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Abstract. In 2012, Aaronson and Christiano introduced the idea of
hidden subspace states to build public-key quantum money [STOC ’12].
Since then, this idea has been applied to realize several other crypto-
graphic primitives which enjoy some form of unclonability.
In this work, we propose a generalization of hidden subspace states to
hidden coset states. We study different unclonable properties of coset
states and several applications:
– We show that, assuming indistinguishability obfuscation (𝗂𝖮), hidden

coset states possess a certain direct product hardness property, which
immediately implies a tokenized signature scheme in the plain model.
Previously, a tokenized signature scheme was known only relative to
an oracle, from a work of Ben-David and Sattath [QCrypt ’17].

– Combining a tokenized signature scheme with extractable witness
encryption, we give a construction of an unclonable decryption scheme
in the plain model. The latter primitive was recently proposed by
Georgiou and Zhandry [ePrint ’20], who gave a construction relative
to a classical oracle.

– We conjecture that coset states satisfy a certain natural (information-
theoretic) monogamy-of-entanglement property. Assuming this con-
jecture is true, we remove the requirement for extractable witness
encryption in our unclonable decryption construction, by relying
instead on compute-and-compare obfuscation for the class of un-
predictable distributions. As potential evidence in support of the
monogamy conjecture, we prove a weaker version of this monogamy
property, which we believe will still be of independent interest.

– Finally, we give the first construction of a copy-protection scheme
for pseudorandom functions (PRFs) in the plain model. Our scheme
is secure either assuming 𝗂𝖮, 𝖮𝖶𝖥 and extractable witness encryp-
tion, or assuming 𝗂𝖮,𝖮𝖶𝖥, compute-and-compare obfuscation for
the class of unpredictable distributions, and the conjectured monogamy
property mentioned above.

1 Introduction

The no-cloning principle of quantum mechanics asserts that quantum informa-
tion cannot be generically copied. This principle has profound consequences



in quantum cryptography, as it puts a fundamental restriction on the possible
strategies that a malicious party can implement. One of these consequences is
that quantum information enables cryptographic tasks that are provably impos-
sible to realize classically, the most famous example being information-theoretically
secure key distribution [BB84].

Beyond this, the no-cloning principle opens up an exciting avenue to real-
ize cryptographic tasks which enjoy some form of unclonability, e.g. quantum
money [Wie83, AC12, FGH+12, Zha19a, Kan18], quantum tokens for digital
signatures [BS16], copy-protection of programs [Aar09, ALL+20, CMP20], and
more recently unclonable encryption [Got02, BL19] and decryption [GZ20].

In this work, we revisit the hidden subspace idea proposed by Aaronson and
Christiano, which has been employed towards several of the applications above.
We propose a generalization of this idea, which involves hidden cosets (affine
subspaces), and we show applications of this to signature tokens, unclonable
decryption and copy-protection.

Given a subspace 𝐴 ⊆ 𝔽𝑛
2 , the corresponding subspace state is defined as a

uniform superposition over all strings in the subspace 𝐴, i.e.

|𝐴⟩ := 1√︀
|𝐴|

∑︁
𝑥∈𝐴
|𝑥⟩ ,

The first property that makes this state useful is that applying a Hadamard on
all qubits creates a uniform superposition over all strings in 𝐴⊥, the orthogonal
complement of 𝐴, i.e. 𝐻⊗𝑛 |𝐴⟩ = |𝐴⊥⟩.

The second property, which is crucial for constructing unclonable primitives
with some form of verification, is the following. Given one copy of |𝐴⟩, where 𝐴 ⊆
𝐹𝑛
2 is uniformly random of dimension 𝑛/2, it is impossible to produce two copies

of |𝐴⟩ except with negligible probability. As shown by [AC12], unclonability
holds even when given quantum access to oracles for membership in 𝐴 and 𝐴⊥,
as long as the number of queries is polynomially bounded. On the other hand,
such membership oracles allow for verifying the state |𝐴⟩, leading to publicly-
verifiable quantum money, where the verification procedure is the following:

– Given an alleged quantum money state |𝜓⟩, query the oracle for membership
in 𝐴 on input |𝜓⟩. Measure the outcome register, and verify that the outcome
is 1.

– If so, apply 𝐻⊗𝑛 to the query register, and query the oracle for membership
in 𝐴⊥. Measure the outcome register, and accept the money state if the
outcome is 1.

It is not difficult to see that the unique state that passes this verification
procedure is |𝐴⟩.

In order to obtain a quantum money scheme in the plain model (without
oracles), Aaronson and Christiano suggest instantiating the oracles with some
form of program obfuscation. This vision is realized subsequently in [Zha19a],
where access to the oracles for subspace membership is replaced by a suitable
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obfuscation of the membership programs, which can be built from indistinguisha-
bility obfuscation (iO). More precisely, Zhandry shows that, letting 𝑃𝐴 and 𝑃𝐴⊥

be programs that check membership in 𝐴 and 𝐴⊥ respectively, any computa-
tionally bounded adversary who receives a uniformly random subspace state |𝐴⟩
together with iO(𝑃𝐴) and iO(𝑃𝐴⊥) cannot produce two copies of |𝐴⟩ except with
negligible probability.

The subspace state idea was later employed to obtain quantum tokens for dig-
ital signatures [BS16]. What these are is best explained by the (award-winning)
infographic in [BS16] (see the ancillary arXiv files there). Concisely, a quantum
signature token allows Alice to provide Bob with the ability to sign one and only
one message in her name, where such signature can be publicly verified using
Alice’s public key. The construction of quantum tokens for digital signatures
from [BS16] is the following.

– Alice samples a uniformly random subspace 𝐴 ⊆ 𝔽𝑛
2 , which constitutes her

secret key. A signature token is the state |𝐴⟩.
– Anyone in possession of a token |𝐴⟩ can sign message 0 by outputting a

string 𝑣 ∈ 𝐴 (this can be obtained by measuring |𝐴⟩ in the computational
basis), and can sign message 1 by outputting a string 𝑤 ∈ 𝐴⊥ (this can be
done by measuring |𝐴⟩ in the Hadamard basis).

– Signatures can be publicly verified assuming access to an oracle for subspace
membership in 𝐴 and in 𝐴⊥ (such access can be thought of as Alice’s public
key).

In order to guarantee security of the scheme, i.e. that Bob cannot produce a valid
signature for more than one message, Ben-David and Sattath prove the follow-
ing strengthening of the original property proven by Aaronson and Christiano.
Namely, they show that any query-bounded adversary with quantum access to
oracles for membership in 𝐴 and 𝐴⊥ cannot produce, except with negligible
probability, a pair (𝑣, 𝑤) where 𝑣 ∈ 𝐴 ∖ {0} and 𝑤 ∈ 𝐴⊥ ∖ {0}. We refer to this
property as a direct product hardness property.

The natural step to obtain a signature token scheme in the plain model is
to instantiate the subspace membership oracles using iO, analogously to the
quantum money application. However, unlike for the case of quantum money,
here one runs into a technical barrier, which we expand upon in Section 2.1.
Thus, a signature token scheme is not known in the plain model, and this has
remained an open question since [BS16].

In general, a similar difficulty in obtaining schemes that are secure in the plain
model as opposed to an oracle model seems prevalent in works about other un-
clonable primitives. For example, in the case of copy-protection of programs, we
know that copy-protection of a large class of evasive programs, namely compute-
and-compare programs, is possible with provable non-trivial security against fully
malicious adversaries in the quantum random oracle model (QROM) [CMP20].
Other results achieving provable security in the plain model are secure only
against a restricted class of adversaries [AP21, KNY20, BJL+21]. To make the
contrast between plain model and oracle model even more stark, all unlearnable
programs can be copy-protected assuming access to (highly structured) oracles
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[ALL+20], but we know, on the other hand, that a copy-protection scheme for
all unlearnable programs in the plain model does not exist (assuming Learning
With Errors is hard for quantum computers) [AP21].

Likewise, for the recently proposed task of unclonable decryption, the only
currently known scheme is secure only in a model with access to subspace mem-
bership oracles [GZ20].

1.1 Our Results

We propose a generalization of subspace states, which we call coset states. For
𝐴 ⊆ 𝔽𝑛

2 , and 𝑠, 𝑠′ ∈ 𝔽𝑛
2 , the corresponding coset state is:

|𝐴𝑠,𝑠′⟩ :=
∑︁
𝑥∈𝐴

(−1)⟨𝑥,𝑠
′⟩ |𝑥+ 𝑠⟩ ,

where here ⟨𝑥, 𝑠′⟩ denotes the inner product of 𝑥 and 𝑠′. In the computational
basis, the quantum state is a superposition over all elements in the coset 𝐴+ 𝑠,
while, in the Hadamard basis, it is a superposition over all elements in 𝐴⊥ + 𝑠′.
Let 𝑃𝐴+𝑠 and 𝑃𝐴⊥+𝑠′ be programs that check membership in the cosets 𝐴 + 𝑠
and 𝐴⊥ + 𝑠′ respectively. To check if a state |𝜓⟩ is a coset state with respect to
𝐴, 𝑠, 𝑠′, one can compute 𝑃𝐴+𝑠 in the computational basis, and check that the
outcome is 1; then, apply 𝐻⊗𝑛 followed by 𝑃𝐴⊥+𝑠′ , and check that the outcome
is 1.

Computational Direct Product Hardness. Our first technical result is establishing
a computational direct product hardness property in the plain model, assuming
post-quantum iO and one-way functions.

Theorem 1 (Informal). Any quantum polynomial-time adversary who receives
|𝐴𝑠,𝑠′⟩ and programs iO(𝑃𝐴+𝑠) and iO(𝑃𝐴⊥+𝑠′) for uniformly random 𝐴 ⊆ 𝔽𝑛

2 ,
𝑠, 𝑠′ ∈ 𝔽𝑛

2 , cannot produce a pair (𝑣, 𝑤) ∈ (𝐴 + 𝑠) × (𝐴⊥ + 𝑠′), except with
negligible probability in 𝑛.

As we mentioned earlier, this is in contrast to regular subspace states, for
which a similar direct product hardness is currently not known in the plain
model, but only in a model with access to subspace membership oracles.

We then apply this property to obtain the following primitives.

Signature Tokens. Our direct product hardness immediately implies a signature
token scheme in the plain model (from post-quantum iO and one-way functions),
thus resolving the main question left open in [BS16].

Theorem 2 (Informal). Assuming post-quantum iO and one-way functions,
there exists a signature token scheme.

