be a
desire to use it to evaluate increasingly complex functionalities, resulting
in computations spanning several hours or days.

Such scenarios call for a dynamic participation model for MPC where
participants have the flexibility to go offline as needed and (re)join when
they have available computational resources. Such a model would also
democratize access to privacy-preserving computation by facilitating an
“MPC-as-a-service” paradigm — the deployment of MPC in volunteer-
operated networks (such as blockchains, where dynamism is inherent)
that perform computation on behalf of clients.

In this work, we initiate the study of fluid MPC, where parties can
dynamically join and leave the computation. The minimum commitment
required from each participant is referred to as fluidity, measured in
the number of rounds of communication that it must stay online. Our
contributions are threefold:

– We provide a formal treatment of fluid MPC, exploring various pos-
sible modeling choices.

– We construct information-theoretic fluid MPC protocols in the honest-
majority setting. Our protocols achieve maximal fluidity, meaning
that a party can exit the computation after receiving and sending
messages in one round.

– We implement our protocol and test it in multiple network settings.

1 Introduction

Secure multiparty computation (MPC) [48, 32, 6, 10] allows a group of parties
to jointly compute a function while preserving the confidentiality of their inputs.
The increasing practicality of MPC protocols has recently spurred demand for
its use in a wide variety of contexts such as studying the wage gap in Boston [37]
and student success [8].

Given the increasing popularity of MPC, it is inevitable that more ambitious
applications will be explored in the near future — like complex simulations on

secret initial conditions or training machine learning algorithms on massive, dis-
tributed datasets. Because the circuit representations of these functionalities can
be extremely deep, evaluating them could take several hours or even days, even
with highly efficient MPC protocols. While MPC has been studied in a variety
of settings over the years, nearly all previous work considers static participants
who must commit to participating for the entire duration of the computation.
However, this requirement may not be reasonable for large, long duration com-
putations such as above because the participants may be limited in their com-
putational resources or in the amount of time that they can devote to the com-
putation at a stretch. Indeed, during such a long period, it is more realistic to
expect that some participants may go offline either to perform other duties (or
undergo maintenance), or due to connectivity problems.

To accommodate increasingly complex applications and participation from
parties with fewer computational resources, MPC protocols must be designed
to support flexibility. In this work, we formalize the study of MPC protocols
that can support dynamic participation – where parties can join and leave the
computation without interrupting the protocol. Not only would this remove the
need for parties to commit to entire long running computations, but it would
also allow fresh parties to join midway through, shepherding the computation to
its end. It would also reduce reliance on parties with very large computational
resources, by enabling parties with low resources to contribute in long compu-
tations. This would effectively yield a weighted, privacy preserving, distributed
computing system.

Highly dynamic computational settings have already started to appear in
practice, e.g. Bitcoin [42], Ethereum [9], and TOR [21]. These networks are
powered by volunteer nodes that are free to come and go as they please, a model
that has proven to be wildly successful. Designing networks to accommodate
high churn rates means that anyone can participate in the protocol, no mat-
ter their computational power or availability. Building MPC protocols that are
amenable to this setting would be an important step towards replicating the
success of these networks. This would allow the creation of volunteer networks
capable of private computation, creating an “MPC-as-a-service” [3] system and
democratizing access to privacy preserving computation.

Fluid MPC. To bring MPC to highly dynamic settings, we formalize the study
of fluid MPC. Consider a group of clients that wish to compute a function on
confidential inputs, but do not have the resources to conduct the full computation
themselves. These clients share their inputs in a privacy preserving manner with
some initial committee of (volunteer) servers. Once the computation begins, both
the clients and the initial servers may exit the protocol execution. Additionally,
other servers, even those not present during the input stage, can simply “sign-up”
to join part-way through the protocol execution. The resulting protocol should
still provide the security properties we expect from MPC.

We consider a model in which the computation is divided into an input stage,
an execution stage, and an output stage. We illustrate this in Figure 1. During the
input stage, a set of clients prepare their inputs for computation and hand them

2

over to the first committee of servers. The execution stage is further divided into
a sequence of epochs. During each epoch, a committee of servers are responsible
for doing some part of the computation, and then the intermediary state of the
computation is securely transferred to a new committee. Once the full circuit
has been evaluated, there is an output stage where the final results are recovered
by the clients.

In order to see how well suited a particular protocol is to this dynamic set-
ting, we introduce the notion of fluidity of a protocol. Fluidity captures the
minimum commitment required from each server participating in the execution
stage, measured in communication rounds. More specifically, fluidity is the num-
ber of communication rounds within an epoch.

A protocol with worse fluidity might require that servers remain active to
send, receive, or act as passive observers on many rounds of communication. In
this sense, MPC protocols designed for static participants have the worst possible
fluidity — all participants must remain active throughout the lifetime of the
entire protocol. In this work, we focus on protocols with only a single round of
communication per epoch, which we say achieve maximal fluidity. Note that such
protocols must have no intra-committee communication, as the communication
round must be used to transfer state.

Recall that the idea of flexibility is central to the goal of Fluid MPC. Achiev-
ing maximal fluidity is ideal for fluid MPC protocols, as they give the most
flexibility to the servers participating in the protocol. It allows owners of com-
putational resources to contribute spare cycles to MPC during downtime, and a
quick exit (without disrupting computation) when they are needed for another,
possibly a more important task. Maximal fluidity is important to achieving this
vision. Moreover, since one of our motivations behind introducing this model is
evaluation of deep circuits, an important goal of this work is also to design proto-
col that not only achieve maximal fluidity, but also where the computation done
by the servers in each epoch is independent of the size of the function/circuit.

There are several other modeling choices that can significantly impact feasi-
bility and efficiency of a fluid MPC protocol — many of which are non-trivial
and unique to this setting. For instance: when and how are the identities of
the servers in the committee of a particular epoch fixed? What requirements
are there on the churn rate of the system? How does the adversary’s corruption
model interact with the dynamism of the protocol participants? We have already
seen from the extensive literature on consensus networks that different networks
make different, reasonable assumptions and arrive at very different protocols.

We discuss these modeling choices and provide a formal treatment of fluid
MPC in Section 3. For the constructions we give in this work, we assume that
the identities of the servers in a committee are made known during the previous
epoch.

Applications. We imagine that fluid MPC will be most useful for applications
that involve long-running computations with deep circuits. In such a setting,
being able to temporarily enlist dynamic computing resources could facilitate
privacy-preserving computations that are difficult or impossible with limited

3

Epoch i Epoch i+ 1 Epoch i+ 2Input Stage • • • • • • Output Stage

Execution Stage

Fig. 1. Computation model of fluid MPC. A set of clients initiate the computation
with the input stage. During the execution stage, servers come and go, doing small
amounts of work during the compute phases and transferring state in the hand-off
phase. Finally, once the entire circuit has been evaluated, the output parties recover
the outputs during the output stage.

static resources. This model would be especially valuable in scientific comput-
ing, where deep circuits are common and resources can be scarce. Consider,
for example, an optimization problem with many constraints over distributed
medical datasets. Using a fluid MPC protocol makes it more feasible to per-
form such a computation with limited resources: the privacy provided by MPC
can help clear important regulatory or legal impediments that would otherwise
prevent stakeholders from contributing data to the analysis, and a dynamic par-
ticipation model can allow stakeholders to harness computing resources as they
become available.

Prior Work: Player Replaceability. In recent years, the notion of player
replaceability has been studied in the context of Byzantine Agreement (BA)
[40, 11]. These works design BA protocols where after every round, the “current”
set of players can be replaced with “new” ones without disrupting the protocol.
This idea has been used in the design of blockchains such as Algorand [30], where
player replaceability helps mitigate targeted attacks on chosen participants after
their identity is revealed.

Our work can be viewed as extending this line of research to the setting of
MPC. We note that unlike BA where the parties have no private states – and
hence, do not require state transfer for achieving player replaceability – the MPC
setting necessitates a state transfer step to accommodate player churn. Maximal
fluidity captures the best possible scenario where this process is performed in a
single round.

1.1 Our Contributions

In this work, we initiate the study of fluid MPC. We state our contributions
below.

Model. We provide a formal treatment of fluid MPC, exploring possible mod-
eling choices in the setting of dynamic participants.

Protocols With Maximal Fluidity. We construct information-theoretic fluid
MPC protocols that achieve maximal fluidity. We consider adversaries that
(adaptively) corrupt any minority of the servers in each committee.

4

We begin by observing that the protocol by Genarro, Rabin and Rabin [28],
which is an optimized version of the classical semi-honest BGW protocol [6] can
be adapted to the fluid MPC setting in a surprisingly simple manner. We call this
protocol Fluid-BGW. This protocol also achieves division of work, in the sense
that the amount of work that each committee is required to do is independent
of the depth of the circuit.

To achieve security against malicious adversaries, we extend the “additive
attack” paradigm of [26] to the fluid MPC setting, showing that any malicious
adversarial strategy on semi-honest fluid MPC protocols (with a specific struc-
ture and satisfying a weak notion of privacy against malicious adversaries3) is
limited to injecting additive values on the intermediate wires of the circuit. We
use this observation to build an efficient compiler (in a similar vein as recent
works of [12, 43]) that transforms such semi-honest fluid MPC protocols into
ones that achieve security with abort against malicious adversaries. Our com-
piler enjoys two salient properties:

– It preserves fluidity of the underlying semi-honest protocol.

– It incurs a multiplicative overhead of only 2 (for circuits over large fields) in
the communication complexity of the underlying protocol.

Applying our compiler to Fluid-BGW yields a maximally fluid MPC protocol
that achieves security with abort against malicious adversaries.

