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Abstract. Proving the security of masked implementations in theoreti-
cal models that are relevant to practice and match the best known attacks
of the side-channel literature is a notoriously hard problem. The random
probing model is a promising candidate to contribute to this challenge,
due to its ability to capture the continuous nature of physical leakage
(contrary to the threshold probing model), while also being convenient to
manipulate in proofs and to automate with verification tools. Yet, despite
recent progress in the design of masked circuits with good asymptotic
security guarantees in this model, existing results still fall short when it
comes to analyze the security of concretely useful circuits under realistic
noise levels and with low number of shares. In this paper, we contribute
to this issue by introducing a new composability notion, the Probe Dis-
tribution Table (PDT), and a new tool (called STRAPS, for the Sampled
Testing of the RAndom Probing Security). Their combination allows us
to significantly improve the tightness of existing analyses in the most
practical (low noise, low number of shares) region of the design space.
We illustrate these improvements by quantifying the random probing se-
curity of an AES S-box circuit, masked with the popular multiplication
gadget of Ishai, Sahai and Wagner from Crypto 2003, with up to six
shares.

1 Introduction

Context. Modern cryptography primarily analyzes the security of algorithms
or protocols in a black-box model where the adversary has only access to their
inputs and outputs. Since the late nineties, it is known that real-world implemen-
tations suffer from so-called side-channel leakage, which gives adversaries some
information about intermediate computation states that are supposedly hidden.
In this work, we focus on an important class of side-channel attacks against
embedded devices, which exploits physical leakage such as their power consump-
tion [26] or electro-magnetic radiation [22]. We are in particular concerned with
the masking countermeasure [14], which is one of the most investigated solutions
to mitigate side-channel attacks. In this context, the main scientific challenge we
tackle is to find out security arguments that are at the same time practically
relevant and theoretically sound.

Two separated worlds. In view of the difficulty to model side-channel attacks,
their practical and theoretical investigations have first followed quite indepen-
dent paths. On the practical side, the analysis of masked implementations as



currently performed by evaluation laboratories is mostly based on statistical
testing. Approaches for this purpose range from detection-based testing, which
aims at identifying leakage independently of whether it can be exploited [32],
to attack-based testing under various adversarial assumptions, which aims at
approximating (if possible bounding) the concrete security level of the imple-
mentation with actual (profiled or non-profiled) attacks such as [15,11] and their
numerous follow ups. On the theoretical side, the first model introduced to cap-
ture the security of masked implementations is the t-threshold probing model
introduced by Ishai, Sahai and Wagner (ISW) [24]. In this model, leaky compu-
tation is captured as the evaluation of an arithmetic circuit, and the adversary
may choose t wires of the circuit for which she receives the value they carry. The
adversary succeeds if she recovers a secret input variable of the circuit.

The pros and cons of both approaches are easy to spot. On the one hand,
statistical testing provides quantitative evaluations against concrete adversaries,
but the guarantees it offers are inherently heuristic and limited to the specific set-
ting used for the evaluations. On the other hand, theoretical models enable more
general conclusions while also having a good potential for automation [5], but
they may imperfectly abstract physical leakage. For some imperfections, tweak-
ing the model appeared to be feasible. For example, ISW’s threshold probing
model initially failed to capture physical defaults such as glitches that can make
masking ineffective [27,28]. Such glitches were then integrated in the model [21]
and automated [10,4,6]. Yet, it remained that the threshold probing model is in-
herently unable to capture the continuous nature of physical leakage, and there-
fore the guarantees it provides can only be qualitative, as reflected by the notion
of probing security order (i.e., the number of shares that the adversary can
observe without learning any sensitive information). This also implies that so-
called horizontal attacks taking advantage of multiple leakage points to reduce
the noise of the implementations cannot be captured by this model [7].

An untight unifying approach. As a result of this limitation, the noisy leak-
age model was introduced by Prouff and Rivain [30]. In this model, each wire
in the circuit leaks independently a noisy (i.e., partially randomized) value to
the adversary. In an important piece of work, Duc et al. then proved that secu-
rity in the threshold probing model implies security in the noisy leakage model,
for some values of the model parameters [17]. This result created new bridges
between the practical and theoretical analyzes of masked implementations. In
particular, it made explicit that the security of this countermeasure depends
both on a security order (which, under an independence assumption, depends
on the number of shares) and on the noise level of the shares’ leakage. So con-
ceptually, it implies that it is sound to first evaluate the probing security order
of an implementation, next to verify that this security order is maintained in
concrete leakages (e.g., using detection-based statistical testing) and finally to
assess the noise level. Yet, and as discussed in [18], such an analysis is still not
tight: choosing security parameters based on this combination of models and
the reductions connecting them would lead to overly expensive implementations
compared to a choice based on the best known (profiled) side-channel attacks.



A tighter middle-ground. Incidentally, the reduction of Duc et al. also consid-
ered an intermediate level of abstraction denoted as the random probing model.
In this model, each wire in the circuit independently leaks its value with proba-
bility p (and leaks no information with probability 1 − p). Technically, it turns
out that the aforementioned tightness issue is mostly due to the reduction from
the threshold probing model to the random probing model, while there is a
closer relationship between the random probing model and the noisy leakage
model [19,29]. Since the random probing model remains relatively easy to manip-
ulate (and automate) in circuit-level proofs, it therefore appears as an interesting
candidate to analyze masking schemes with tight security guarantees.

Like the noisy leakage model, the random probing model captures the concept
of “noise rate”, which specifies how the noise level of an implementation must
evolve with the number of shares in order to remain secure against horizontal
attacks. As a result, different papers focused on the design and analysis of gadgets
with good (ideally constant) noise rate [1,3,2,23,20]. While these papers provide
important steps in the direction of asymptotically efficient masking schemes, the
actual number of shares they need to guarantee a given security level and/or
the noise level they require to be secure remain far from practical. To the best
of our knowledge, the most concrete contribution in this direction is the one
of Beläıd et al. [8,9], which introduced a compiler that can generate random
probing secure circuits from small gadgets satisfying a notion of “random probing
expandability”, together with a tool (called VRAPS) that quantifies the random
probing security of a circuit from its leakage probability. With this tool, they
reduce the level of noise required for security to practically acceptable values,
but the number of shares required in order to reach a given security level for
their (specialized) constructions is still significantly higher than expected from
practical security evaluations – we give an example below.

Our contributions. In this paper, we improve the tightness of masking security
proofs in the most practical (low noise, low number of shares) region of the
design space, focusing on practical ISW-like multiplication gadgets, integrated
in an AES S-box design for illustration purposes. More precisely:

We first introduce STRAPS, a tool for the Sampled Testing of the RAndom
Probing Security of small circuits, which uses the Monte-Carlo technique for
probability bounding and is released under an open source license.1

Since this tool is limited to the analysis of small circuits and/or small security
orders due to computational reasons, we next combine it with a new composi-
tional strategy that exploits a new security property for masked gadgets, the
Probe Distribution Table (PDT), which gives tighter security bounds for com-
posed circuits and is integrated in the STRAPS tool. This combination of tool
and compositional strategy allows us analyzing significantly larger circuits and
security orders than an exhaustive approach, while also being able to analyze
any circuit (i.e., it does not rely on an expansion strategy [2]).

We finally confirm the practical relevance of our findings by applying them
to a masked AES S-box using ISW gadgets. We show how to use them in or-

1 https://github.com/cassiersg/STRAPS
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der to discuss the trade-off between the security order and the noise level (i.e.,
leakage probability) of concrete masked implementations on formal bases. As
an illustration, we use our tools to compare the impact of different refreshing
strategies for the AES S-box (e.g., no refresh, simple refreshes or SNI refreshes)
in function of the noise level. We can also claim provable security levels for use-
ful circuits that are close to the worst-case attacks discussed in [18] which is
in contrast to previous works. Precisely, we are able to prove the same statisti-
cal security order (i.e., the highest statistical moment of the leakage distribution
that is independent of any sensitive information) as in this reference, for realistic
leakage probabilities in the range [10−1; 10−4]. For example, our AES S-box with
6 shares and leakage probability of ≈ 10−3 ensures security against an adversary
with up to one billion measurements. Beläıd et al. would need 27 shares to reach
the same security.

Open problems and related works. While providing tight results for a
masked AES S-box implementation with up to 6 shares, therefore opening the
way towards tight random probing security in general, we note that our com-
position results are not completely tight in certain contexts which (we discuss
in the paper and) could pop up in other circuits than the AES S-box. Hence,
generalizing our results to be tight for any circuit is an interesting open problem
and the same holds for optimizing the complexity of our verification techniques
in order to scale with even larger circuits and number of shares.