In this signature token scheme, the public verification key is the pair of
programs (iO(𝑃𝐴+𝑠), iO(𝑃𝐴⊥+𝑠′)), and a signature token is the coset state |𝐴𝑠,𝑠′⟩.
Producing signatures for both messages 0 and 1 is equivalent to finding elements
in both 𝐴 + 𝑠 and 𝐴⊥ + 𝑠′, which violates our computational direct product
hardness property.
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Unclonable Decryption. Unclonable decryption, also known as single-decryptor
encryption, was introduced in [GZ20]. Informally, a single-decryptor encryption
scheme is a (public-key) encryption scheme in which the secret key is a quantum
state. The scheme satisfies a standard notion of security (in our case, CPA secu-
rity), as well as the following additional security guarantee: no efficient quantum
algorithm with one decryption key is able to produce two working decryption
keys. We build a single-decryptor encryption scheme using a signature tokens
scheme and extractable witness encryption in a black-box way. By leveraging
our previous result about the existence of a signature token scheme in the plain
model, we are able to prove security without the need for the structured oracles
used in the original construction of [GZ20].

Theorem 3 (Informal). Assuming post-quantum iO, one-way functions, and
extractable witness encryption, there exists a public-key single-decryptor encryp-
tion scheme.

Copy-protection of PRFs. The notion of a copy-protection scheme was intro-
duced by Aaronson in [Aar09] and recently explored further in [AP21, CMP20,
ALL+20, BJL+21].

In a copy-protection scheme, the vendor of a classical program wishes to
provide a user the ability to run the program on any input, while ensuring that
the functionality cannot be “pirated”: informally, the adversary, given one copy of
the program, cannot produce two programs that enable evaluating the program
correctly.

Copy-protection is trivially impossible classically, since classical information
can always be copied. This impossibility can be in principle circumvented if
the classical program is encoded in a quantum state, due to the no-cloning
principle. However, positive results have so far been limited. A copy-protection
scheme [CMP20] is known for a class of evasive programs, known as compute-
and-compare programs, with provable non-trivial security against fully malicious
adversaries in the Quantum Random Oracle Model (QROM). Other schemes in
the plain model are only secure against restricted classes of adversaries (which
behave honestly in certain parts of the protocol) [AP21, KNY20, BJL+21]. Copy-
protection schemes for more general functionalities are known [ALL+20], but
these are only secure assuming very structured oracles (which depend on the
functionality that is being copy-protected).

In this work, we present a copy-protection scheme for a family of pseudoran-
dom functions (PRFs). In such a scheme, for any classical key 𝐾 for the PRF,
anyone in possession of a quantum key 𝜌𝐾 is able to evaluate 𝑃𝑅𝐹 (𝐾,𝑥) on any
input 𝑥.

The copy-protection property that our scheme satisfies is that given a quan-
tum key 𝜌𝐾 , no efficient algorithm can produce two (possibly entangled) keys
such that these two keys allow for simultaneous correct evaluation on uniformly
random inputs, with noticeable probability.
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Similarly to the unclonable decryption scheme, our copy-protection scheme
is secure assuming post-quantum iO, one-way functions, and extractable witness
encryption.

Theorem 4 (Informal). Assuming post-quantum iO, one-way functions, and
extractable witness encryption, there exists a copy-protection scheme for a family
of PRFs.

We remark that our scheme requires a particular kind of PRFs, namely punc-
turing and extracting with small enough error. However, PRFs satisfying these
properties can be built from just one-way functions.

The existence of extractable witness encryption is considered to be a very
strong assumption. In particular, it was shown to be impossible in general (un-
der a special-purpose obfuscation conjecture) [GGHW17]. However, we empha-
size that no provably secure copy-protection schemes with standard malicious
security in the plain model are known at all. Given the central role of PRFs
in the construction of many other cryptographic primitives, we expect that our
copy-protection scheme, and the techniques developed along the way, will play
an important role as a building block to realize unclonable versions of other
primitives.

To avoid the use of extractable witness encryption, we put forth a (information-
theoretic) conjecture about a monogamy of entanglement property of coset states,
which we discuss below. Assuming this conjecture is true, we show that both
unclonable decryption and copy-protection of PRFs can be constructed without
extractable witness encryption, by relying instead on compute-and-compare ob-
fuscation [WZ17, GKW17] (more details on the latter can be found in Section
3.1).

Theorem 5 (Informal). Assuming post-quantum iO, one-way functions, and
obfuscation of compute-and-compare programs against unpredictable distribu-
tions, there exist: (i) a public-key single-decryptor encryption scheme, and (ii)
a copy-protection scheme for a family of PRFs.

As potential evidence in support of the monogamy-of-entanglement conjec-
ture, we prove a weaker version of the monogamy of entanglement property,
which we believe will still be of independent interest (more details on this are
below).

Remark 1. While iO was recently constructed based on widely-believed compu-
tational assumptions [JLS20], the latter construction is not quantum resistant,
and the situation is less clear quantumly. However, several works have proposed
candidate post-quantum obfuscation schemes [BGMZ18, WW20, BDGM20],
and based on these works iO seems plausible in the post-quantum setting as
well.

Remark 2. Compute-and-compare obfuscation against unpredictable distribu-
tions is known to exist assuming LWE (or iO) and assuming the existence of Ex-
tremely Lossy Functions (ELFs) [Zha19c] [WZ17, GKW17]. Unfortunately, the
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only known constructions of ELFs rely on hardness assumptions that are bro-
ken by quantum computers (exponential hardness of decisional Diffie-Hellman).
To remedy this, we give a construction of computate-and-compare obfuscation
against sub-exponentially unpredictable distributions, from plain LWE (see The-
orem 6, and its proof in the full version). The latter weaker obfuscation is suf-
ficient to prove security of our single-decryptor encryption scheme, and copy-
protection scheme for PRFs, if one additionally assumes sub-exponentially secure
iO and one-way functions.

Monogamy-of-Entanglement. As previously mentioned, we conjecture that coset
states additionally satisfy a certain (information-theoretic) monogamy of entan-
glement property, similar to the one satisfied by BB84 states, which is studied
extensively in [TFKW13]. Unlike the monogamy property of BB84 states, the
monogamy property we put forth is well-suited for applications with public ver-
ification, in a sense made more precise below.

This monogamy property states that Alice, Bob and Charlie cannot cooper-
atively win the following game with a challenger, except with negligible proba-
bility. The challenger first prepares a uniformly random coset state |𝐴𝑠,𝑠′⟩ and
gives the state to Alice. Alice outputs two (possibly entangled) quantum states
and sends them to Bob and Charlie respectively. Finally, Bob and Charlie both
get the description of the subspace 𝐴. The game is won if Bob outputs a vector
in 𝐴+ 𝑠 and Charlie outputs a vector in 𝐴⊥ + 𝑠′.

Notice that if Alice were told 𝐴 before she had to send the quantum states to
Bob and Charlie, then she could recover 𝑠 and 𝑠′ (efficiently) given |𝐴𝑠,𝑠′⟩. Cru-
cially, 𝐴 is only revealed to Bob and Charlie after Alice has sent them the quan-
tum states (analogously to the usual monogamy-of-entanglement game based on
BB84 states, where 𝜃 is only revealed to Bob and Charlie after they receive their
states from Alice.).

We note that the hardness of this game is an information-theoretic conjecture.
As such, there is hope that it can be proven unconditionally.

Under this conjecture, we show that the problem remains hard (computation-
ally) even if Alice additionally receives the programs iO(𝑃𝐴+𝑠) and iO(𝑃𝐴⊥+𝑠′).
Based on this result, we then obtain unclonable decryption and copy-protection
of PRFs from post-quantum iO and one-way functions, and compute-and-compare
obfuscation against unpredictable distributions. We thus remove the need for ex-
tractable witness encryption (more details on this are provided in the technical
overview, Section 2.1).

As evidence in support of our conjecture, we prove a weaker information-
theoretic monogamy property, namely that Alice, Bob and Charlie cannot win at
a monogamy game that is identical to the one described above, except that at the
last step, Bob and Charlie are each required to return a pair in (𝐴+𝑠)×(𝐴⊥+𝑠′),
instead of a single element each. Since coset states have more algebraic structure
than BB84 states, a more refined analysis is required to prove this (weaker)
property compared to that of [TFKW13]. We again extend this monogamy result
to the case where Alice receives programs iO(𝑃𝐴+𝑠) and iO(𝑃𝐴⊥+𝑠′).
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We emphasize that our monogamy result for coset states differs from the
similar monogamy result for BB84 states in one crucial way: the result still
holds when Alice receives programs that allow her to verify the correctness of
her state (namely iO(𝑃𝐴+𝑠) and iO(𝑃𝐴⊥+𝑠′)). This is not the case for the BB84
monogamy result. In fact, Lutomirski [Lut10] showed that an adversary who is
given |𝑥𝜃⟩ and a public verification oracle that outputs 1 if the input state is
correct and 0 otherwise, can efficiently copy the state |𝑥𝜃⟩. At the core of this
difference is the fact that coset states are highly entangled, whereas strings of
BB84 states have no entanglement at all.

For this reason, we believe that the monogamy property of coset states may
be of independent interest, and may find application in contexts where public
verification of states is important.

2 Technical Overview

2.1 Computational Direct Product Hardness for Coset States

Our first technical contribution is to establish a computational direct product
hardness property for coset states. In this section, we aim to give some intuition
for the barrier to proving such a property for regular subspace states, and why
resorting to coset states helps.

We establish the following: a computationally bounded adversary who re-
ceives |𝐴𝑠,𝑠′⟩ and programs iO(𝑃𝐴+𝑠) and iO(𝑃𝐴⊥+𝑠′) for uniformly random
𝐴, 𝑠, 𝑠′, cannot produce a pair (𝑣, 𝑤), where 𝑣 ∈ 𝐴+ 𝑠 and 𝑤 ∈ 𝐴⊥ + 𝑠′, except
with negligible probability.

The first version of this direct product hardness property involved regular
subspace states, and was information-theoretic. It was proven by Ben-David
and Sattath [BS16], and it established the following: given a uniformly random
subspace state |𝐴⟩, where 𝐴 ⊆ 𝔽𝑛

2 has dimension 𝑛/2, no adversary can produce
a pair of vectors 𝑣, 𝑤 such that 𝑣 ∈ 𝐴 and 𝑤 ∈ 𝐴⊥ respectively, even with access
to oracles for membership in 𝐴 and in 𝐴⊥.

The first successful instantiation of the membership oracles in the plain
model is due to Zhandry, in the context of public-key quantum money [Zha19a].
Zhandry showed that replacing the membership oracles with indistinguishability
obfuscations of the membership programs 𝑃𝐴 and 𝑃𝐴⊥ is sufficient to prevent an
adversary from copying the subspace state, and thus is sufficient for public-key
quantum money. In what follows, we provide some intuition as to how one proves
this “computational no-cloning” property, and why the same proof idea does not
extend naturally to the direct product hardness property for regular subspace
states.

In [Zha19a], Zhandry shows that iO realizes what he refers to as a subspace-
hiding obfuscator. A subspace hiding obfuscator shO has the property that any
computationally bounded adversary who chooses a subspace 𝐴 cannot distin-
guish between shO(𝑃𝐴) and shO(𝑃𝐵) for a uniformly random superspace 𝐵 of
𝐴 (of not too large dimension). In turn, a subspace hiding obfuscator can then
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be used to show that an adversary who receives |𝐴⟩, shO(𝑃𝐴) and shO(𝑃𝐴⊥),
for a uniformly random 𝐴, cannot produce two copies of |𝐴⟩. This is done in the
following way. For the rest of the section, we assume that 𝐴 ⊆ 𝔽𝑛

2 has dimension
𝑛/2.

