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Abstract. In this paper, we study dedicated quantum collision attacks
on SHA-256 and SHA-512 for the first time. The attacks reach 38 and 39
steps, respectively, which significantly improve the classical attacks for 31
and 27 steps. Both attacks adopt the framework of the previous work that
converts many semi-free-start collisions into a 2-block collision, and are
faster than the generic attack in the cost metric of time-space tradeoff.
We observe that the number of required semi-free-start collisions can be
reduced in the quantum setting, which allows us to convert the previous
classical 38 and 39 step semi-free-start collisions into a collision. The
idea behind our attacks is simple and will also be applicable to other
cryptographic hash functions.
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1 Introduction

Cryptographic hash functions take an arbitrary length message as input and
generate a fixed-length bit string. One of the most important security criteria is
collision resistance. For a hash function H : {0, 1}∗ → {0, 1}n, the complexity to
find two distinct values x1 and x2 such that H(x1) = H(x2) should be O(2n/2).
The collision resistance is a practically relevant notion. For example, Stevens
et al. [37], in their attack against SHA-1, forged two PDF documents with the
same hash digest that display different arbitrarily-chosen visual contents.

The SHA-2 family is one of the most important hash functions at the present
time, which is specified and standardized by NIST [32]. There are two core
algorithms; SHA-256 and SHA-512, depending on the word size. Moreover four
schemes are additionally specified depending on the output size. SHA-2 are used
in wide range of communication protocols such as TLS/SSL, SSH, and IPsec.
SHA-2 are also used by the digital currency such as Bitcoin. After the recent
break of SHA-1 [22], industry accelerated the migration to SHA-2.

History of SHA-2 Cryptanalysis. SHA-2 received a massive amount of secu-
rity analysis. Preimeage attacks were studied in [18,1,13,20] and a conversion to



pseudo-collisions was studied in [23]. Those would work relatively a large num-
ber of rounds, say 52 out of 64 steps of SHA-256 [20], while those only achieve
a marginal amount of speed up. Those are interesting theoretical results but
not strongly related to this research. As a non-random property, second-order
differential collisions defined over four distinct inputs were studied [3].

More relevant works to this research are the attempts to apply previous
collision finding techniques to SHA-2 or to find collisions on reduced-step SHA-
2. The challenge to find a collision on reduced-step SHA-2 was initiated by [31],
which found a collision on 19 out of 64 steps of SHA-224. This is a pioneering
work to construct differential characteristic only having a single local collision.
Then, this type of local collisions were manually optimized to find collisions of
21 steps of SHA-256 [33], and later improved to 22 steps [35], and to 24 steps and
extended to SHA-512 [17,36]. However, it was indicated that the local collision
by [33] could work only up to 24 rounds [17] and indeed this was the last work
for improving the manually detected local collision.

The most recent technical innovation is the development of automated differ-
ential characteristic search tools, which was initiated by Mendel et al. [27] to find
a collision on 27 steps of SHA-256. Because of the search space, the efficiency of
the algorithm is crucial for the automated search tool. Mendel et al. improved the
algorithm and presented a 31-step collision attack and a 38-step semi-free-start
collision attack against SHA-256 [29]. 3 This is the current best (semi-free-start)
collision attacks for SHA-256. The algorithm was further improved to apply
it to SHA-512 [10], SHA-512/224 and SHA-512-256 [7]. For SHA-512, 27-step
collisions and 39-step semi-free-start collisions [7] are the current best results.

Techniques for Finding SHA-2 Collisions. For the attack on SHA-256,
Mendel et al. [29] presented a framework to convert semi-free-start collision
attacks having some special property into a 2-block collision. The framework is
illustrated in Fig. 1. The attacker first analyzes the second block without fixing
IV for the second block, IVsecond. A semi-free-start collision attack that can
work for 2X choices, typically for any unfixed X bits, of IVsecond is located in
the second block. Then, the attacker tests 2n−X messages for the first block to
hit one of 2X choices of IVsecond, typically to hit the fixed n−X bits of IVsecond.
Finally, the attacker determines the rest part of the second block to generate a
2-block collision.

The cost for the first block is 2256−X for SHA-256. To be faster than the
birthday paradox, X must satisfy X > 128. To achieve such a semi-free-start
collision attack, the previous work [29] generated a differential characteristic
such that the characteristic can be satisfied for any value of the first five message
words. Hence, it achieves X = 160. (As explained later, those five message words
can be adjusted to achieve a fixed 160-bit internal state value for any 160 bits
of IVsecond.)

3 For readers who are not familiar with various types of collisions, we explain the dif-
ference among collisions, semi-free-stard collisions, and free-start collisions in Section
A of this paper’s full version [15].
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Fig. 1. Converting Semi-free-start Collisions into 2-block Collisions.

Dedicated Quantum Collision Attacks. Recently, it has been shown that
collision attacks on hash functions with quantum machines can break more
rounds than the attacks with classical machines [14]. Whether a hash function
is attacked or not is judged by comparing the complexity of the generic attack
(birthday paradox) and a dedicated attack. To find a collision, dedicated attacks
mostly apply differential cryptanalysis. With quantum machines, the speed of
finding a value satisfying a differential characteristic becomes a square root com-
pared to classical machines, while the speed of the generic collision attack cannot
be a square root of the birthday paradox, O(2n/4). Indeed, the tight bound of
the query complexity to find a collision was proven to be O(2n/3) [38]. As a
result, dedicated attacks can be stronger when quantum machines are available.
In fact, such cases were observed for AES hashing modes [14,9] and Gimli [11].

In the quantum setting, the generic attack complexity of finding collisions
depends on settings about the resource that an attacker can use. The previ-
ous work discussed three settings. In the first setting, a small (polynomial size)
quantum computer and a large (exponential size) qRAM. In the second setting, a
small (polynomial size) quantum computer and a large (exponential size) classi-
cal memory, In the third setting, efficiency of quantum algorithms are evaluated
by their time-space tradeoff.

In this paper, we focus on the third setting, of which details are as follows.
Note that we do not take error corrections into account and consider that the
running time of a quantum circuit is proportional to the depth of the circuit.

Cost metric of time-space tradeoff. The efficiency of an attack is evaluated by
the tradeoff between T and S, where T is the attack time complexity (or,
the depth of the quantum circuit) and S is the hardware size required for
the attack (i.e., S is the maximum size of quantum computers (or, width
of quantum circuits) and classical computers). S can be exponentially large,
and we do not make distinction between qubits for computation and qubits
for memory. Bernstein [2] observed that, when a classical computer of size S
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is available, by using the parallel rho method [34] we can find a collision of
a random function in time T = O(2n/2/S). There does not exist a quantum
attack on a random function that achieves a better tradeoff than this classical
attack.4 Hence, a dedicated quantum collision attack on a concrete hash
function that uses a quantum computer of size S is considered to be valid if
its time complexity T is less than 2n/2/S.

The condition T < 2n/2/S is equivalent to T · S < 2n/2. Hence the effi-
ciency of a quantum attack in the time-space tradeoff metric is evaluated by the
multiplication of T and S, and the threshold for the attack to be valid is 2n/2.

Jaques and Schanck [19] showed that when error correction is necessary and
quantum memory is actively corrected, it is realistic to model that the cost of a
quantum attack is proportional to the multiplication of the depth and the width
of the quantum circuit used in the attack. Therefore, although we do not care
about error corrections in our complexity analysis, the cost metric of time-space
tradeoff is in fact reasonable from the view point of cost estimation including
quantum error correction (when quantum memory is actively corrected).

Research Challenge. The collision resistance of SHA-2 family in the quantum
setting has not been studied before. 5 In fact, this is not a simple task. As men-
tioned before, the current differential characteristics for SHA-2 collision attacks
consist of a single local collision. The previous work showed [14] that the cost to
satisfy an uncontrolled part of the differential characteristic can be square root,
while the differential characteristic for SHA-2 does not have such a form. Thus
this issue deserves careful investigation.

Our Contributions. In this paper, we present quantum collision attacks on
SHA-256 and on SHA-512 that break more rounds than the attacks in the clas-
sical setting. Our attacks are valid in the time-space tradeoff cost metric. The
number of attacked steps is compared in Table 1.

To generate collisions, we follow the same approach as the previous work.
Namely, we locate a semi-free-start collision in the second block and find a
first-block message to hit one of IVs that is acceptable for the second block. In
the previous work, it is principally inevitable that the semi-free-start collision
attack must work for at least 2X choices of IVs, where X > 128 for SHA-256.
This is a strong requirement, which significantly restricts the search space to
find a suitable differential characteristic. We observe that if quantum machines
are available, we can construct an attack with an intuitive condition of X > 0 by
ignoring the constant factor. In practice, the constant factor cannot be ignored
and we will show a rigorous complexity analysis.

4 There is no proof that the bound O(2n/2/S) is the best, but achieving a better
bound is hard.

5 From the view point of provable security, there is a previous work that suggests that
the SHA-2 mode is reasonable in the quantum setting [16].
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Table 1. Comparison of the Attack Results. The quantum attacks on SHA-256 and
SHA-512 are faster than the generic attack as long as S < 212 and S < 26.6, respectively.

Target Setting Type Steps Complexity Reference
classic collision 28/64 practical [29]

SHA-256 classic collision 31/64 265.5 [29]
classic semi-free-start collision 38/64 practical [29]

quantum collision 38/64 2122/
√
S Section 5

classic collision 24/80 practical [17,36]
classic collision 27/80 practical [7]

SHA-512 classic semi-free-start collision 38/80 practical [10]
classic semi-free-start collision 39/80 practical [7]

quantum collision 39/80 2252.7/
√
S Section 6

For SHA-256, the previous work [29] found a differential characteristic with
X > 128 up to 31 steps, while unconditioned semi-free-start collisions could be
generated for 38 steps. Hence we start from the 38-step semi-free-start collision
example generated by [29] and slightly modify its message words so that semi-
free-start collisions can be generated for multiple IVs. We achieve X ≈ 20 for
38-step SHA-256. If we have a quantum computer of size S, the attack complexity
is about c ·

√
2256−20/S = 2122/

√
S, where c is a small constant and rigorous

analysis shows c ≈ 24. Because the generic attack cost under the time-space
metric is 2128/S, our attack is faster than the generic attack when S < 212.