Besides, we illustrated our results with the popular ISW multiplications in
order to show their applicability to non-specialized gadgets, which are concretely
relevant for the number of shares and noise levels we consider. Yet, since one
of the motivations to use the random probing model is to capture horizontal
attacks, it would also be interesting to analyze multiplication algorithms that
provide improved guarantees against such attacks thanks to a logarithmic or
even constant noise rate and could not be proven so far (e.g., [7,13]).

2 Background

Notations. In this work, we consider Boolean or arithmetic circuits over finite
fields F2m and refer to the underlying additive and multiplicative operations
as ⊕ and �, respectively. For the sake of simplicity we also use these opera-
tions for a share-wise composition of vectors (vi)i∈[n] and (wi)i∈[n] with [n] =
{0, 1, . . . , n − 1} such that (vi)i∈[n] � (wi)i∈[n] := (vi � wi)i∈[n] and (vi)i∈[n] ⊕
(wi)i∈[n] := (vi ⊕ wi)i∈[n]. Furthermore, we use the Kronecker product to com-
pose two real matrices A = (ai,j)i∈[m],j∈[n], B = (bi,j)i∈[k],j∈[l] such that A⊗B =

(ai,jB)i∈[m],j∈[n]. We also denote x
$←− X as choosing x uniformly at random from

the set X , and X (k) as the set of subsets of X of size k.

Masking. Masking is a well known countermeasure against side-channel attacks.
With an encoding scheme (Enc(·),Dec(·)), sensitive data x is split into n shares
(represented as a vector) (xi)i∈[n] ← Enc(x), and the decoding function takes as



input the n shares and recovers the unshared value x, i.e., x ← Dec((xi)i∈[n]).
For security we require that any subset of n − 1 shares does not reveal any
information about the sensitive data x. In this work, we focus on additive sharing
Dec((xi)i∈[n]) =

⊕n−1
i=0 xi, which is the most studied scheme.

Circuit model. As common in masking scheme literature, we model computation
as arithmetic circuits operating over a finite field F2m . The circuit is represented
by a directed acyclic graph, where each node is a gate that has a fixed number
of input and output wires (incoming and outgoing edges) that carry arithmetic
values. We consider the following types of gates in our circuits: addition + and
multiplication · gates have two input wires and one output wire, and perform
the corresponding arithmetic operation. The copy gate C has one input and two
outputs, and is used to duplicate a value. Finally, the random gate R has no
input and one output, which carries a uniformly distributed value. The constant
gate a outputs a constant value a.

In a masked circuit the gates are represented by subcircuits called gadgets
G. These gadgets operate on encoded inputs and produce encoded outputs. The
gadgets contain: (1) A set of gates; (2) The set of wires that connect the inputs
and outputs of those gates named internal wires (W); (3) The set of wires only
connected with those gates’ input named input wires (I); (4) The set of output
gates Ô (which is the subset of its gates that output wires that are not connected
to another gate of the gadget). The gadgets, however, contain no output wires,
such that each wire in a circuit composed of multiple gadgets belongs to only
one of its composing gadgets. For convenience, we also write O for the set of
output wires of the gates in Ô, although these wires are not part of the gadget
but are the next gadgets input wires. We denote A =W ∪ I the set of all wires
in the gadget. The inputs and outputs of a gadget are partitioned in (ordered)
sets of n elements named sharings (and each element is a share). A gadget Gf
that implements the function f : Fl 7→ Fk with n shares has l input sharings
and k output sharings. Let (y0i )i∈[n], . . . , (yk−1i )i∈[n] be the values of the output

sharings when the input sharings have the values (x0i )i∈[n], . . . , (xl−1i )i∈[n]. It
must hold that

f(Dec((x0i )i∈[n]), . . . ,Dec((x
l−1
i )i∈[n])) = (Dec((y0i )i∈[n]), . . . ,Dec((y

k−1
i )i∈[n])).

In this work, we use various gadgets. First, gadgets that implement lin-
ear operations (addition G⊕, copy G C , squaring G·2), which we implement

share-wise. Next, we use the ISW multiplication gadget [24]. Finally, we use re-
fresh gadgets G R which re-randomize a sharing (xi)i∈[n] to (yi)i∈[n] such that

Dec((xi)i∈[n]) = Dec((yi)i∈[n]). We consider two refresh gadget implementations:
the simple refresh and the SNI, randomness-optimized refresh gadgets from [12].
Their algorithmic description is given in the extended version of the paper .

Leakage model. In this work we consider the p-random probing model as orig-
inally introduced by Ishai, Sahai and Wagner [24]. This model defines the fol-
lowing random probing experiment. Let W be a set of wires in a circuit, Lp(W)



is a random variable with Lp(W) ⊆ W, such that each wire w ∈ W is in Lp(W)
with probability p (independently for each wire). Following this notation, for a
gadget G, we denote by Lp(G) := Lp(W, I) := (Lp(W),Lp(I)), where W and I
are the set of internal and input wires of G, respectively.

For a gadget G, a set of probes is a successful attack for an input sharing
(xi)i∈[n] if the joint distribution of the values carried by the probes depends on
Dec((xi)i∈[n]) (assuming that the other input sharings are public). The security
level of G in the p-random probing model (or p-random probing security) with
respect to an input sharing (xi)i∈[n] is the probability (over the randomness in
Lp) that a set of probes Lp(G) is a successful attack. As a result, the security of
a gadget in bits is worth − log2(security level). We omit to mention the attacked
input sharing when the gadget has only one input sharing.

3 Random probing security of small circuits

In this section, we show how to efficiently compute an upper bound on the
random probing security level of relatively small gadgets, and we illustrate the
results on well-known masked gadgets. We also describe the high-level ideas that
will lead to the STRAPS tool that we describe in Section 5.3.

3.1 Derivation of a random probing security bound

We first derive a way to compute the security level of a gadget for various values
of p, using some computationally heavy pre-processing. Next, we explain a way
to use statistical confidence intervals to reduce the cost of the pre-processing.
Finally, we detail how these techniques are implemented in a practical algorithm.

A simple bound. We can obtain the security level of a small circuit by computing
first the statistical distribution of Lp(G) (i.e., Pr[Lp(A) = A′] for each subset
A′ ⊂ A). Then, for each possible set of probes A′, we do a dependency test in
order to determine if the set is a successful attack, denoted as δA′ = 1, while
δA′ = 0 otherwise [8]. There exist various tools that can be used to carry out
such a dependency test, such as maskVerif [4] or SILVER [25] (while such tools
are designed to prove threshold probing security, they perform dependency tests
as a sub-routine). A first naive algorithm to compute the security level ε is thus
given by the equation

ε =
∑
A′⊂A

s.t. δA′=1

Pr[Lp(A) = A′]. (1)

The computational cost of iterating over all possible probe sets grows ex-
ponentially with |A|: for a circuit with |A| internal wires, one has to do 2|A|

dependency tests, for each value of p (e.g., we have |A| = 57 for the ISW
multiplication with three shares). To efficiently cover multiple values of p, we
introduce a first improvement to the naive algorithm given by Equation (1). For



each i ∈ {0, . . . , |A|}, we compute the number ci of sets of probes of size i that
are successful attacks ci =

∣∣{A′ ∈ A(i) s.t. δA′ = 1
}∣∣. Then, we can compute

ε =

|A|∑
i=0

pi(1− p)|A|−ici, (2)

which gives us a more efficient algorithm to compute random probing security,
since it re-uses the costly computation of ci for multiple values of p.

The VRAPS tool [8] computes ci for small values of i by computing δA′ for
all A′ ∈ A(i). This is however computationally intractable for larger i values,
hence they use the bound ci ≤

( |A|
i

)
in such cases.

