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Abstract. We present the first Oblivious RAM (ORAM) construction
that for N memory blocks supports accesses with worst-case O(logN)
overhead for any block size Ω(logN) while requiring a client memory
of only a constant number of memory blocks. We rely on the existence
of one-way functions and guarantee computational security. Our result
closes a long line of research on fundamental feasibility results for ORAM
constructions as logarithmic overhead is necessary.
The previous best logarithmic overhead construction only guarantees it
in an amortized sense, i.e., logarithmic overhead is achieved only for
long enough access sequences, where some of the individual accesses in-
cur Θ(N) overhead. The previously best ORAM in terms of worst-case
overhead achieves O(log2N/ log logN) overhead.
Technically, we design a novel de-amortization framework for modern
ORAM constructions that use the “shuffled inputs” assumption. Our
framework significantly departs from all previous de-amortization frame-
works, originating from Ostrovsky and Shoup (STOC ’97), that seem to
be fundamentally too weak to be applied on modern ORAM construc-
tions.
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1 Introduction

Imagine a client that wishes to offload a database containing sensitive informa-
tion to an untrusted server and later access the database and retrieve parts of it.
By now, it is well-known that merely encrypting the entries of the database be-
fore uploading them to the server does not guarantee privacy (e.g., [6,21,22,41]).
Indeed, the access patterns themselves may reveal non-trivial information about
the underlying data or program being executed on the data. To mitigate these
kinds of attacks, we would like to be able not only to encrypt the underlying data
but also to “scramble” the observed access patterns so that they look unrelated



to the data. The algorithmic tool that achieves this goal is called an Oblivious
RAM (ORAM).

An ORAM, introduced in the seminal work of Goldreich and Ostrovsky [16,
17], is a (probabilistic) RAM machine whose memory accesses do not reveal
anything about the input—including both program and data—on which it is
executed. An ORAM construction accomplishes this by permuting data blocks
stored on the server and periodic reshuffling them around. Since their intro-
duction more than 30 years ago, ORAMs have also become a central tool in
designing various cryptographic systems, including cloud computing design, se-
cure processor design, multi-party computation protocols, and more [4, 12, 13,
15,26–29,31,34,35,38–40].

To be useful, ORAMs have to be “efficient”. Whether an ORAM is effi-
cient or not is typically measured by its (asymptotic) overhead in bandwidth:
that is, how many data items must be accessed in the oblivious simulation
as compared to the original non-oblivious implementation. There has been a
tremendous effort in designing the most efficient ORAM construction possi-
ble [2, 7, 17, 18, 24, 30, 32, 33, 37]. The current record is the OptORAMa scheme
by Asharov et al. [2] (building on Patel et al. [30]) who obtained an ORAM with
amortized logarithmic overhead. Namely, their ORAM can simulate a RAM of
size N so that over the span of T accesses, the total number of accesses would be
O(T · logN). The beautiful lower bound of Larsen and Nielsen [25] (see also [23])
shows that this is essentially the best possible: that is, every ORAM construction
must spend on average Ω(logN) physical accesses per one logical operation.5

Worst-case overhead. Much of the recent progress on ORAM constructions fo-
cuses on reducing its amortized cost [2, 30], whereas the worst-case overhead
of an operation was ignored. Specifically, while achieving logarithmic amortized
overhead, these constructions have Ω(N) worst-case overhead, due to the oc-
casional reshuffling operations. This worst-case behavior renders these schemes
much less useful in many applications since every now and then an access will
“block” until Ω(N) physical accesses are complete which is clearly unacceptable.

The first to address this problem were Ostrovsky and Shoup [29] who showed
how to spread the reshuffling operations over time, and achieve a worst-case
O(log3N) overhead version of the original ORAM of Goldreich and Ostro-
vsky [17]. Related techniques were later applied on other ORAM schemes [7,
19, 24]. In spite of the recent great progress in ORAM constructions, the best
known construction in terms of worst-case overhead is from almost a decade ago
due to Kushilevitz, Lu, and Ostrovsky [24] who achieved O(log2N/ log logN)
worst-case overhead (and their scheme was further clarified in the subsequent
work of Chan et al. [7]). Crucially, the techniques of Ostrovsky and Shoup do

5 The lower bounds of [23, 25] only apply to “online” ORAMs which support opera-
tions that come in an online fashion, one by one. These lower bounds even apply to
computationally secure constructions. There is a logarithmic lower bound for “of-
fline” ORAMs which see the whole set of operations ahead of time due to Goldreich
and Ostrovsky [17], but it only applies to statistically secure constructions in the
balls-and-bins model (see Boyle and Naor [5]).