– Replace shO(𝑃𝐴) with shO(𝑃𝐵) for a uniformly random superspace 𝐵 of
𝐴, where dim(𝐵) = 3

4𝑛. Replace shO(𝑃𝐴⊥) with shO(𝑃𝐶) for a uniformly
random superspace 𝐶 of 𝐴⊥, where dim(𝐶) = 3

4𝑛.
– Argue that the task of copying a subspace state |𝐴⟩, for a uniformly random

subspace 𝐶⊥ ⊆ 𝐴 ⊆ 𝐵 (even knowing 𝐵 and 𝐶 directly) is just as hard as
the task of copying a uniformly random subspace state of dimension |𝐴′⟩ ⊆
𝔽𝑛/2
2 where dim(𝐴′) = 𝑛

4 . The intuition for this is that knowing 𝐶⊥ fixes 𝑛
4

dimensions out of the 𝑛
2 original dimensions of 𝐴. Then, you can think of

the first copying task as equivalent to the second up to a change of basis.
Such reduction completely removes the adversary’s knowledge about the
membership programs.

– The latter task is of course hard (it would even be hard with access to
membership oracles for 𝐴′ and 𝐴′⊥).

One can try to apply the same idea to prove a computational direct product
hardness property for subspace states, where the task is no longer to copy |𝐴⟩, but
rather we wish to show that a bounded adversary receiving |𝐴⟩ and programs
iO(𝑃𝐴) and iO(𝑃𝐴⊥), for uniformly random 𝐴, cannot produce a pair (𝑣, 𝑤),
where 𝑣 ∈ 𝐴 and 𝑤 ∈ 𝐴⊥. Applying the same replacements as above using shO
allows us to reduce this task to the task of finding a pair of vectors in 𝐴 × 𝐴⊥
given |𝐴⟩,𝐵,𝐶, such that 𝐶⊥ ⊆ 𝐴 ⊆ 𝐵. Unfortunately, unlike in the case of
copying, this task is easy, because any pair of vectors in 𝐶⊥ × 𝐵⊥ also belongs
to 𝐴×𝐴⊥. This is the technical hurdle that ones runs into when trying to apply
the proof idea from [Zha19a] to obtain a computational direct hardness property
for subspace states.

Our first result is that we overcome this hurdle by using coset states. In the
case of cosets, the natural analog of the argument above results in a replacement
of the program that checks membership in 𝐴 + 𝑠 with a program that checks
membership in 𝐵 + 𝑠. Similarly, we replace 𝐴⊥ + 𝑠′ with 𝐶 + 𝑠′. The crucial
observation is that, since 𝐵 + 𝑠 = 𝐵 + 𝑠 + 𝑡 for any 𝑡 ∈ 𝐵, the programs 𝑃𝐵+𝑠

and 𝑃𝐵+𝑠+𝑡 are functionally equivalent. So, an adversary who receives iO(𝑃𝐵+𝑠)
cannot distinguish this from iO(𝑃𝐵+𝑠+𝑡) for any 𝑡. We can thus argue that 𝑡
functions as a randomizing mask that prevents the adversary from guessing 𝑠
and finding a vector in 𝐴+ 𝑠.

Signature Tokens. The computational direct product hardness immediately
gives a signature token scheme in the plain model:

– Alice samples a key (𝐴, 𝑠, 𝑠′) uniformly at random. This constitutes her secret
key. The verification key is (iO(𝑃𝐴+𝑠), iO(𝑃𝐴⊥+𝑠′)). A signature token is
|𝐴𝑠,𝑠′⟩.
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– Anyone in possession of a token can sign message 0 by outputting a string
𝑣 ∈ 𝐴+𝑠 (this can be obtained by measuring the token in the computational
basis), and can sign message 1 by outputting a string 𝑤 ∈ 𝐴⊥ + 𝑠′ (this can
be done by measuring the token in the Hadamard basis).

– Signatures can be publicly verified using Alice’s public key.

If an algorithm produces both signatures for messages 0 and 1, it finds vectors
𝑣 ∈ 𝐴+𝑠 and 𝑤 ∈ 𝐴⊥+𝑠′, which violates computational direct product hardness.

2.2 Unclonable Decryption

Our second result is an unclonable decryption scheme (also known as a single-
decryptor encryption scheme [GZ20] - we will use the two terms interchangeably
in the rest of the paper) from black-box use of a signature token scheme and ex-
tractable witness encryption. This construction removes the need for structured
oracles, as used in the construction of [GZ20].

Additionally, we show that, assuming the conjectured monogamy property
described in Section 1.1, we obtain an unclonable decryption scheme from just
iO and post-quantum one-way functions, where iO is used to construct obfus-
cators for both subspace-membership programs and compute-and-compare pro-
grams [GKW17, WZ17].

In this overview, we focus on the construction from the monogamy property,
as we think it is conceptually more interesting.

Recall that a single-decryptor encryption scheme is a public-key encryption
scheme in which the secret key is a quantum state. On top of the usual encryption
security notions, one can define “single-decryptor” security: this requires that it
is not possible for an adversary who is given the secret key to produce two
(possibly entangled) decryption keys, which both enable simultaneous successful
decryption of ciphertexts. A simplified version of our single-decryptor encryption
scheme is the following. Let 𝑛 ∈ ℕ.

– The key generation procedure samples uniformly at random 𝐴 ⊆ 𝔽𝑛
2 , with

dim(𝐴) = 𝑛
2 and 𝑠, 𝑠′ ∈ 𝔽𝑛

2 uniformly at random. The public key is the pair
(iO(𝑃𝐴+𝑠), iO(𝑃𝐴⊥+𝑠′)). The (quantum) secret key is the coset state |𝐴𝑠,𝑠′⟩.

– To encrypt a message𝑚, sample uniformly 𝑟 ← {0, 1}, and set 𝑅 = iO(𝑃𝐴+𝑠)
if 𝑟 = 0 and 𝑅 = iO(𝑃𝐴⊥+𝑠′) if 𝑟 = 1. Then, let 𝐶 be the following program:

𝐶: on input 𝑣, output the message 𝑚 if 𝑅(𝑣) = 1 and otherwise output ⊥.

The ciphertext is then (𝑟, iO(𝐶)).
– To decrypt a ciphertext (𝑟, iO(𝐶)) with the quantum key |𝐴𝑠,𝑠′⟩, one sim-

ply runs the program iO(𝐶) coherently on input |𝐴𝑠,𝑠′⟩ if 𝑟 = 0, and on
𝐻⊗𝑛 |𝐴𝑠,𝑠′⟩ if 𝑟 = 1.

In the full scheme, we actually amplify security by sampling 𝑟 ← {0, 1}𝜆, and
having 𝜆 coset states, but we choose to keep the presentation in this section as
simple as possible.
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The high level idea for single-decryptor security is the following. Assume for
the moment that iO were an ideal obfuscator (we will argue after this that iO is
good enough). Consider a pirate who receives a secret key, produces two copies of
it, and gives one to Bob and the other to Charlie. Suppose both Bob and Charlie
can decrypt ciphertexts (𝑟, iO(𝐶)) correctly with probability close to 1, over the
randomness in the choice of 𝑟 (which is crucially chosen only after Bob and
Charlie have received their copies). Then, there must be some efficient quantum
algorithm, which uses Bob’s (resp. Charlie’s) auxiliary quantum information
(whatever state he has received from the pirate), and is able to output a vector
in 𝐴 + 𝑠. This is because in the case of 𝑟 = 0, the program 𝐶 outputs the
plaintext message 𝑚 exclusively on inputs 𝑣 ∈ 𝐴+𝑠. Similarly, there must be an
algorithm that outputs a vector in 𝐴⊥ + 𝑠′ starting from Bob’s (resp. Charlie’s)
auxiliary quantum information. Notice that this doesn’t imply that Bob can
simultaneously output a pair in (𝐴+𝑠)×(𝐴⊥+𝑠′), because explicitly recovering
a vector in one coset might destroy the auxiliary quantum information preventing
recovery of a vector in the other (and this very fact is of course crucial to the
direct product hardness). Hence, in order to argue that it is not possible for both
Bob and Charlie to be decrypting with probability close to 1, we have to use
the fact that Bob and Charlie have separate auxiliary quantum information, and
that each of them can recover vectors in 𝐴+𝑠 or 𝐴⊥+𝑠′, which means that this
can be done simultaneously, now violating the direct product hardness property.

The crux of the security proof is establishing that iO is a good enough ob-
fuscator to enable this argument to go through.

To this end, we first notice that there is an alternative way of computing
membership in 𝐴+ 𝑠, which is functionally equivalent to the program 𝐶 defined
above.

Let Can𝐴(𝑠) be a function that computes the lexicographically smallest vector
in 𝐴+ 𝑠 (think of this as a representative of the coset). It is not hard to see that
a vector 𝑡 is in 𝐴 + 𝑠 if and only if Can𝐴(𝑡) = Can𝐴(𝑠). Also Can𝐴 is efficiently
computable given 𝐴. Therefore, a functionally equivalent program to 𝐶, in the
case that 𝑟 = 0, is:̃︀𝐶: on input 𝑣, output 𝑚 if Can𝐴(𝑣) = Can𝐴(𝑠), otherwise output ⊥.

By the security of iO, an adversary can’t distinguish iO(𝐶) from iO( ̃︀𝐶).
The key insight is that now the program ̃︀𝐶 is a compute-and-compare pro-

gram [GKW17, WZ17]. The latter is a program described by three parameters:
an efficiently computable function 𝑓 , a target 𝑦 and an output 𝑧. The program
outputs 𝑧 on input 𝑥 if 𝑓(𝑥) = 𝑦, and otherwise outputs⊥. In our case, 𝑓 = Can𝐴,
𝑦 = Can𝐴(𝑠), and 𝑧 = 𝑚. Goyal et al. [GKW17] and Wichs et al. [WZ17] show
that, assuming LWE or assuming iO and certain PRGs, a compute-and-compare
program can be obfuscated provided 𝑦 is (computationally) unpredictable given
the function 𝑓 and the auxiliary information. More precisely, the obfuscation
guarantee is that the obfuscated compute-and-compare program is indistinguish-
able from the obfuscation of a (simulated) program that outputs zero on every
input (notice, as a sanity check, that if 𝑦 is unpredictable given 𝑓 , then the
compute-and-compare program must output zero almost everywhere as well).

11



We will provide more discussion on compute-and-compare obfuscation for unpre-
dictable distributions in the presence of quantum auxiliary input in Section 3.1
and the full version.

– By the security of iO, we can replace the ciphertext (0, iO(𝐶)), with the
ciphertext (0, iO(CC.Obf( ̃︀𝐶))) where CC.Obf is an obfuscator for compute-
and-compare programs (this is because 𝐶 has the same functionality as
CC.Obf( ̃︀𝐶)).