We note that, while we consider a slightly restrictive setting where the ad-
versary is limited to corrupting a minority of servers in each committee, there
is evidence that our assumption might hold in practice if we, e.g., leverage cer-
tain blockchains. The work of [7] (see also [29]) explores a similar problem of
dynamism in the context of secret-sharing with a similar honest-majority as-
sumption as in our work. They show that in certain blockchain networks, it is
possible to leverage the honest-majority style assumption (which is crucial to the
security of such blockchains) to elect committees of servers with an honest ma-
jority of parties. The same mechanism can also be used in our work (we discuss
this in more detail in Section 3.2). Moreover, the honest majority assumption is
necessary for achieving information-theoretic security (or for using assumptions
weaker than oblivious transfer), for the same reasons as in standard (static)
MPC.

Implementation. We implement Fluid-BGW and our malicious compiler in
C++, building off the code-base of [16, 12]. We run our implementation across mul-
tiple network settings and give concrete measurements. Due to space constraints,
we discuss our implementation and experimental results in the full version of the
paper [13].

3 It was observed in [26] that almost all known secret sharing based semi-honest proto-
cols in the static model naturally satisfy this weak privacy property. We observe that
the fluid version of BGW continues to satisfy this property. Further, we conjecture
that most secret-sharing based approaches in the fluid MPC setting would also yield
semi-honest protocols that achieve this property.

5

1.2 Related Work

Proactive Multiparty Computation. The proactive security model, first
introduced in [44], aims to model the persistent corruption of parties in a dis-
tributed computation, and the continuous race between parties for corruption
and recovery. To capture this, the model defines a “mobile” adversary that is
not restricted in the total number of corruptions, but can corrupt a subset of
parties in different time periods, and the parties periodically reboot to a clean
state to mitigate the total number of corruptions. Prior works have investigated
the feasibility of proactive security both in the context of secret sharing [35, 39]
and general multiparty computation [44, 4, 22].

While both fluid MPC and Proactive MPC (PMPC) consider dynamic mod-
els, the motivation behind the two models are completely different. This in turn
leads to different modeling choices. Indeed, the dynamic model in PMPC con-
siders slow-moving adversaries, modeling a spreading computer virus where the
set of participants are fixed through the duration of the protocol. This is in con-
trast to the Fluid MPC model where the dynamism is derived from participants
leaving and joining the protocol execution as desired. As such, the primary ob-
jective of our work is to construct protocols that have maximal fluidity while
simultaneously minimizing the computational complexity in each epoch. Neither
of these goals are a consideration for protocols in the PMPC setting. Further-
more, unlike PMPC, fluid MPC captures the notion of volunteer servers that
sign-up for computation proportional to the computational resources available
to them.

The difference in motivation highlighted above also presents different con-
straints in protocol design. For instance, unlike PMPC, the size of private states
of parties is a key consideration in the design of fluid MPC; we discuss this fur-
ther in Section 2. We do note, however, that some ideas from the PMPC setting,
such as state re-randomization are relevant in our setting as well.

Transferable MPC. In [14], Clark and Hopkinson consider a notion of Trans-
ferable MPC (T-MPC) where parties compute partial outputs of their inputs and
transfer these shares to other parties to continue computation while maintaining
privacy. Unlike our setting, the sequence of transfers, and the computation at
each step is determined completely by the circuit structure. In the constructed
protocol, each partial computation involves multiple rounds of interaction and
therefore does not achieve fluidity; additionally parties cannot leave during com-
putation sacrificing on dynamism.

Concurrent and Independent Work. Two independent and concurrent
works [33, 7] also model dynamic computing environments by considering proto-
cols that progress in discrete stages denoted as epochs, which are further divided
into computation and hand-off phases. These works study and design secret shar-
ing protocols in the dynamic environment. In contrast, our work focuses on the
broader goal of multi-party computation protocols for all functionalities.

Furthermore, we focus on building protocols that achieve maximal fluidity.
While this goal is not considered in [33], [7] can be seen as achieving maximal

6

fluidity for secret sharing. In choosing committees for each epoch, [33] consider
an approach similar to ours where the committee is announced at the start of
the hand-off phase of each epoch. [7] leverage properties in the blockchain to
implement a committee selection procedure that ensures an honest majority in
each committee.

Lastly, both of these works consider a security model incomparable to ours.
Specifically, they consider security with guaranteed output delivery for secret
sharing against computationally bounded adversaries, whereas we consider MPC
with security with abort against computationally unbounded adversaries.

Malicious Security Compilers for MPC. There has been a recent line of
exciting work [12, 43, 38, 1, 2, 41, 36, 23] in designing concretely efficient com-
piler that upgrade security from semi-honest to malicious in the honest majority
setting. Some of these compilers rely on the additive attack paradigm introduced
in [26]. We take a similar approach, but adapt and extend the additive attack
paradigm to the fluid MPC setting.

2 Technical Overview

We start by briefly discussing some specifics of the model in which we will
present our construction. A detailed formal description of our model is provided
in Section 3.

As discussed earlier, we consider a client-server model where computation
proceeds in three phases – input stage, execution stage and output stage (see
Figure 1). The execution stage proceeds in epochs, where different committees
of servers perform the computation. Each epoch ` is further divided into two
phases: (1) computation phase, where the servers in the committee (denoted
as S`) perform computation, and (2) hand-off phase, where the servers in S`
transfer their states to the incoming committee S`+1. We require that at the
start of the hand-off phase of epoch `, everyone is aware of committee S`+1. We
consider security in the presence of an adversary who can corrupt a minority of
servers in every committee.

For the remainder of the technical overview, we describe our ideas for the
simplified case where all the committees are disjoint and the size of the commit-
tees remain the same across all epochs, denoted as n. Neither of these restrictions
are necessary for our protocols, and we refer the reader to the technical sections
for further details.

Main Challenges Designing protocols that are well suited to the fluid MPC
setting requires overcoming challenges that are not standard in the static setting.
While some of these challenges have been considered previously in isolation in
other contexts, the main difficulty is in addressing them at the same time.

1. Fluidity. The primary focus of our work is the fluidity of protocols, a mea-
sure of how long the servers must remain online in order to contribute to

7

the computation. The fluidity of a protocol is the number of rounds of in-
teraction in a single epoch, and we say that a protocol achieves maximal
fluidity if there is only a single round in each epoch. Designing protocols
with maximal fluidity means that the computation phase of an epoch must
be “silent” (i.e., non-interactive), and the hand-off phase must complete in
a single round.

2. Small State Complexity. In many classical MPC protocols, the private
state held by each party is quite large, often proportional to the size of the
circuit (see, e.g. [19]). We refer to this as the state complexity of the protocol.
While state complexity is generally not considered an important measure of
a protocol’s efficiency, in the fluid MPC setting it takes on new importance.
Because the state held by the servers must be transferred between epochs,
the state complexity of a protocol contributes directly to its communication
complexity. Protocols with large state complexity, say proportional to the
size of the circuit, would require each committee to perform a large amount
of work, undermining any advantage of fluidity. Therefore, special attention
must be paid to minimize the state complexity of the protocol in the fluid
MPC setting.

3. Secure State Transfer. As mentioned earlier, we consider adversaries that
can corrupt a minority of servers in every committee. As such, state cannot
be naively handed off between committees in a one-to-one manner. To il-
lustrate why this is true, consider secret sharing based protocols where the
players collectively hold a t-out-of-n secret sharing of the wire values and it-
eratively compute on these shares. If states were transferred by having each
server in committee Si choose a unique server in Si+1 (as noted, we assume
for convenience that |Si| = |Si+1|) and simply sending that new server their
state, the adversary would see 2t shares of the transferred state, t shares
from Si and another t shares from Si+1, thus breaking the privacy of the
protocol. Fluid MPC protocols must therefore incorporate mechanisms to
securely transfer the protocol state between committees.

In this work, we focus our attention on protocols that achieve maximal fluidity.
Designing such protocols requires careful balancing between these three factors.
In particular, the need for small state complexity makes it difficult to use many
of the efficient MPC techniques known in the literature, as we will discuss in
more detail below.

Adapting Optimized Semi-honest BGW [28] to Fluid MPC Despite the
challenges involved in the design of fluid MPC protocols, we observe that the
protocol by Gennaro et al. [28], which is an optimized version of the semi-honest
BGW [6] protocol can be adapted to the fluid MPC setting in a surprisingly
simple manner.

Recall that in [28], the parties collectively compute over an arithmetic circuit
representation of the functionality that they wish to compute, using Shamir’s
secret sharing scheme. For each intermediate wire in the circuit, the following
invariant is maintained: the shares held by the parties correspond to a t-of-n

8

` = 1

` = 2

` = 3

` = 4

S1
3

S1
2

S1
1

S2
3

S2
2

S2
1

S3
3

S3
2

S3
1

S4
3

S4
2

S4
1

S1 S2 S3 S4hand-off hand-off hand-off

Fig. 2. Left: Part of the circuit partitioned into different layers, indicated by the
different colors. Right: A visual representation of the flow of information during the
modified version of BGW presented in Section 2, running with committees of size 3,
which achieves maximal fluidity. S` =

{
S`
1,S

`
2, S

`
3,
}

denotes the set of active servers in
each committee corresponding to level `, indicated by the same color.

secret sharing of the value induced by the inputs on that wire. Evaluating addi-
tion gates requires the parties to simply add their shares of the incoming wires,
leveraging the linearity of the secret sharing scheme. For evaluating multiplica-
tion gates, the parties first locally multiply their shares of the incoming wires,
resulting in a distributed degree 2t polynomial encoding of the value induced
on the output wire of the gate. Then, each party computes a fresh t-out-of-n
sharing of this degree 2t share and sends one of these share-of-share to every
other party. Finally, the parties locally interpolate these received shares and as
a result, all the parties hold a t-out-of-n sharing of the product. Thus, every
multiplication gate requires only one round of communication.