For SHA-512, it seems difficult to build a differential characteristic with a lot
of degrees of freedom such as X > 256. In fact, the previous work [7] could not
apply the 2-block conversion, and the current strategy is limited to be a single-
block attack. In this paper, we observe that the 39-step semi-free-start collision
attack [7] can accept multiple choices of IV with some X that is much smaller
than 256, and will convert it into 2-block collision in the quantum setting.

As we mentioned before, the previous work [14] discussed three settings de-
pending on available computational resources. In fact our attacks are valid only
in the setting of time-space tradeoff because the time complexity exceed the
generic complexity in other settings. Nevertheless, we would like to remark that
dedicated attacks that are valid in this setting (including our attacks) are always
better than the generic attacks in other settings from the viewpoint of time-space
tradeoff. This is because the generic attacks in other settings have time-space
tradeoff T 2 · S = 2n, which is worse than the trade-off T · S = 2n of the generic
attack in our setting. 6

Some readers may think that our attacks are invalid because the margin of
our attacks (compared to the generic attack) are too small while we do not take

6 The generic attacks in other two settings are the BHT algorithm [5] and the CNS
algorithm [6]. The BHT algorithm runs in time T = O(2n/3) and uses S = O(2n/3)
qRAM. The CNS algorithm runs in time T = O(22n/5) and uses no qRAM, but
requires S = O(2n/5) classical memory.
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the overhead for quantum computation, or their complexity does not signifi-
cantly outperform the classical complexity. However, security of symmetric-key
primitives is generally measured under the most vulnerable environment (they
must resist any attacks in any nitpicked setting like S = 1). The principle of
security under the most vulnerable environment makes it natural to ignore the
overhead because the overhead for quantum computation may drastically be
reduced by future technical developments. In addition, when reduced-step vari-
ants of symmetric-key primitives are analyzed, the most important factors is
the number of attacked steps rather than the attack cost. Our quantum attacks
break significantly more steps than the classical attacks.

Remark 1. For reference, we also provide discussions on comparison between our
attacks and a generic collision attack based on the multi-target preimage search.
See Section B of this paper’s full version [15] for details.

Future Directions. Due to its simplicity, we believe that the idea of our 2-block
quantum collision attacks is applicable to other cryptographic hash functions. It
will also be interesting to study optimizations of differential characteristics for
the classical semi-free-start collision attack with respect to the conversion to the
quantum collision attack. Some observations and initial work will be provided
in the last part of the paper.

Paper Organization. Section 2 is preliminaries. Section 3 explains the previous
collision and semi-free-start collision attacks. Section 4 explains our observation
that is used in our quantum attacks. Sections 5 and 6 show the attack algorithms
and their evaluations. Section 7 provides discussion toward future applications
of our attack idea. Finally, we conclude this paper in Section 8.

2 Preliminaries

For n-bit strings x and y, ¬x, x∧y, x∨y and x⊕y denote the bit-wise negation
of x, the bit-wise AND on x and y, the bit-wise OR on x and y, and the bit-
wise XOR on x and y, respectively. For an n-bit string x and a non-negative
integer m such that m ≤ n, x � m (resp., x ≫ m) denotes the m-bit right
shift operation on x (resp., the m-bit circular right shift operation on x). We
identify the set of n-bit strings {0, 1}n with the sets {0, . . . , 2n − 1} and Z/2nZ.
x+y denotes the modular addition of x and y for x, y ∈ Z/2nZ, unless otherwise
noted. Sometimes we use the symbol � instead of +. We assume that readers
are familiar with basics on quantum computation7.

7 Knowledge on quantum computations is required to fully understand our complex-
ity analysis, though, essentially the quantum algorithms we use are only the (paral-
lelized) Grover search, and we use them in an almost black-box manner.
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2.1 Specification of SHA-256 and SHA-512

SHA-256 and SHA-512 adopt the Merkle-Damg̊ard construction, and their com-
pression functions adopt the Davies-Meyer construction. Let w be the word size,
which is 32 for SHA-256 and 64 for SHA-512. The length of message blocks is
16w bits (512 bits for SHA-256 and 1024 bits for SHA-512), and the length of
chaining values and final outputs is 8w bits (256 bits for SHA-256 and 512 bits
for SHA-512).

Given a chaining value (or the initial value IV)H = (H0, . . . ,H7) ∈ ({0, 1}w)8

and a message block M = (M0, . . . ,M15) ∈ ({0, 1}w)16, the output value of
the compression function f(H,M) is computed by iteratively updating internal
states as follows. The number of steps, which is denoted by r, is 64 for SHA-256
and 80 for SHA-512.

1. (Message expansion.) Compute Wi (i = 0, . . . , r − 1) by

Wi :=

{
Mi for i = 0, . . . , 15,

σ1(Wi−2) +Wi−7 + σ0(Wi−15) +Wi−16 for i = 16, . . . , r − 1.

The functions σ0, σ1 : {0, 1}w → {0, 1}w are defined later.

2. (Iterative state updates.) Set st−1 := H. For i = 0, . . . , r−1, update the 8w-
bit state sti−1 = (Ai−1, Ai−2, Ai−3, Ai−4, Ei−1, Ei−2, Ei−3, Ei−4) to sti =
(Ai, Ai−1, Ai−2, Ai−3, Ei, Ei−1, Ei−2, Ei−3), where

Ei := Ei−4 +Ai−4 +Σ1(Ei−1) + IF(Ei−1, Ei−2, Ei−3) +Ki +Wi,

Ai := Σ0(Ai−1) + MAJ(Ai−1, Ai−2, Ai−3) + Ei −Ai−4.

The functions IF,MAJ : ({0, 1}w)3 → {0, 1}w and Σ0, Σ1 : {0, 1}w →
{0, 1}w are defined later. Ki is a step-dependent constant. Since the value of
Ki does not affect our attacks, we omit the value of Ki. See also Fig. 2.

3. Compute the next chaining value f(H,M) as f(H,M) := str−1 +H. (Only
here, the symbol “+” denotes the word-wise modular addition.)

The functions IF,MAJ : ({0, 1}w)3 → {0, 1}w are defined as

IF(x, y, z) = (x ∧ y)⊕ ((¬x) ∧ z), MAJ(x, y, z) = (x ∧ y)⊕ (y ∧ z)⊕ (z ∧ x)

for both of SHA-256 and SHA-512. In addition, Σ0, Σ1, σ0, σ1 are defined by

Σ0(x) = (x≫ 2)⊕ (x≫ 13)⊕ (x≫ 22),

σ0(x) = (x≫ 7)⊕ (x≫ 18)⊕ (x� 3),

Σ1(x) = (x≫ 6)⊕ (x≫ 11)⊕ (x≫ 25),

σ1(x) = (x≫ 17)⊕ (x≫ 19)⊕ (x� 10)
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MAJ
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MAJIF

Fig. 2. This is an alternative representation of the state update function devised by
the previous work [27]. The operation “×(−1)” denotes the multiplication by (−1) in
Z/2wZ.

for SHA-256, and

Σ0(x) = (x≫ 28)⊕ (x≫ 34)⊕ (x≫ 39),

σ0(x) = (x≫ 1)⊕ (x≫ 8)⊕ (x� 7),

Σ1(x) = (x≫ 14)⊕ (x≫ 18)⊕ (x≫ 41),

σ1(x) = (x≫ 19)⊕ (x≫ 61)⊕ (x� 6)

for SHA-512.

Let Wi,j denote bit j of Wi, where Wi,0 is the least significant bit and Wi,w−1
is the most significant bit. We also use the same notation to denote bit positions
for other variables such as Ai and Ei.

2.2 Quantum Computation

We use the quantum circuit model as the model of quantum computation. Let
H denote the Hadamard operator defined by H |b〉 =

∑
c∈{0,1}(−1)b·c |c〉 for

b ∈ {0, 1}. The quantum oracle of a function f : {0, 1}m → {0, 1}n is the
unitary operator Of defined by Of |x〉 |y〉 = |x〉 |y ⊕ f(x)〉 for x ∈ {0, 1}m and
y ∈ {0, 1}n.

Grover’s Algorithm. Grover’s algorithm [12] is the quantum algorithm to
solve the following database search problem.

Problem 1. Let F : {0, 1}n → {0, 1} be a function such that |F−1(1)| > 0. Given
a (quantum) oracle access to F , find x such that F (x) = 1.
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Let t := |F−1(1)|. We always consider the case that t/2n � 1. Though
O(2n/t) queries are required for classical algorithms to solve the problem, Grover’s
algorithm solves the problem only with O(

√
2n/t) quantum queries.

More precisely, suppose that there exists a quantum circuit that computes
F in time TF by using SF qubits (i.e., the depth and width of the circuit are
TF and SF , respectively). Then, Grover’s algorithm finds a solution in time
TF · (π/4) ·

√
2n/t, by using SF + 1 qubits.