A statistical bound. Let us now show how to improve the bound ci ≤
( |A|
i

)
while keeping a practical computational cost. At a high level, we achieve this
by using a Monte-Carlo method whose idea is as follows: instead of computing
directly ε, we run a randomized computation that gives us information about ε
(but not its exact value). More precisely, the result of our Monte-Carlo method
is a random variable εU that satisfies εU ≥ ε with probability at least 1 − α
(the confidence level), where α is a parameter of the computation. That is,
PrMC

[
εU ≥ ε

]
≥ 1−α, where PrMC means the probability over the randomness

used in the Monte-Carlo method.2 In the rest of this work, we use α = 10−6

since we consider that it corresponds to a sufficient confidence level.3

Let us now detail the method. First, let ri = ci/
∣∣A(i)

∣∣. We remark that
ri can be interpreted as a probability: ri = Pr

A′
$←−A(i)

[δA′ = 1]. The Monte-

Carlo method actually computes rUi such that rUi ≥ ri with probability at least
1− α/ (|A|+ 1). Once the rUi are computed, the result is

εU =

|A|∑
i=0

pi(1− p)|A|−i
(
|A|
i

)
rUi , (3)

which ensures that εU ≥ ε for any p with confidence level 1 − α, thanks to the
union bound. Next, rUi is computed by running the following experiment: take ti

samples A′ $←− A(i) uniformly at random (this sampling is the random part of the
Monte-Carlo method) and compute the number si of samples for which δA′ =
1. By definition, si is a random variable that follows a binomial distribution
B(ti, ri): the total number of samples is ti and the “success” probability is ri.
We can thus use the bound derived in [33]. If rUi satisfies CDFbinom(si; ti, r

U
i ) =

α/ (|A|+ 1), then Pr[rUi ≥ ri] = 1− α/ (|A|+ 1), which gives

rUi =

{
1 if si = ti,

x s.t. Ix(si + 1, ti − si) = 1− α/ (|A|+ 1) otherwise,
(4)

2 In other words, [0, εU ] is a conservative confidence interval for ε with nominal cov-
erage probability of 1− α.

3 This parameter is not critical: we can obtain a similar value for εU with higher
confidence level by increasing the amount of computation: requiring α = 10−12

would roughly double the computational cost of the Monte-Carlo method.



where Ix(a, b) is the regularized incomplete beta function. We can similarly com-
pute a lower bound εL such that εL ≤ ε with confidence coefficient 1− α, which
we compute by replacing rUi with rLi in Equation (3), where:

rLi =

{
0 if si = 0,

x s.t. Ix(si, ti − si + 1) = α/ (|A|+ 1) otherwise.
(5)

A hybrid algorithm. Our Monte-Carlo method has a main limitation: when ri = 0
the bound rUi will not be null (it will be proportional to 1/ti). This means that
we cannot prove tightly the security of interesting gadgets when p is small. For
instance, let us take a fourth-order secure gadget (that is, r0 = r1 = r2 = r3 =
r4 = 0). If rU1 6= 1, then εU scales like rU1 p as p becomes small (other, higher
degree, terms become negligible). A solution to this problem would be to set
ti to a large number, such that, in our example, rU1 would be small enough to
guarantee that rU1 p � r5p

5 for all considered values of p. If we care about p =
10−3, this means rU1 � 10−12 · r5 ≤ 10−12. This is however practically infeasible
since the number of samples t1 is of the order of magnitude 1/rU1 > 1012.

There exist another solution, which we call the hybrid algorithm: perform a
full exploration of A(i) (i.e., use the algorithm based on Equation (2)) when it is
not computationally too expensive (i.e., when

∣∣A(i)
∣∣ is below some limit Nmax),

and otherwise use the Monte-Carlo method. The goal of this hybrid algorithm
is to perform a full exploration when ri = 0 (in order to avoid the limitation
discussed above), which can be achieved for gadgets with a small number n of
shares. Indeed, ri can be null only for i < n (otherwise there can be probes on all
the shares of the considered input sharing), and the number of cases for the full

exploration is therefore
∣∣A(i)

∣∣ =
( |A|
i

)
≤
(
|A|
n−1

)
, which is smaller than Nmax if

n and |A| are sufficiently small. The latter inequality holds if |A| ≥ 2(n − 1),
which holds for all non-trivial gadgets.

Algorithm 1 describes how we choose between full enumeration and Monte-
Carlo sampling, which is the basis of our STRAPS tool (see Section 5.3 for more
details). The algorithm adds a refinement on top of the above explanation: if we
can cheaply show that ri is far from zero, we do not perform full exploration
even if it would not be too expensive. It accelerates the tool, while keeping a
good bound. This optimization is implemented by always starting with a Monte-
Carlo sampling loop that takes at most Nmax samples, with an early stop if si
goes above the value of a parameter Nt (we typically use parameters such that
Nmax � Nt). The parameter Nt determines the relative accuracy of the bound
we achieve when we do the early stop: in the final sampling, we will have si ≈ Nt,
which means that the uncertainty on ri decreases as Nt increases. The parameter
Nmax has an impact when ri is small and we do not reach Nt successful attacks:
it limits both the maximum size of A(i) for which full exploration is performed,
and the number of samples used for the Monte-Carlo method.

Remark. The Monte-Carlo method is limited to the random probing model
and cannot be used to prove security in the threshold probing model since prov-
ing security in this model means proving that ri = 0, which it cannot do. Our



Algorithm 1 Random probing security algorithm: compute rUi , rLi for a given
A and i. The parameters are Nmax and Nt.

Require Nt ≤ Nmax

Nsets =
( |A|

i

)
ti ← 1, si ← 0 . ti: total number of samples, si: successful attacks
while ti ≤ Nmax ∧ si < Nt do . First Monte-Carlo sampling loop

A′ $←− A(i)

if δA′ = 1 then
si ← si + 1.

ti ← ti + 1

if Nsets ≤ ti then . Enumerate A(i) if it is cheaper than Monte-Carlo.
si ← 0
for all A′ ∈ A(i) do

if δA′ = 1 then
si ← si + 1

rUi ← si/Nsets, rLi ← si/Nsets

else . Re-run Monte-Carlo to avoid bias due to Nt early stopping.
si ← 0
Repeat ti times

A′ $←− A(i)

if δA′ = 1 then
si ← si + 1

Compute rUi and rLi using Equations (4) and (5).

hybrid algorithm, however, can prove threshold probing security for the numbers
of probes i where it does full enumeration of A(j) for all j ∈ {0, . . . , i}.

Dependency test. We use the dependency test algorithm from maskVerif [4], as it
offers two important characteristics: (i) it gives the set of input shares on which
the probes depend, not only if there is a dependency to the unshared variable (the
reason for this appears in Section 5.1), and (ii) it is quite efficient. One drawback
of the maskVerif dependency test is that in some cases, it wrongly reports that
the adversary succeeds, which implies that the statistical lower bound is not
anymore a lower bound for the security level, and the statistical upper bound is
not completely tight (but it is still an upper bound for the true security level).
In this case, we refer to the statistical lower bound as the stat-only lower bound.
While the stat-only lower bound is not indicative of the security level, it remains
useful to quantify the statistical uncertainty and therefore to assess whether one
could improve the tightness of the upper bound by increasing the number of
samples in the Monte Carlo method.

3.2 Security of some simple gadgets

We now present the results of random probing security evaluations using the
previously described tools. First, we discuss the sharewise XOR gadget and the



ISW multiplication gadget with n shares. Next, we discuss the impact of the two
parameters of our algorithm (Nmax and Nt) on the tightness of the results and
on the computational complexity (i.e., the execution time) of the tool.

In Figure 1 (left), we show the security level (with respect to one of the
inputs) of the addition gadget for n = 1, . . . , 6 shares. We can see that the
security level of the gadget is proportional to pn, which is expected. Indeed, the
graph of this share-wise gadget is made of n connected components (so-called
“circuit shares” [12]) such that each share of a given input sharing belongs to a
distinct component, and the adversary needs at least one probe in each of them
to succeed. This trend can also be linked with the security order in the threshold
probing model. Since the gadget is n− 1-threshold probing secure, a successful
attack contains at least n probes, hence has probability proportional to pn.

We can observe a similar trend for the ISW multiplication gadget (Figure 1,
right). Since the gadget is n−1-threshold probing secure, the security level scales
proportionally to pn for small values of p. For larger values of p, the security
level of this gadget is worse than pn, which is due to the larger number of wires,
and the increased connectivity compared to the addition gadgets. It implies that
there are many sets of probes of sizes n+1, n+2, . . . that are successful attacks
(which is usually referred to as horizontal attacks in the practical side-channel
literature [7]). These sets make up for a large part of the success probability
when p > 0.05 due to their large number, even though they individually have a
lower probability of occurring than a set of size n (for p < 0.5).
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Fig. 1: Security of masked gadgets (with respect to the input sharing x, assuming
the input sharing y is public). The continuous line is an upper bound, while the
dashed line is the stat-only lower bound. Nmax = 107, Nt = 1000.

Next, we discuss the impact of parameters Nmax and Nt in Algorithm 1 on
the tightness of the bounds we can compute. We first focus on the impact of
Nt, which is shown on Figure 2. For Nt = 10, we have a significant distance
between the statistical upper and lower bounds, while the gap becomes small
for Nt = 100 and Nt = 1000. This gap appears as a bounded factor between the
upper and lower bounds which, as discussed previously, is related to the accuracy
of the estimate of a proportion when we have about Nt positive samples.
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Fig. 2: Impact of the parameter Nt of Algorithm 1 on the security bounds of
masked ISW multiplication gadgets (w.r.t. the input sharing x). Nmax = 107.