– By the security of CC.Obf, we can replace the latter with (0, iO(CC.Obf(𝑍))),
where 𝑍 is the zero program. It is clearly impossible to decrypt from the
latter, since no information about the message is present.

Thus, assuming iO cannot be broken, a Bob that is able to decrypt implies
an adversary breaking the compute-and-compare obfuscation. This implies that
there must be an efficient algorithm that can predict 𝑦 = Can𝐴(𝑠) with non-
negligible probability given the function Can𝐴 and the auxiliary information
received by Bob. Similarly for Charlie.

Therefore, if Bob and Charlie, with their own quantum auxiliary information,
can both independently decrypt respectively (0, iO(𝐶)) and (1, iO(𝐶 ′)) with high
probability (where here 𝐶 and 𝐶 ′ only differ in that the former releases the
encrypted message on input a vector in 𝐴 + 𝑠, and 𝐶 ′ on input a vector in
𝐴⊥+𝑠′), then there exist efficient quantum algorithms for Bob and Charlie that
take as input the descriptions of Can𝐴(·) and Can𝐴⊥(·) respectively (or of the
subspace 𝐴), and their respective auxiliary information, and recover Can𝐴(𝑠) and
Can𝐴⊥(𝑠′) respectively with non-negligible probability. Since Can𝐴(𝑠) ∈ 𝐴 + 𝑠
and Can𝐴⊥(𝑠′) ∈ 𝐴⊥ + 𝑠′, this violates the strong monogamy property of coset
states described in Section 1.1.

Recall that this states that Alice, Bob and Charlie cannot cooperatively win
the following game with a challenger, except with negligible probability. The
challenger first prepares a uniformly random coset state |𝐴𝑠,𝑠′⟩ and gives the
state to Alice. Alice outputs two (possibly entangled) quantum states and sends
them to Bob and Charlie respectively. Finally, Bob and Charlie both get the
description of the subspace 𝐴. The game is won if Bob outputs a vector in 𝐴+ 𝑠
and Charlie outputs a vector in 𝐴⊥ + 𝑠′. Crucially, in this monogamy property,
Bob and Charlie will both receive the description of the subspace 𝐴 in the final
stage, yet it is still not possible for both of them to be simultaneously successful.

What allows to deduce the existence of efficient extracting algorithms is
the fact that the obfuscation of compute-and-compare programs from [GKW17,
WZ17] holds provided 𝑦 is computationally unpredictable given 𝑓 (and the aux-
iliary information). Thus, an algorithm that breaks the obfuscation property
implies an efficient algorithm that outputs 𝑦 (with noticeable probability) given
𝑓 (and the auxiliary information).

In our other construction from signature tokens and extractable witness en-
cryption, one can directly reduce unclonable decryption security to direct prod-
uct hardness. We do not discuss the details of this construction here, instead we
refer the reader to the full version.
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2.3 Copy-Protecting PRFs

Our last contribution is the construction of copy-protected PRFs assuming post-
quantum iO, one-way functions and the monogamy property we discussed in the
previous section. Alternatively just as for unclonable decryption, we can do away
with the monogamy property by assuming extractable witness encryption.

A copy-protectable PRF is a regular PRF 𝐹 : {0, 1}𝑘 × {0, 1}𝑚 → {0, 1}𝑚′
,

except that it is augmented with a quantum key generation procedure, which
we refer to as QKeyGen. This takes as input the classical PRF key 𝐾 and out-
puts a quantum state 𝜌𝐾 . The state 𝜌𝐾 allows to efficiently compute 𝐹 (𝐾,𝑥) on
any input 𝑥 (where correctness holds with overwhelming probability). Beyond
the standard PRF security, the copy-protected PRF satisfies the following addi-
tional security guarantee: any computationally bounded adversary that receives
𝜌𝐾 cannot process 𝜌𝐾 into two states, such that each state enables efficient
evaluation of 𝐹 (𝐾, ·) on uniformly random inputs.

A simplified version of our construction has the following structure. For the
rest of the section, we take all subspaces to be of 𝔽𝑛

2 with dimension 𝑛/2.

– The quantum key generation procedure QKeyGen takes as input a classical
PRF key 𝐾 and outputs a quantum key. The latter consists of a number
of uniformly sampled coset states |(𝐴𝑖)𝑠𝑖,𝑠′𝑖⟩, for 𝑖 ∈ [𝜆], together with a
(classical) obfuscation of the classical program 𝑃 that operates as follows. 𝑃
takes an input of the form (𝑥, 𝑣1, . . . , 𝑣𝜆); checks that each vector 𝑣𝑖 belongs
to the correct coset (𝐴𝑖 + 𝑠𝑖 if 𝑥𝑖 = 0, and 𝐴⊥𝑖 + 𝑠′𝑖 if 𝑥𝑖 = 1); if so, outputs
the value 𝐹 (𝐾,𝑥), otherwise outputs ⊥.

– A party in possession of the quantum key can evaluate the PRF on input
𝑥 as follows: for each 𝑖 such that 𝑥𝑖 = 1, apply 𝐻⊗𝑛 to |(𝐴𝑖)𝑠𝑖,𝑠′𝑖⟩. Measure
each resulting coset state in the standard basis to obtain vectors 𝑣1, . . . , 𝑣𝜆.
Run the obfuscated program on input (𝑥, 𝑣1, . . . , 𝑣𝜆).

Notice that the program has the classical PRF key 𝐾 hardcoded, as well as
the values 𝐴𝑖, 𝑠𝑖, 𝑠

′
𝑖, so giving the program in the clear to the adversary would be

completely insecure: once the adversary knows the key 𝐾, he can trivially copy
the functionality 𝐹 (𝐾, ·); and even if the key 𝐾 is hidden by the obfuscation, but
the 𝐴𝑖, 𝑠𝑖, 𝑠

′
𝑖 are known, a copy of the (classical) obfuscated program 𝑃 , together

with the 𝐴𝑖, 𝑠𝑖, 𝑠
′
𝑖 is sufficient to evaluate 𝐹 (𝐾, ·) on any input.

So, the hope is that an appropriate obfuscation will be sufficient to hide all
of these parameters. If this is the case, then the intuition for why the scheme
is secure is that in order for two parties to simultaneously evaluate correctly
on uniformly random inputs, each party should be able to produce a vector in
𝐴𝑖 + 𝑠 or in 𝐴⊥𝑖 + 𝑠′𝑖. If the two parties accomplish this separately, then this
implies that it is possible to simultaneously extract a vector in 𝐴𝑖 + 𝑠𝑖 and one
in 𝐴⊥𝑖 + 𝑠′𝑖, which should not be possible. 1

1 Again, we point out that we could not draw this conclusion if only a single party were
able to do the following two things, each with non-negligible probability: produce
a vector in 𝐴 + 𝑠𝑖 and produce a vector in 𝐴⊥ + 𝑠′𝑖. This is because in a quantum
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We will use iO to obfuscate the program 𝑃 . In the next part of this overview,
we will discuss how we are able to deal with the fact that the PRF key 𝐾
and the cosets are hardcoded in the program 𝑃 . First of all, we describe a bit
more precisely the copy-protection security that we wish to achieve. The latter is
captured by the following security game between a challenger and an adversary
(𝐴,𝐵,𝐶):

– The challenger samples a uniformly random PRF key 𝐾 and runs QKeyGen
to generate 𝜌𝐾 . Sends 𝜌𝐾 to 𝐴.

– 𝐴 sends quantum registers to two spatially separated parties 𝐵 and 𝐶.
– The challenger samples uniformly random inputs 𝑥, 𝑥′ to 𝐹 (𝐾, ·). Sends 𝑥

to 𝐵 and 𝑥′ to 𝐶.
– 𝐵 and 𝐶 return 𝑦 and 𝑦′ respectively to the challenger.

(𝐴,𝐵,𝐶) wins if 𝑦 = 𝐹 (𝐾,𝑥) and 𝑦′ = 𝐹 (𝐾,𝑥′).
Since the obfuscation we are using is not VBB, but only iO, there are two

potential issues with security. 𝐵 and 𝐶 could be returning correct answers not
because they are able to produce vectors in the appropriate cosets, but because:

(i) iO(𝑃 ) leaks information about the PRF key 𝐾.
(ii) iO(𝑃 ) leaks information about the cosets.

We handle issue (i) via a delicate “puncturing” argument [SW14]. At a high level,
a puncturable PRF 𝐹 is a PRF augmented with a procedure that takes a key 𝐾
and an input value 𝑥, and produces a “punctured” key 𝐾 ∖ {𝑥}, which enables
evaluation of 𝐹 (𝐾, ·) at any point other than 𝑥. The security guarantee is that a
computationally bounded adversary possessing the punctured key𝐾∖{𝑥} cannot
distinguish between 𝐹 (𝐾,𝑥) and a uniformly random value (more generally, one
can puncture the key at any polynomially sized set of points). Puncturable PRFs
can be obtained from OWFs using the [GGM86] construction [BW13].

By puncturing 𝐾 precisely at the challenge inputs 𝑥 and 𝑥′, one is able to
hardcode a punctured PRF key 𝐾 ∖ {𝑥, 𝑥′} in the program 𝑃 , instead of 𝐾, and
setting the output of program 𝑃 at 𝑥 to uniformly random 𝑧 and 𝑧′, instead
of to 𝐹 (𝐾,𝑥) and 𝐹 (𝐾,𝑥′) respectively. The full argument is technical, and
relies on the “hidden trigger” technique introduced in [SW14], which allows the
“puncturing” technique to work even when the program 𝑃 is generated before 𝑥
and 𝑥′ are sampled.

Once we have replaced the outputs of the program 𝑃 on the challenge inputs
𝑥, 𝑥′ with uniformly random outputs 𝑧, 𝑧′, we can handle issue (ii) in a similar
way to the case of unclonable decryption in the previous section.

By the security of iO, we can replace the behaviour of program 𝑃 at 𝑥 by
a suitable functionally equivalent compute-and-compare program that checks
membership in the appropriate cosets. We then replace this by an obfuscation
of the same compute-and-compare program, and finally by an obfuscation of the

world, being able to perform two tasks with good probability, does not imply being
able to perform both tasks simultaneously. So it is crucial that both parties are able
to separately recover the vectors.
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zero program. We can then perform a similar reduction as in the previous section
from an adversary breaking copy-protection security (and thus the security of
the compute-and-compare obfuscation) to an adversary breaking the monogamy
of entanglement game described in the previous section.

As in the previous section, we can replace the reliance on the conjectured
monogamy property by extractable witness encryption. In fact, formally, we
directly reduce the security of our copy-protected PRFs to the security of our
unclonable decryption scheme.