Details of Grover’s Algorithm. For a positive integer i, let Grov(F, i) be the
quantum algorithm that runs the following procedure:

1. Prepare the initial state |ψinit〉 := H⊗(n+1) |0n〉 |1〉.
2. Let θ be the value that satisfies sin2 θ = t/2n and 0 ≤ θ ≤ π/2. Apply the

unitary operator QF := −(H⊗n⊗I)(O0⊗I)(H⊗n⊗I)OF iteratively i times
on |ψinit〉. Here, OF is the quantum oracle of F , and O0 is the operator such
that O0 |x〉 = (−1)δx,0n |x〉 (δx,y is Kronecker’s delta such that δx,y = 1 if
x = y and δx,y = 0 if x 6= y).

3. Measure the resulting state QiF |ψinit〉, and output the most significant n bits.

Boyer et al. showed that, when we set the number of iterations i to be bπ/4θc,
the algorithm Grov(F, bπ/4θc) outputs x such that F (x) = 1 with a probability
at least 1− t/N [4]. Since π/4θ ≤ π/(4 sin θ) = (π/4)

√
2n/t holds, the running

time of Grov(F, bπ/4θc) is at most TF · (π/4)
√

2n/t.

Remark 2. In the above arguments, we implicitly assume that t is known in ad-
vance. If t is not known in advance, we have to perform a more sophisticated
procedure, which increases the total number of queries to F by a constant fac-
tor [4].

Parallelization. When P ≥ 2 quantum computers are available, by running P
copies of Grov(F, bπ/4θ

√
P c) in parallel, we can find a solution in time TF ·

π
4

√
2n/(t · P ) with a probability at least 1 − 1/e (we always consider the case

that (t · P )/2n � 1). For completeness, we provide detailed explanations on the
success probability in Section C of this paper’s full version [15]

Cost Evaluation. As mentioned in Section 1, we evaluate the complexity of
the attacks in the setting of time-space tradeoff. We do not take costs of quan-
tum error corrections into account, and we consider that the running time of a
quantum circuit is proportional to the depth of the circuit.

In each attack, we assume that there exists an implementation of the attack
target primitive (i.e., SHA-256 or SHA-512) on a quantum circuit C, and we re-
gard that the unit of depth (resp., width) of quantum circuits is the depth (resp.,
width) of C, so that our cost estimation will be independent from implementation
methods of primitives.

In addition, we do not take communication costs into account. That is, we
assume that arbitrary two-qubit quantum gate can be applied to arbitrary pair
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of qubits. The communication costs will not be significant in our attacks because
we use quantum circuits just for running the Grover search (or, its simple par-
allelization) that requires only several times as much qubits as implementations
of SHA-2 use.

3 Previous Works

This section provides an overview on the collision attack on 31-step SHA-256
in [29], the semi-free-start collision attack on 38-step SHA-256 in [29], and the
semi-free-start collision attack on 39-step SHA-512 in [7,8].

3.1 Collision Attack on 31-Step SHA-256

The collision attack on 31-step SHA-256 in [29] finds a 2-block collision with time
complexity 265.5. Intuitively, a 2-block collision (M̃ ||M,M̃ ||M ′) (here, M̃,M,M ′

are in {0, 1}512, and M 6= M ′) is constructed by searching for a random message
M̃ for the first block and a semi-free-start collision (M,M ′) for the second block
such that the output of the first block is the IV of the second block.

Semi-free-start collisions in the second block are constructed based on a lo-
cal collision that starts at step 5 and ends at step 18, which is found by using
heuristic automated search tools. The tool finds both of differential character-
istics and conditions for message pairs (M,M ′) at the same time. See table 2
for the differential characteristic and conditions for (M,M ′) shown in [29]. The
meanings of the notations in Table 2 are as follows:

1. “-” indicates that the bit associated with M at the position must be equal
to the corresponding bit associated with M ′.

2. “0” indicates that the bit at the position must be 0 for both of M and M ′.
3. “1” indicates that the bit at the position must be 1 for both of M and M ′.
4. “u” indicates that the bit at the position must be 1 for M and 0 for M ′.
5. “n” indicates that the bit at the position must be 0 for M and 1 for M ′.

See also Remark 3. For each i, by Ai, Ei,Wi we denote the words of internal
states and expanded messages as described in Section 2.1.

The authors of [29] also show an example of a semi-free-start collision of
31-step SHA-256 that satisfies the differential characteristic. See Table 6 of this
paper’s full version [15] for details.

Attack procedure. Next, we describe the attack procedure. The important
features of the differential characteristic in Table 2 are summarized as follows:

1. Only seven message words (W5, . . . ,W9,W16,W18) have differences. Since
W0, . . . ,W4,W10, . . . ,W15 do not have differences, W17,W19,W26, . . . ,W30

do not have differences, either. The differences at W20, . . . ,W25 need to be
canceled out (see Table 3).
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Table 2. The 31-step differential characteristic for SHA-256 shown in [29].

i ∆Ai ∆Ei ∆Wi
−4 ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ----

−3 ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ----

−2 ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ----

−1 ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ----

0 ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ----

1 ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ----

2 ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ----

3 ---- ---- ---- ---- ---- ---- ---- --0- -0-- ---- ---- ---- --0- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ----

4 ---- ---- ---- ---- ---- ---- ---- --00 -1-- ---- ---1 ---- -01- --1- 0--0 --10 ---- ---- ---- ---- ---- ---- ---- ----

5 -nnn -n-n -11- ---n --nu -1-- ---- -0n- 0nnn n1uu -0-1 101n -1nu --0- 11-1 -0n1 u--- uunu ---- ---n ---n ---- ---- --n-

6 unnn n--- ---- ---- ---- ---- ---- --0- n-n1 0111 n--u 11u0 0n10 u1n- nn1n -1uu nn1- n--- nu-n n--1 u--0 -un0 --n0 -nn-

7 ---- ---- ---- ---- ---n ---- ---- n-0u 101u 0nn1 0-11 011u -n11 1n11 0un1 -nnn 00nn 0n10 1-n1 nnn1 u0nn -n01 1u-1 n0--

8 ---- ---- ---- ---- ---- ---- ---- ---- 1-uu 1111 0--0 u101 10n- 1010 1010 -0n0 0001 u000 1-00 0nuu un1n 01nn -01n uuuu

9 ---- ---- ---- ---- ---- ---- ---- ---- 1011 00uu 1111 11nu 1110 01-- 0111 10nn ---- -1-- ---- ---u n--- 0--- --11 un--

10 ---- ---- ---- ---- u--- ---- ---- -u-- 1-00 u110 1001 101u n00- -000 1--u 1n00 ---0 ---- ---- ---- ---- ---- ---- --1-

11 ---- ---- ---- ---- ---- ---- ---- ---- 0101 00u0 nu1u uuuu u100 1000 000n 1u10 ---- ---- ---- ---- ---- ---- ---- ----

12 ---- ---- ---- ---- ---- ---- ---- ---- 111n uuuu uuuu uuuu u001 1111 0110 0n00 ---- ---- ---- ---- ---- ---- ---- ----

13 ---- ---- ---- ---- ---- ---- ---- ---- ---1 01-1 1-1- ---- 1--- ---- ---0 -0-- ---- ---- ---- ---- ---- ---- ---- ----

14 ---- ---- ---- ---- ---- ---- ---- ---- ---1 00-- -001 1111 u--- ---- 1--- -u-- ---- ---- ---- ---- ---- ---- ---- ----

15 ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- 0--- ---- ---- -0-- ---- ---- ---- ---- ---- ---- ---- ----

16 ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- 1--- ---- ---- -1-- ---- ---- ---- -unn nunn nnnn nnnn nn--

17 ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ----

18 ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- n--- ---- ---- -n--

19 ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ----

20 ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ----

21 ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ----

22 ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ----

23 ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ----

24 ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ----

25 ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ----

26 ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ----

27 ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ----

28 ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ----

29 ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ----

30 ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ----

2. No condition is imposed on the first five message words W0, . . . ,W4, thus
those can be chosen freely.

By using these properties, the authors of [29] first show an attack with complexity
299.5, and then show how to reduce the complexity to 265.5.

The first attack with complexity 299.5. Let f denote the (31-step) compression
function. The procedure of the collision attack with complexity 299.5 is as follows.

I. Use the automatic search tool to determine the message words W5, . . . ,W12

and the internal states from the beginning of step 5 to the end of step 12
(in the second block). Though W0, . . . ,W4 have not been chosen yet at this

Table 3. The position of the message words where non-zero differences appear. “©”
indicates that the word has non-zero difference. “×” indicates that the word is com-
puted from previous words with non-zero differences but the difference is canceled out.
(Wi is computed from Wi−2, Wi−7, Wi−15, and Wi−16 for i ≥ 16.)

Wi 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
Difference ©©©©©

Wi 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30
Difference © © × × × × × ×
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step, the values of the variables E1, . . . , E4 and A−3, . . . , A4 are completely
determined by the internal state at the beginning of step 5 (see also Fig. 4 of
this paper’s full version [15] for details). Note thatA−1||A−2||A−3 correspond
to the 96 most significant bits of the initial value of the second block.

II. Find a message M̃ for the first block such that the 96 most significant bits
of f(IV, M̃) is equal to A−1||A−2||A−3. Compute the (uniquely determined)
values W0, . . . ,W4 that is compatible with the chaining value f(IV, M̃) and
the state at the beginning of step 5.

III. Now,W0, . . . ,W12 have been chosen. Use degrees of freedom inW13,W14,W15

to fulfill the conditions on E13, E14, E15, W16, and W18 (in addition to the
cancellation of differences at W20, . . . ,W25). If it fails, go back to Step II.

Step II requires time 296. According to the authors of [29], Step I of the attack
takes only seconds, and Step III succeeds with a probability about 1/12 due to
the lack of degrees of freedom in W13,W14,W15, which was verified experimen-
tally. The total time complexity is estimated as 12 · 296 ≈ 299.5.