We observe that adapting this version of semi-honest BGW to fluid MPC
setting, which we will refer to as Fluid-BGW, is straightforward. The key ob-
servation is that the degree reduction procedure of this protocol simultaneously
re-randomizes the state, so that only a single round of communication is required
to accomplish both goals. In each epoch, the servers will evaluate all the gates in
a single layer of the circuit, which may contain both addition and multiplication
gates (see Figure 2). More specifically, for each epoch `:

Computation Phase: The servers in S` interpolate the shares-of-shares (re-
ceived from the previous committee) to obtain a degree t sharing for full
intermediary state (for each gate in that layer). Then, they locally evaluate
each gate in layer `, possibly increasing the degree of the shares that they
hold. Finally, they compute a t-out-of-n secret sharing of the entire state
they hold, including multiplied shares, added shares and any “old” values
that may be needed later in the circuit.

Hand-off Phase: The servers in S` then send one share of each sharing to each
active server in S`+1.

The computation phase is non-interactive and the hand-off phase consists of
only a single round of communication, and therefore the above protocol achieves
maximal fluidity.

9

Recall that we consider adversaries who can corrupt a minority of t servers
in each committee, a significant departure from the classical setting in which a
total of t parties can be corrupted. At first glance, it may seem as though the
adversary can gain significant advantage by corrupting (say) the first t parties in
committee S` and the last t parties in committee S`+1. However, since computing
shares-of-shares essentially re-randomizes the state, at the end of the hand-off
phase of epoch `, the adversary is aware of the (1) nt shares-of-shares that were
sent to the last t corrupt servers during the hand-off phase of epoch ` and (2)
(n− t)× t shares-of-shares that the first t corrupt servers in S` sent to the (n− t)
honest servers in S`+1. This is in fact no different than regular BGW. Since the
partial information that the adversary has about the states of the (n− t) honest
servers in S`+1 only corresponds to t shares of their individual states, privacy is
ensured.

Compiler for Malicious Security Having established the feasibility of semi-
honest MPC with maximal fluidity, we now describe our ideas for transforming
semi-honest fluid MPC protocols into ones that achieve security against ma-
licious adversaries. Our goal is to achieve two salient properties: (1) fluidity
preservation, i.e., preserve the fluidity of the underlying protocol, (2) multiplica-
tive overhead of 2 in the complexity of the underlying protocol.

Shortcomings of Natural Solutions. Consider a natural way of achieving
malicious security: after each gate evaluation, the servers perform a check that
the gate was properly evaluated, as is done in the malicious-secure version of
BGW [6]. However, known techniques for implementing gate-by-gate checks rely
on primitives such as verifiable secret sharing (among others) that require addi-
tional interaction between the parties. Such a strategy is therefore incompatible
with our goal of achieving maximal fluidity, which requires a single round hand-
off phase. Even computational techniques like non-interactive zero knowledge
proofs do not appear to be directly applicable as they may require a committee
to have access to all prior rounds of communication in order to verify that the
received messages were correctly computed.

Starting Idea: Consolidated Checks. Since performing gate-by-gate checks
is not well-suited to fluid MPC, we consider a consolidated check approach to
malicious security, where the correctness of the computation (of the entire cir-
cuit) is checked once. This approach has previously been studied in the design of
efficient MPC protocols [20, 26, 25, 43, 12, 23, 34]. In this line of work, [26] made
an important observation, that linear-based MPC protocols (a natural class of
semi-honest honest-majority MPC protocols) are secure up to additive attacks,
meaning any strategy followed by a malicious adversary is equivalent to injecting
an additive error on each wire in the circuit. They use this observation to first
compile the circuit into another circuit that automatically detects errors, e.g.,
AMD circuits and then run a semi-honest protocol on this modified circuit to
get malicious security. Many other works [25, 27] follow suit.

Assuming that the same observation caries over to the fluid MPC setting,
for feasibility, one could consider running a semi-honest, maximally fluid MPC

10

protocol on such transformed circuits. However, transforming a circuit into an
AMD circuit incurs very high overhead in practice. In order to design a more
efficient compiler that only incurs an overhead of 2, we turn towards the approach
taken by some of the more recent malicious security compilers [43, 12, 23, 34].
In some sense, the ideas used in these works can be viewed as a more efficient
implementation of the same idea as above (without using AMD circuits).

Roughly speaking, in the approach taken by these recent compilers, for every
shared wire value z in the circuit, the parties also compute a secret sharing of
a MAC on z. At the end of the protocol, the parties verify validity of all the
MACs in one shot. Given the observation from [26], it is easy to see that the
parties can generate a single, secret MAC key r at the beginning of the protocol
and compute MAC(r, z) = rz for each wire z in the circuit. It holds that if the
adversary injects an additive error δ on the wire value z, to surpass the check,
they must inject a corresponding additive error of δ̂ = rδ on the MAC. Because
r is uniformly distributed and unknown to all servers, this can only happen
with probability negligible in the field size. While previously, this approach has
primarily been used for improving the efficiency of MPC protocols, we use it in
this work for also maximizing fluidity.

Verifying the MACs requires revealing the key r, but this is only done at
the end of the protocol, as revealing r too early would allow the adversary to
forge MACs. Furthermore, to facilitate efficient MAC verification, the parties
finish the protocol with the following “condensed” check: they generate random
coefficients αk and use them to compute linear combinations of the wire values
and MACs as follows:

u =
∑

k∈[|C|]

αk · zk and v =
∑

k∈[|C|]

αk · rzk.

Finally, they reconstruct the key r and interactively verify if v = ru, before
revealing the output shares.

To build on this approach, we first need to show that linear-based fluid MPC
protocols are also secure up to additive attacks against malicious adversaries. We
prove this to be true in the full version of the paper and show that the semi-
honest Fluid-BGW satisfies the structural requirement of linear-based fluid MPC
protocols. At first glance, it would appear that we can then directly implement
the above mechanism to the fluid MPC setting as follows: in the output stage,
parties interactively generate shares of αk, locally compute this linear combina-
tion, reconstruct r, and perform the equality check.

To see where this approach falls short, consider the state complexity of this
protocol. To perform the consolidated check, parties in the output stage require
shares of all wires in the circuit, namely zk and rzk for k ∈ [|C|], which must have
been passed along as part of the state between each consecutive pair of commit-
tees. This means that the state complexity of the protocol is proportional to the
size of the circuit, which (as discussed earlier) would undermine the advantages
of the fluid MPC model. More concretely, this approach would incur at least |C|
multiplicative overhead in the communication of the underlying protocol – far
higher than our goal of achieving constant overhead.

11

Incrementally Computing Linear Combination. In order to implement
the above consolidated check approach in the fluid MPC setting, we require a
method for computing the aforementioned aggregated values that does not re-
quire access to the entire intermediate computation during the output stage.
Towards this, we observe that the servers can incrementally compute u and v
throughout the protocol. This can be done by having each committee incorpo-
rate the part of u and v corresponding to the gates evaluated by the previous
committee into the partial sum. That is, committee S` is responsible for (1) eval-
uating the gates on layer `, (2) computing the MACs for gates on layer `, and
(3) computing the partial linear combination for all the gates before layer `− 1.

Let the output of the kth gate on the ith layer of the circuit be denoted as
zik. Apart from the shares of z`−1k and rz`−1k (for k ∈ [w]), the servers computing
layer ` of the circuit S` also receive shares of

u`−2 =
∑
i≤`−2

∑
k∈[w]

αik · zik and v`−2 =
∑
i≤`−2

∑
k∈[w]

αik · rzik

from S`−1 during hand-off, where αik is a random value associated with the gate
outputting zik. While u`−2 and v`−2 represent the consolidated check for all gates
in the circuit before layer `− 1. S` then computes shares of

u`−1 = u`−2 +
∑
k∈[w]

α`−1k · z`−1k and v`−1 = v`−2 +
∑
k∈[w]

α`−1k · rz`−1k

in addition to shares of the outputs of gates on layer ` (z`k and rz`k) and transfer
u`−1 and v`−1 to S`+1 during hand-off. Note that the final u = ud and v = vd,
where d is the depth of the circuit. This leaves the following main question: how
do the servers agree upon the values of α`k?

Notice that |{α`k}k∈[w],`∈[d]| = |C|, therefore generating shares of all the α`k
values at the beginning of the protocol and passing them forward will, again,
yield a protocol that has an excessively large state complexity. Another natural
solution might be to have the servers generate α`k as and when they need them.
However, because our goal is to maintain maximal fluidity, the servers in Sj for
some fixed j cannot generate αjk, as this would require communication within
Sj .

Instead, consider a protocol in which the servers in Sj−1 do the work of
generating the shares of αjk. Each server in Sj−1 generates a random value and
shares it, sending one share to each server in Sj . The servers in Sj then combine
these shares using a Vandermonde matrix to get correct shares of αjk, as suggested
by [5]. While this approach achieves maximal fluidity and requires a small state
complexity, it incurs a multiplicative overhead of n in the complexity of the
underlying semi-honest protocol.4

4 In the static setting, this technique allows for batched randomness generation, by
generating O(n) sharings with O(n2) messages. In the fluid MPC setting, however,
the number of servers cannot be known in advance and may not correspond to the
width of the circuit. Therefore, such amortization techniques are not applicable.

12

Efficient Compiler. We now describe our ideas for achieving multiplicative
overhead of only 2 (for circuits over large fields). In our compiler, we use the
above intuition, having each committee, evaluate gates for its layer, compute
MACs for the previous layer, and incrementally add to the sum. In the input
stage, the clients generate a sharing of a secret random MAC key r, and secret
random values β, α1, . . . , αw. Over the course of the protocol, the servers will
incrementally compute values

u =
∑
`∈[d]

∑
k∈[w]

(αk(β)`) · z`k and v =
∑
`∈[d]

∑
k∈[w]

(αk(β)`) · rz`k

where z`k is the output of the kth gate on level `, (β)` is β raised to the `th

power, and αk(β)` is the “random” coefficient associated with it. At the end of
the protocol, the parties verify whether v = ru.