3 Preliminaries

In this paper, we use 𝜆 to denote security parameters. We denote a function
belonging to the class of polynomial functions by poly(·). We say a function
𝑓(·) : ℕ → ℝ+ is negligible if for all constant 𝑐 > 0, 𝑓(𝑛) < 1

𝑛𝑐 for all large
enough 𝑛. We use negl(·) to denote a negligible function. We say a function
𝑓(·) : ℕ→ ℝ+ is sub-exponential if there exists a constant 0 < 𝑐 ≤ 1, such that
𝑓(𝑛) ≥ 2𝑛

𝑐

for all large enough 𝑛. We use subexp(·) to denote a sub-exponential
function. When we refer to a probabilistic algorithm 𝒜, sometimes we need to
specify the randomness 𝑟 used by 𝒜 when running on some input 𝑥. We write
this as 𝒜(𝑥; 𝑟). For a finite set 𝑆, we use 𝑥 ← 𝑆 to denote uniform sampling
of 𝑥 from the set 𝑆. We denote [𝑛] = {1, 2, · · · , 𝑛}. A binary string 𝑥 ∈ {0, 1}ℓ
is represented as 𝑥1𝑥2 · · ·𝑥ℓ. For two strings 𝑥, 𝑦, 𝑥||𝑦 is the concatenation of
𝑥 and 𝑦. We refer to a probabilistic polynomial-time and quantum polynomial
time algorithm as PPT and QPT respectively.

For the rest of this paper, we will assume that all the classical cryptographic
primitives used are post-quantum secure, and we sometimes omit this description
for simplicity, except in formal definitions and theorems.

We omit the definitions of extracting, puncturable PRFs, injective punturable
PRFs, indistinguishability obfuscation (iO), and subspace hiding obfuscation
(shO). We refer the reader to the full version for these.

3.1 Compute-and-Compare Obfuscation

Definition 1 (Compute-and-Compare Program). Given a function 𝑓 :
{0, 1}ℓ𝗂𝗇 → {0, 1}ℓ𝗈𝗎𝗍 along with a target value 𝑦 ∈ {0, 1}ℓ𝗈𝗎𝗍 and a message
𝑧 ∈ {0, 1}ℓ𝗆𝗌𝗀 , we define the compute-and-compare program:

CC[𝑓, 𝑦, 𝑧](𝑥) =

{︃
𝑧 if 𝑓(𝑥) = 𝑦

⊥ otherwise

We define the following class of unpredictable distributions over pairs of the
form (CC[𝑓, 𝑦, 𝑧], aux), where aux is auxiliary quantum information. These dis-
tributions are such that 𝑦 is computationally unpredictable given 𝑓 and aux.
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Definition 2 (Unpredictable/Sub-exponentially Unpredictable Distri-
butions). We say that a family of distributions 𝐷 = {𝐷𝜆} where 𝐷𝜆 is a dis-
tribution over pairs of the form (CC[𝑓, 𝑦, 𝑧], aux) where aux is a quantum state,
belongs to the class of unpredictable distributions if the following holds. There
exists a negligible function negl, for all QPT algorithms 𝒜,

Pr
(𝖢𝖢[𝑓,𝑦,𝑧],𝖺𝗎𝗑)←𝐷𝜆

[︀
𝐴(1𝜆, 𝑓, aux) = 𝑦

]︀
≤ negl(𝜆).

If there exists a sub-exponential function subexp such that, for all QPT algo-
rithms 𝒜, the above probability is at most 1/subexp(𝜆), we say it belongs to the
class of sub-exponentially unpredictable distributions.

Definition 3 (Compute-and-Compare Obfuscation). A PPT algorithm
CC.Obf is an obfuscator for the class of unpredictable distributions (or sub-
exponentially unpredictable distributions) if for any family of distributions 𝐷 =
{𝐷𝜆} belonging to the class, the following holds:

– Functionality Preserving: there exists a negligible function negl such that for
all 𝜆, every program 𝑃 in the support of 𝐷𝜆,

Pr[∀𝑥, ̃︀𝑃 (𝑥) = 𝑃 (𝑥), ̃︀𝑃 ← CC.Obf(1𝜆, 𝑃 )] ≥ 1− negl(𝜆)

– Distributional Indistinguishability: there exists an efficient simulator Sim
such that:

(CC.Obf(1𝜆, 𝑃 ), aux) ≈𝑐 (Sim(1𝜆, 𝑃.param), aux)

where (𝑃, aux) ← 𝐷𝜆 and 𝑃.param consists the parameters of the circuit,
including input size, output size, circuit size and etc.

Combining the results of [WZ17, GKW17] with those of [Zha19c], one obtains
the following theorem. We refer to the full version for proofs and discussions.

Theorem 6. Assuming the existence of post-quantum iO and the quantum hard-
ness of LWE, there exist obfuscators for sub-exponentially unpredictable distri-
butions, as in Definition 3.

4 Coset States

This section is organized as follows. In Section 4.1, we introduce coset states.
In Section 4.2, we show that coset states satisfy both an information-theoretic
and a computational direct product hardness property. The latter immediately
yields a signature token scheme in the plain model assuming iO, (this is de-
scribed in Section 5). In Section 4.3 we show that coset states satisfy both an
information-theoretic monogamy of entanglement property (analogous to that
satisfied by BB84 states [TFKW13]), and a computational monogamy of entan-
glement property. The latter is used to obtain an unclonable decryption scheme
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from iO and extractable witness encryption (which will be presented in the full
version). In Section 4.4, we describe a strong version of the monogamy prop-
erty, which we conjecture to be true. The latter is used in Section 6.2 to obtain
an unclonable decryption scheme which does not assume extractable witness
encryption.

4.1 Definitions

In this subsection, we provide the basic definitions and properties of coset states.
For any subspace 𝐴, its complement is 𝐴⊥ = {𝑏 ∈ 𝔽𝑛 | ⟨𝑎, 𝑏⟩ mod 2 = 0 , ∀𝑎 ∈

𝐴}. It satisfies dim(𝐴)+dim(𝐴⊥) = 𝑛. We also let |𝐴| = 2dim(𝐴) denote the size
of the subspace 𝐴.

Definition 4 (Subspace States). For any subspace 𝐴 ⊆ 𝔽𝑛
2 , the subspace state

|𝐴⟩ is defined as

|𝐴⟩ = 1√︀
|𝐴|

∑︁
𝑎∈𝐴
|𝑎⟩ .

Note that given 𝐴, the subspace state |𝐴⟩ can be constructed efficiently.

Definition 5 (Coset States). For any subspace 𝐴 ⊆ 𝔽𝑛
2 and vectors 𝑠, 𝑠′ ∈ 𝔽𝑛

2 ,
the coset state |𝐴𝑠,𝑠′⟩ is defined as:

|𝐴𝑠,𝑠′⟩ =
1√︀
|𝐴|

∑︁
𝑎∈𝐴

(−1)⟨𝑠
′,𝑎⟩ |𝑎+ 𝑠⟩ .

Note that by applying 𝐻⊗𝑛, which is QFT for 𝔽𝑛
2 , to the state |𝐴𝑠,𝑠′⟩, one

obtains exactly |𝐴⊥𝑠′,𝑠⟩.
Additionally, note that given |𝐴⟩ and 𝑠, 𝑠′, one can efficiently construct |𝐴𝑠,𝑠′⟩

as follows: ∑︁
𝑎

|𝑎⟩ add 𝑠−−−→
∑︁
𝑎

|𝑎+ 𝑠⟩ 𝐻⊗𝑛

−−−→
∑︁

𝑎′∈𝐴⊥

(−1)⟨𝑎
′,𝑠⟩ |𝑎′⟩

adding 𝑠′−−−−−−→
∑︁

𝑎′∈𝐴⊥

(−1)⟨𝑎
′,𝑠⟩ |𝑎′ + 𝑠′⟩ 𝐻⊗𝑛

−−−→
∑︁
𝑎∈𝐴

(−1)⟨𝑎,𝑠
′⟩ |𝑎+ 𝑠⟩

For a subspace 𝐴 and vectors 𝑠, 𝑠′, we define 𝐴 + 𝑠 = {𝑣 + 𝑠 : 𝑣 ∈ 𝐴}, and
𝐴⊥ + 𝑠′ = {𝑣 + 𝑠′ : 𝑣 ∈ 𝐴⊥}.

When it is clear from the context, for ease of notation, we will write 𝐴 + 𝑠
to mean the program that checks membership in 𝐴 + 𝑠. For example, we will
often write iO(𝐴 + 𝑠) to mean an iO obfuscation of the program that checks
membership in 𝐴+ 𝑠.

4.2 Direct Product Hardness

We describe the computational direct product hardness property satisfied by
coset states. For more details, and a proof, we refer the reader to the full version.
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Theorem 7. Assume the existence of post-quantum iO and one-way function.
Let 𝐴 ⊆ 𝔽𝑛

2 be a uniformly random subspace of dimension 𝑛/2, and 𝑠, 𝑠′ be
uniformly random in 𝔽𝑛

2 . Given one copy of |𝐴𝑠,𝑠′⟩, iO(𝐴+ 𝑠) and iO(𝐴⊥ + 𝑠′),
any polynomial time adversary outputs a pair (𝑣, 𝑤) such that 𝑣 ∈ 𝐴 + 𝑠 and
𝑤 ∈ 𝐴⊥ + 𝑠′ with negligible probability.

The proof follows a similar outline to the proof of security of public-key
quantum money in [Zha19b]. The main difference is that our proof handles (and
leverages) coset states, instead of regular subspace states.

4.3 Monogamy-of-Entanglement Property

In this subsection, we argue that coset states satisfy an information-theoretic and
a computational monogamy-of-entanglement property. We will not make use of
these properties directly, instead we will have to rely on a stronger conjectured
monogamy-of-entanglement property, which is presented in subsection 4.4. Thus,
the properties that we prove in this subsection serve merely as “evidence” in
support of the stronger conjecture. Due to lack of space, we only discuss the
computational monogamy-of-entanglement property.

The game is between a challenger and an adversary (𝒜0,𝒜1,𝒜2).

– The challenger picks a uniformly random subspace 𝐴 ⊆ 𝔽𝑛 of dimension 𝑛
2 ,

and two uniformly random elements 𝑠, 𝑠′ ∈ 𝔽𝑛
2 . It sends |𝐴𝑠,𝑠′⟩, iO(𝐴 + 𝑠),

and iO(𝐴⊥ + 𝑠′) to 𝒜0.
– 𝒜0 creates a bipartite state on registers B and C. Then, 𝒜0 sends register B

to 𝒜1, and C to 𝒜2.
– The description of 𝐴 is then sent to both 𝒜1,𝒜2.
– 𝒜1 and 𝒜2 return respectively (𝑠1, 𝑠

′
1) and (𝑠2, 𝑠

′
2).

(𝒜0,𝒜1,𝒜2) wins if, for 𝑖 ∈ {1, 2}, 𝑠𝑖 ∈ 𝐴+ 𝑠 and 𝑠′𝑖 ∈ 𝐴⊥ + 𝑠′ .

Let CompMonogamy((𝒜0,𝒜1,𝒜2), 𝑛) be a random variable which takes the
value 1 if the game above is won, and takes the value 0 otherwise.