The second attack with complexity 265.5. The attack complexity is reduced from
299.5 to 265.5 by computing many solutions in Step I. The idea is as follows.
Suppose that ` solutions can be found for Step I (they are stored in a list).
Then, the complexity of Step II can be reduced from 296 to 296/`. If a single
solution in Step I can be found in time TI , then the overall complexity of the
attack becomes TI · `+ 12 · 296/`.

The authors of [29] claim that TI ≈ 225.5, and their experiments indicate
that they can expect ` ≈ 234. Based on these observations, they deduced that a
collision can be found with complexity 225.5 · 234 + 12 · 296/234 ≈ 265.5.

3.2 Semi-Free-Start Collision Attack on 38-Step SHA-256

As well as the semi-free-start collisions in the 31-step collision attack, the semi-
free-start collision of 38-step SHA-256 in [29] is constructed based on a local
collision that starts at step 7 and ends at step 24, which are also found by using
the heuristic automated search tool.

See Table 4 for the differential characteristic and the conditions for confirming
message pairs shown in [29]. (See also Remark 3.) The semi-free-start collision of
38-step SHA-256 given in [29] is shown in Table 7 of this paper’s full version [15].

3.3 Semi-Free-Start Collision Attack on 39-Step SHA-512

The semi-free-start collision of 39-step SHA-512 in [7,8] is also constructed based
on a local collision that starts at step 8 and ends at step 26, which is also found
by using the heuristic automated search tool.

See Table 5 of this paper’s full version [15] for the differential characteristic
and the conditions for confirming message pairs shown in [8]. (See also Re-
mark 3.) The semi-free-start collision of 39-step SHA-512 given in [7,8] is shown
in Table 8 of this paper’s full version [15].
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Table 4. The 38-step differential characteristic for SHA-256 shown in [29].

i ∆Ai ∆Ei ∆Wi
−4 ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ----

−3 ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ----

−2 ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ----

−1 ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ----

0 ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ----

1 ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ----

2 ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ----

3 ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ----

4 ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ----

5 ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- 1--- -1-- ---- ---- ---- ---- ---- ---- ---- ---- ----

6 ---- ---- ---- ---- ---- ---- ---- ---- 1--0 0--1 ---- ---1 -101 11-- -0-1 --0- ---- ---- ---- ---- ---- ---- ---- ----

7 -n-- --u- n-u- --u- ---- --n- nn-- ---- nu-1 1-0u uun1 01-u uuuu uu1u -u-1 --01 --nn nnn- -nn- -un- ---n uuu- nn-- ----

8 ---- nn-n --n- -un- uu-u -u-u -n-- ---- n01n n-1n 1000 0-1u 1uuu nu00 n0-n n0n1 0000 0110 1110 1--1 100n uuuu uuuu uu00

9 u--- u-n- -nuu u--- n-uu u--u ---- ---n 000n 00u1 0001 n101 nu0u 0001 11-u 11un ---- ---- ---- ---- ---- ---- ---- ----

10 ---- ---- ---- ---- ---- ---- ---- ---- 00un n001 10n1 001u 11u- 101u 111u 0uun ---- ---- unnn nnnn u--- ---- ---- ----

11 ---- ---- ---- ---- ---- ---- ---- ---- 1u1- 11u1 1-n0 1n10 0n10 u1-1 1u10 0011 ---- --1- ---- ---- ---- ---- ---- ----

12 ---- ---- ---- ---- ---- ---- ---- ---- 0uu1 u1u0 u1uu 1n01 nn11 1u01 1n-0 1010 ---- ---- --1- ---- 01-- ---- ---- ----

13 ---- ---- ---- ---- ---- ---- ---- ---- n001 0uu0 1-00 n1-0 1n0n u10u 10-1 -nuu ---- ---- ---- ---- 0--- ---- ---- ---1

14 ---- ---- ---- ---- ---- ---- ---- ---- 101- 110- 1-00 10-1 0--1 11-0 10-- -100 ---- ---- ---- ---- ---- ---- ---- ----

15 ---- u--- ---- ---n ---- ---- ---- ---- 0-1- u01- ---0 0--n -00- ---1 0--- -111 ---- ---- ---- ---- ---- ---- ---- -u--

16 ---- ---- ---- ---- ---- ---- ---- -u-- ---- n-n1 ---0 1-un 11-- ---- nuu- nu01 ---- ---- ---- ---- ---- ---- ---- ----

17 ---- ---- ---- ---- ---- ---- ---- ---- -0-- n-1- --0n nnnn -nuu 1--- 011- 1-un ---- ---- ---- ---- ---- ---- ---- ----

18 ---- ---- ---- ---- ---- ---- ---- ---- ---- 0-1- --00 000- -000 --10 1110 1100 ---- ---- ---- ---- ---- ---- ---- ----

19 ---- ---- ---- ---- ---- ---- ---- ---- 0--- u-00 nuuu uuuu 0001 --00 1101 1011 ---- ---- ---- ---- ---- ---- ---- ----

20 ---- ---- ---- ---- ---- ---- ---- ---- 1--1 --11 1001 11-- -1-- 0unn nnnn nn0- ---- ---- ---- ---- ---- ---- ---- ----

21 ---- ---- ---- ---- ---- ---- ---- ---- ---- 1--- 1111 1111 ---- -000 0000 00-- ---- ---- ---- ---- ---- ---- ---- ----

22 ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- -111 1111 11-- ---- ---- ---- ---- ---- ---- ---- ----

23 ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- n--- ---- --un ---- ---- ---- ----

24 ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- -n--

25 ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ----

26 ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ----

27 ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ----

28 ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ----

29 ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ----

30 ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ----

31 ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ----

32 ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ----

33 ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ----

34 ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ----

35 ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ----

36 ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ----

37 ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ----

Remark 3. To be precise some bits in the differential characteristics in Tables 2,
4, and 5 of this paper’s full version [15] have additional conditions. They are
shown in the original papers [29,7,8] but we omit to show them because they are
not significantly relevant to the basic idea of our attacks.

4 Observations and Ideas for Quantum Collision Attacks

For SHA-256, the previous 38-step semi-free-start collision is not converted into
a collision while the 31-step semi-free-start collision is converted. For SHA-512,
the previous 39-step semi-free-start collision is not converted.

In Section 4.1, we explain details on the reason that the semi-free-start colli-
sions of 38-step SHA-256 and 39-step SHA-512 are not converted into collisions
in the classical setting, based on the explanation in [7,8]. In Section 4.2, we
explain our basic ideas on how to apply the conversion in the quantum setting.

4.1 Obstacles for Conversions in the Classical Setting

Summary of 31-Step SHA-256. Recall that the 31-step collision is obtained
by matching the IV produced from the first block and semi-free-start collisions
in the second block. Also recall that the attack consists of three steps.
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In Step II of the attack, the degrees of freedom in the message words W0, . . . ,
W4 are used to make the output of the first block and the local collision in the
second block compatible. Let α denote the number of free bits in the message
words that can be used to make those two values compatible. Since W0, . . . ,W4

can be chosen freely, α = 5 · 32 = 160 holds. For a randomly chosen M̃ and a
single solution in Step I, the probability that they can be compatible is 2α/2n.

If we have ` solutions in Step I and if Step III succeeds with a probability p,
a randomly chosen M̃ leads to a collision with probability ` ·(2α/2n) ·p. Thus the
time complexity T is estimated as T = 1

`·(2α/2n)·p = 2n/(` · 2α · p) (by ignoring

the complexity of Step I).
It is claimed in [29] that one can expect ` = 234 and p ≈ 1/12 ≈ 2−3.5, and

the complexity 265.5 is obtained as T = 2256/(234 · 2160 · 2−3.5) = 265.5.

Remark 4. Let 2X be the number of IVs of the second block that will be com-
patible with the local collisions in the second block. Then, the time complexity
to find the first message block will be T = 2n/2X . The attack is valid as long as
X > n/2 = 128.

Lack of Degrees of Freedom in 38-Step SHA-256. We observe that in the
differential characteristic for the 38-step semi-free-start collision of SHA-256 (Ta-
ble 4), almost all the bits of state variable Ei have conditions for i = 7, . . . , 20,
which implies that both of the values and the differences for W7, . . . ,W20 will
be fixed. When 16 successive message words are fixed, all the message words
are fixed (due to the message expansion). Thus, among the message words
W0, . . . ,W7 that can be used to make the first block and the local collision in
the second block compatible, only the two words W5 and W6 will have degrees
of freedom, and the number of free bits is α = 2 · 32 = 64 in total.

Thus the time complexity will be 2n/(` ·2α ·p)= 2192/(` · p) when ` solutions
are available. Considering that ` is about 234 for 31-step collisions, the complexity
will be larger than 2128 of the birthday paradox.

Remark 5. From another point of view, the 38-step semi-free-start collision can-
not be converted into a collision because X < 128.

Lack of Degrees of Freedom in 39-Step SHA-512. The 39-step semi-free-
start collision of SHA-512 in [29,8] cannot be converted into a collision for the
same reason.

In the differential characteristic (Table 5 of this paper’s full version [15]),
almost all bits of the internal state variable Ei have some conditions for i =
8, . . . , 22, which implies that both of the internal states and the message words
in steps 8 - 22 will be fixed. Due to the constraint derived from the message
expansion, only the single word W7 will have degrees of freedom among the first
8 message words that can be used to make the first block and the local collision
in the second block compatible (i.e., α = 64). In addition, ` will not be large
since the differential characteristic has dense conditions for i = 8, . . . , 22. Thus
the time complexity 2n/(`·2α ·p) will be larger than 2256 of the birthday paradox.
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4.2 Observations and Ideas on Conversion in the Quantum Setting

As mentioned in Remark 4, X > n/2 must be satisfied to be a valid attack.
On the other hand, in the quantum setting of time-space tradeoff, it may be
possible to mount valid 2-block collision attacks even if X < n/2. For example,
assume that we can decrease the time complexity of 2-block collision attacks
from 2n/2X to

√
2n/2X by applying the Grover search and the Grover search

requires negligible memory. It becomes a valid quantum collision attack in the
setting of time-space tradeoff if

√
2n/2X < 2n/2, which is equivalent to X > 0.