2



not apply to the recent constructions that are based on “randomness reusing”
of [2, 30], as we elaborate below in Section 2.

Thus, the current state of affairs leaves open the following fundamental ques-
tion (also raised in [2]):

Is there a worst-case logarithmic overhead ORAM? That is, is there an ORAM
construction that can simulate every logical operation with O(logN) physical

accesses?

1.1 Our Contributions

Optimal worst-case overhead ORAM. We propose a new ORAM construction
that achieve logarithmic worst-case overhead (in the memory size), while con-
suming O(1) client-side storage, and O(N) server-side storage. Here, N denoted
the memory size. Obliviousness of our construction relies on the existence of
one-way functions. Our result answers an important question left open by the
recent OptORAMa work [2].

Theorem 1.1. There is a computationally-secure ORAM with O(logN) worst-
case overhead assuming that one-way functions exist.

The construction that achieves Theorem 1.1 is in the most standard model
and make the same set of assumptions as all prior computationally-secure ORAM
schemes. We assume a standard word-RAM where each memory word has at least
w = logN bits, i.e., large enough to store its own logical address. We assume
that word-level addition and boolean operations can be done in unit cost. We
assume that the CPU has constant number of private registers. We additionally
assume that a single evaluation of a PRF resulting in at least word-size number
of pseudo-random bits, can be done in unit cost.

Technically, we significantly depart from all previous “deamortized” ORAM
constructions. While all previous works6 almost directly use the approach of Os-
trovsky and Shoup [29], it seems like this approach is fundamentally too weak to
be applied on modern ORAM constructions that achieve amortized logarithmic
overhead [2,30]. To this end, we build a new set of novel algorithmic tools from
ground up and show how to amend the construction of Asharov et al. [2] so that
it could be deamortized.

Linear-time oblivious deduplication. A noteworthy building block that we de-
velop is an algorithm for efficient oblivious deduplication. Consider two sets of
n elements A and B, where the goal is to obliviously compute A ∪ B, that is,
merge them into one larger set while removing duplicate elements. (Note that we
assume that the elements within A are distinct, and ditto for B. Also, we assume
that if there is a duplication, we keep the copy coming from A for concreteness.)
Oblivious deduplication is a central building block in many previous worst-case

6 Here we ignore tree-based constructions [32,33,37] since it is not known how to use
them to get even amortized logarithmic overhead.
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efficient ORAM constructions. Before this work, the only known solution was to
apply a generic oblivious sort on the concatenation of A and B, followed by a
linear scan which “deletes” the duplicates (after the sort, duplicates are adjacent
in memory). Using the best known oblivious sort (e.g., AKS [1]), this approach
would incur O(n · log n) time. Eventually the extra log factor propagates into the
overhead of the ORAM, resulting in O(log2N/ log logN) worst-case overhead (at
best).

We show that the extra log n overhead can be avoided by designing a linear
time algorithm for this task which is oblivious if the input arrays are randomly
shuffled. That is, we show that if A and B are shuffled with independent secret
permutations, then there is a way to compute A∪B in time O(n) while maintain-
ing obliviousness. Linear overhead is clearly the best possible (since just reading
the input takes linear time), matching the state of the art without obliviousness.

Theorem 1.2. There is a linear time (probabilistic) algorithm that gets as input
two sets A and B and outputs A∪B. The algorithm is further (computationally)
oblivious if A and B are independently secretly shuffled and if one-way functions
exist.