Theorem 8. Assume the existence of post-quantum iO and one-way function,
there exists a negligible function negl(·), for any QPT adversary (𝒜0,𝒜1,𝒜2),

Pr[CompMonogamy((𝒜0,𝒜1,𝒜2), 𝑛) = 1] = negl(𝑛) .

4.4 Conjectured Strong Monogamy Property

In this section, we describe a stronger version of the monogamy property, which
we conjecture to hold. The monogamy property is a slight (but significant) vari-
ation of the one stated in the last section (which we proved to be true). Recall
that there 𝒜1 and 𝒜2 are required to return pairs (𝑠1, 𝑠

′
1) and (𝑠2, 𝑠

′
2) respec-

tively, such that both 𝑠1, 𝑠2 ∈ 𝐴+ 𝑠 and 𝑠′1, 𝑠′2 ∈ 𝐴⊥ + 𝑠′. Now, we require that
it is hard for 𝒜1 and 𝒜2 to even return a single string 𝑠1 and 𝑠2 respectively
such that 𝑠1 ∈ 𝐴+ 𝑠 and 𝑠2 ∈ 𝐴⊥ + 𝑠′.

Formally, consider the following game between a challenger and an adversary
(𝒜0,𝒜1,𝒜2).
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– The challenger picks a uniformly random subspace 𝐴 ⊆ 𝔽𝑛
2 of dimension 𝑛

2 ,
and two uniformly random elements 𝑠, 𝑠′ ∈ 𝔽𝑛

2 . It sends |𝐴𝑠,𝑠′⟩ to 𝒜0.
– 𝒜0 creates a bipartite state on registers B and C. Then, 𝒜0 sends register B

to 𝒜1, and C to 𝒜2.
– The description of 𝐴 is then sent to both 𝒜1,𝒜2.
– 𝒜1 and 𝒜2 return respectively 𝑠1 and 𝑠2.

Let ITStrongMonogamy((𝒜0,𝒜1,𝒜2), 𝑛) be a random variable which takes the
value 1 if the game above is won by adversary (𝒜0,𝒜1,𝒜2), and takes the value
0 otherwise. We conjecture the following:
Conjecture 1. There exists a sub-exponential function subexp such that, for any
(unbounded) adversary (𝒜0,𝒜1,𝒜2),

Pr[ITStrongMonogamy((𝒜0,𝒜1,𝒜2), 𝑛) = 1] ≤ 1/subexp(𝑛) .

Assuming the conjecture is true, and assuming post-quantum iO and one-way
functions, we are able to prove the following computational strong monogamy
statement. Consider a game between a challenger and an adversary (𝒜0,𝒜1,𝒜2),
which is identical to the one described above except that all 𝒜0 additionally gets
the membership checking programs iO(𝐴+ 𝑠) and iO(𝐴⊥ + 𝑠′).

– The challenger picks a uniformly random subspace 𝐴 ⊆ 𝔽𝑛
2 of dimension 𝑛

2 ,
and two uniformly random elements 𝑠, 𝑠′ ∈ 𝔽𝑛

2 . It sends |𝐴𝑠,𝑠′⟩, iO(𝐴 + 𝑠),
and iO(𝐴⊥ + 𝑠′) to 𝒜0.

– 𝒜0 creates a bipartite state on registers B and C. Then, 𝒜0 sends register B
to 𝒜1, and C to 𝒜2.

– The description of 𝐴 is then sent to both 𝒜1,𝒜2.
– 𝒜1 and 𝒜2 return respectively 𝑠1 and 𝑠2.

(𝒜0,𝒜1,𝒜2) wins if, for 𝑠1 ∈ 𝐴+ 𝑠 and 𝑠2 ∈ 𝐴⊥ + 𝑠′.

Let CompStrongMonogamy((𝒜0,𝒜1,𝒜2), 𝑛) be a random variable which takes
the value 1 if the game above is won, and takes the value 0 otherwise.

Theorem 9. Assuming Conjecture 1 holds, and assuming the existence of post-
quantum iO and one-way functions, then there exists a negligible function negl(·),
for any QPT adversary (𝒜0,𝒜1,𝒜2),

Pr[CompStrongMonogamy((𝒜0,𝒜1,𝒜2), 𝑛) = 1] = negl(𝑛) .

We can further show a ‘sub-exponential strong monogamy property’ if we
additionally assume sub-exponentially secure iO and one-way functions.

Theorem 10. Assuming Conjecture 1 holds, and assuming the existence of sub-
exponentially secure post-quantum iO and one-way functions, then for any QPT
adversary (𝒜0,𝒜1,𝒜2),

Pr[CompStrongMonogamy((𝒜0,𝒜1,𝒜2), 𝑛) = 1] ≤ 1/subexp(𝑛) .

In the rest of the work, whenever we mention the ‘strong monogamy prop-
erty’, we refer to the computational monogamy property of Theorem 9 above.
Whenever we mention the ‘sub-exponentially strong monogamy property’, we
refer to the computational monogamy property of Theorem 10.
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5 Tokenized Signature Scheme from iO

In this section, we present tokenized signature scheme based on the computa-
tional direct product hardness property (Theorem 7).

5.1 Definitions

Definition 6 (Tokenized signature scheme). A tokenized signature (TS)
scheme consists of a tuple of QPT algorithms (KeyGen,TokenGen,Sign,Verify)
with the following properties:

– KeyGen(1𝜆) → (sk, pk): Takes as input 1𝜆, where 𝜆 is a security parameter,
and outputs a secret key, public (verification) key pair (sk, pk).

– TokenGen(sk) → |tk⟩: Takes as input a secret key sk and outputs a signing
token |tk⟩.

– Sign(𝑚, |tk⟩) → (𝑚, sig)/⊥: Takes as input a message 𝑚 ∈ {0, 1}* and a
token |tk⟩, and outputs either a message, signature pair (𝑚, sig) or ⊥.

– Verify(pk,𝑚, sig)→ 0/1: Takes as input an verification key, an alleged mes-
sage, signature pair (𝑚, sig), and outputs 0 (“reject”) or 1 (“accept”).

These algorithms satisfy the following. First is correctness. There exists a
negligible function negl(·), for any 𝜆 ∈ ℕ, 𝑚 ∈ {0, 1}*,

Pr[Verify(pk,𝑚, sig) = 1 :(𝑚, sig)← Sign(𝑚, |tk⟩), |tk⟩ ← TokenGen(sk),

(sk, pk)← KeyGen(1𝜆)] ≥ 1− negl(𝜆) .

Definition 7 (Length restricted TS scheme). A TS scheme is 𝑟-restricted
if it holds only for 𝑚 ∈ {0, 1}𝑟. We refer to a scheme that is 1-restricted as a
one-bit TS scheme.

For notational purposes, we introduce an additional algorithm Verifyℓ. The
latter takes as input a public key pk and ℓ pairs (𝑚ℓ, sigℓ), . . . , (𝑚ℓ, sigℓ). It checks
that 𝑚𝑖 ̸= 𝑚𝑗 for all 𝑖 ̸= 𝑗, and Verify(𝑚𝑖, sig𝑖) = 1 for all 𝑖 ∈ [ℓ]; it outputs 1 if
and only if they all hold. Next we define unforgeability.

Definition 8 (1-Unforgeability). A TS scheme is 1-unforgeable if for every
QPT adversary 𝒜, there exists a negligible function negl(·), for every 𝜆:

Pr

[︂
(𝑚0, sig0,𝑚1, sig1)← 𝒜(pk, |tk⟩)
Verify2(pk,𝑚0, sig0,𝑚1, sig1) = 1

:
(sk, pk)← KeyGen(1𝜆)
|tk⟩ ← TokenGen(sk)

]︂
≤ negl(𝜆) .

Definition 9 (Unforgeability). A TS scheme is unforgeable if for every QPT
adversary 𝒜, there exists a negligible function negl(·), for every 𝜆, 𝑙 = poly(𝜆):

Pr

⎡⎢⎢⎢⎣{𝑚𝑖, sig𝑖}𝑖∈[𝑙+1] ← 𝒜(pk, {|tk𝑖⟩}𝑖∈[𝑙])
Verify𝑙+1(pk, {𝑚𝑖, sig𝑖}𝑖∈[𝑙+1]) = 1

:

(sk, pk)← KeyGen(1𝜆)
|tk1⟩ ← TokenGen(sk)

...
|tk𝑙⟩ ← TokenGen(sk)

⎤⎥⎥⎥⎦ ≤ negl(𝜆) .
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A tokenized signature scheme should also satisfy a revocability property. The
revocability property follows straightforwardly from unforgeability [BS16]. Thus
to show a construction is secure, we only need to focus on proving unforgeability.

The following theorem says that 1-unforgeability is sufficient to achieve a full
blown TS scheme.

Theorem 11 ([BS16]). A one-bit 1-unforgeable TS scheme implies a (full
blown) TS scheme, assuming the existence of a quantum-secure digital signature
scheme.

In the next section, we give our construction of a one-bit 1-unforgeable TS
scheme from coset states.

5.2 Tokenized Signature Construction

Construction.

– KeyGen(1𝜆): Set 𝑛 = poly(𝜆). Sample uniformly 𝐴 ⊆ 𝔽𝑛
2 . Sample 𝑠, 𝑠′ ← 𝔽𝑛

2 .
Output sk = (𝐴, 𝑠, 𝑠′) (where by 𝐴 we mean a description of the subspace 𝐴)
and pk = (iO(𝐴+ 𝑠), iO(𝐴⊥ + 𝑠′)).

– TokenGen(sk): Takes as input sk of the form (𝐴, 𝑠, 𝑠′). Outputs |tk⟩ = |𝐴𝑠,𝑠′⟩.
– Sign(𝑚, |tk⟩): Takes as input 𝑚 ∈ {0, 1} and a state |tk⟩ on 𝑛 qubits. Com-

pute 𝐻⊗𝑛|tk⟩ if 𝑚 = 1, otherwise do nothing to the quantum state. It then
measures in the standard basis. Let sig be the outcome. Output (𝑚, sig).

– Verify(pk, (𝑚, sig)): Parse pk as pk = (𝐶0, 𝐶1) where 𝐶0 and 𝐶1 are circuits.
Output 𝐶𝑚(sig).

Theorem 12. Assuming post-quantum iO and one-way function, the scheme of
Construction 5.2 is a one-bit 1-unforgeable tokenized signature scheme.

Proof. Security follows immediately from Theorem 7.

Corollary 1. Assuming post-quantum iO, one-way function(which implies digi-
tal signature) and a quantum-secure digital signature scheme, there exists a (full
blown) tokenized signature scheme.

Proof. This is an immediate consequence of Theorems 11 and 12.

6 Single-Decryptor Encryption

In this section, we formally introduce unclonable decryption, i.e. single-decryptor
encryption [GZ20]. Then we describe two constructions and prove their security.