Actually this idea is too naive and we cannot achieve a valid quantum attack in
such a simple way. Nevertheless, this idea shows the possibility of valid 2-block
quantum collision attacks with the Grover search.

With this in mind, we mount quantum collision attacks on 38-step SHA-256
and 39-step SHA-512 by converting the semi-free-start collisions into 2-block
collisions with the Grover search. To achieve this goal, we have to take the
following two points into account.

1. In the classical attack on 31-step SHA-256, by storing ` solutions in Step I,
the complexity of Step II is decreased by the factor of `. This strategy works
well since memory is relatively cheap in the classical setting. On the other
hand, memory is expensive in the quantum setting of time-space tradeoff,
and memory-less algorithms are favorable.

2. In the classical attack on 31-step SHA-256, we can choose W0, . . . ,W4 freely
because those values do not affect the steps with dense conditions in the
differential characteristic (i.e., steps 5 - 12). On the other hand, in the attack
on 38-step SHA-256 (resp., 39-step SHA-512), we have to choose the message
words W0, . . . ,W6 (resp., W0, . . . ,W7) carefully because they affect on some
of the message words in the steps with dense conditions, i.e., W7, . . . ,W20

(resp., W8, . . . ,W22), through the message expansion.

We will set ` = 1 to minimize the required memory size. On the choice of the
message words W0, . . . ,W6 for 38-step SHA-256, we observe the following.

We can modify W6 to another value Ŵ6 without changing W7, . . . ,W21 by
modifying Wj to Ŵj := Wj − (σ0(Ŵj+1)−σ0(Wj+1)) for j = 5, 4, . . . , 0 step
by step.

Indeed, if the value of W6 is changed to another value Ŵ6, then W21 and
W22 will be changed because Wi = σ1(Wi−2) + Wi−7 + σ0(Wi−15) + Wi−16
holds for i ≥ 16. However, the change of the value of W21 can be canceled
out by modifying W5 to Ŵ5 := W5 − (σ0(Ŵ6) − σ0(W6)). By modifying Wj to

Ŵj := Wj − (σ0(Ŵj+1)− σ0(Wj+1)) similarly for j = 4, . . . , 0, we can also keep
W20, . . . ,W16 unchanged. Since W7, . . . ,W15 are not affected by the modification
of W0, . . . ,W6, the words W7, . . . ,W15 are also kept unchanged.

We obtain a similar observation on the choice of the message wordsW0, . . . ,W7

for 39-step SHA-512. That is, we can modify W7 to another value Ŵ7 without
changing W8, . . . ,W22, by modifying Wj to Ŵj := Wj − (σ0(Ŵj+1)−σ0(Wj+1))
for j = 6, . . . , 0 step by step.

We mount quantum 2-block collision attacks based on these observations.
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Attack Idea. Here we explain basic ideas of our quantum attacks that are
common between 38-step SHA-256 and 39-step SHA-512. We will explain details
that are specific to each function in the next section.

Let i denote the number of the step where the local collision starts in the
differential characteristic (i = 7 for 38-step SHA-256 and i = 8 for 39-step
SHA-512). The attack procedure is as follows (see also Fig. 5 of this paper’s full
version [15]).

I. Find a pair of messages (M,M ′) and an initial value for the second block
that yield a semi-free-start collision. Let Sstart be the internal state at the
beginning of step i. For each j, let Wj and W ′j denote message word j
expanded from M and M ′, respectively. Note that W0 = W ′0, . . . ,Wi−1 =
W ′i−1 hold.

II. With the Grover search, find a message M̃ (for the first block) that satisfies
the followings.
(a) Sstart and the input chaining value for the second block IVsecond derived

from M̃ can be compatible by modifying the message wordsW0, . . . ,Wi−1,
W ′0, . . . ,W

′
i−1, while keeping the message words Wi, . . . ,Wi+14,W

′
i , . . . ,

W ′i+14 unchanged. Let M̂ and M̂ ′ be the messages for the second block af-

ter the modification, i.e., M̂ := Ŵ0|| · · · ||Ŵi−1||Wi|| · · · ||W15 and M̂ ′ :=
Ŵ0|| · · · ||Ŵi−1||W ′i || · · · ||W ′15.

(b) Sstart and the modified message pair (M̂, M̂ ′) yield a collision at the end
of the second block.

III. By using M̃ found in Step II, perform the computations in Steps II-(a) and
II-(b) again to obtain the pair (M̂, M̂ ′) that yield a collision at the end
of the second block. (This step may seem redundant, but we separate this
step from Step II so that we can apply the Grover search on M̃ in Step II.)
Output (M̃ ||M̂, M̃ ||M̂ ′).

Step I of the above procedure corresponds to Step I of the classical collision
attack on 31-step SHA-256. We store only a single solution in Step I of our attack
so that the attack will be memory-less. Since only a single solution is required
in this step, we just use the values shown in the previous works (i.e., the values
M,M ′, h0 in Table 7 and Table 8 of this paper’s full version [15]).

Step II-(a) corresponds to Step II of the classical collision attack on 31-
step SHA-256. Step II-(b) corresponds to Step III of the classical collision at-
tack on 31-step SHA-256. We allow the remaining words Wi+15,Wi+16, . . . and
W ′i+15,W

′
i+16, . . . to be changed since the steps with dense conditions are up to

i+ 14 and thus to probabilistically satisfy all the conditions from step i+ 15 by
randomly changed Wi+15,Wi+16, . . . and W ′i+15,W

′
i+16, . . . is not difficult.

Attack Complexity and Validity. Let F be the Boolean function to which Grover’s
algorithm is applied in Step II of our attack8. That is, F is defined by F (M̃) := 1
if and only if M̃ satisfies the two conditions II-(a) and II-(b). Let p be the proba-
bility that F (M̃) = 1 when we pick a message M̃ for the first block uniformly at

8 More precisely, we run Grov(F, bπ/4θc) in Step II, where θ = arcsin(
√
p).
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random. In addition, suppose that F can be implemented on a quantum circuit
of which width is SF and depth is TF .

The time complexity of Step I is negligible since we just use the values from
previous works. The time complexity of Step III is also negligible compared to
that of Step II. Thus the time complexity of our attacks is dominated by the
time complexity of the Grover search on F , which is at most TF · π4

√
1/p.

If a quantum computer of size S(> SF ) is available, the Grover search can
be parallelized9 and sped up by the factor of

√
S/SF , and the attack time

complexity becomes(
TF · (π/4)

√
1/p
)
/
√
S/SF = TF · (π/4) ·

√
SF /pS. (1)

Let n be the output length of the hash function. Since the time complexity
of the generic attack is 2n/2/S when a quantum computer of size S is available,
our attack is valid as long as

TF · (π/4) ·
√
SF /pS < 2n/2/S (2)

holds.

Remark 6. When we run the same procedure in the classical setting, the Grover
search is replaced with the usual exhaustive search and the attack time complex-
ity will be (TF · SF )/p (here we do not consider parallelizations for simplicity).
Since the generic complexity is 2n/2, the attack becomes valid if and only if
(TF · SF )/p < 2n/2, which is equal to

p > (TF · SF )/2n/2. (3)

In particular, the classical attack is invalid if p < 2−n/2. On the other hand, the
condition (2) is equivalent to p > SF · (π2/16) · T 2

F /2
n (when S = 1), and the

quantum attack may be valid even if p < 2−n/2.

5 Quantum Collision Attack on 38-Step SHA-256

This section shows a quantum collision attack on 38-step SHA-256 based on the
attack idea in Section 4.2.

Let (M,M ′) and h0 be the semi-free-start collision and the initial value shown
in the previous work (i.e., (M,M ′) and h0 in Table 7 of this paper’s full ver-
sion [15]). Let Wj and W ′j denote message word j associated with M and M ′,
respectively. Recall that the local collision starts at step 7 in the differential
characteristic in Table 4. Let Sstart be the state at the beginning of step 7 that
is computed from (M,M ′) and h0.

Section 5.1 provides some observations on Step II of the quantum attack.
Section 5.2 provides an implementation of F and analyzes the depth and width
of the circuit of F . In Section 5.3 we analyze the total complexity when the
quantum attack is mounted with the implementation of F in Section 5.2.

9 See Section 2 for details on parallelization. We use the quantum computer of size S
as S/SF independent small quantum computers.
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5.1 Observation on Step II

We provide two observations.

First Observation. The internal state variables A−1, . . . , A6 and E3, . . . , E6 are
determined from Sstart = A6|| · · · ||A3||E6|| · · · ||E3. (These variables are common
between M and M ′. See also Fig. 4 of this paper’s full version [15].) There exists a
tuple (Ŵ0, . . . , Ŵ6) that is compatible with IVsecond and Sstart if and only if A−1
matches the most significant 32 bits of IVsecond. If A−1 matches, A−2, A−3, A−4,
E−1, . . . , E−4 are determined by the equation IVsecond = A−1|| · · · ||A−4||E−1||
· · · ||E−4, and the message words Ŵ0, . . . , Ŵ6 are uniquely determined from
A−4, . . . , A6 and E−4, . . . , E−1, E3, . . . , E6.

Second Observation. By exhaustively checking all the possible values for Ŵ6 ∈
{0, 1}32, we verified that there exist 1179647 (> 220) tuples (Ŵ0, . . . , Ŵ6) that
satisfy the following conditions.10

(i) Ŵj = Wj − (σ0(Ŵj+1)− σ0(Wj+1)) holds for j = 0, . . . , 5.