We also look at the impact of Nmax on Figure 3. We observe a gap between
the bounds for too low Nmax values, which gets worse as the number of shares
increases. Indeed, when Nmax is too small, we cannot do an enumeration of all
the sets of n − 1 probes, hence we cannot prove that the security order of the
gadget is at least n − 1, which means that the upper bound is asymptotically
proportional to pn

′
, with n′ < n− 1.

We finally observed that the computational cost is primarily dependent on
Nmax and the circuit size, whileNt has a lower impact (for the values considered).
For instance, the execution time of the tool for the ISW multiplication with
n = 6, Nmax = 108 and Nt = 100 is about 33 h on a 24-core computer.
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Fig. 3: Impact of the parameter Nmax of Algorithm 1 on the security bounds of
masked ISW multiplication gadgets (w.r.t. the input sharing x). Nt = 1000.

4 New composition results

In the previous section, it became clear that the tool is limited if it directly
computes the security of complex circuits. This leads to the need to investigate



composition properties. The existing definitions of random probing composabil-
ity and random probing expandability in [8] are based on counting probes at
the inputs and outputs of gadgets which are needed to simulate the leakage. We
have recognized that ignoring the concrete random distribution over the needed
input/output wires, and only counting the wires leads to a significant loss of
tightness. Therefore we introduce our new security notion, the PDT. Before
we define the PDT in Section 4.3 and present the composition results in Sec-
tion 4.4, we recall the idea of simulatability in the leakage setting. Refining the
dependency test of Section 3, we analyze the information a simulator needs to
simulate a gadget’s leakage in Section 4.2. In contrast to the previous section,
we take into account the output gates, which is needed for composition. Further,
we recall the definitions of parallel and sequential composition in Section 4.1,
and present formal definitions adapted for our PDTs.

4.1 Definitions

Given two gadgets G0 and G1 with n shares, we define in this section the gadgets
formed by their sequential composition written G = G1 ◦ G0 or their parallel
composition written G = G1||G0.

We first introduce notations that allows us to keep track of input wires,
output gates and internal wires in gadget compositions. We work with ordered
finite sets. That is, given a finite set A (e.g., one of the setsW, I or Ô of a gadget
G), we assign to each element of A a unique index in [|A|] = {0, 1, . . . , |A|}. Then,
given disjoint finite sets A and B, we denote by C = A||(k)B the union of A and
B ordered such that a wire with index i in A has index i in C, and a wire with
index i in B has index k + i in B. The ||(·) operator is right-associative, which

means that A2||(k1)A1||(k0)A0 = A2||(k1)
(
A1||(k0)A0

)
.

The sequential composition of gadgets allows implementing compositions of
functions and is formally defined next.

Definition 1 (Sequential composition). Let G0 and G1 two gadgets with n
shares, input wires Ii, output gates Ôi, and internal wires Wi, respectively, such
that |I1| = |Ô0|. The sequential composition of G0 and G1 is the gadget G denoted
as G1 ◦G0 whose set of input wires is I = I0 and set of output gates is Ô = Ô1.
The set of internal wires of G is W = W1||(k1)I1||(k0)W0 with k1 = |W0| + |I1|
and k0 = |W0|. The input wires of G1 are connected to the output gates of G0

such that for all i the input wire with index i is the output wire of the ith output
gate. If G0 (resp. G1) implements f0 (resp. f1), then G implements f1 ◦ f0.

The parallel composition of gadgets allows implementing a gadget for the func-
tion f(x, y) = (f0(x), f1(y)), using gadgets implementing f0 and f1.

Definition 2 (Parallel composition). Let G0 and G1 two gadgets with n
shares, input wires Ii, output gates Ôi, and internal wires Wi, respectively. The
parallel composition of G0 and G1 is the gadget G denoted as G1||G0 whose set
of input wires is I = I1||(|I0|)I0, set of output gates is Ô = Ô1||(|Ô0|)Ô0, and

set of internal wires is W =W1||(|W0|)W0.



Figure 4 illustrates how to renumber the input wires and output gates in
the case of gadgets with three inputs wires and three output gates. Figure 4a
describes the sequential composition defined in Definition 1 and Figure 4b de-
scribes the parallel composition defined in Definition 2. For example, the input
wire set of G′ is I = {i5, i4, . . . , i0} which is the wire union I = I1||(|I0|)I0 of
the input wires I0 = {i02, i01, i00} and I1 = {i12, i11, i10} of the gadgets G0 and G1.

We emphasize that both compositions are a basis for dividing a circuit into an
arbitrary set of subcircuits. Therefore, if we have a masked gadget implementa-
tion of each gate type that appears in a circuit, we can build a masking compiler
for that circuit: first decompose the circuit in sequential and parallel composi-
tions down to subcircuits containing a single gate, then replace each gate with
the corresponding masked gadget, and finally compose those gadgets according
to the initial decomposition. As a case study, we depict a masked AES S-box
implementation in Figure 6. The gadgets G0-G10 are a parallel composition of
the basis gadgets and GS-box is a sequential composition of the gadgets G0-G10.
The formal description of the S-box composition is given in Table 1.

G1G0

G = G1 ◦ G0

i02i2
i01i1
i00i0

i12o02
i11o01
i10o00

o12 o2
o11 o1
o10 o0

(a) Sequential Composition

G1

G0

G′ = G1||G0

i02i2
i01i1
i00i0

i12i5
i11i4
i10i3

o02 o2
o01 o1
o00 o0

o12 o5
o11 o4
o10 o3

(b) Parallel Composition

Fig. 4: Examples of sequential composition (4a) and parallel composition (4b).

4.2 Simulatability

So far, we described how to measure the amount of information leaked by a
circuit by analyzing it directly. As observed in previous works, the complex-
ity of such an approach rapidly turns out to be unrealistic. We now formalize
simulatability-based definitions following the ideas outlined in [5], which are use-
ful to analyze large circuits thanks to compositional reasoning.

Definition 3 (Simulatability). A set of wires W in a gadget G is simulatable
by a subset I ′ ⊂ I of its inputs if there exists a probabilistic simulator function
taking as input the values of the inputs I ′, and outputs a distribution of values
on wires. Conditioned on the values of the wires in I the distribution output
by the simulator is identical to the leakage from wires in W when the gadget is
evaluated (conditioned on I).

The simulatability of small circuits, and particularly gadgets, is well studied and
can be proven with tools such as maskVerif [4] and SILVER [25]. In this work
we use the distribution of the smallest set of input wires such that there exists a
simulator whose output has the same distribution as the leakage. More precisely,
let W ′ be a subset of input and internal wires of a gadget G and O′ an arbitrary
subset of output wires, then we write I ′ = SG(W ′,O′) to define the smallest
subset I ′ of input wires of G by which (W ′,O′) is perfectly simulatable.



Definition 4 (Simulatability set). Let G be a gadget with input wire, internal
wire and output gate sets I, W, and Ô. Further, let O be the set of output wires
of Ô. The simulatability set of a subset W ′ ⊆ (W, I) and O′ ⊆ O, denoted
SG(W ′,O′), is the smallest subset of I by which W ′ and O′ can be simulated.

In the random probing model, W ′ = Lp(G) is a random variable, hence the
simulatability set SG (Lp(G),O′) is itself a random variable.

We now introduce rules for simulatability of parallel and sequential gadget
compositions. Indeed, it is not enough to give a simulator for each gadget, but
we also have to ensure that each individual simulator is consistent with the dis-
tribution generated by the other simulators, and that each simulator is provided
with correct values for the input shares.

Claim 1 For any parallel gadget composition G = G1||G0 with output gates Ô =
Ô1||(|Ô1|)Ô0 an its output wires O. It holds that

SG(Lp(G),O′) = SG1(Lp(G1),O′1) ||(|I0|) S
G0(Lp(G0),O′0)

for any subset of output wires O′ = O′1||(|O0|)O′0 ⊆ O.

The proof is given in the extended version of the paper.

Claim 2 For any sequential gadget composition G = G1 ◦ G0 with output gates
Ô and its output wires O, it holds that

SG(Lp(G),O′) ⊆ SG0
(
Lp(G0),SG1(Lp(G1),O′)

)
for any subset of output wires O′ ⊆ O.

The proof is given in the extended version of the paper.