Our first construction (Section 6.2) relies on the strong monogamy-of-entanglement
property (Conjecture 1), the existence of post-quantum one-way function, in-
distinguishability obfuscation and compute-and-compare obfuscation for (sub-
exponentially) unpredictable distributions (whose existence has been discussed
in Section 3.1). Our second construction has a similar structure. It does not
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rely on the strong monogamy-of-entanglement property for coset states, but
on the (weaker) direct product hardness property (Theorem 7). However, the
construction additionally relies on a much stronger cryptographic primitive –
post-quantum extractable witness encryption (as well post-quantum one-way
functions and indistinguishability obfuscation). Due to lack of space, we refer
the reader to the full version for further the latter construction.

6.1 Definitions

Definition 10 (Single-Decryptor Encryption Scheme). A single-decryptor
encryption scheme consists of the following efficient algorithms:

– Setup(1𝜆)→ (sk, pk) : a (classical) probabilistic algorithm that takes as input
a security parameter 𝜆 and outputs a classical secret key sk and public key
pk.

– QKeyGen(sk) → 𝜌𝗌𝗄 : a quantum algorithm that takes as input a secret key
sk and outputs a quantum secret key 𝜌𝗌𝗄.

– Enc(pk,𝑚) → ct : a (classical) probabilistic algorithm that takes as input a
public key pk, a message 𝑚 and outputs a classical ciphertext ct.

– Dec(𝜌𝗌𝗄, ct) → 𝑚/⊥ : a quantum algorithm that takes as input a quantum
secret key 𝜌𝗌𝗄 and a ciphertext ct, and outputs a message 𝑚 or a decryption
failure symbol ⊥.

A secure single-decryptor encryption scheme should satisfy the following:

Correctness: There exists a negligible function negl(·), for all 𝜆 ∈ ℕ, for all
𝑚 ∈ℳ,

Pr

[︂
Dec(𝜌𝗌𝗄, ct) = 𝑚

⃒⃒⃒⃒
(sk, pk)← Setup(1𝜆), 𝜌𝗌𝗄 ← QKeyGen(sk)

ct← Enc(pk,𝑚)

]︂
≥ 1− negl(𝜆)

Note that correctness implies that a honestly generated quantum decryption
key can be used to decrypt correctly polynomially many times, from the
gentle measurement lemma [Aar05].

CPA Security: The scheme should satisfy (post-quantum) CPA security, i.e.
indistinguishability under chosen-plaintext attacks: for every (stateful) QPT
adversary 𝒜, there exists a negligible function negl(·) such that for all 𝜆 ∈ ℕ,
the following holds:

Pr

⎡⎣𝒜(ct) = 𝑏 :
(sk, pk)← Setup(1𝜆)

((𝑚0,𝑚1) ∈ℳ2)← 𝒜(1𝜆, pk)
𝑏← {0, 1}; ct← Enc(pk,𝑚𝑏)

⎤⎦ ≤ 1

2
+ negl(𝜆),

Anti-Piracy Security Next, we define anti-piracy security via the anti-piracy
game below. Recall that, intuitively, anti-piracy security says that it is infeasible
for a pirate who receives a quantum secret key to produce two quantum keys,
which both allow successful decryption. This can be formalized as:
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(CPA-style Anti-piracy) We ask the pirate to provide a pair of messages (𝑚0,𝑚1)
along with two quantum secret keys, and we test whether the two keys allow
to (simultanoeusly) distinguish encryptions of 𝑚0 and 𝑚1.

In order to describe the security games, it is convenient to first introduce
the concept of a quantum decryptor. The following definition is implicitly with
respect to some single-decryptor encryption scheme (Setup,QKeyGen,Enc,Dec).

Definition 11 (Quantum decryptor). A quantum decryptor for ciphertexts
of length 𝑛, is a pair (𝜌, 𝑈) where 𝜌 is a state, and 𝑈 is a general quantum circuit
acting on 𝑛+𝑚 qubits, where 𝑚 is the number of qubits of 𝜌.

For a ciphertext 𝑐 of length 𝑛, we say that we run the quantum decryptor
(𝜌, 𝑈) on ciphertext 𝑐 to mean that we execute the circuit 𝑈 on inputs |𝑐⟩ and 𝜌.

We are now ready to describe the CPA-style anti-piracy game.

Definition 12 (Anti-Piracy Game, CPA-style). Let 𝜆 ∈ ℕ+. The CPA-
style anti-piracy game is the following game between a challenger and an adver-
sary 𝒜.

1. Setup Phase: The challenger samples keys (sk, pk)← Setup(1𝜆).
2. Quantum Key Generation Phase: The challenger sends 𝒜 the classical

public key pk and one copy of quantum decryption key 𝜌𝗌𝗄 ← QKeyGen(sk).
3. Output Phase: 𝒜 outputs a pair of distinct messages (𝑚0,𝑚1). It also

outputs a (possibly mixed and entangled) state 𝜎 over two registers 𝑅1, 𝑅2

and two general quantum circuits 𝑈1 and 𝑈2. We interpret 𝒜’s output as
two (possibly entangled) quantum decryptors D1 = (𝜎[𝑅1], 𝑈1) and D2 =
(𝜎[𝑅2], 𝑈2).

4. Challenge Phase: The challenger samples 𝑏1, 𝑏2 and 𝑟1, 𝑟2 uniformly at
random and generates ciphertexts 𝑐1 = Enc(pk,𝑚𝑏1 ; 𝑟1) and 𝑐2 = Enc(pk,𝑚𝑏2 ; 𝑟2).
The challenger runs quantum decryptor D1 on 𝑐1 and D2 on 𝑐2, and checks
that D1 outputs 𝑚𝑏1 and D2 outputs 𝑚𝑏2 . If so, the challenger outputs 1 (the
game is won by the adversary), otherwise outputs 0.

We denote by AntiPiracyCPA(1𝜆,𝒜) a random variable for the output of the game.

Note that an adversary can succeed in this game with probability at least
1/2. It simply gives 𝜌𝗌𝗄 to the first quantum decryptor and the second decryptor
randomly guesses the plaintext.

We remark that one could have equivalently formulated this definition by
having the pirate send registers 𝑅1 and 𝑅2 to two separated parties Bob and
Charlie, who then receive ciphertexts from the challenger sampled as in the
Challenge Phase above. The two formulations are equivalent upon identifying
the quantum circuits 𝑈1 and 𝑈2.

Definition 13 (Anti-Piracy Security, CPA-style). Let 𝛾 : ℕ+ → [0, 1].
A single-decryptor encryption scheme satisfies 𝛾-anti-piracy security, if for any
QPT adversary 𝒜, there exists a negligible function negl(·) such that the following
holds for all 𝜆 ∈ ℕ:

Pr
[︀
𝑏 = 1, 𝑏← AntiPiracyCPA(1𝜆,𝒜)

]︀
≤ 1

2
+ 𝛾(𝜆) + negl(𝜆) (1)
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It is not difficult to show that if 𝛾-anti-piracy security holds for all inverse
poly 𝛾, then this directly implies CPA security (we refer the reader to the full
version for the proof of this implication).

6.2 Construction from Strong Monogamy Property

In this section, we give our first construction of a single-decryptor encryption
scheme, whose security relies on the strong monogamy-of-entanglement property
from Section 4.4.

In the rest of the paper, to simplify notation, whenever it is clear from the
context, we will denote a program that checks membership in a set 𝑆 simply by
𝑆.

Construction 13.

– Setup(1𝜆)→ (sk, pk) :
∙ Sample 𝜅 random (𝑛/2)-dimensional subspaces 𝐴𝑖 ⊆ 𝔽𝑛

2 for 𝑖 = 1, 2, · · · , 𝜅,
where 𝑛 = 𝜆 and 𝜅 = 𝜅(𝜆) is a polynomial in 𝜆.

∙ For each 𝑖 ∈ [𝜅], choose two uniformly random vectors 𝑠𝑖, 𝑠′𝑖 ∈ 𝔽𝑛
2 .

∙ Prepare the programs iO(𝐴𝑖+𝑠𝑖) and iO(𝐴⊥𝑖 +𝑠′𝑖) (where we assume that
the programs 𝐴𝑖+𝑠𝑖 and 𝐴⊥𝑖 +𝑠′𝑖 are padded to some appropriate length).

∙ Output sk = {𝐴𝑖, 𝑠𝑖, 𝑠
′
𝑖}𝑖∈[𝜅], pk = {iO(𝐴𝑖 + 𝑠𝑖), iO(𝐴

⊥
𝑖 + 𝑠′𝑖)}𝑖∈[𝜅].

– QKeyGen(sk) → 𝜌𝗌𝗄 : on input sk = {𝐴𝑖, 𝑠𝑖, 𝑠
′
𝑖}𝑖∈[𝜅], output the “quantum

secret key” 𝜌𝗌𝗄 = {|𝐴𝑖,𝑠𝑖,𝑠′𝑖
⟩}𝑖∈[𝜅]. Recall that each |𝐴𝑖,𝑠𝑖,𝑠′𝑖

⟩ is

|𝐴𝑖,𝑠𝑖,𝑠′𝑖
⟩ = 1√︀

|𝐴𝑖|

∑︁
𝑎∈𝐴𝑖

(−1)⟨𝑎,𝑠
′
𝑖⟩ |𝑎+ 𝑠𝑖⟩ .

– Enc(pk,𝑚)→ ct : on input a public key pk = {iO(𝐴𝑖 + 𝑠𝑖), iO(𝐴
⊥
𝑖 + 𝑠′𝑖)}𝑖∈[𝜅]

and message 𝑚:
∙ Sample a uniformly random string 𝑟 ← {0, 1}𝜅.
∙ Let 𝑟𝑖 be the 𝑖-th bit of 𝑟. Define 𝑅0

𝑖 = iO(𝐴𝑖 + 𝑠𝑖) and 𝑅1
𝑖 = iO(𝐴⊥𝑖 + 𝑠′𝑖).

Let P𝑚,𝑟 be the following program:

On input 𝑢 = 𝑢1||𝑢2|| · · · ||𝑢𝜅 (where each
𝑢𝑖 ∈ 𝔽𝑛

2 ):
1. If for all 𝑖 ∈ [𝜅], 𝑅𝑟𝑖

𝑖 (𝑢𝑖) = 1:
Output 𝑚

2. Else:
Output ⊥

Fig. 1. Program 𝑃𝑚,𝑟

∙ Let P̂𝑚,𝑟 = iO(P𝑚,𝑟). Output ciphertext ct = (P̂𝑚,𝑟, 𝑟).
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– Dec(𝜌𝗌𝗄, ct)→ 𝑚/⊥ : on input 𝜌𝗌𝗄 = {|𝐴𝑖,𝑠𝑖,𝑠′𝑖
⟩}𝑖∈[𝜅] and ct = (P̂𝑚,𝑟, 𝑟):

∙ For each 𝑖 ∈ [𝜅], if 𝑟𝑖 = 1, apply 𝐻⊗𝑛 to the 𝑖-th state |𝐴𝑖,𝑠𝑖,𝑠′𝑖
⟩; if 𝑟𝑖 = 0,

leave the 𝑖-th state |𝐴𝑖,𝑠𝑖,𝑠′𝑖
⟩ unchanged. Denote the resulting state by 𝜌*𝗌𝗄.