(ii) Sstart and the messages (M̂, M̂ ′) for the second block, where M̂ := Ŵ0|| · · ·
||Ŵ6||W7|| · · · ||W15 and M̂ ′ := Ŵ0|| · · · ||Ŵ6||W ′7|| · · · ||W ′15, yield a collision
at the end of the second block.

Remark 7. From another point of view, the second observation shows that we
can make semi-free-start collisions for at least 220 initial values.

5.2 Implementation and Analysis of F

Below we provide an implementation of F and its analysis. In particular, we
show TF ≤ 6.8 and SF ≤ 3.9, where SF denotes the width of the quantum
circuit of F and TF denotes the running time (depth) of the circuit.

Implementation of F : Basic Idea. Before describing a formal implementa-
tion of F with notations of quantum computation, we give a basic idea behind
the implementation.

First, we compute the following values (from Table 7 of this paper’s full
version [15]) and store them into memory.

(a) The internal state Sstart at the beginning of step 7.
(b) The message words W0 = W ′0, . . . ,W6 = W ′6,W7, . . . ,W21,W

′
7, . . .W

′
21.

(c) The internal state variable A−1 that is uniquely determined from Sstart.

Note that these values are computed and stored before the start and kept un-
changed throughout the attack.

Given an input M̃ , the output value F (M̃) is computed as follows.

10 We actually implemented to count the number of semi-free-start collisions for all 232

choices of W6 and accordingly modified W5 . . . ,W0.
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1. Compute the output of the first block from M̃ , and let IVsecond denote the
output.

2. Check if the condition that the most significant 32 bits of IVsecond is equal to
A−1 is satisfied. If it is satisfied, proceed to the next step. Otherwise output
0 and abort.

3. Compute the unique (Ŵ0, . . . , Ŵ6) that is compatible with IVsecond and
Sstart.

4. Check if the following conditions are satisfied.

(i) Ŵj = Wj − (σ0(Ŵj+1)− σ0(Wj+1)) holds for j = 0, . . . , 5.

(ii) Sstart and the messages (M̂, M̂ ′) yield a collision at the end of the second
block, where M̂ := Ŵ0|| · · · ||Ŵ6||W7|| · · · ||W15 and M̂ ′ := Ŵ0|| · · · ||Ŵ6||
W ′7|| · · · ||W ′15.

If both of (i) and (ii) are satisfied, output 1. Otherwise output 0.

Remark 8. When we implement a quantum circuit, each computational step has
to be reversible, and the running time of the circuit has to be independent from
inputs. We ignored such properties in the above explanations for simplicity but
they are taken into account in the formal description below.

Implementation of F : Formal Description. Let L be the list to store the
values explained in (a)-(c) above, and f be the 38-step compression function.
Given an input M̃ , the output value F (M̃) is computed as follows.

0. At the beginning, the quantum state is |M̃〉 |L〉 |y〉. (|y〉 is the single qubit
register where the value F (M̃) will be added.)

1. Compute the output of the first block from M̃ . Let IVsecond denote the
output. Check if A−1 is equal to the most significant 32 bits of IVsecond. If
they are equal, set b := 1. If they are not equal, set b := 0. The current
quantum state is |M̃〉 |L〉 |y〉 ⊗ |IVsecond〉 |b〉 .

2. Let IV′second denote the concatenation of A−1 and the least significant 224
bits of IVsecond (IV′second = IVsecond holds if b = 1). Compute the unique
(Ŵ0, . . . , Ŵ6) that is compatible with the initial chaining value IV′second and
Sstart. The current quantum state is |M̃〉 |L〉 |y〉⊗|IVsecond〉 |b〉 |Ŵ0, . . . , Ŵ6〉 .

3. Let M̂ denote Ŵ0|| · · · ||Ŵ6||W7|| · · · ||W15 and M̂ ′ denote Ŵ0|| · · · ||Ŵ6||W ′7||
· · · ||W ′15. Compute the values f(IV′second, M̂), f(IV′second, M̂

′). The current
quantum state is |M̃〉 |L〉 |y〉⊗|IVsecond〉 |b〉 |Ŵ0, . . . , Ŵ6〉 |f(IV′second, M̂)〉 |f(
IV′second, M̂

′)〉.
4. Recall that F (M̃) = 1 if and only if b = 1 and the following (i) and (ii) hold.

(i) f(IV′second, M̂) = f(IV′second, M̂
′).

(ii) Ŵj = Wj − (σ0(Ŵj+1)− σ0(Wj+1)) holds for j = 0, . . . , 5.

Compute F (M̃) by checking if b = 1, and (i) and (ii) hold, and add the value
F (M̃) to the |y〉 register. The current quantum state is |M̃〉 |L〉 |y ⊕ F (M̃)〉⊗
|IVsecond〉 |b〉 |Ŵ0, . . . , Ŵ6〉 |f(IV′second, M̂)〉 |f(IV′second, M̂

′)〉 .
5. Uncompute Steps 1-3 to obtain |M̃〉 |L〉 |y ⊕ F (M̃)〉 .

19



Analysis. We regard that the unit of depth (resp., width) of quantum circuits
is the depth (resp., width) required to implement 38-step SHA-256 that takes
1-block inputs. In particular, we regard that the depth required to compute a
single step of SHA-512 is equal to 1/38. Since the input length of 1-block SHA-
256 is 512 bits and the output length is 256 bits, at least 512 + 256 = 768 qubits
are required to implement the function on a quantum circuit.

Depth (TF ). Step 1 of the implementation computes the compression function
once. The depth required to Step 2 is 7/38 since the message words in the
first 7 steps in the second block are computed in Step 2. Step 3 computes the
compression function twice. The cost of Step 4 is dominated by the computation
for (ii), of which cost is at most 6 steps of SHA-256. Thus the depth required
for Step 4 is at most 6/38. In summary, the depth required to implement Steps
1-4 is 1 + 7/38 + 2 + 6/38 ≤ 3.4. Since we have to perform uncomputations in
Step 5, we have TF ≤ 3.4× 2 = 6.8.

Width (SF ). The length of M̃ is 16 words. L contains data of 8+(7+15+15)+1 =
46 words in total. y is a single bit. Thus, (16 + 46) × 32 + 1 = 62 × 32 + 1
qubits are used in Step 0 of the implementation. Step 1 requires additional
8×32 + 1 qubits to store IVsecond and b. Step 2 requires additional 7×32 qubits
to store Ŵ0, . . . , Ŵ6. Step 3 requires additional (8 + 8)× 32 = 16× 32 qubits to
store f(IVsecond, M̂) and f(IVsecond, M̂

′). Therefore, to store intermediate values
shown in the above implementation, (62 + 8 + 7 + 16)× 32 + 2 = 2978 qubits are
used in total. Hence we have SF ≤ 2978/768 ≤ 3.9.

Remark 9. On the estimation of the width SF , more ancilla qubits may be re-
quired to compute the intermediate variables (such as IVsecond) used in the im-
plementation of F . However, we expect that they will be as much ancilla qubits
as required to implement 1-block 38-step SHA-256. In particular, we expect
that the ratio between the number of qubits to implement F and the number of
qubits to implement 1-block 38-step SHA-256 will be about 3.9, even if we take
the ancilla qubits to compute the intermediate variables into account.

Remark 10. Note that we could remove |L〉 from the computation since L is
a list of classical data and computations that depend on L can be executed
by classically controlling the gates. However, this has no consequence on the
Time-memory tradeoff sine it is just converting qubits into classical bits.

5.3 Total Complexity

This section analyzes the total complexity when the quantum attack in Sec-
tion 4.2 is mounted with the implementation of F in Section 5.2.

Let p denote the probability that F (M̃) = 1 holds when M̃ is randomly
chosen. F (M̃) = 1 holds if and only if M̃ satisfies the conditions in the second
and fourth steps of the implementation of F . A random M̃ satisfies the con-
dition in the second step with probability 2−32. From the observation on Step
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II in Section 5.1, (i) and (ii) in the fourth step are satisfied with probability(
1179647/(232)7

)
> 220/2224. Therefore

p = 2−32 ·
(
1179647/(232)7

)
> 2−32 ·

(
220/2224

)
= 2−236 (4)

holds.

The attack time complexity can be computed as in Eq. (1). We showed
TF ≤ 6.8 and SF ≤ 3.9 in Section 5.2, and p > 2−236 in (4). Therefore, when
a quantum computer of size S is available, our attack finds a collision in time

6.8 · (π/4)
√

3.9/(2−236 · S) = 6.8π
√
3.9

4 · 2118/
√
S ≤ 2122/

√
S. In addition, the

attack time complexity 2122/
√
S is lower than the generic complexity 2128/S

when S < 212. Therefore our attack is valid as long as 3.9 ≤ S < 212.

Remark 11. Some may consider that our complexity analysis is invalid since
the first equality in (4) holds only if the output distribution of the first block
is exactly equal to the uniform distribution over {0, 1}256, which will not be
the case for 38-step SHA-256. However, still we can reasonably expect that the
analysis is valid. See Section D of this paper’s full version [15] for details.

6 Quantum Collision Attack on 39-Step SHA-512

This section shows a quantum collision attack on 39-step SHA-512 based on the
attack idea in Section 4.2.

Let (M,M ′) and h0 be the semi-free-start collision and the initial value shown
in the previous work (i.e., (M,M ′) and h0 in Table 8 of this paper’s full ver-
sion [15]). Let Wj and W ′j denote message word j associated with M and M ′,
respectively.

The difference between the attack on 39-step SHA-512 from the one on 38-
step SHA-256 is summarized as follows.

1. The local collision starts from step 8 but not step 7 (we denote the internal
state at the beginning of step 8 by Sstart).