Conclusions and Open Problems We see our work as closing a long line of
research on theoretical feasibility results for ORAM constructions. Our worst-
case logarithmic overhead ORAM result, at least asymptotically, is optimal in
terms of computational overhead. Unfortunately, the concrete constant, inher-
ited from [2], underlying our construction is rather large. Using better generic
building blocks (say the oblivious compaction algorithm of Dittmer and Ostro-
vsky [11]) we can get a much better constant but we believe that it is still too
large for deployment. Whether there is a construction with (worst-case) loga-
rithmic asymptotic overhead and a small constant is a major open problem.

Another exciting open problem is to bring down the cost of statistically secure
ORAMs closer to O(logN) or prove that it is impossible. Specifically, the best
statistically secure ORAMs has overhead O

(
log2N/ log logN

)
[9] and it relies

on the tree-based paradigm due to Shi et al. [32] which was later improved
by [9, 10, 13, 33, 37]. Interestingly, tree based ORAMs have so far been more
concretely efficient than hierarchical ones and this question is also somewhat
related to the previous one.

Lastly, we mention a recent work of Asharov et al. [3] who gives an optimal
Oblivious PRAM (OPRAM). An OPRAM is an extension of ORAM to the
parallel setting where several processors make concurrent accesses to a shared
memory. Their main result is that (assuming one-way functions) any PRAM
with memory capacity N can be obliviously simulated in space O(N), incurring
only amortized O(logN) overhead in work and (worst-case) O(logN) overhead
in depth. We believe that our techniques can be further extended to obtain a
worst-case logarithmic work and depth overhead OPRAM, but this is left for
future work.
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2 Technical Overview

2.1 Background: Underlying ORAM Without Deamortization

The hierarchical paradigm and oblivious hash tables. We will build from an un-
derlying (amortized) ORAM scheme which follows the hierarchical paradigm
established by Goldreich and Ostrovsky [16,17]. An ORAM scheme in the hier-
archical paradigm can be viewed as a technique to reduce the task of constructing
ORAM to the task of constructing an oblivious hash table. Specifically, A hi-
erarchical ORAM typically consists of log2N + 1 levels numbered 0, 1, . . . , n.
Each level i is an oblivious hash table that can contain at most 2i elements. An
oblivious hash table is a data structure that supports the following operations:

– Build takes an input array containing (key, value) pairs and creates the data
structure (we also say a pair is an element, a block, or an item);

– Lookup receives a key k, and returns the value corresponding to the key k
contained in the data structure, or returns ⊥ if not found or if the key looked
up is dummy (denoted ⊥).

– Extract is called when the data structure is destructed, and returns a list of
unvisited items in the data structure.

Almost all known ORAM schemes in the hierarchical paradigm guarantee the
following non-recurrent invariant: for each oblivious hash table in the hierarchy,
the same real (i.e., non-dummy) key must be looked up at most once during
the life-cycle of the data structure. Therefore, the data structure only needs to
provide obliviousness if this non-recurrent assumption is respected. Finally, an
oblivious hash table often has an access budget in the sense that it can only
support up to an a-priori fixed number of lookup requests. Typically this budget
is at least n which is the size of the array input into Build.

Achieving amortized logarithmic overhead. The original oblivious hash table im-
plementation suggested by Goldreich and Ostrovsky [16, 17] is slow and takes
O(n log n) time to build for an input array of size n. This would result in a
non-optimal ORAM scheme. Instead, we adopt the efficient oblivious hash table
suggested by Asharov et al. [2] (which is built upon Patel et al. [30]). Asharov
et al. showed an oblivious hash table with O(n) build time and O(1) lookup
overhead, except with the following input assumptions, output requirement, and
caveat:

– Randomly shuffled requirement: the input array of Build must be randomly
shuffled; moreover, the Extract function outputs the unvisited blocks in a
random order. In either case, the randomness is hidden from the adversary.

– Size assumption: to obtain negligible in λ failure probability, the construction
only works for hash tables that are at least poly log(λ) in size.