Notice that at the beginning of the execution stage, the servers do not have
shares of (αk(β)`) for ` > 0, but they have the necessary information to compute
a valid sharing of this coefficient in parallel with the normal computation, namely
β, α1, . . . , αw. To compute the coefficients, we require that the servers computing
layer ` are given shares of (αk(β)`−1) and β by the previous set of servers, in
addition to the shares of the actual wire values. The servers in S` then use these
shares to compute shares of (1) the values z`k on outgoing wires from the gates
on layer `, (2) the partial sums by adding the values computed in the previous
layer u`−1 = u`−2 + (αk(β)`−1) · z`−1k and v`−1 = v`−2 + (αk(β)`−1) · rz`−1k ,
and (3) the coefficients for the next layer (αk(β)`) = β · αk(β)`−1. All of this
information can be securely transferred to the next committee.

We give a simplified sketch to illustrate why this check is sufficient. Let
ε`z,k (and ε`rz,k resp.) be the additive error introduced by the adversary on the

computation of z`k (rz`k resp.).
As before, the check succeeds if

r ·
∑
`∈[d]

∑
k∈[w]

(αk(β)`)(z`k + ε`z,k) =
∑
`∈[d]

∑
k∈[w]

(αk(β)`)(rz`k + ε`rz,k)

Let the qth gate on level m be the first gate where the adversary injects errors
εmz,q and εmrz,q. The above equality can be re-written as.

αq

[
d∑

`=m

((β)`ε`rz,q)− r
d∑

`=m

((β)`ε`z,q)

]
=

r ·
d∑

`=m

∑
k∈[w]
k 6=q

(αk(β)`)(z`k + ε`z,k)−
d∑

`=m

∑
k∈[w]
k 6=q

(αk(β)`)(rz`k + ε`rz,k)

This holds only if either (1)
∑d
`=m((β)`ε`z,q) = 0 and

∑d
`=m((β)`ε`rz,q) = 0.

The key point is that since these are polynomials in β with degree at most
d, the probability that β is equal to one of its roots is d/|F|. Or if (2) r =

13

∑d
`=m((β)`ε`rz,q)(

∑d
`=m((β)`ε`z,q))

−1. Since r is uniformly distributed, this hap-
pens only with probability 1/|F|.

This analysis is significantly simplified for clarity and the full analysis is
included in the full version of the paper [13]. Note that the adversary can inject
additive errors on r and β, since these values are also re-shared between sets of
servers. Also, since the α values for the gates on level ` > 0 are computed using
a multiplication operation, the adversary can potentially inject additive errors
on these values as well. However, we observe that the additive errors on the
value of β and consequently on the α values associated with the gates on higher
levels, does not hamper the correctness of output. But the errors on the value
of r, do need to be taken into consideration. The analysis in the full version of
the paper addresses how these errors can be handled, making it non-trivial and
notationally complicated, but the core intuition remains the same.

We note that we are not the first to consider generating multiple random
values by raising a single random value to consecutively larger powers. In partic-
ular, [20] performs consolidated checks by taking a linear combination of all wire
values, the coefficients for which need to be generated securely, i.e. be randomly
distributed and authenticated. But this generation is expensive, so they generate
a single secure value and derive all other values by raising it to consecutively
larger powers. A consequence of this technique is that once the single secure
value is revealed, the exponentiations are done locally and therefore precludes
any introduction of errors in this computation for the honest parties. Although
this technique might seem similar to ours, our specific implementation is dif-
ferent and for a different purpose, namely, achieving maximal fluidity together
with small constant multiplicative overhead.

Implementation Overview. Due to space constraints, discussion of our imple-
mentation does not fit in this version of this work, so we briefly discuss it here.
We implement Fluid-BGW with our malicious security compiler in C++, using
libscapi [16] and the code written for [12] as a starting point. We implement
several minor optimizations for our implementation. For instance, we preprocess
the circuit so the players always know the maximum number of random values
that will be needed in future layers for the malicious security compiler. This
allows the player to never pass on unnecessary information. We run our protocol
both on a single large server, to benchmark its computational performance, and
using the AWS C4.large instances spread between North Virginia, Germany and
India, replicating the WAN deployment in [12]. We report both per-layer timing
results and total runtime for between 3 and 20 servers per epoch.

3 Fluid MPC

In this section, we give a formal treatment of the fluid MPC setting. We start
by describing the model of computation and then turn to the task of defining
security. Our goals in this section are twofold: first, we illustrate that there are
many possible modeling parameters to choose from in the fluid MPC setting.
Second, we highlight the modeling choices that we make for the protocols we

14

describe in later sections. Before beginning, we reiterate that the functionalities
considered in this setting can be represented by circuits where the depth of such
circuits are large.

Model of Computation. We consider a client-server model of computation
where a set of clients C want to compute a function over their private inputs.
The clients delegate the computation of the function to a set of servers S. Unlike
the traditional client-server model [15, 17, 18] where every server is required to
participate in the entire computation (and hence, remain online for its entire
duration), we consider a dynamic model of computation where the servers can
volunteer their computational resources for part of the computation and then
potentially go offline. That is, the set of servers is not fixed in advance.

We adopt terminology from the execution model used in the context of per-
missionless blockchains [45, 46, 24]. The protocol execution is specified by an
interactive Turing Machine (ITM) E referred to as the environment. The envi-
ronment E represents everything that is external to the protocol execution. The
environment generates inputs to all the parties, reads all the outputs and ad-
ditionally can interact in an arbitrary manner with an adversary A during the
execution of the protocol.

Protocols in this execution model proceed in rounds, where at the start of
each round, the environment E can specify an input to the parties, and receive
an output from the corresponding parties at the end of the round. We also allow
the environment E to spawn new parties at any point during the protocol. The
parties have access to point-to-point and broadcast channels. In addition, we
assume fully synchronous message channels, where the adversary does not have
control over the delivery of messages. This is the commonly considered setting
for MPC protocols.

3.1 Modeling Dynamic Computation

In a fluid MPC protocol, computation proceeds in three stages:

Input Stage: In this stage, the environment E hands the input to the clients
at the start of the protocol, who then pre-process their inputs and hand
them off to the servers for computation.

Execution Stage: This is the main stage of computation where only the
servers participate in the computation of the function.

Output Stage: This is the final stage where only the clients participate
in order to reconstruct the output of the function. The output is then
handed to the environment.

The clients only participate in the input and output stages of the protocol.
Consequently, we require that the computational complexity of both the input
and the output stages is independent of the depth of the functionality (when
represented as a circuit) being computed by the protocol. Indeed, a primary goal
of this work is to offload the computation work to the servers and a computation-
intensive input/output phase would undermine this goal.

15

Epoch `

Committee S`

Compute Phase Hand-off Phase

Epoch `+ 1

Committee S`+1

Compute Phase Hand-off Phase• • •

Fig. 3. Epochs ` and `+ 1

We wish to capture dynamism for the bulk of the computation, and thus
model dynamism in the execution stage of the protocol (rather than the input
and output stages). In the following, we highlight the key modeling choices for
the protocols we present in the full version of the paper by displaying them in
bold font in color.

Epoch. We model the progression of the execution stage in discrete steps
referred to as epochs. In each epoch `, only a subset of servers S` participate in
the computation. We refer to this set of servers S` as the committee for epoch
`. An epoch is further divided into two phases, illustrated in Figure 3:

Computation Phase: Every epoch begins with a computation phase where
the servers in the committee S` perform computation over their local
states, possibly involving multiple rounds of interaction with each other.

Hand-off Phase: The epoch then transitions to a hand-off phase where the
committee S` transfers the protocol state to the next committee S`+1.
As with the computation phase, this phase may involve multiple rounds
of interaction. When this phase is completed, epoch `+ 1 begins.

Fluidity. We define the notion of fluidity to measure the minimum commitment
that a server needs to make for participating in the execution stage.

Definition 1 (Fluidity). Fluidity is defined as the number of rounds of inter-
action within an epoch.

Clearly, the fewer the number rounds in an epoch, the more “fluid” the
protocol. We say that a protocol has maximal fluidity when the number of
rounds in an epoch is 1. We emphasize that this is only possible when the
computation phase of an epoch is completely non-interactive, i.e., the servers
only perform local computation on their states without interacting with each
other. This is because the hand-off phase must consist of at least one round of
communication. In this work, we aim to design protocols with maximal fluidity.

3.2 Committees

We now explore modeling choices for committees. We address three key aspects
of a committee – its formation, size and possible overlap with other committees.
Along the way, we also discuss how long a server needs to remain online.

16

Functionality fcommittee

Hardcoded: Sampling function Sample : P 7→ P.

1. Set P := ∅
2. When party Pi sends input nominate, P := P ∪ {Pi}.
3. When the environment E sends input elect, compute P ′ ← Sample(P) and

broadcast P ′ as the selected committee.

Fig. 4. Functionality for Committee Formation.

Committee Formation. From our above discussion on computation progress-
ing in epochs, we consider two choices for committee formation:

Static. In the most restrictive choice, the environment determines right
at the start, which servers will participate in the protocol, and the epoch(s)
they will be participating in. This in turn determines the committee for every
epoch. This means that the servers must commit to their resources ahead of
time. We view this choice to be too restrictive and shall not consider it for
our model.

On-the-fly. In the other choice, committees are determined dynamically
such that committee for epoch ` + 1 is determined and known to
everyone at the start of the hand-off phase of epoch `. We consider
the functionality fcommittee described in Figure 4 to capture this setting.