2. The probability p (= |F−1(1)|/2512) satisfies p > 2−498.4.

3. The implementation of F satisfies TF ≤ 6.8 and SF ≤ 4.1.

The attack finds a collision in time 2252.7/
√
S, which is valid when 4.1 < S < 26.6.

Section 6.1 provides some observations on Step II of the quantum attack.
Section 6.2 provides an implementation of F and analyzes the depth and width
of the circuit of F . In Section 6.3 we analyze the total complexity when the
quantum attack is mounted with the implementation of F in Section 6.2.

6.1 Observation on Step II

We provide two observations.
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First Observation. Given a chaining initial input value IVsecond, there always
exists a unique tuple (Ŵ0, . . . , Ŵ7) that is compatible with IVsecond and Sstart.
This is because the local collision starts at step 8 in the differential characteristic
for 39-step SHA-512 (see also Fig. 4 of this paper’s full version [15] for details).

Second Observation. We experimentally verified that there exist 13184 (> 213.6)
tuples (Ŵ0, . . . , Ŵ7) that satisfies the following conditions.

(i) Ŵj = Wj − (σ0(Ŵj+1)− σ0(Wj+1)) holds for j = 0, . . . , 6.

(ii) Sstart and the messages (M̂, M̂ ′), where M̂ := Ŵ0|| · · · ||Ŵ7||W8|| · · · ||W15

and M̂ ′ := Ŵ0|| · · · ||Ŵ7||W ′8|| · · · ||W ′15, yield a collision at the end of the
second block.

(iii) Ŵ23,j = W23,j for j = 5, . . . , 29, where Ŵ23,j and W23,j are bit j of message

word 23 derived from M̂ and M , respectively.

The condition (iii) is added to decrease the search space for Ŵ7. We chose bit 5,
bit 6, . . . , bit 29 because the differential characteristic (Table 5 of this paper’s
full version [15]) has strict conditions on these bit positions of E23.

Remark 12. From another view of point, the second observation shows that we
can make semi-free-start collisions for at least 213.6 initial values.

6.2 Implementation and Analysis of F

In what follows we provide description and analysis of the implementation of F
used in the attack on 39-step SHA-512 and show TF ≤ 6.8 and SF ≤ 4.1.

Implementation of F : Basic Idea. Since the basic idea of the implementation
is similar to that for 38-step SHA-256 in Section 5.2, here we only provide the
difference from Section 5.2.

In the attack on 39-step SHA-512, there always exists a unique tuple (Ŵ0, . . . ,
Ŵ7) that is compatible with IVsecond and Sstart for arbitrary IVsecond due to the
first observation in Section 6.1. Therefore we skip the step (in the implementation
of F in Section 5.2) to check if A−1 is equal to the most significant 32 bits of
IVsecond.

Let M̃ be a message for the first block, and IVsecond be the initial vector for
the second block that is computed from M̃ . We define F (M̃) := 1 if and only if
the conditions (i) - (iii) in the second observation in Section 6.1 are satisfied for
the unique tuple (Ŵ0, . . . , Ŵ7) that is compatible with IVsecond and Sstart.

Formal Implementation of F . First, we compute the following values (from
Table 8 of this paper’s full version [15]) and store them into a list L.

(a) The internal state Sstart at the beginning of step 8.
(b) The message words W0 = W ′0, . . . ,W7 = W ′7,W8, . . . ,W22,W

′
8, . . .W

′
22,W23.

Given an input M̃ , the output value F (M̃) is computed as follows.
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0. At the beginning, the quantum state is |M̃〉 |L〉 |y〉. (|y〉 is the single qubit
register where the value F (M̃) will be added.)

1. Compute the output of the first block from M̃ . Let IVsecond denote the
output. The current quantum state is |M̃〉 |L〉 |y〉 ⊗ |IVsecond〉 .

2. Compute the unique (Ŵ0, . . . , Ŵ7) that is compatible with IVsecond and
Sstart. The current quantum state is |M̃〉 |L〉 |y〉 ⊗ |IVsecond〉 |Ŵ0, . . . , Ŵ7〉 .

3. Let M̂ denote Ŵ0|| · · · ||Ŵ7||W8|| · · · ||W15 and M̂ ′ denote Ŵ0|| · · · ||Ŵ7||W ′8||
· · · ||W ′15. Compute f(IVsecond, M̂), f(IVsecond, M̂

′), and Ŵ23, where Ŵ23

is word 23 derived from M̂ . The current quantum state is |M̃〉 |L〉 |y〉 ⊗
|IVsecond〉 |Ŵ0, . . . , Ŵ7〉 |f(IVsecond, M̂)〉 |f(IVsecond, M̂

′)〉 |Ŵ23〉 .
4. Recall that F (M̃) := 1 if and only if the following (i)-(iii) hold.

(i) f(IVsecond, M̂) = f(IVsecond, M̂
′).

(ii) Ŵj = Wj − (σ0(Ŵj+1)− σ0(Wj+1)) holds for j = 0, . . . , 6.

(iii) Ŵ23,j = W23,j holds for j = 5, . . . , 29

Compute F (M̃) by checking if (i) - (iii) hold, and add the value F (M̃)
to the |y〉 register. The current quantum state is |M̃〉 |L〉 |y ⊕ F (M̃)〉 ⊗
|IVsecond〉 |Ŵ0, . . . , Ŵ7〉 |f(IVsecond, M̂)〉 |f(IVsecond, M̂

′)〉 |Ŵ23〉 .
5. Uncompute Steps 1-3 to obtain |M̃〉 |L〉 |y ⊕ F (M̃)〉 .

Analysis. We regard that the unit of depth (resp., width) of quantum circuits
is the depth (resp., width) required to implement 39-step SHA-512 that takes
1-block inputs. In particular, we regard that the depth required to compute a
single step of SHA-512 is equal to 1/39. Since the input length of 1-block SHA-
512 is 1024 bits and the output length is 512 bits, at least 1024 + 512 = 1536
qubits are required to implement the function on a quantum circuit.

Depth (TF ). Step 1 of the implementation computes the compression function
once. Since the message words in the first 8 steps in the second block are com-
puted in Step 2, the depth required for Step 2 is 8/39. Step 3 computes the
compression function twice. The cost of Step 4 is dominated by the computation
for (ii), which is at most 7 steps of SHA-512. Thus the depth required for Step
4 is at most 7/39. In summary, the depth required to implement Steps 1-4 is
1 + 8/39 + 2 + 7/39 ≤ 3.4. Since we have to perform uncomputations in Step 5,
we have TF ≤ 3.4× 2 = 6.8.

Width (SF ). The length of M̃ is 16 words. L contains data of 8+(8+15+15+1) =
47 words in total. y is a single bit. Thus, (16+47)×64+1 = 63×64+1 qubits are
used in Step 0 of the implementation. Step 1 requires additional 8×64 qubits to
store IVsecond. Step 2 requires additional 8×64 qubits to store Ŵ0, . . . , Ŵ7. Step
3 requires additional (8 + 8 + 1)× 64 = 17× 64 qubits to store f(IVsecond, M̂),
f(IVsecond, M̂

′), and Ŵ23. Therefore, to store intermediate values shown in the
above implementation, (63 + 8 + 8 + 17)×64 + 1 = 6145 qubits are used in total.
Hence we have SF ≤ 6145/1536 ≤ 4.1.

Remark 13. On the estimation of the width SF , more ancilla qubits may be
required to compute the intermediate variables (such as IVsecond) used in the
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implementation of F . However, we expect that they will be as much as ancilla
qubits required to implement 2-block 39-step SHA-512. In particular, we expect
that the ratio between the number of qubits to implement F and the number of
qubits to implement 2-block 39-step SHA-512 will be as much as 4.1, even if we
take the ancilla qubits to compute the intermediate variables into account.

6.3 Total Complexity

Let p denote the probability that F (M̃) = 1 holds when M̃ is randomly chosen.
F (M̃) = 1 holds if and only if the conditions (i)- (iii) in the fourth step of the
implementation of F are satisfied. From the second observation on Step II in
Section 6.1, (i)-(iii) are satisfied with probability at least 213.6/(264)8. Therefore
p > 213.6/(264)8 = 2−498.4 holds.

The attack time complexity can be computed as in Eq. (1). We showed
TF ≤ 6.8 and SF ≤ 4.1 in Section 6.2, and p > 2−498.4 above. Therefore, when
a quantum computer of size S is available, our attack finds a collision in time

6.8 ·(π/4)
√

4.1/(2−498.4 · S) = 6.8
√
4.1π
4 ·2249.2/

√
S ≤ 2252.7/

√
S. In addition, the

attack time complexity 2252.7/
√
S is lower than the generic complexity 2256/S

when S < 26.6. Therefore our attack is valid as long as 4.1 ≤ S < 26.6.

7 Discussion

The previous sections exploited the existing semi-free-start collision attacks to
mount quantum collision attacks for SHA-256 and SHA-512. This brings the fol-
lowing two questions. First, is it possible to optimize differential characteristics
for the classical semi-free-start collision attack with respect to the conversion
to the quantum collision attack? Second, is it possible to extend the conversion
framework so that a wider class of the classical attack on other computation
structure can be converted into a quantum collision attack? This section an-
swers those questions. We hope those will provide future researchers with useful
knowledge to find new quantum collision attacks.

7.1 Towards Searching for New Semi-Free-Start Collision Attacks

The attacks on SHA-256 and SHA-512 in Sections 5 and 6 directly used the
differential characteristics from the previous works, but it is possible to search
for new differential characteristics from scratch in future works to be optimized
in our conversion. More importantly, differential characteristics that cannot be
exploited in the classical setting may still be exploited in the quantum setting.