– Stash: while the main hash table data structure can indeed be looked up in
constant time, the hash table construction actually comes with a stash, and
sometimes the element to be looked up actually resides in the stash. Each
stash has expected constant size but with noticeable probability, the size can
be as large as O(log λ).
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We briefly overview how past works [2, 30] deal with the above imperfect-
ness to make the ORAM scheme work. The recent work by Patel et al. [30] and
Asharov et al. [2] show that by relying on the “residual randomness”, ORAM
constructions can respect the randomly shuffled input assumption. Specifically,
when each oblivious hash table is destructed in the ORAM, the unvisited ele-
ments in the hash table appear in a random order, and the random permutation
is hidden from the adversary. The size assumption can be dealt with by using
yet another designated, slower, data-structure for smaller levels in the ORAM
that are less than poly log(λ) in size. Finally, the stash issue can be dealt with by
merging the stashes of all oblivious hash tables into a single one, and accessing
the merged stash once and for all for each ORAM request — one can prove that
the merged stash is at most poly logarithmic in size except with negligible prob-
ability, and is stored in a designated data structure to allow fast lookup (i.e.,
taking strictly logarithmic time).

Simplifying assumptions. For ease of understanding, let us first ignore the size
assumption and the stash issue mentioned above— these introduce additional
technicalities for constructing an optimal, deamortized ORAM as we shall men-
tion shortly. For the time being, we pretend that we can indeed have an oblivious
hash table for randomly shuffled inputs can be built in linear time, regardless
of the size, and moreover, assuming that lookup need not deal with the stash
technicality.

Underlying ORAM scheme without deamortization. With these simplifying as-
sumptions, we can construct an ORAM scheme as follows—our description below
matches the rebuild description of Asharov et al. [3] in their optimal OPRAM
scheme, and is a variant of Goldreich and Ostrovsky’s original hierarchical con-
struction.

Assume that the total memory size N is a power of 2. Imagine that there are
log2N + 1 levels, where the i-th level is an oblivious hash table (for randomly
shuffled inputs) of capacity 2i. We use T0, . . . ,TL to denote all the L+ 1 levels
where L = log2N .

In the steady state of the ORAM (i.e., ignoring the initial time steps when
the levels are not yet populated), every level except level 0 is either half full (HF)
or full (F). A level i > 0 is half full iff it contains up to 2i−1 real blocks. A level i
is full iff it may contain up to 2i real blocks7. Level 0 is either empty or full, and
as we shall see, it is guaranteed to be empty at the end of every ORAM request.
Whenever a new ORAM request arrives asking for the block at logical address
addr, we do the following:

– Fetch phase. From i = 0 to L, we look up each oblivious hash table for the
logical address addr; once the block is found, for all subsequent levels, we
instead look for a dummy block.

7 The actual number of real blocks may be smaller if the requests keep asking for the
same block or a small set of blocks. The maximum load is achieved when the ORAM
requests cycle through addresses 1, 2, . . . , N in a round-robin fashion.
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– Maintain phase. The block at addr just fetched is updated if necessary, and
then it is entered into the smallest level (i.e., level 0), which makes the smallest
level full. At this moment, let ` be either the smallest level that is half full or
` = L if all levels are full. Regardless of which case, all levels 0, 1, . . . , ` − 1
are full. We now perform the following rebuild procedure:
1. For each level i = 0 to `− 2 in parallel:

let T′i+1 := Build(Intersperse(Ti.Extract(), Di)) — where Di is an array
of size 2i containing only dummy elements, and Intersperse merges two
randomly shuffled arrays into a randomly shuffled array.

2. Let T′` := Build(T`−1.Extract()∪T`.Extract()) while we also remove dummy
elements when unifying the two arrays;

3. Replace T1, . . . ,T` with the new hash tables T′1, . . . ,T
′
` and let T0 be

emptied.
After this rebuild procedure, T0, . . . ,T`−1 are all half full (and in fact T0

is empty), and T` becomes full. In the above Steps 1 and 2, one can also
imagine that each level 1, . . . , ` − 1 is “rebuilding itself down” into the next
level (and we will use this terminology later). For ease of understanding, the
maintain phase is depicted in Figure 1.

Fact 2.1. In the above construction, a level i ≥ 1 switches state (either from
half full to full, or vice versa) every 2i−1 requests. Similarly, a level i wants to
rebuild itself down every 2i requests — this also coincides with when level i+ 1
refreshes.