In an epoch `, if the environment E provides input nominate to a party at
the start of the round, it relays this message to fcommittee to indicate that it
wants to be considered in the committee for epoch ` + 1. The functionality
computes the committee using the sampling function Sample, from the set
of parties P that have been “nominated.” The environment E is also allowed
a separate input elect that specifies the cut-off point for the functionality to
compute the committee. The cut-off point corresponds to the start of the
hand-off phase of epoch ` where the parties in S` are made aware of the
committee S`+1 via a broadcast from fcommittee.

We consider two possible committee choices in this dynamic setting below.

Volunteer Committees. One can view the servers as “volunteers” who
sign up to participate in the execution stage whenever they have computa-
tional resources available. Essentially anyone, who wants to, can join (up
until the cut-off point) in aiding with the computation. This can be imple-
mented by simply setting the sampling function Sample in fcommittee to be
the identity function, i.e. a party is included in the committee for epoch
`+ 1 if and only if it sent a nominate to fcommittee during the computation
phase of epoch `.

Elected Committees. One could envision other sampling functions
that implement a selection process using a participation criterion such

17

as the cryptographic sortition [30] considered in the context of proof of
stake blockchains. The work of [7] considers the function Sample that
is additionally parameterized by a probability p; for each party in P,
Sample independently flips a coin that outputs 1 with probability p, and
only includes the party in the final committee if the corresponding coin
toss results in the value 1. To ensure that all parties are considered in the
selection process, one can simply require that every party sends a nominate
to fcommittee in each epoch. Committee election has also been studied in
different network settings; e.g., the recent work of [47] provides methods
for electing committees over TOR [21].

Both of the above choices have direct consequences on the corruption model.
The former choice of volunteer committees models protocols that are accessi-
ble to anyone who wants to participate. However, an adversary could misuse
this accessibility to corrupt a large fraction of (maybe even all) participants
of a committee. As such, we view this as an optimistic model since achieving
security in this model can require placing severe constraints on the global
corruption threshold.

The latter choice of elected committees can, by design, be viewed as a
semi-closed system since not everyone who “volunteers” their resources are
selected to participate in the computation. However, by using an appropri-
ate sampling function, this selection process can potentially ensure that the
number of corruptions in each committee are kept within a desired threshold.

We envision that the choice of the specific model (i.e. the sampling func-
tion Sample) is best determined by the environment the protocol is to be
deployed in and the corruption threshold one is willing to tolerate. (We dis-
cuss the latter implication in Section 3.3.) Our protocol design is agnostic to
this choice and only requires that the committee S` knows committee S`+1

at the start of the hand-off phase.

Participant Activity. We say that a server is active within an epoch if it
either (a) performs some protocol computation, or (b) sends/receives protocol
messages. Clearly, a server S is active during epoch ` only if it belongs to S` ∪
S`+1. When extending this notion to a committee, we say committee S` is active
from the beginning of the hand-off phase in epoch `−1 to the end of the hand-off
phase in epoch ` (see Figure 3).

We say that a server is “online” if it is active (in the above sense) or sim-
ply passively listening to broadcast communication. A protocol may potentially
require a server to be online throughout the protocol and keep its local state
up-to-date as a function of all the broadcast protocol messages (possibly for
participation at a later stage). In such a case, while a server may not be per-
forming active computation throughout the protocol, it would nevertheless have
to commit to being present and listening throughout the protocol. To minimize
the amount of online time of participants, ideally one would like servers to be
online only when active.

Committee Sizes. In view of modeling committee members signing up as and
when they have available computational resources, we allow for variable com-

18

mittee sizes in each epoch. This simply follows from allowing the environment
E to determine how many parties it provides the nominate input. For simplicity,
we describe our protocol in the technical sections for the simplified setting where
the committee sizes in each epoch are equal and indicate how it extends to the
variable committee size setting. An alternative choice would be to require the
committee to have a fixed size, or change sizes at some prescribed rate. These
choices might be more reasonable under the requirement that servers announce
their committee membership at the start of the protocol.

Committee Overlap. In our envisioned applications, participants with avail-
able computational resources will sign up more often to be a part of a committee
(see Remark 1). In view of this, we make no restriction on committee over-
lap, i.e., we allow a server to volunteer to be in multiple epoch committees. As
we discuss below, this has some bearing on modeling security for the protocol.

Remark 1 (Weighted Computation.). We note that our model naturally allows
for a form of weighted computation, where the amount of work performed by a
participant is proportional to its available resources. This is because a participant
(i.e., a server) can choose to participate in a number of epochs proportional to
its available resources.

3.3 Security

As in traditional MPC, there are various choices for modeling corruption of
parties to determine the number of parties that can be corrupted (i.e., honest
vs dishonest majority) as well as the time of corruption (i.e., static vs adaptive
corruption). The environment E can determine to corrupt a party, and on doing
so, hands the local state of the corrupted party to the adversary A. For a semi-
honest (passive) corruption, A is only able to continue viewing the local state,
but for a malicious (active) corruption, A takes full control of the party and
instructs its behavior subsequently.

Corruption Threshold. We consider an honest-majority model for fluid MPC
where we restrict (A, E) to the setting where the adversary A controls any
minority of the clients as well as any minority of servers in every com-
mittee in an epoch.

We discuss the impact of the choice of committee formation on corruption
threshold:

– Volunteer Committee. In the volunteer setting, ensuring honest majority
in each epoch may be difficult; as such we view it as an optimistic model. In
the extreme case, honest-majority per epoch can be enforced by assuming
the global corruption threshold to be N/2E where E is the total number of
epochs and N is the total number of parties across all epochs.

– Elected Committee. In the elected committee model, the committee se-
lection process may enforce an honest majority amongst the selected par-
ticipants in every epoch. The work of [7] enforces this via a cryptographic

19

sortition process in proof-of-stake blockchains where an honest majority of
stake is assumed (in fact they require a larger stake fraction to be honest for
their committee selection).

An alternative model is where an adversary may control a majority of clients
and additionally a majority of servers in one or more epochs. We leave the study
of such a model for future work.

Corruption Timing. Given that the protocol progresses in discrete steps,
and knowledge of committees may not be known in advance, it is important to
model when an adversary can specify the list of corrupted parties. For clients,
this is straightforward: we assume that the environment E specifies the list of
corrupted clients at the start of the protocol, i.e. we assume static corruption
for the clients. Since the servers perform the bulk of the computation, and their
participation is already dynamic, there are various considerations for corruption
timing. We consider two main aspects below: point of corruption and effect on
prior epochs.

Point of corruption: When the committee S` is determined at the start of
hand-off phase of epoch `−1, the adversary can specify the corrupted servers
from S` in either:
1. a static manner, where the environment E is only allowed to list the set

of corrupted servers when the committee S` is determined; or
2. an adaptive manner, where the environment E can corrupt servers in S`

adaptively up until the end of epoch `, i.e. while they are active.
Effect on prior epochs: We consider the effect of the adversary corrupting
parties during epoch ` on prior epochs.
1. No retroactive effect: In this setting, the corruption of servers during

epoch ` has no bearing on any epoch j < `, i.e. the adversary does not
learn any additional information about epoch j at epoch `. This model
can be achieved in two ways:

Erasure of states: If servers in Sj erase their respective local states
at the end of epoch j, then even if the server were to participate in
epoch ` (i.e. Sj∩S` 6= ∅), the adversary would not gain any additional
information when the environment E hands over the local state.
Disjoint committees: If the sets of servers in each epoch are disjoint,
by corrupting servers in epoch `, the adversary cannot learn anything
about prior epochs.

We note that for any protocol that is oblivious to the real identities of
the servers (i.e. the protocol doesn’t assume any prior state from the
servers), the two methods of achieving no retroactive effect, i.e. erasures
and disjoint committees are equivalent. This follows from the fact that
servers do not have to keep state in order to rejoin computation, and
therefore from the point of view of the protocol and for all purposes, are
equivalent to new servers.5

5 We would like to point out that if one were to implement point-to-point channels
via a PKI, this equivalence may not hold.

20

2. Retroactive effect: In this setting, the adversary is allowed limited infor-
mation from prior epochs. Specifically, when corrupting a server S ∈ S`
in epoch `, the adversary learns private states of the server in all prior
epochs (if the server has been in a committee before). Therefore, the S is
then assumed to have been (passively) corrupt in every epoch j < `. In or-
der to prevent the adversary from arbitrarily learning information about
prior epochs, the adversary is limited to corrupting servers in epoch ` as
long as corrupting a server S and its retroactive effect of considering S to
be corrupted in all prior epochs does not cross the corruption threshold
in any epoch.

One could consider models with various combinations of the aforementioned
aspects. We will narrow further discussion to two models of the adversary:

Definition 2 (R-adaptive Adversary). We say that the (A, E) results in an
R-adaptive adversary A if the environment E can statically corrupt a set T of
the clients (at the start of the protocol) and corrupt the servers in an adaptive
manner with retroactive effect. Specifically, in epoch `, the environment E can
adaptively choose to corrupt a set of servers T ` ⊂ [n`] from the set S`, where T `

corresponds to a canonical mapping based on the ordering of servers in S`. On
E corrupting the server, A learns its entire past state and can send messages on
its behalf in epoch `. The set of servers that E can corrupt, and its corresponding
retroactive effect, will be determined by the corruption threshold τ specifying that
∀`, |T `| < τ · n`.

Definition 3 (NR-adaptive Adversary). We say that the (A, E) results in an
NR-adaptive adversary A if the environment E can statically corrupt a set T of
the clients (at the start of the protocol) and corrupt the servers in an adaptive
manner with no retroactive effect. The corruption process is similar to the case
of R-adaptive adversaries, except that the environment E can corrupt any server
in epoch ` as long as the number of corrupted servers in epoch ` are within the
corruption threshold. As mentioned earlier, any protocol that achieves security
against such an adversary necessarily requires either (a) erasure of state, or (b)
disjoint committees.