ŜGi
SGi(Lp(Gi),O′i) O′i

Lp(Gi)

(a) Tight Simulator for Gadget Gi

used in the proof of Claim 1 and 2

ŜG1

ŜG0

ŜG

||I′

O′

Lp(G)

(b) Simulator for a serial gadget
compositions.

ŜG1

ŜG0

ŜG′

||

||

||I′

O′

Lp(G)

(c) Simulator for a parallel gadget
compositions.

Fig. 5: Simulators for the gadgets depicted in Figure 4 to prove Claims 1 and 2.



4.3 Probe distributions

In this section, we introduce our new security properties, the PD (Probe Dis-
tribution) and the PDT (Probe Distribution Table). Intuitively, given a set of
wires W and a leakage process L (hence L(W) ⊆ W), the PD of L(W) is a
vector of size 2|W| that represents the statistical distribution of L(W). In more
detail, for each subsetW ′ ⊆ W, there is a corresponding element of the PD with
value Pr [L(W) =W ′]. The PDT notion extends the idea in a way that makes
it useful for analyzing gadget compositions: it links the set of output probes on
the gadget to the distribution of the simulatability set of the gadget (i.e., to the
inputs needed to simulate the leakage). More precisely, for a gadget G, the PDT
is a matrix in [0, 1]|I|×|O|, such that each column is associated to a subset of
the outputs O′ ⊆ O. Each column is a PD that represents the distribution of
SG(L(G),O′) (viewed as a subset of the set of inputs I). The two main results
(Theorems 1 and 2) of the next section relate the PDT of a sequential (resp.,
parallel) gadget composition to the matrix (resp., tensor) product of the PDTs
of the composing gadgets. We first formalize the mapping between subsets of
wires and indices in vectors/matrices.

Definition 5 (Index representation of subsets of wires). For any set of
wires W of which each element has a unique index in [|W|], we associate to each
subset W ′ of W the index

W̃ ′ =
∑

i∈[|W|]

bi2
i with

{
bi = 1 if element i of W belongs to W ′,
bi = 0 otherwise.

For example, the wire set W = {ω0, ω1} has 4 subsets W ′, that we represent
with their index below:

W ′ ∅ {ω0} {ω1} {ω0, ω1}
W̃ ′ 0 1 2 3

Let use now give the formal definition of the PD.

Definition 6 (Probe Distribution PD). Let L be a probabilistic process that
outputs subsets of a set of wires W. The probe distribution (PD) of L with

respect to W is p ∈ [0, 1]2
|W|

such that for all W ′ ⊂ W, pW̃′ = Pr [L(W) =W ′].
The PD of Lp(W) in the previous example is p =

(
(1− p)2, p(1− p), p(1− p), p2

)
.

We next give the definition of the PDT, which can be seen as the PDs of
SG(Lp(G),O′) conditioned on the set of output probes O′.
Definition 7 (Probe Distribution Table (PDT)). Let G be a gadget with
input wires I and output wires O. For any O′ ⊆ O, let pÕ′ be the PD of

SG(Lp(G),O′). The PDT of G (PDTG) is a [0, 1]2
|I|×2|O| matrix with all the

pÕ′ as columns, that is
PDTG = (pj)j∈[2|O|] ,

with j = Õ′ for all subsets O′ ⊆ O. The notation PDTG(Ĩ ′, Õ′) refers to the
element of pÕ′ associated to I ′.



PDTG(Ĩ ′, Õ′) = Pr
[
SG(Lp(G),O′) = I ′

]
. Furthermore, the PDT of a gadget

is independent of its environment (i.e., of the PD of its output wires).

A first example of PDT is the one of the + and · gates (when viewed as
gadgets with one share). In the first column, no output has to be simulated, and
thus the only leakage comes from the two input wires. For the second column,
knowledge of both inputs is needed to simulate the output. This gives:

PDT + = PDT · =

PDT O′ = ∅ O′ = {0}
I′ = ∅ (1− p2) 0
I′ = {0} p(1− p) 0
I′ = {1} p(1− p) 0

I′ = {0, 1} p
2

1

The second example is the simple refresh gadget Gr with two shares where a
random value is added to two different wires. The random value leaks three
times with probability p (one time in the C and two times in the + ). Thus
the leakage probability of the random value is q = 1− (1− p)3, and we get:

PDTGr
=

PDT O′ = ∅ O′ = {0} O′ = {1} O′ = {1, 0}
I′ = ∅ (1− p)2 (1− q)(1− p)2 (1− q)(1− p)2 0
I′ = {0} p(1− p) (q + qp)(1− p) (1− q)p(1− p) 0
I′ = {1} p(1− p) (1− q)p(1− p) (q + (1− q)p)(1− p) 0

I′ = {0, 1} p
2

qp+ (1− q)p2 qp+ (1− q)p2 1

The PDT is related to the security level in the random probing model.

Claim 3 (Security level from PDT) Let G be a gadget and PDTG its Probe
Distribution Table. Let s be the the security level of G with respect to an input
sharing. If the set of shares of the considered input sharing is I ′, then

eT ·PDTG · p∅ =
∑
I′′⊇I′

PDTG(Ĩ ′′, 0) ≥ s,

where p∅ = (1, 0, . . . , 0) is the PD corresponding to no output leakage and ei = 1
for all i = Ĩ ′′ with I ′′ ⊇ I ′, while ei = 0 otherwise.

Proof. Let A′ be a set of wires that is an attack, that is, that depends on the
considered unshared value which we denote Simulating A′ therefore requires at
least all the shares in I ′, hence

s ≤ Pr
A′←Lp(G)

[
SG(A′, ∅) ⊆ I ′

]
.

Then, by definition of Lp(G) and of the PDT,

s ≤ Pr
[
SG(Lp(G), ∅) ⊆ I ′

]
=
∑
I′′⊇I′

Pr
[
SG(Lp(G), ∅) = I ′′

]
=
∑
I′′⊇I′

PDTG(Ĩ ′′, 0).

This proves the inequality. The equality claim holds by construction of e. ut



We now give a few results that constitute the basis for the composition the-
orems of the next section. A first result links the PD of the input wires needed
to simulate the leakage of the gadget and some of its outputs to the PDT of the
gadget and the PD of its outputs. This claim is the foundation for the analysis
of sequential gadget composition.

Claim 4 (PDT and PD) Let G be a gadget with output wire set O and input
wire set I. If a probabilistic process L′(O) has a PD p with respect to O, then
PDTG · p is the PD of SG(Lp(G),L′(O)) with respect to input wires I.

Proof. The solution can be directly derived from the definitions: Let (vi)i∈2|I| =
PDTG · p. For any I ′ ⊆ I, it holds that

vĨ′ =
∑
O′⊆O

PDTG(Ĩ ′, Õ′) · pÕ′

=
∑
O′⊆O

Pr
[
SG(Lp(G),O′) = I ′

]
· Pr [L′(O) = O′]

=
∑
O′⊆O

Pr
[
SG(Lp(G),O′) = I ′,L′(O) = O′

]
= Pr

[
SG(Lp(G),L′(O)) = I ′

]
.

The final equation gives the claim since it is exactly the ith entry of the PD of
SG(Lp(G),L′(O)) with i = Ĩ ′. ut

We next want to compare two probe distributions p, p′ to describe a par-
tial order for distributions “≤̇”. The high-level idea is that p is “larger” than
p′ (denoted p≥̇p′) if L gives more information than L′. In other words, p is
“larger” than p′ if we can simulate L′(W) with L(W), where L (resp., L′) is the
probabilistic process associated to p (resp., p′).

Definition 8 (Partial order for distributions). For a set of wires W, let
L and L′ be probabilistic processes with PDs p and p′. We say that p is larger
than p′ and write p≥̇p′ iff the L′ is simulatable by L, that is, if there exists a
probabilistic algorithm S that satisfies S(X ) ⊂ X such that the distribution of
L′(W) and S(L(W)) are equal.

On the one hand, it is clear that the definition is reflexive, antisymmetric, and
transitive. Let p, p′, p′′ three PDs, it holds:

– p≥̇p, since we can always use the identity as simulator.
– If we know p≥̇p′ and p≤̇p′, both PDs describe processes with the same

distribution, and we know p = p′.
– If it holds that p≥̇p′ and p′≥̇p′′, it exists a simulator S′ that simulates the

process defined by p′ with the process defined by p, and a simulator S′′ that
does the same for p′′ and p′. Hence, S := S′(S′′(·)) simulates the process
defined by p′′ with the process of p and it follows p≥̇p′′.



On the other hand, the order is only partial since it can happen that we have
two probabilistic processes such that for both processes there exist no simulator
to simulate the other.