Assuming that the oblivious hash table supports Build in linear-time (for
randomly shuffled inputs), supports Lookup in constant time, and moreover, its
Extract function outputs unvisited blocks in a random order, then the above
ORAM scheme is secure and achieves O(logN) amortized overhead.

2.2 Why Existing Deamortization Techniques Fail

Clearly the scheme mentioned in Section 2.1 cannot give a worst-case efficient
ORAM. For instance, when rebuilding the largest level (which happens every N
accesses), just reading it requires O(N) work. We describe existing deamortiza-
tion techniques and explain why they are incompatible with the new generation
of amortized optimal ORAM constructions.

Ostrovsky and Shoup [29] proposed a deamortization technique that, roughly
speaking, “spread” the rebuild procedures over many accesses rather than per-
forming them atomically. The challenge is how to support accesses to the level
while it is being rebuilt.

To do this, first, we modify the access process so that it does not delete an
element once it is found in some level (while it is still reinserted into the smallest
level). With this change, it is immediate that except for the smallest level, the
only time the contents of a level changes, is during the rebuild procedure and
in the latter we always just “pull” content from its previous (i.e., smaller) level.
That is, it takes 2i accesses until the content of the ith table is modified, and
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it will be filled with the content of table i − 1 which is also fixed and known.
Thus, the rebuild process for a level can be done slowly and in advance across
many accesses as follows: each level has a table called CurrentActive and has
another table that is UnderConstruction, which is being slowly built from
CurrentActive and the previous level CurrentActive. When the construc-
tion of the level is complete, we just update the pointer of CurrentActive
to the new rebuilt table, and start a new UnderConstruction version, thus
doing the rebuild in the deamortized sense, by spreading the cost uniformly.

There is one very important technical detail with the above approach: since
we never actually delete elements, the same key may (and will) appear multiple
times in the structure, perhaps with different values. The important invariant
is that the newest version of the element is always the one that resides in the
smaller level. At some point, these copies will meet in the same level during some
rebuild process and then the older copy will be suppressed and discarded. The
later task is known as oblivious deduplication and it is usually implemented
using oblivious sort.

Multiple variants and adaptations of the above deamortization technique
were used in previous ORAM constructions [7,19,24]. However, as we shall argue
next, there are inherent obstacles one runs into while trying to apply it on the
more recent (amortized) logarithmic overhead ORAM constructions [2, 30].

Challenge I: Access-while-rebuild breaks security. Recall that in the deamortiza-
tion technique of Ostrovsky and Shoup, we start rebuilding the table into the
next level while we also access it at the same time. However, when applied on
the ORAM of [2, 30], this completely breaks the input assumption (and there-
fore security) and is not compatible with the “residual randomness” technique:
A lookup that is performed while building reveals the position of an element in
the new table—the security of the latter inherently relies on the permutation
being completely secret.

To elaborate further, in Ostrovsky and Shoup we know in advance the content
of the levels and we start the rebuild process ahead of time, while still allowing
accesses to the same levels. In the context of in Ostrovsky and Shoup, this is
secure as we re-randomize the levels (by obliviously sorting/shuffling it) during
the rebuild process. However, in our case we cannot re-randomize the levels as
this is too expensive, and we follow the residual randomness technique. Moreover,
we cannot know in advance which elements will be looked up in the previous
level, i.e., the residual randomness will be consumed and thus for security we
are not allowed to reuse randomness.

Challenge II: Deduplication takes quasi-linear time. As mentioned, multiple
copies of the same key will appear during the lifetime of the ORAM (some
might be with different values) and so a deduplication mechanism is needed.
More precisely, the task is to compute A ∪ B given two sets A and B of size
n. (Assume we prefer the copy in A over B for concreteness.) The best known
algorithm uses oblivious sort and takes quasi-linear time. However, if we want to
have a logarithmic overhead ORAM construction we must implement it in linear
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time. Note that, even ignoring obliviousness, it is not immediately obvious how
to do this in linear time. The most natural approach is to use sorting, but better
algorithms can be achieved using hashing tools.