Properties Required for Differential Characteristics. Our conversion is
applied when the differential characteristic for the semi-free-collision attack sat-
ifies the following properties.
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local collision

𝑊0 𝑊𝑠−1 𝑊𝑠 𝑊𝑗−1 𝑊𝑗

𝐹𝐼𝑋start

Messages are 
modified to connect  
𝐼𝑉second and 𝐹𝐼𝑋start.

Characteristic is dense. 
All messages and 
state values are fixed.

Characteristic is sparse.
Degrees of freedom:  2𝑑

Characteristic probability: 2−𝑝

𝐼𝑉second

⋯ ⋯ ⋯𝑊𝑗+1

𝐹𝐼𝑋end

Fig. 3. Form of Semi-free-start Collision Attacks that can be Converted into Collisions.

– The characteristic is dense, i.e. requiring many conditions, only in a relatively
small number of steps. Let FIXstart and FIXend be the input and output
state values of these steps, respectively.

– For multiple choices of IVsecond, it is possible to modify message words W0

to Ws−1 so that IVsecond and FIXstart are connected.
– The probability to satisfy the characteristic from FIXend is high enough to

be faster than the generic attack.

Given those, we can view that the characteristic is composed of three parts as
shown in Fig. 3. 11

Properties for the Sparse Part. In our attacks on SHA-256 and SHA-512,
(almost) all the message words are fixed after modifying W0 to Ws−1, thus de-
grees of freedom to satisfy the characteristic from FIXend to the end is provided
by generating the first message block many times, which requires significant
computational cost. Besides, the probability from FIXend is reasonably high,
thus the attack procedure could be provided without special attention. Here we
give a decent analysis with respect to the condition to be faster than the generic
attack, which should be taken into account for finding new characteristic.

Suppose that the first k message words are independently chosen and the
dense part of the characteristic is located between step s and j − 1, where 0 <
s < j < k. Then, after modifying W0 to Ws−1 to connect IVsecond and FIXstart,
the attacker can still have degrees of freedom in message words Wj to Wk−1.
Let 2d and 2−p be the amount of degrees of freedom available to the attacker
and the probability of the differential characteristic in the remaining steps. If
d ≥ p, degrees of freedom in Wj to Wk−1 is sufficient, thus only the single choice
of IVsecond is sufficient to find a collision. This is advantageous because the cost

11 In Sections 5 and 6, we considered the special case where s is the number of the
starting step of a local collision.
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of computing the first block directly impacts to the overall attack complexity. If
d < p, degrees of freedom in Wj to Wk−1 is insufficient, thus the generation of
IVsecond in the first block must be repeated multiple times.

Whether the attack can be faster than the generic attack depends on the
relationship between d and p. To evaluate the attack complexity, we first discuss
the complexity in the classical setting. Let 2f be the complexity to generate an
IVsecond.12 In the classical setting, when d ≥ p, the attacker needs to generate
a single choice of IVsecond and examine 2p choices of message words for the last
part of the characteristic. Hence, the attack complexity is 2f + 2p. when d < p,
the attacker needs to generate 2p−d choices of IVsecond and, for each of them,
examine 2d choices of message words for the last part of the characteristic. Hence,
the attack complexity is 2f · 2p−d + 2p−d · 2d, which is equal to 2f · 2p−d + 2p.
To be a valid attack, this complexity must be faster than the generic attack
complexity, which is 2n/2 in the classical setting. Hence, max(f, p) < n/2 when
d ≥ p and max(p, f + p − d) ≤ n/2 when d < p. The closed formula for both
cases is max(p, f + max(p − d, 0)) < n/2. Therefore, p < n/2 must be satisfied
in the classical setting, namely, the probability of the differential characteristic
for the last part cannot be smaller than 2−n/2.

The complexity evaluation in the quantum setting is as follows. When d ≥ p,
the cost for generating an IVsecond and examining 2p choices of message for the
last part of the characteristic decreases to

√
2f and

√
2p, respectively, by using

the Grover search. Hence the attack complexity becomes
√

2f+
√

2p. When d < p,
similarly we obtain quadratic speed up for each subroutine with the Grover
search, and the attack complexity decreases to

√
2f · 2p−d +

√
2p. A quantum

attack can be valid in the cost metric of time-space tradeoff if its complexity is
below 2n/2, i.e., max(p, f + max(p− d, 0)) < n. In particular, a quantum attack
can be valid even if p ≥ n/2, i.e., the probability of the differential characteristic
for the last part can be smaller than 2−n/2.

Note that d ≥ p may occur in practice. In fact, the 31-step (not 38-step) semi-
free-start collision attack by Mendel et al. against SHA-256 is exactly the case
with d ≥ p. As introduced in Sect. 3.1, the authors of [29] explained that Step III
succeeds with a probability about 1/12 due to the lack of degrees of freedom in
W13,W14,W15. However, if it is analyzed carefully, 1/12 is a part of probability
that the generated IVsecond is suitable, i.e. there are additional condition of 3.5
bits besides the match of the most significant 96 bits. The sparse characteristic
in Fig. 3 corresponds to the characteristic from Step 13 to 31 in Table 2. There
are 28 conditions on ∆E13 to ∆E16, thus p = 28. 13 Degrees of freedom exist in
all bits of W13 to W15, thus d = 96. Hence, this is the case with d ≥ p.

Remark 14. Roughly speaking, the attack of Section 5 (resp., Section 6) is the
case with s = 7, j = 22, d = 0, p > 20, and f = 32 (resp., s = 8, j = 23, d = 0,
p > 13.6, and f = 0).

12 In other words, 2f is the complexity to find a first block message M that can be
connected to FIXstart.

13 While Table 2 shows only 26 conditions on ∆E13 to ∆E16, the original paper implies
two additional conditions. Hence we deduce that p = 28. See also Remark 3.

26



Suitable choice of s. The step index s is the border between the first and the
second part of the characteristic in Fig. 3, where the state value is fully fixed
after Step s. Suppose that the length of each message word is w-bit and the
internal state size of hash functions is t ·w-bit. (In the case of SHA-256, w = 32
and t = 8.) Then the parameter f increases much and the attack may not work
if s is too small or too large compared to t. The reason is as follows.

If s is too small compared to t (e.g., s < t/2), then degrees of freedom in
W0, . . . ,Ws−1 become too small and the probability that a randomly chosen
IVsecond can be connected to FIXstart becomes too small. Hence the parameter
f becomes too large.

If s is too large (e.g., s > 2t), then the degrees of freedom inW0, . . . ,Ws−1 will
remain enough. However, this time it may be unclear which choice ofW0, . . . ,Ws−1
is compatible with IVsecond and FIXstart for a random given IVsecond, and the
complexity to find a compatible choice becomes high. This implies that the pa-
rameter f also increases in this case.

Therefore we expect that an index s that is close to t (e.g., t/2 < s < 2t)
will be suitable. (Indeed s is close to t in our attacks in Sections 5 and 6.)

Remark on Memory. Memory is quite expensive in the quantum setting
while cheap in the classical setting. 14 Thus differential characteristics that lead
to memory-less attacks but seem non-optimal in the classical setting are worth
investigating in the quantum setting.

7.2 Towards Application to Other Hash Functions

A natural question that arises after seeing our results is whether we can ap-
ply the same idea to other hash functions by using similar differential charac-
teristics shown in previous works. In earlier sections we focused on semi-free-
start collisions on SHA-256 and SHA-512, which are single-branch hash func-
tions, but we do not have to restrict ourselves to semi-free-start collisions nor
single-branch hash functions: Differential characteristics for free-start collisions
or double-branch hash functions may also lead to quantum collision attacks if
their structures are close to Fig. 3. 15

Indeed, some previous works use such differential characteristics. Examples
are the semi-free-start collision attack on reduced HAS-160 in [26], the free-start
collision attacks on reduced SHA-2 family in [7] and reduced SM3 in [28], and
the semi-free-start collision attacks on full RIPEMD-128 in [21] and reduced
RIPEMD-160 in [24,30,25]. The differential characteristics used in these attacks

14 The situation may change if we adopt the cost-metric that assumes the existence of
quantum RAM instead of the cost-metric of time-memory tradeoff, but we expect
that finding attacks that are valid in the latter is easier than finding ones valid in
the former.

15 Recall that a collision ((IV,M), (IV′,M ′)) for a compression function h is called a
semi-free-start collision if IV = IV′ and free-start collision if IV 6= IV′.
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look similar to Fig. 3 and they are found by using automated search tools in a
similar way to the differential characteristics that we used in Sections 5 and 6.

We investigated whether we could use those differential characteristics to
mount quantum 2-block collision attacks. We elaborate observations that we
obtained so far in Section G of this paper’s full version [15]. Unfortunately, we
have not succeeded yet, and with this respect, the analysis here is a failure report.
Nevertheless, we believe that those are valuable to report because we observe
that some of the applications are close to be valid collision attacks while others
are very far. By sharing the experience of those analysis, it would be possible to
search for new differential characteristics that satisfy properties in Section 7.1
in order to break more rounds than classical collision attack.

8 Concluding Remarks

In this paper, we showed collision attacks on 38 and 39 steps of SHA-256 and
SHA-512, respectively, when the attacker can access to quantum machines under
the time-space tradeoff metric. The complexity is 2122/

√
S and 2252.7/

√
S where

S < 212 and S < 26.6 for SHA-256 and SHA-512, respectively.
Both attacks followed the same approach as the previous work, where a semi-

free-start collision attack that works for 2X choices of IVs (X > n
2 ) is converted

into a 2-block collision. We observed that even a small X may lead to an attack
faster than the generic one.

A possible future direction is to study applications to other cryptographic
hash functions. Since the idea behind our quantum collision attacks is very sim-
ple, we believe that it has broad applications. It will also be interesting to study
optimizations of differential characteristics for the classical semi-free-start colli-
sion attack with respect to the conversion to the quantum collision attack.
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