The partial order for PDs is respected by linear combinations:

Claim 5 Let (pi)i∈[k], (p′i)i∈[k] be PDs such that pi≥̇p′i for all i. let (αi)i∈[k]
be such that 0 ≤ αi ≤ 1 for all i and

∑
i∈[k] αi = 1. If we denote p =

∑
i∈[k] αipi

and p′ =
∑
i∈[k] αip

′
i, then p and p′ are PDs and furthermore, p≥̇p′.

Proof. Let W be a set of wires such that the random processes (Li)i∈[k] (resp.

(L′i)i∈[k]) have (pi)i∈[k] (resp. (p′i)i∈[k]) as PDs. Further, let Si be such that

Si(Li(W)) has the same distribution as L′i. Let L be such that

Pr [L(W) =W ′] =
∑
i∈[k]

αi Pr [Li(W) =W ′] ,

and similarly for L′. Firstly, L and L′ are well-defined: the probabilities given
above are non-negative and sum to 1. Next, the PD of L (resp. L′) is p (resp.
p′). Finally, we build the simulator S. Let L′′ be a random process that, on
input W, selects randomly i ∈ [k] (such that the probability of taking the value
i is αi), and outputs Si(Li(W)). Then, let S be a random process such that
Pr[S(W ′′) =W ′] = Pr[L′′ =W ′|L =W ′′] for all W ′,W ′′ ⊆ W. We observe that
for all W ′ ⊆ W,

Pr[S(L) =W ′] =
∑
W′′⊆W

Pr[S(W ′′) =W ′] ∗ Pr[L =W ′′]

=
∑
W′′⊆W

Pr[L′′ =W ′|L =W ′′] ∗ Pr[L =W ′′]

= Pr[L′′ =W ′].

Since L′′ has the same distribution as L′, this means that Pr[S(L) = W ′] =
Pr[L′ =W ′]. ut

The PDT has a partial structure. As described above each column i of the
PDT is the PD of SG(Lp(G),O′) with Õ′ = i. Since we know that the input
set required by a leakage simulator can only grow (or stay constant) if it has to
simulate additional (output) leakage, we get:

Claim 6 For any gadget with output wires O, the columns p· of the PDT have
the following property: pÕ′≥̇pÕ′′ for all O′′ ⊆ O′ ⊆ O.

Proof. It follows directly from claim 4. It holds that SG(Lp(G),O′′) ⊆ SG(Lp(G),O′)
and thus Pr

[
SG(Lp(G),O′′) ⊆ SG(Lp(G),O′)

]
= 1. The last equation is the

claim pÕ′≥̇pÕ′′ . ut

Finally, we want to extend the partial order of PDs to the whole PDT, with
the same meaning: if PDTG0

≤̇PDTG1
, the amount of information leaked in G0

is less than the information leaked in G1:



Definition 9 (Partial order for PDT’s). Let A,B ∈ [0, 1]2
|I|×2|O| be two

PDTs, we write
A≤̇B

if for any PD p ∈ [0, 1]2
|O|

it holds A · p≤̇B · p.

As shown in Claim 4, A · p and B · p are PDs, therefore the partial order of
PDTs is well defined.

Corollary 1 (PDT order is column-wise). Let PDT and PDT′ be PDTs,
with columns (pi)i∈[|O|] and (p′i)i∈[|O|] respectively. Then, PDT≥̇PDT′ iff pi≥̇p′i
for all i ∈ [|O|.
Proof. If PDT≥̇PDT′, then for any i ∈ [|O|, let e be such that ej = 1 if i = j
and ej = 0 otherwise. Since e is a PD, we have pi = PDT · e≥̇PDT′ · e = p′i.

In the other way, let use assume that pi≥̇p′i, for all i. Then for any PD α
(whose elements are denoted αi), PDT · α is a linear combination of pi with
coefficients αi, for which Claim 5 applies. Therefore PDT · α≥̇PDT′ · α. ut
Another useful property is that we can merge the order of PDs and PDTs:

Claim 7 Let A,B ∈ [0, 1]2
|I|×2|O| be two PDTs, and p,p′ ∈ [0, 1]2

|O|
be two

PDs. If A≤̇B and p≤̇p′, then A · p≤̇B · p′.
Proof. We prove the claim A·p≤̇B·p′ in two steps. First we show (i) A·p≤̇A·p′,
and then we show (ii) A · p′≤̇B · p′.
(i) By Definition 8, there exists W, L and L′ associated to p, p′, respectively,

with Pr[L(W) ⊂ L′(W)] = 1. Further, it holds Pr[AL(W)≤̇AL′(W)] = 1 with

Claim 6. Hence, A · p≤̇A · p′.
(ii) A · p′≤̇B · p′ follows from Definition 9 and A≤̇B. ut
This leads to the preservation of PDT ordering through matrix product.

Corollary 2. Let A, B, C, D be PDTs. If A≤̇B and C≤̇D, then A ·C≤̇B ·D.

Proof. Let us denote by X∗,i the (i+ 1)-th column of a matrix X. Then, for all
i ∈ [|O|], (A ·C)∗,i = A ·C∗,i and (B ·D)∗,i = B ·D∗,i. Hence, by Corollary 1,

A ·C≤̇B ·D iff C∗,i≤̇D∗,i for all i. Using the same Corollary, we have C∗,i≤̇D∗,i.
Finally, using Claim 7, we get A ·C∗,i≤̇B ·D∗,i for all i. ut
Finally, we relate the partial order for PDs and PDTs to the security level.

Claim 8 (Security level bound from PDT bound) Let s be the security
level of a gadget G with respect to a set of input shares I ′. Let PDT be the
PDT of G and let PDT′ be a PDT. If PDT′≥̇PDT, then eT ·PDT′ ·p∅ ≥ s,
where e is defined as in Claim 3.

Proof. Using Claim 3, we know that eT ·PDT ·p∅ ≥ s. With Claim 7, we know
that PDT′ · p∅≥̇PDT · p∅. Let L (resp. L′) be the random process associated
to PDT′ · p∅ (resp. PDT · p∅), and let S be the simulator that simulates L
from L′. We have S (L′(I)) ⊆ L′(I), hence Pr [I ′ ⊆ S (L′(I))] ≤ Pr [I ′ ⊆ L′(I)].
Since S simulates L(I), Pr [I ′ ⊆ S (L′(I))] = Pr [I ′ ⊆ L(I)], which leads to
eT ·PDT · p∅ = Pr [I ′ ⊆ L(I)] ≤ Pr [I ′ ⊆ L′(I)] = eT ·PDT′ · p∅. ut



4.4 Composition rules

In this section, we give the two main composition theorems for the PDT of
parallel and sequential gadget compositions. Next, we show how the composi-
tions theorems can be used to compute PDTs for larger composite gadgets and
illustrate our results on the AES S-box example.

Theorem 1 (parallel composition). Let G1 and G2 be two gadgets with PDTG0

and PDTG1
. Further let G = G1||G0 with PDTG. It holds that

PDTG = PDTG1 ⊗PDTG0 .

Proof. Let I0, I1, O0, and O1 the input and output wires of G0 and G1, re-
spectively. Hence, I = I1||(n)I0, O = O1||(m)O0 are the input and output
wires of G with n = |I0| and m = |O0|. From Definition 2 follows for any
I ′ = I ′1||(n)I ′0 ⊆ I and O′ = O′1||(m)O′0 ⊆ O that Pr [S(Lp(G) ∪ O′) = I ′] is the

matrix entry (Ĩ ′, Õ′) of PDTG. Considering Claim 1, we get

PDTG(Ĩ ′, Õ′) = Pr
[
SG(Lp(G),O′) = I ′

]
= Pr

[
SG1 (Lp(G1) ∪ O′1) ||(n)SG0 (Lp(G0),O′0) = I ′1||(n)I ′0

]
= Pr

[
SG1 (Lp(G0),O′0) = I ′0,SG0 (Lp(G1),O′1) = I ′1

]
= Pr

[
SG1(Lp(G0),O′0) = I ′0

]
· Pr

[
SG0(Lp(G1),O′1) = I ′1

]
= PDTG0

(Ĩ ′0, Õ′0) ·PDTG1
(Ĩ ′1, Õ′1).