Challenge III: Cannot “lock” shared memory. As mentioned, each level in [2,30]
effectively supports lookup in constant time, but this is due to the “shared stash”
technique (previously used in [9, 18, 20, 24]). Specifically, in isolation, each level
requires O(1) accesses to a main table and an additional scan of a O(logN)-size
stash. The shared stash trick utilizes the fact that there are many levels and an
access will translate to multiple lookups for the same key in many levels—this
allows us to merge all of the stashes into a global one and scan it only once for all
levels. Therefore, the number of accesses per level is O(1) amortized. This makes
the ORAM construction not completely black-box in a hash table and therefore
less compatible with Ostrovsky-Shoup [29]. Concretely, while we rebuild a table,
we cannot “lock” the global stash as we need to allow accesses to it (addition
and removal of elements) while handling other ORAM accesses.

2.3 Our Deamortization Approach

We now intuitively describe how to deamortize the ORAM scheme mentioned
in Section 2.1. To address Challenge I mentioned in Section 2.2, whenever some
level is involved in a rebuild, i.e., its destructor Extract function is being called,
this level no longer can support lookups. Yet the ORAM must continue to serve
requests. We propose a new pipelining approach that works with this new con-
straint that comes with the new amortized logarithmic-overhead ORAMs.

Our key idea is to maintain two copies of each level, henceforth called the
A-copy and the B-copy respectively, each uses its own independent randomness.
At a high level, whenever some level in the A-copy involved in a rebuild and
being destructed, the corresponding level in the B-copy fills in the lookups; and
whenever some level in the B-copy is involved in a rebuilt and being destructed,
the next level in the A-copy can fill in. This guarantees that we never lookup
and rebuild from a table at the same time – while rebuilding all lookups are
performed at a different copy that uses independent randomness. That is, we
essentially split the queries between A and B, so that we can reuse randomness
in each hierarchy by itself. Whenever an element is found in one copy, we update
its content and put it in the top of the two hierarchies of A and B.

We next elaborate our idea in the following schedule of deamortization.
Henceforth, we use Ai and Bi to denote the i-th level in the A-copy and B-copy,
respectively. In our earlier non-deamortized scheme, recall that a level i ≥ 1 is
reconstructed every 2i−1 requests. We may imagine that there is some counter ctr
that increments upon every request, and thus a level i ≥ 1 is refreshed whenever
the ctr = k ·2i−1 for some integer k. For simplicity, in this overview we ignore the
treatment of the first level and the last level, and just look at intermediate levels.
To achieve deamortization, the idea is to rely on careful pipelining to maintain
the following schedule:
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– The level Ai is refreshed (i.e., completes reconstruction) at time step ctr1 =
k · 2i + 2i−2 where k is an integer. Level Ai is now “half full” and just pulled
new content from level i− 1.

– The level Bi is refreshed at time ctr2 = k · 2i + 2 · 2i−2, i.e., just a little later
than the corresponding Ai finished reconstruction.

– At time ctr2 = k ·2i+2 ·2i−2, level Ai starts pulling more content from Ai−1.
This will take 2i−2 time, which will finish at ctr3 = k · 2i + 3 · 2i−2.
During this rebuild period [ctr2, ctr3], Ai is dysfunctional and cannot support
accesses; fortunately, Bi contains identical contents as Ai (but rerandomized
differently for obliviousness), and therefore Bi can fill in for the lookups.

– At time ctr3, Ai finishes, and Bi can catch up and pull information from level
Bi−1. It will start rebuilding and will finish at time ctr4 := ctr3 + 2i−2. At
this time range Bi is dysfunctional, however, its content is also in Ai, which
also hold in addition some fresher content from Ai−1.

– After Bi finishes and becomes full, Ai wants to push all its content down
into level Ai+1 while also pulling new content from level Ai−1. However, the
rebuild of level Ai+1 takes twice as much time. Thus, level Ai will have new
content already at time ctr5 := ctr4 + 2i−2, while level Ai+1 will have the
old content of Ai only at time ctr6 := ctr5 + 2i−2. Luckily, the content is not
lost; The content exists all this time at the Bi copy, which is activated and
functional in [ctr4, ctr6].
At time ctr5, we essentially finished a cycle, i.e., Ai is half full and just
finished refreshing, and we are essentially back to the first item.