∙ Evaluate the program P̂𝑚,𝑟 on input 𝜌*𝗌𝗄 in superposition; measure the
evaluation register and denote the outcome by 𝑚′. Output 𝑚′.

∙ Rewind by applying the operations in the first step again.

Correctness. Correctness and efficiency easily follow from the construction.
For security, we have the following theorem (proved in the full version):

Theorem 14 (Regular Anti-Piracy). Assuming the existence of post-quantum
iO, one-way functions, compute-and-compare obfuscation for the class of unpre-
dictable distributions (as in Definition 3), and the strong monogamy-of-entanglement
property (Conjecture 1), the single-decryptor encryption scheme of Construction
13 has regular 𝛾-anti-piracy security for 𝛾 = 0.

Similarly, assuming the existence of post-quantum sub-exponentially secure
iO, one-way functions, the quantum hardness of LWE and assuming the strong
monogamy-of-entanglement property (Conjecture 1), the single-decryptor encryp-
tion scheme of Construction 13 has regular 𝛾-anti-piracy security for 𝛾 = 0.

In the above theorem, the quantum hardness of LWE is used to build compute-
and-compare obfuscation for sub-exponentially unpredictable distributions.

7 Copy-Protection of Pseudorandom Functions

In this section, we formally define copy-protection of pseudorandom functions.
Then, we describe a construction that essentially builds on the single-decryptor
encryption scheme described in Section 6.2 (together with post-quantum sub-
exponentially secure one-way functions and iO). We remark that all of the PRFs
that we use can be constructed from post-quantum one-way functions. We refer
the reader to [SW14] and the full version for further details.

7.1 Definitions

In what follows, the PRF 𝐹 : [𝐾]× [𝑁 ]→ [𝑀 ], implicitly depends on a security
parameter 𝜆. We denote by Setup(·) the procedure that samples a PRF key.

Definition 14 (Copy-Protection of PRF). A copy-protection scheme for a
PRF 𝐹 : [𝐾]× [𝑁 ]→ [𝑀 ] consists of the following polynomial-time algorithms:

QKeyGen(𝐾): takes a key 𝐾 and outputs a quantum key 𝜌𝐾 ;
Eval(𝜌𝐾 , 𝑥): takes a quantum key 𝜌𝐾 and an input 𝑥 ∈ [𝑁 ]. It outputs a classical

string 𝑦 ∈ [𝑀 ].

A copy-protection scheme should satisfy the following properties:
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Definition 15 (Correctness). There exists a negligible function negl(·), for all
𝜆, all 𝐾 ← Setup(1𝜆), all inputs 𝑥,

Pr[Eval(𝜌𝐾 , 𝑥) = 𝐹 (𝐾,𝑥) : 𝜌𝐾 ← QKeyGen(𝐾)] ≥ 1− negl(𝜆) .

Note that the correctness property implies that the evaluation procedure has
an “almost unique” output. This means that the PRF can be evaluated (and
rewound) polynomially many times, without disturbing the quantum key 𝜌𝐾 ,
except negligibly.

Definition 16 (Anti-Piracy Security). Let 𝜆 ∈ ℕ+. Consider the following
game between a challenger and an adversary 𝒜:

1. The challenger samples 𝐾 ← Setup(1𝜆) and 𝜌𝐾 ← QKeyGen(𝐾). It gives
𝜌𝐾 to 𝒜;

2. 𝒜 returns to the challenger a bipartite state 𝜎 on registers 𝑅1 and 𝑅2, as
well as general quantum circuits 𝑈1 and 𝑈2.

3. The challenger samples uniformly random 𝑢,𝑤 ← [𝑁 ]. Then runs 𝑈1 on
input (𝜎[𝑅1], 𝑢), and runs 𝑈2 on input (𝜎[𝑅2], 𝑤). The outcome of the game
is 1 if and only if the outputs are 𝐹 (𝐾,𝑢) and 𝐹 (𝐾,𝑤) respectively.

Denote by CopyProtectionGame(1𝜆,𝒜) a random variable for the output of
the game.

We say the scheme has anti-piracy security if for every polynomial-time quan-
tum algorithm 𝒜, there exists a negligible function negl(·), for all 𝜆 ∈ ℕ+,

Pr
[︀
𝑏 = 1, 𝑏← CopyProtectionGame(1𝜆,𝒜)

]︀
= negl(𝜆) .

7.2 Construction

In this section, we describe a construction of a copy-protection scheme for a
class of PRFs. We will eventually reduce security of this construction to security
of the single-decryptor encryption scheme of Section 6.2, and we will therefore
inherit the same assumptions.

Let 𝜆 be the security parameter. Our construction copy-protects a PRF 𝐹1 :
[𝐾𝜆] × [𝑁𝜆] → [𝑀𝜆] where 𝑁 = 2𝑛(𝜆) and 𝑀 = 2𝑚(𝜆), for some polynomials
𝑛(𝜆) and 𝑚(𝜆), satisfying 𝑛(𝜆) ≥ 𝑚(𝜆) + 2𝜆+ 4. For convenience, we will omit
writing the dependence on 𝜆, when it is clear from the context. Moreover, 𝐹1

should be a puncturable extracting PRF with error 2−𝜆−1. Such PRFs exist
assuming post-quantum one-way functions.

Our copy-protection construction for 𝐹1, will make use of the following ad-
ditional building blocks:

1. A puncturable extracting PRF 𝐹1(𝐾1, ·) that accepts inputs of length 𝑛 =
ℓ0 + ℓ1 + ℓ2 and outputs strings of length 𝑚. It is extracting when the input
min-entropy is greater than 𝑚+2𝜆+4. By Theorem 3 in [SW14], assuming
one-way functions exist, as long as 𝑛 ≥ 𝑚 + 2𝜆 + 4, 𝐹1 is a puncturable
extracting PRF with error less than 2−𝜆−1.
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2. A puncturable statistically injective PRF 𝐹2(𝐾2, ·) that accepts inputs of
length ℓ2 and outputs strings of length ℓ1. By Theorem 2 in [SW14], assum-
ing one-way functions exist, as long as ℓ1 ≥ 2ℓ2 + 𝜆, 𝐹2 is a puncturable
statistically injective PRF with failure probability 2−𝜆.

3. A puncturable PRF 𝐹3(𝐾3, ·) that accepts inputs of length ℓ1 and outputs
strings of length ℓ2. By Theorem 1 in [SW14], assuming one-way functions
exist, 𝐹3 is a puncturable PRF.

Note that PRF 𝐹1(𝐾1, ·) is the PRF functionality we will copy-protect. The
PRFs 𝐹2(𝐾2, ·), 𝐹3(𝐾3, ·) are just building blocks in the construction.

In Figures 2, 3, we describe a copy-protection construction for PRF 𝐹1.

𝖰𝖪𝖾𝗒𝖦𝖾𝗇(𝐾1): Sample uniformly random subspaces 𝐴𝑖 of dimension
𝜆/2 and vectors 𝑠𝑖, 𝑠

′
𝑖 for 𝑖 = 1, 2, · · · , ℓ0. Sample PRF keys 𝐾2,𝐾3

for 𝐹2, 𝐹3. Prepare the programs 𝑅0
𝑖 = 𝗂𝖮(𝐴𝑖 + 𝑠𝑖) and 𝑅1

𝑖 =
𝗂𝖮(𝐴⊥

𝑖 + 𝑠′𝑖) (with appropriately padded length), and let 𝑃 be the
program described in Figure 3. Output the quantum key 𝜌𝐾 =
({|𝐴𝑖,𝑠𝑖,𝑠

′
𝑖
⟩}𝑖∈[ℓ0], 𝗂𝖮(𝑃 )).

𝖤𝗏𝖺𝗅(𝜌𝐾 , 𝑥): Let 𝜌𝐾 = ({|𝐴𝑖,𝑠𝑖,𝑠
′
𝑖
⟩}𝑖∈[ℓ0], 𝗂𝖮(𝑃 )). Let 𝑥 = 𝑥0||𝑥1||𝑥2 and

𝑥0 is of length ℓ0. For all 𝑖 ∈ [ℓ0], if 𝑥0,𝑖 is 1, apply 𝐻⊗𝑛 to |𝐴𝑖,𝑠𝑖,𝑠
′
𝑖
⟩.

Otherwise, leave the state unchanged.
Let 𝜎 be the resulting state. Run 𝗂𝖮(𝑃 ) coherently on input 𝑥 and 𝜎,
and measure the final output register to obtain 𝑦.

Fig. 2. Quantum copy-protection scheme for PRFs.

The program 𝑃 takes as input 𝑥 and a list of ℓ0 vectors 𝑣1, · · · , 𝑣ℓ0 and has
two modes. If 𝑥 is not in the sparse hidden trigger set (not passing the ‘if’ check
in the first line), the program is in the normal mode: it only outputs a PRF
evaluation of 𝑥 if every 𝑣𝑖 is in the corresponding coset. Otherwise, the program
is in the hidden trigger mode. It will compute a circuit 𝑄′ from the input 𝑥 and
output 𝑄′(𝑣1, · · · , 𝑣ℓ0). On almost all inputs except those sparse hidden triggers,
the program runs in its normal mode.

We obtain the following theorem (which we prove in the full version):

Theorem 15. Assuming the existence of post-quantum iO, one-way functions,
compute-and-compare obfuscation for the class of unpredictable distributions (as
in Definition 3), and the strong monogamy-of-entanglement property (Conjecture
1), our construction satisfies anti-piracy security (as in Definition 16).

Similarly, assuming the existence of post-quantum sub-exponentially secure
iO, one-way functions, the quantum hardness of LWE and assuming the strong
monogamy-of-entanglement property (Conjecture 1), our construction satisfies
anti-piracy security.
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Hardcoded: Keys 𝐾1,𝐾2,𝐾3, 𝑅0
𝑖 , 𝑅

1
𝑖 for all 𝑖 ∈ [ℓ0].

On input 𝑥 = 𝑥0||𝑥1||𝑥2 and vectors 𝑣1, · · · , 𝑣ℓ0 :

1. If 𝐹3(𝐾3, 𝑥1)⊕ 𝑥2 = 𝑥′
0||𝑄′ and 𝑥0 = 𝑥′

0 and 𝑥1 = 𝐹2(𝐾2, 𝑥
′
0||𝑄′):

Hidden Trigger Mode: It treats 𝑄′ as a (classical) circuit and
outputs 𝑄′(𝑣1, · · · , 𝑣ℓ0).

2. Otherwise, it checks if the following holds: for all 𝑖 ∈ [ℓ0], 𝑅𝑥0,𝑖(𝑣𝑖) = 1.
Normal Mode: If all hold, it outputs 𝐹1(𝐾1, 𝑥). Otherwise, it

outputs ⊥.

Fig. 3. Program 𝑃
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