The last transformation of the formula uses the fact that the set of probes of
both gadgets are independent, and the resulting term is exactly the matrix entry
(Ĩ ′, Õ′) of PDTG1

⊗PDTG0
. ut

Remark. Theorem 1 can be generalized to any parallel composition of sub-
circuits, even if those sub-circuits are not gadgets. For instance, a share-wise
gadget with n shares is the parallel composition of n identical sub-circuits (a
single addition gate for the addition gadget). The PDT of the addition gate
PDT⊕ is given in Section 4.3, therefore PDTG⊕,n

can be computed as

PDTG⊕,n
= P

(
n−1⊗
i=0

PDT⊕

)
,

where P reorders the index of the input wires from (x00, x
1
0, x

0
1, x

1
1, . . . x

0
n−1, x

1
n−1)

to (x00, . . . , x
0
n−1, x

1
0, . . . , x

1
n−1) where x0i and x1i are the first and second input

wires of the ith addition gate, respectively.

Theorem 2 (sequential composition). Let G0 and G1 be two gadgets with
PDTG0

, PDTG1
, and with ni input wires and mi output wires, respectively such

that m0 = n1. Further let G = G1 ◦ G0 with PDTG. It holds that

PDTG≤̇PDTG0
·PDTG1

.



Proof. Let PDT = PDTG0
·PDTG1

and I0, I1, O0, O1 the input and output
wire sets of G0 and G1, respectively. It also means that I0 and O1 are the input
and output wire sets of G. Considering the fact that PDT is the result of a matrix
multiplication of PDTG0 and PDTG1 , we get for any I ′ ⊆ I0 and O′ ⊆ O1

PDT(Ĩ ′′, Õ′) =
∑
O′′⊆O0

Pr
[
SG0(Lp(G0),O′′) = I ′

]
· Pr

[
SG1(Lp(G1),O′) = O′′

]
=

∑
O′′⊆O0

Pr
[
SG0(Lp(G0),O′′) = I ′,SG1(Lp(G1),O′) = O′′

]
= Pr

[
SG0

(
Lp(G0),SG1(Lp(G1),O′)

)
= I ′

]
.

Further, PDTG(Ĩ ′, Õ′) = Pr
[
SG(Lp(G),O′) = I ′

]
, and thus for any O′ ⊆ O1

the columns PDTG(Õ′) and PDT(Õ′) are the PDs of SG(Lp(G),O′) and of
SG0

(
Lp(G0),SG1(Lp(G1),O′)

)
, respectively. Because of Claim 2, it holds that

Pr
[
SG(Lp(G),O′) ⊆ SG0

(
Lp(G0),SG1(Lp(G1),O′)

)]
= 1.

The last equation proves that it exists a simulator that simulates the simulatabil-
ity set SG(Lp(G),O′) with SG0

(
Lp(G0),SG1(Lp(G1),O′)

)
. Hence, it holds that

PDTG(Õ′)≤̇PDT(Õ′) for any column with O′ ⊆ O1. Since the inequality holds
for any column, the inequality is independent from the distribution of the output
wires O1. It follows that PDTGp≤̇PDTG0 ·PDTG1p for all PDs p. This results
in the claim of the theorem PDTG≤̇PDTG0 ·PDTG1 . ut

G0 G1 G2 G3 G4 G5 G6 G7 G8 G9 G10

Gc

Gr

G·2
Gc

G⊗ Gc

G·4

Gr

Gc

G⊗ G·16

G⊗

G⊗

Fig. 6: AES S-box circuit (using the implementation from [31]) as a serial compo-
sition of gadgets. The symbols Gc, Gr, G⊗ and G·x are respectively copy, refresh
and exponentiation to the power of x gadgets.

Corollary 3. Let (Gi)i∈[k] be gadgets that can be sequentially composed to form
G = Gk−1 ◦ · · · ◦ G0. It holds that

PDTG≤̇PDTG0
· . . . ·PDTGk−1

.

Proof. This is a direct consequence of Theorem 2 and Corollary 2. ut



The PDT of the AES S-box depicted in Figure 6 is bounded by PDTS-box

defined in Table 1. We compute the S-box with the gadgets G·2 , G⊗, Gr, and Gc.
In addition, we also use a identity gadget Glid as a placeholder for composition
results (this gadget does not leak and has as many inputs as outputs), whose
PDT is the identity matrix. As described in Table 1, the gadgets G0-G10 are a
parallel composition of the gadgets G·2 , G·4 , G·16 , G⊗, Gr, Gc, and Glid (we can
compute their PDTs using Theorem 1). Thus, GS-box is a sequential composition
of G0-G10. We can compute its PDT using Corollary 3, as shown in Table 1.

G0 Gc PDTG0 = PDTGc

G1 Gr||G·2 PDTG1 = PDTGr ⊗PDTG·2

G2 Gid||Gc PDTG2 = PDTGid ⊗PDTGc

G3 G⊗||Gid PDTG3 = PDTG⊗ ⊗PDTGid

G4 Gc||Gid PDTG4 = PDTGc ⊗PDTGid

G5 G·4 ||Gr||Gid PDTG5 = PDTG·4
⊗PDTGr ⊗PDTGid

G6 Gc||Gid||Gid PDTG6 = PDTGc ⊗PDTGid ⊗PDTGid

G7 Gid||G⊗||Gid PDTG7 = PDTGid ⊗PDTG⊗ ⊗PDTGid

G8 Gid||G·16 ||Gid PDTG8 = PDTGid ⊗PDTG·16
⊗PDTGid

G9 G⊗||Gid PDTG9 = PDTG⊗ ⊗PDTGid

G10 G⊗ PDTG10 = PDTG⊗

GS-box G10 ◦ G9 ◦ . . . ◦ G0 PDTS-box≤̇PDTG0 ·PDTG1 · . . . ·PDTG10

Table 1: Composition of the AES S-box and its approximated PDT.

We conclude by noting that some well-known matrix product and tensor
product distributive and associative properties mirror the properties of the gad-
get compositions (when the operations are well-defined):

(A ·B) ·C = A · (B ·C) (G0 ◦ G1) ◦ G2 = G0 ◦ (G1 ◦ G2)

(A⊗B)⊗C = A⊗ (B⊗C) (G0||G1) ||G2 = G0|| (G1||G2)

(A ·B)⊗ (C ·D) = (A⊗C) · (B⊗D) (G0 ◦ G1) || (G2 ◦ G3) = (G0||G2) ◦ (G1||G3)

This means that our composition theorems give the same result independently
of the way we decompose a composite gadget. This gives us freedom to choose,
e.g., the most efficient way when we deal with relatively large computations.

5 Practical security of composite circuits

In this section, we adapt the method of Section 3 to compute bounds for PDTs.
We then show how to turn those bounds into gadget security levels using the
PDT properties and composition theorems. We finally describe the tool that
implements our methodology and discuss its result for well-known gadgets.

5.1 Bounding PDTs

We first describe how to adapt the method of Section 3 to bound PDTs. That
is, given a gadget G, we want to generate an upper bound PDTU such that



PDTU ≥ PDT with probability at least 1 − α (e.g., 1 − 10−6), and the ≥
operator defined for matrices and vectors as element-wise. We note that PDTU

is not a PDT: the sum of the elements in one of its columns may be ≥ 1.

There are two main differences with the bound of Section 3: (1) we have to
handle all possible cases for the probes on the output shares of the gadgets (i.e.,
all the columns of the PDT), and (2) we care about the full distribution of the
input probes, not only the probability of successful attack.

The upper bound PDTU can be computed by grouping probe sets by size
(similarly to Equation (3)):

PDTU (Ĩ ′, Õ′) =

|W|∑
i=0

pi(1− p)|W|−i ·
∣∣∣W(i)

∣∣∣ ·RU
i (Ĩ ′, Õ′)

satisfies PDTU (Ĩ ′, Õ′) ≥ PDT(Ĩ ′, Õ′) if

RU
i (Ĩ ′, Õ′) ≥

∣∣{W ′ ⊆ W(i) s.t. SG(Lp(G),O′) = I ′
}∣∣∣∣W(i)

∣∣ (6)

for all i ∈ {0, . . . , |W|}. Therefore, if Equation (6) is satisfied for each (I ′,O′, i)
tuple with probability at least 1 − α/

(
(|W|+ 1) 2|I|·|O|

)
, then PDTU ≥ PDT

with probability at least 1− α (by the union bound).

The computation of all the elements PUi (Ĩ ′, Õ′) can be performed identically
to the computation of rUi in Section 3.1, except for changing the criterion for
a Monte-Carlo sample W ′ to be counted as positive (i.e., be counted in si):
S(W ′,O′) = I ′ (instead of δW′ = 1). Furthermore, the algorithm can be opti-
mized by running only one sampling for each (i,O′) pair: we take ti,O′ samples,
and we classify each sampleW ′ according to S(W ′,O′). This gives sample counts
si,O′,I′ for all I ′ ⊆ I, and from there we can use Equation (4).4

Finally, we use the hybrid strategy of Algorithm 1, with the aforementioned
modifications.5 The computation of a statistical-only lower bound PDTL is done
in the same way, except that Equation (5) is used instead of Equation (4).