While our security definition will be general, and encompass both adversarial
models, we will consider protocols in the model with R-adaptive adversary.

In the above discussions, we have considered corruptions only when servers
are active. One could also consider a seemingly stronger model where the adver-
sary can corrupt servers when they are offline, i.e. no longer active. We remark
below that our model already captures offline corruption.

Remark 2 (Offline Corruption). If servers are offline once they are no longer
active i.e. they are not passively listening to protocol messages, then offline
corruptions in the retroactive effect model is the same as adaptive corruptions
during (and until the end of) the epoch due to the fact that the server’s protocol
state has not changed since the last time it was active. Going forward, since
honest parties do go offline when they are no longer active, we do not specify
offline corruptions as they are already captured by our model.

21

Remark 3 (Un-corrupting parties). It might be desirable to consider a model in
which a server is initially corrupted by the adversary, but then the adversary
eventually decided to “un-corrupt” that server, returning it to honest status.
This kind of “mobile adversary” has been studied in some prior works [31]. We
note that this can be captured in our model by just having the adversary “un-
corrupt” a server by making that server leave the computation at the end of the
epoch and rely on the natural churn of the network to replace that server.

Defining Security. We consider a network of m-clients and N -servers S and
denote by (−→n = (n1, . . . , nE), E) the partitioning of the servers into E tuples
(corresponding to epochs) where the `-th tuple has n` parties (corresponding to
committee in the `-th epoch), i.e. S` ⊂ S such that ∀` ∈ [E], |S`| = n`.

Similar to the client-server setting, defined in [15, 17, 18], only the m clients
have an input (and receive output), computing a function f : X1 × · · · ×Xm →
Y1 × · · · × Ym, where for each i ∈ [m], Xi and Yi are the input and output
domains of the i-th client.

We provide a definition of fluid MPC that corresponds to the classical secu-
rity notion in the MPC literature called security with abort, but note that
other commonly studied security notions can also be defined in this setting in a
straightforward manner. The security of a protocol (with respect to a function-
ality f) is defined by comparing the real-world execution of the protocol with
an ideal-world evaluation of f by a trusted party. More concretely, it is required
that for every adversary A, which attacks the real execution of the protocol,
there exist an adversary Sim, also referred to as a simulator in the ideal-world
such that no environment E can tell whether it is interacting with A and parties
running the protocol or with Sim and parties interacting with f . As mentioned
earlier, the environment E (i) determines the inputs to the parties running the
protocol in each round; (ii) sees the outputs to the protocol; and (iii) interacts
in an arbitrary manner with the adversary A. In this context, one can view the
environment E as an interactive distinguisher.

It should be noted that it is only the clients that have inputs to the protocol
π. While the servers have no input, the environment E , in any round, can provide
it with the input nominate upon which the server relays this message to the ideal
functionality to indicate it is volunteering for the committee in the subsequent
epoch. These servers have no output, so do not relay any information back to E .

In the real execution of the (−→n ,E)-party protocol π for computing f in
the presence of fcommittee proceeds first with the environment passing the inputs
to all the clients, who then pre-process their inputs and hand it off to the servers
in S1. The protocol then proceeds in epochs as described earlier in the presence
of an adversary A and environment E . E at the start of the protocol chooses
a subset of clients T ⊂ [m] to corrupt and hands their local states to A . As
discussed, the corruption of the clients is static, and thus fixed for the duration
of the protocol. The honest parties follow the instructions of π. Depending on
whether A is R-adaptive or NR-adaptive, E proceeds with adaptively corrupting
servers and handing over their states to A who then sends messages on their
behalf.

22

The execution of the above protocol defines REALπ,A,T,E,fcommittee(z), a ran-
dom variable whose value is determined by the coin tosses of the adversary and
the honest players. This random variable contains (a) the output of the adver-
sary (which may be an arbitrary function of its view); (b) the outputs of the
uncorrupted clients; and (c) list of all the corrupted servers

{
T `
}
`∈[E]

.

The ideal world execution is defined similarly to prior works. We formally
define the ideal execution for the case of retroactive adaptive security, and the
analogous definition for non-retroactive adaptive security can be obtained by
appropriate modifications. Roughly, in the ideal world execution, the participants
have access to a trusted party who computes the desired functionality f . The
participants send their inputs to this trusted party who computes the function
and returns the output to the participants.

More formally, an ideal world execution for a function f in the presence of
fcommittee with adversary Sim proceeds as follows:

– Clients send inputs to the trusted party: The clients send their inputs
to the trusted party, and we let x′i denote the value sent by client Ci. The
adversary Sim sends inputs on behalf of the corrupted clients.

– Corruption Phase of servers: The trusted party initializes ` = 1. Until
Sim indicates the end of the current phase (see below), the following steps are
executed:
1. Trusted party sends ` to Sim and initializes an append-only list Corrupt`

to be ∅.
2. Sim then sends pairs of the form (j, i) where j denotes epoch number and
i denotes the index of the corrupted server in epoch j ≤ `. Upon receiving
this, the trusted party appends i to the list Corruptj . This step can be
repeated multiple times.

3. Sim sends continue to the trusted party, and the trusted party increments
` by 1.

Sim may also send an abort message to the trusted party in this phase in which
case the trusted party sends ⊥ to all honest clients and stops. Else, Sim sends
next phase to the trusted party to indicate the end of the current phase.
The following steps are only executed if the Sim has not already sent an abort
message to the trusted.

– Trusted party sends output to the adversary: The trusted party com-
putes f(x′1, . . . , x

′
m) = (y1, . . . , ym) and sends {yi}i∈T to the adversary Sim.

– Adversary instructs trust party to abort or continue: This is formalized
by having the adversary send either a continue or abort message to the trusted
party. In the latter case, the trusted party sends to each uncorrupted client
Ci its output value yi. In the former case, the trusted party sends the special
symbol ⊥ to each uncorrupted client.

– Outputs: Sim outputs an arbitrary function of its view, and the honest parties
output the values obtained from the trusted party.

Sim also interacts with the environment E in an identical manner to the real
execution interaction between E and A. In particular this means, Sim cannot

23

rewind E or look at its internal state. The above ideal execution defines a random
variable IDEALπ,Sim,T,E,fcommittee(z) whose value is determined by the coin tosses of
the adversary and the honest players. This random variable containing the (a)
output of the ideal adversary Sim; (b) output of the honest parties after an ideal
execution with the trusted party computing f where Sim has control over the

adversary’s input to f ; and (c) the lists
{
Corrupt`

}
`

of corrupted servers output

by the trusted party. If Sim sends abort in the corruption phase of the server,
the trusted party outputs the lists that have been updated until the point the
abort message was received from Sim.

Having described the real and the ideal worlds, we now define security.

Definition 4. Let f : X1×· · ·×Xm → Y1×· · ·×Ym be a functionality and let π
be a fluid MPC protocol for computing f with m clients, N servers and E epochs.
We say that π achieves (τ, µ) retroactive adaptive security (resp. non-retroactive
adaptive security) if for every probabilistic adversary A in the real world there
exists a probabilistic simulator Sim in the ideal world such that for every proba-
bilistic environment E if A is R-adaptive (resp. NR-adaptive) controlling a subset
of servers T ` ⊆ S`, ∀` ∈ [E] s.t. |T `| < τ ·n` and less than τ ·m clients, it holds
that for all auxiliary input z ∈ {0, 1}∗

SD (IDEALf,Sim,T,E,fcommittee(z),REALπ,A,T,E,fcommittee(z)) ≤ µ

where SD(X,Y) is the statistical distance between distributions X and Y .

When µ is a negligible function of some security parameter λ, we say that
the protocol π is τ -secure.

Remark 4. We note that the above definitions do not explicitly state whether
the adversary behaves in (a) a semi-honest manner, where the messages that it
sends on behalf of the parties are computed as per protocol specification; or (b)
a malicious manner, where it can deviate from the protocol specification. Our
intention is to give a general definition independent of the type of adversary.
In the subsequent description, we will appropriately prefix the adversary with
semi-honest/malicious to indicate the power of the adversary.

This Work. We summarize the fluid MPC model that we focus on in the full
version of this paper [13], in the definition below.

Definition 5 (Maximally-Fluid MPC with R-Adaptive Security). We say that
a Fluid MPC protocol π is a Maximally-Fluid MPC with R-Adaptive Security
if it additionally satisfies the following properties:

– Fluidity: It has maximal fluidity.
– Volunteer Based Sign-up Model: Committee for epoch `+1 is determined

and known to everyone at the start of the hand-off phase of epoch ` where
the sampling function for fcommittee is the identity function. Each epoch can
have variable committee sizes, and the committees themselves can arbitrarily
overlap. A server is only required to be online during epochs where it is active.

24

– Malicious R-Adaptive Security: It achieves security as per Definition 4
against malicious R-adaptive adversaries who control any minority (τ < 1/2)
of clients and any minority of servers in every committee in an epoch.

As we have just shown, there are many interesting, reasonable modeling choices
that can be made in the study of fluid MPC. While our specific model name
may be heavy-handed, we want to ensure that our modeling choices are clear
throughout this work. Additionally, we hope to emphasize that our work is an
initial foray in the study of fluid MPC and much is to be done to fully understand
this setting.

4 Results in Full Version of the Paper

In the full version of this work [13], we construct a Maximally-Fluid MPC with
R-Adaptive Security (see Definition 5). In this section, we outline the sequence of
steps used for obtaining this result, and include the main theorems we prove for
completeness.