5.2 From PDT bound to security level bound.

Let us take positive matrices AU ≥ A and BU ≥ B. It always holds that AU ⊗
BU ≥ A ⊗ B and AU · BU ≥ A · B. Therefore, if we use PDT bounds in

composition Theorem 1 (resp., Corollary 3), we get as a result – denoted PDT
U

and computed as AU · BU (resp., AU ⊗ BU ) – a corresponding bound for the

4 The random variables si,O′,I′ for all I′ ⊆ I are not mutually independent, hence the
derived bounds are not independent from each other, but this is not an issue since
the union bound does not require independent variables.

5 And additionally the change of the condition si < Nt by si,O′I < Nt. The rationale
for this condition is that, intuitively, if we have many “worst-case” samples, then we

should have a sufficient knowledge of the distribution
(
Pi(Ĩ′, Õ′)

)
I′⊆I

.



composite PDT – denoted PDT and computed as A·B (resp., A⊗B): PDT
U ≥

PDT≥̇PDT. Then, if we use PDT
U

in the formula for the computation of the
security level (Claim 8) instead of PDT, we get

sU = eT ·PDT
U · p∅ ≥ eT ·PDT · p∅ ≥ s.

We compute the statistical-only lower bound sL in a similar manner. One should
however keep in mind that sL ≤ s does not hold in general, since Claim 8 and the
sequential composition theorem only guarantee an upper bound (in addition to
the non-tightness coming from the maskVerif algorithm). Again, the statistical-
only lower bound is however useful for estimating the uncertainty on the security
level that comes from the Monte-Carlo method: if there is a large gap between
sL and sU , increasing the number of samples in the Monte-Carlo sampling can
result in a better sU (on the other hand, sL gives a limit on how much we can
hope to reduce sU by increasing the number of samples).

5.3 Tool

We implemented the computation of the above bounds in the open-source tool
STRAPS (Sampled Testing of the RAndom Probing Security). This tool con-
tains a few additional algorithmic optimizations that do not change the results
but significantly reduce the execution time (e.g., we exploit the fact that, in some
circuits, many wires carry the same value, and we avoid to explicitly compute
PDTs of large composite gadgets to reduce memory usage). Regarding perfor-
mance, for the computation of the security of the AES S-box (see Figure 10),
almost all of the execution time goes into computing the PDT of the ISW mul-
tiplication gadgets. Computing the PDTs of the other gadgets is much faster as
they are smaller, and computing the composition takes a negligible amount of
time (less than 1 %). The total running time for the AES S-box is less than 5 s
for 1, 2 and 3 shares, 30 s for 4 shares, 3 min for 5 shares, and 33 h for 6 shares
on a 24-core computer (dual 2.3 GHz Intel(R) Xeon(R) CPU E5-2670 v3).

STRAPS presents a few similarities with VRAPS [8]. While STRAPS mainly
computes PDT bounds and VRAPS computes random probing expandability
bounds, both metrics relate to the random probing security of a gadget, and
both tools are based on the maskVerif dependency test algorithm. The main
differences between these tools are twofold. First, STRAPS uses a mix of Monte-
Carlo sampling and full exploration of the sets of probes, whereas VRAPS does
only full exploration. Second, STRAPS computes and uses the simulatability
set for a given set of internal and output probes, while VRAPS only stores
whether the size of the simulatability set exceeds a given threshold. Thanks to
this weaker requirement, VRAPS is able to exploit the set exploration algorithm
of maskVerif, which accelerates the full exploration of the sets of probes by
avoiding an exhaustive enumeration of all subsets [4].



5.4 Experiments & SOTA comparison

In this final section, we illustrate how to use our PDT bounding tool and the
PDT composition theorems in order to bound the security of larger circuits, and
to extract useful intuitions about the trade-off between the number of shares and
level of noise required to reach a given security level. We also compare our results
with previous works by Dziembowski et al. [20] and Beläıd et al. [8,9].

We begin by evaluating the impact of using composition theorems instead
of a direct security evaluation. In Section 3.2, we concluded that directly ana-
lyzing the security of even a single multiplication gadget in the random probing
model tightly is computationally intensive. On Figure 7, we show the security
of a slightly more complex ISW(x,SNI-Ref(x2)) gadget evaluated as either the
composition of four gadgets (a split gadget, a squaring, an SNI refresh and an
ISW multiplication), or as a single gadget (we call it integrated evaluation). We
can see that when the gadget becomes large (n = 5) and for a similar computa-
tional complexity, the results for the PDT composition are statistically tighter
thanks to the lower size of its sub-gadgets. We also observe that, when upper
and lower bounds converge, the security level computed from PDT composi-
tion is close to the one computed by the integrated evaluation, although the
latter one is slightly better. We conclude that the PDT composition technique
can provide useful results in practically relevant contexts where we build gadget
compositions for which the integrated evaluation is not satisfying.
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Fig. 7: Security of a cubing gadget ISW(x,SNI-Ref(x2)). The left plot comes from
PDT composition while the right plot is a direct security evaluation of the full
circuit as a single gadget. The continuous line is an upper bound, while the
dashed line is the stat-only lower bound. Nmax = 2× 106, Nt = 1000.

Next, we investigate different refreshing strategies when computing the x3

operation with an ISW multiplication gadget. Namely, we compare the situa-
tion with no refreshing which is known to be insecure in the threshold probing
model [16], the simple refreshing with linear randomness complexity which does
not offer strong composability guarantees, and an SNI refresh gadget from [12].
The results are illustrated in Figure 8. In the first case (with no refreshing), we



observe the well-known division by two of the statistical security order (reflected
by the slope of the security curves in the asymptotic region where the noise is
sufficient and curves become linear): the security level is asymptotically propor-
tional to pd(n−1)/2e. On the other side of the spectrum, the composition with
an SNI refresh guarantees a statistical security order of n− 1. Finally, the most
interesting case is the one of the simple refresh gadget, for which we observe a
statistical security order reduction for n ≥ 3, of which the impact may remain
small for low noise levels. For instance, we can see that for p ≥ 2× 10−3, the
curves for the simple and the SNI refresh gadgets are almost the same, with the
security order reduction becoming more and more apparent only for lower values
of p. So this analysis provides us with a formal quantitative understanding of a
gadget’s security level which, for example, suggests that depending on the noise
levels, using SNI gadgets may not always be needed.
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Fig. 8: Security of the cubing ISW(x,Ref(x2)), where Ref is identity (no refresh-
ing), Simple-Ref, or SNI-Ref gadget. The continuous line is an upper bound, while
the dashed line is the stat-only lower bound. Nmax = 108, Nt = 100.

We extend this analysis of a simple gadget to the case of a complete AES
S-box in Figure 9. All the previous observations remain valid in this case as well.
Furthermore, this figure confirms that our results get close to the ones reported
for concrete worst-case attacks in [18]. Namely, already for the (low) number of
shares and (practical) levels of noise we consider, we observe a statistical security
order of n− 1 for a practically relevant (AES S-box) circuit.6

Eventually, we compare our bounds with state-of-the-art results for the non-
linear part of the AES S-box in Figure 10, in order to highlight that such tight
results were not available with existing solutions. Precisely, we compare our re-
sults with the works that provide the best bounds in the low-noise region that
we consider: the Simple Refreshing (SR) strategy of Dziembowski et al. [20], and
the first (RPE1) [8] and second (RPE2) [9] sets of gadgets from the Random

6 To make the results more easily comparable, one can just assume connect the leakage
probability with the mutual information of [18] by just assuming that the mutual
information per bit (i.e., when the unit is the field element) equals p.
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Fig. 9: Security of the non-linear part of an AES S-box in F256, where Ref is
either an identity (no refreshing), the Simple-Ref gadget, or the SNI-Ref gadget.
The continuous line is an upper bound, while the dashed line is the stat-only
lower bound. Nmax = 108, Nt = 100.

Probing Expansion strategy of Beläıd et al. We see that amongst the previous
works we consider here, RPE2 with 27 shares achieves the best maximum toler-
ated leakage probability and statistical security order. Our PDT-based analysis
of the SNI-refreshed AES S-box with the ISW multiplication achieves a similar
security level with only 6 shares. In this last experiment, the number of shares n
is an indicator for the circuit size since all schemes have a circuit size in O(n2).
So we conclude that our results enable a significant improvement of the provable
security claims of practical masked circuits in the random probing model.
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