1. We start by adapting the additive attack paradigm of [26] to the fluid MPC
setting. In particular, we formally define a class of secret sharing based fluid
MPC protocols, called “linear-based fluid MPC protocols”. We then focus on
“weakly private” linear-based fluid MPC protocols, which are semi-honest
protocols that additionally achieve a weak notion of privacy against a ma-
licious R-adaptive (see Definition 2) adversary. We show that such weakly
private protocols are also secure against a malicious R-adaptive adversary up
to “additive attacks”. Formally, we prove the following theorem:

Theorem 1. Let Π be a Fluid MPC protocol computing a (possibly random-
ized) m-client circuit C :

(
Fin
)m → Fout using N servers that is a linear-

based Fluid MPC with respect to a t-out-of-n secret sharing scheme, and is
weakly-private against malicious R-adaptive adversaries controlling at most
t` < n`/2 servers in committee S` (for each ` ∈ [d]) and t < m/2 clients,
where d is the depth of the circuit C and n` are the number of servers in
epoch `. Then, Π is a 1/2-secure Fluid MPC with R-Adaptive Security with d

epochs for computing the additively corruptible version f̃C of C.

2. Next, we present a general compiler that can transform any linear based
fluid MPC protocol that is secure against a malicious R-adaptive adversary
up to additive attacks, into a protocol that achieves security with abort
against a malicious R-adaptive adversary. Our resulting protocol only incurs
a constant multiplicative overhead in the communication complexity of the
original protocol and also preserves its fluidity. Formally, we prove the fol-
lowing theorem:

Theorem 2. Let C :
(
Fin
)m → Fout be a (possibly randomized) m-client

circuit. Let C̃ be the robust circuit corresponding to C. Let Π be a Fluid

25

MPC protocol computing C̃ using N servers that is linear-based with respect
to a t-out-of-n secret sharing scheme, and is weakly-private against malicious
R-adaptive adversaries controlling at most t` < n`/2 servers in committee S`
(for each ` ∈ [d+ 1]) and t < m/2 clients, where d is the depth of the circuit
C and n` is the number of servers in epoch `. Then, the there exists a protocol
that is a 1/2-secure Fluid MPC with R-Adaptive Security with d+1 epochs for
computing C. Moreover, this protocol preserves the fluidity of Π and only
adds a constant multiplicative overhead to the communication complexity of
Π.

3. Finally, we adapt the semi-honest protocol of Genarro, Rabin and Rabin [28],
which is an optimized version of the classical semi-honest BGW protocol [6],
to the fluid MPC setting and show that this protocol is both linear-based
and weakly private against a malicious R-adaptive adversary, and achieves
maximal fluidity. Using Theorem 1, we establish that this linear-based weakly
private protocol is also secure against a malicious R-adaptive adversary up
to additive attacks. Finally, we apply the compiler from Theorem 2 to this
protocol to obtain a maximally fluid MPC protocol secure against malicious
R-adaptive adversaries. Concretely, the following corollary holds directly from
the two theorems above:

Corollary 1. There exists an information-theoretically secure Maximally-
Fluid MPC with R-Adaptive Security (See Definition 5) for any f ∈ P/Poly.

5 Acknowledgements

The fourth author would like to thank Amit Sahai and Sunoo Park for insightful
discussions on dynamism in MPC. The fifth author would like to thank Shaanan
Cohney for early discussions around blockchains and MPC.

Arka Rai Choudhuri, Aarushi Goel and Abhishek Jain were supported in
part by DARPA/ARL Safeware Grant W911NF-15-C-0213, NSF CNS-1814919,
NSF CAREER 1942789, Samsung Global Research Outreach award and Johns
Hopkins University Catalyst award. Arka Rai Choudhuri is also supported by
NSF Grants CNS-1908181 and Office of Naval Research Grant N00014-19-1-2294.
Matthew Green is supported by NSF under awards CNS-1653110 and CNS-
1801479, the Office of Naval Research under contract N00014-19-1-2292, DARPA
under Contract No. HR001120C0084, and a Security and Privacy research award
from Google. Abhishek Jain was additionally supported in part by an Office of
Naval Research grant N00014-19-1-2294. Gabriel Kaptchuk is supported by the
National Science Foundation under Grant #2030859 to the Computing Research
Association for the CIFellows Project. Significant portions of this work were done
while Gabriel Kaptchuk was at Johns Hopkins University and supported by
NSF CNS-1329737. Any opinions, findings and conclusions or recommendations
expressed in this material are those of the author(s) and do not necessarily reflect
the views of the United States Government or DARPA.

26

References

1. Araki, T., Barak, A., Furukawa, J., Lichter, T., Lindell, Y., Nof, A., Ohara, K.,
Watzman, A., Weinstein, O.: Optimized honest-majority MPC for malicious adver-
saries - breaking the 1 billion-gate per second barrier. In: 2017 IEEE Symposium
on Security and Privacy. pp. 843–862. IEEE Computer Society Press, San Jose,
CA, USA (May 22–26, 2017)

2. Araki, T., Furukawa, J., Lindell, Y., Nof, A., Ohara, K.: High-throughput semi-
honest secure three-party computation with an honest majority. In: Weippl, E.R.,
Katzenbeisser, S., Kruegel, C., Myers, A.C., Halevi, S. (eds.) ACM CCS 2016. pp.
805–817. ACM Press, Vienna, Austria (Oct 24–28, 2016)

3. Barak, A., Hirt, M., Koskas, L., Lindell, Y.: An end-to-end system for large
scale p2p mpc-as-a-service and low-bandwidth mpc for weak participants. In:
Proceedings of the 2018 ACM SIGSAC Conference on Computer and Commu-
nications Security. pp. 695–712. CCS ’18, ACM, New York, NY, USA (2018),
http://doi.acm.org/10.1145/3243734.3243801

4. Baron, J., El Defrawy, K., Lampkins, J., Ostrovsky, R.: How to withstand mobile
virus attacks, revisited. In: Halldórsson, M.M., Dolev, S. (eds.) 33rd ACM PODC.
pp. 293–302. ACM, Paris, France (Jul 15–18, 2014)

5. Beerliová-Trub́ıniová, Z., Hirt, M.: Efficient multi-party computation with dispute
control. In: Halevi, S., Rabin, T. (eds.) TCC 2006. LNCS, vol. 3876, pp. 305–328.
Springer, Heidelberg, Germany, New York, NY, USA (Mar 4–7, 2006)

6. Ben-Or, M., Goldwasser, S., Wigderson, A.: Completeness theorems for non-
cryptographic fault-tolerant distributed computation (extended abstract). In: 20th
ACM STOC. pp. 1–10. ACM Press, Chicago, IL, USA (May 2–4, 1988)

7. Benhamouda, F., Gentry, C., Gorbunov, S., Halevi, S., Krawczyk, H., Lin, C.,
Rabin, T., Reyzin, L.: Can a blockchain keep a secret? Cryptology ePrint Archive,
Report 2020/464 (2020), https://eprint.iacr.org/2020/464

8. Bogdanov, D., Kamm, L., Kubo, B., Rebane, R., Sokk, V., Talviste, R.: Students
and taxes: a privacy-preserving study using secure computation. Proceedings on
Privacy Enhancing Technologies 2016(3), 117–135 (2016)

9. Buterin, V., et al.: A next-generation smart contract and decentralized application
platform. white paper 3(37) (2014)

10. Chaum, D., Crépeau, C., Damg̊ard, I.: Multiparty unconditionally secure protocols
(abstract) (informal contribution). In: Pomerance, C. (ed.) CRYPTO’87. LNCS,
vol. 293, p. 462. Springer, Heidelberg, Germany, Santa Barbara, CA, USA (Aug 16–
20, 1988)

11. Chen, J., Micali, S.: Algorand: A secure and efficient distributed ledger. Theor.
Comput. Sci. 777, 155–183 (2019)

12. Chida, K., Genkin, D., Hamada, K., Ikarashi, D., Kikuchi, R., Lindell, Y., Nof,
A.: Fast large-scale honest-majority MPC for malicious adversaries. In: Shacham,
H., Boldyreva, A. (eds.) CRYPTO 2018, Part III. LNCS, vol. 10993, pp. 34–64.
Springer, Heidelberg, Germany, Santa Barbara, CA, USA (Aug 19–23, 2018)

13. Choudhuri, A.R., Goel, A., Green, M., Jain, A., Kaptchuk, G.: Fluid mpc: Secure
multiparty computation with dynamic participants. Cryptology ePrint Archive,
Report 2020/754 (2020), https://eprint.iacr.org/2020/754

14. Clark, M.R., Hopkinson, K.M.: Transferable multiparty computation with applica-
tions to the smart grid. IEEE Trans. Inf. Forensics Secur. 9(9), 1356–1366 (2014)

15. Cramer, R., Damg̊ard, I., Ishai, Y.: Share conversion, pseudorandom secret-sharing
and applications to secure computation. In: Kilian, J. (ed.) TCC 2005. LNCS, vol.

27

http://doi.acm.org/10.1145/3243734.3243801
https://eprint.iacr.org/2020/464
https://eprint.iacr.org/2020/754

3378, pp. 342–362. Springer, Heidelberg, Germany, Cambridge, MA, USA (Feb 10–
12, 2005)

16. Cryptobiu: cryptobiu/libscapi (May 2019), https://github.com/cryptobiu/

libscapi

17. Damg̊ard, I., Ishai, Y.: Constant-round multiparty computation using a black-box
pseudorandom generator. In: Shoup, V. (ed.) CRYPTO 2005. LNCS, vol. 3621,
pp. 378–394. Springer, Heidelberg, Germany, Santa Barbara, CA, USA (Aug 14–
18, 2005)

18. Damg̊ard, I., Ishai, Y.: Scalable secure multiparty computation. In: Dwork, C. (ed.)
CRYPTO 2006. LNCS, vol. 4117, pp. 501–520. Springer, Heidelberg, Germany,
Santa Barbara, CA, USA (Aug 20–24, 2006)

19. Damg̊ard, I., Nielsen, J.B.: Scalable and unconditionally secure multiparty com-
putation. In: Menezes, A. (ed.) CRYPTO 2007. LNCS, vol. 4622, pp. 572–590.
Springer, Heidelberg, Germany, Santa Barbara, CA, USA (Aug 19–23, 2007)

20. Damg̊ard, I., Pastro, V., Smart, N.P., Zakarias, S.: Multiparty computation
from somewhat homomorphic encryption. In: Safavi-Naini, R., Canetti, R. (eds.)
CRYPTO 2012. LNCS, vol. 7417, pp. 643–662. Springer, Heidelberg, Germany,
Santa Barbara, CA, USA (Aug 19–23, 2012)

21. Dingledine, R., Mathewson, N., Syverson, P.: Tor: The second-generation onion
router. In: Proceedings of the 13th Conference on USENIX Security Symposium -
Volume 13. pp. 21–21. SSYM’04, USENIX Association, Berkeley, CA, USA (2004),
http://dl.acm.org/citation.cfm?id=1251375.1251396

22. Eldefrawy, K., Ostrovsky, R., Park, S., Yung, M.: Proactive secure multiparty
computation with a dishonest majority. In: Catalano, D., De Prisco, R. (eds.) SCN
18. LNCS, vol. 11035, pp. 200–215. Springer, Heidelberg, Germany, Amalfi, Italy
(Sep 5–7, 2018)

23. Furukawa, J., Lindell, Y.: Two-thirds honest-majority MPC for malicious adver-
saries at almost the cost of semi-honest. In: Cavallaro, L., Kinder, J., Wang, X.,
Katz, J. (eds.) ACM CCS 2019. pp. 1557–1571. ACM Press (Nov 11–15, 2019)

24. Garay, J.A., Kiayias, A., Leonardos, N.: The bitcoin backbone protocol: Analysis
and applications. In: Oswald, E., Fischlin, M. (eds.) EUROCRYPT 2015, Part II.
LNCS, vol. 9057, pp. 281–310. Springer, Heidelberg, Germany, Sofia, Bulgaria
(Apr 26–30, 2015)

25. Genkin, D., Ishai, Y., Polychroniadou, A.: Efficient multi-party computation: From
passive to active security via secure SIMD circuits. In: Gennaro, R., Robshaw,
M.J.B. (eds.) CRYPTO 2015, Part II. LNCS, vol. 9216, pp. 721–741. Springer,
Heidelberg, Germany, Santa Barbara, CA, USA (Aug 16–20, 2015)

26. Genkin, D., Ishai, Y., Prabhakaran, M., Sahai, A., Tromer, E.: Circuits resilient to
additive attacks with applications to secure computation. In: Shmoys, D.B. (ed.)
46th ACM STOC. pp. 495–504. ACM Press, New York, NY, USA (May 31 – Jun 3,
2014)

27. Genkin, D., Ishai, Y., Weiss, M.: Binary AMD circuits from secure multiparty
computation. In: Hirt, M., Smith, A.D. (eds.) TCC 2016-B, Part I. LNCS, vol.
9985, pp. 336–366. Springer, Heidelberg, Germany, Beijing, China (Oct 31 – Nov 3,
2016)

28. Gennaro, R., Rabin, M.O., Rabin, T.: Simplified VSS and fast-track multiparty
computations with applications to threshold cryptography. In: Coan, B.A., Afek,
Y. (eds.) 17th ACM PODC. pp. 101–111. ACM, Puerto Vallarta, Mexico (Jun 28 –
Jul 2, 1998)

28

https://github.com/cryptobiu/libscapi
https://github.com/cryptobiu/libscapi
http://dl.acm.org/citation.cfm?id=1251375.1251396

29. Gentry, C., Halevi, S., Magri, B., Nielsen, J.B., Yakoubov, S.: Random-index pir
and applications. Cryptology ePrint Archive, Report 2020/1248 (2020), https:

//eprint.iacr.org/2020/1248
30. Gilad, Y., Hemo, R., Micali, S., Vlachos, G., Zeldovich, N.: Algorand: Scaling

byzantine agreements for cryptocurrencies. In: Proceedings of the 26th Symposium
on Operating Systems Principles, Shanghai, China, October 28-31, 2017. pp. 51–68
(2017)

31. Gilad, Y., Hemo, R., Micali, S., Vlachos, G., Zeldovich, N.: Algorand: Scaling
byzantine agreements for cryptocurrencies. Cryptology ePrint Archive, Report
2017/454 (2017), http://eprint.iacr.org/2017/454

32. Goldreich, O., Micali, S., Wigderson, A.: How to play any mental game or A
completeness theorem for protocols with honest majority. In: Aho, A. (ed.) 19th
ACM STOC. pp. 218–229. ACM Press, New York City, NY, USA (May 25–27,
1987)

33. Goyal, V., Kothapalli, A., Masserova, E., Parno, B., Song, Y.: Storing and retriev-
ing secrets on a blockchain. Cryptology ePrint Archive, Report 2020/504 (2020),
https://eprint.iacr.org/2020/504

34. Goyal, V., Song, Y., Zhu, C.: Guaranteed output delivery comes free in honest
majority MPC. In: Micciancio, D., Ristenpart, T. (eds.) CRYPTO 2020, Part II.
LNCS, vol. 12171, pp. 618–646. Springer, Heidelberg, Germany, Santa Barbara,
CA, USA (Aug 17–21, 2020)

35. Herzberg, A., Jarecki, S., Krawczyk, H., Yung, M.: Proactive secret sharing or: How
to cope with perpetual leakage. In: Coppersmith, D. (ed.) CRYPTO’95. LNCS,
vol. 963, pp. 339–352. Springer, Heidelberg, Germany, Santa Barbara, CA, USA
(Aug 27–31, 1995)

36. Ikarashi, D., Kikuchi, R., Hamada, K., Chida, K.: Actively private and correct
MPC scheme in t < n/2 from passively secure schemes with small overhead. Cryp-
tology ePrint Archive, Report 2014/304 (2014), http://eprint.iacr.org/2014/
304

37. Lapets, A., Volgushev, N., Bestavros, A., Jansen, F., Varia, M.: Secure mpc for an-
alytics as a web application. In: 2016 IEEE Cybersecurity Development (SecDev).
pp. 73–74. IEEE (2016)

38. Lindell, Y., Nof, A.: A framework for constructing fast MPC over arithmetic cir-
cuits with malicious adversaries and an honest-majority. In: Thuraisingham, B.M.,
Evans, D., Malkin, T., Xu, D. (eds.) ACM CCS 2017. pp. 259–276. ACM Press,
Dallas, TX, USA (Oct 31 – Nov 2, 2017)

39. Maram, S.K.D., Zhang, F., Wang, L., Low, A., Zhang, Y., Juels, A., Song, D.:
CHURP: dynamic-committee proactive secret sharing. In: ACM Conference on
Computer and Communications Security. pp. 2369–2386. ACM (2019)

40. Micali, S.: Very simple and efficient byzantine agreement. In: Papadimitriou, C.H.
(ed.) ITCS 2017. vol. 4266, pp. 6:1–6:1. LIPIcs, Berkeley, CA, USA (Jan 9–11,
2017)

41. Mohassel, P., Rosulek, M., Zhang, Y.: Fast and secure three-party computation:
The garbled circuit approach. In: Ray, I., Li, N., Kruegel, C. (eds.) ACM CCS
2015. pp. 591–602. ACM Press, Denver, CO, USA (Oct 12–16, 2015)

42. Nakamoto, S.: Bitcoin: A peer-to-peer electronic cash system, 2008 (2008), http:
//www.bitcoin.org/bitcoin.pdf

43. Nordholt, P.S., Veeningen, M.: Minimising communication in honest-majority
MPC by batchwise multiplication verification. In: Preneel, B., Vercauteren, F.
(eds.) ACNS 18. LNCS, vol. 10892, pp. 321–339. Springer, Heidelberg, Germany,
Leuven, Belgium (Jul 2–4, 2018)

29

https://eprint.iacr.org/2020/1248
https://eprint.iacr.org/2020/1248
http://eprint.iacr.org/2017/454
https://eprint.iacr.org/2020/504
http://eprint.iacr.org/2014/304
http://eprint.iacr.org/2014/304
http://www.bitcoin.org/bitcoin.pdf
http://www.bitcoin.org/bitcoin.pdf

44. Ostrovsky, R., Yung, M.: How to withstand mobile virus attacks (extended ab-
stract). In: Logrippo, L. (ed.) 10th ACM PODC. pp. 51–59. ACM, Montreal, QC,
Canada (Aug 19–21, 1991)

45. Pass, R., Seeman, L., shelat, a.: Analysis of the blockchain protocol in asynchronous
networks. In: Coron, J.S., Nielsen, J.B. (eds.) EUROCRYPT 2017, Part II. LNCS,
vol. 10211, pp. 643–673. Springer, Heidelberg, Germany, Paris, France (Apr 30 –
May 4, 2017)

46. Pass, R., Shi, E.: FruitChains: A fair blockchain. In: Schiller, E.M., Schwarzmann,
A.A. (eds.) 36th ACM PODC. pp. 315–324. ACM, Washington, DC, USA (Jul 25–
27, 2017)

47. Wails, R., Johnson, A., Starin, D., Yerukhimovich, A., Gordon, S.D.: Stormy:
Statistics in tor by measuring securely. In: Cavallaro, L., Kinder, J., Wang, X.,
Katz, J. (eds.) ACM CCS 2019. pp. 615–632. ACM Press (Nov 11–15, 2019)

48. Yao, A.C.C.: How to generate and exchange secrets (extended abstract). In: 27th
FOCS. pp. 162–167. IEEE Computer Society Press, Toronto, Ontario, Canada
(Oct 27–29, 1986)

30

	Fluid MPC: Secure Multiparty Computation with Dynamic Participants