Recall that rebuilding Ai (or Bi, resp.) from Ai−1 (or Bi−1, resp.) takes work
Θ(2i). This amount of work is spread across ctr2−ctr1 (or ctr3−ctr2, resp.) time
steps. One can verify that indeed, ctr2−ctr1 = Θ(2i) and thus in each time step,
a constant amount of work is performed associated with the rebuilding of Ai (or
Bi, resp.). At most O(logN) many levels are being rebuilt simultaneously, and
thus the total amount of work per time step associated with rebuilds is O(logN).
Observe also that the time in between two adjacent rebuilds of Ai is only 2i−1,
and the hash table Ai can support up to 2i requests, so we will not run out of
the access budget. A similar observation holds for Bi.

In our final scheme, we will actually have different designated place for the
table Ai when it is half-full, and a different placed for Ai when it is full, denoted
as AHF

i and AF
i , respectively (likewise for BHF

i and BF
i ). Thus, we have 4 tables

at the same level, but (the newest version of) each element has exactly 1 copy
in each of Ai and Bi. Moreover, only one copy of (AHF

i ,AF
i ) is valid at any given

time, likewise for Bi. We can view AHF
i and AF

i as two possible states of Ai, and
then we have just two copies in each level, or as independent hash tables, and
then we have four tables. The rebuild schedule is depicted in Figure 3.

Why deduplication is necessary in the deamortized scheme. The rebuild proce-
dure of the deamortized scheme is otherwise the same as the underlying non-
deamortized scheme except that a deduplication pre-processing step is necessary
whenever we are building a half full level Ai and a full level Ai−1 to create a
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new level Ai (and the same for the B-copy). This is because in the deamortized
scheme, the rebuilding process is happening while the ORAM is still serving
queries. For example, Ai may be rebuilding itself down into Ai+1, and the corre-
sponding Bi is taking over as Ai in serving queries. During the rebuild, a memory
block at address addr∗ may get rebuilt from Ai, into Ai+1, but it can also be
requested during the same rebuild interim, causing a separate copy of addr∗ to
be entered into the smallest level. Duplicates will be suppressed when two dupli-
cate copies of the same addr∗ “meet” in a future rebuild, while lookup guarantees
that the freshest copy (which resides in the level that is smallest compared to
any other copy) will be found.

We next describe how to accomplish oblivious deduplication in linear time.

2.4 Linear-Time Oblivious Deduplication

To address Challenge II from Section 2.2, another contribution of our paper
is a linear-time oblivious deduplication algorithm that takes advantage of the
fact that the input arrays to be deduplicated are randomly shuffled. To see the
main idea, let us first describe a non-oblivious algorithm that runs in linear
time. (This is already not trivial.) While the most natural implementation is
to sort the concatenated array and then perform a linear scan while removing
duplicates (which reside in adjacent positions after the sort), the cost of this
implementation is dominated by the sort. Using the best sorting algorithms in
the RAM model, one can achieve o(n · log n) cost [14,36] but we still do not know
of linear time sorting algorithms.

Our idea to get a linear time algorithm is to use hashing tools. Specifically,
consider a Cuckoo hash—this is a hash table that supports lookup by just 2
accesses to a main table and another scan of say O(log λ) size stash. (The stash
needs to be of this size to guarantee the probability of failure is negligible in λ.)
Consider hashing X1 and X2 independently into a Cuckoo hash tables T1, T2 each
having a long enough stash so that the hashing succeeds with all but negligible
probability. For i ∈ {1, 2}, denote Ti = (TMi , TSi ) where TMi is the main table
of Ti and TSi is the stash of Ti. This costs just O(n). Now, we can perform the
deduplication as follows:

1. For each element in the stash of T1, i.e., TS1 , we perform a full lookup in T2.
That is, for each of the O(log λ) elements in TS1 , we touch O(1) elements in
TM2 and then scan TS2 . Doing so, we remove the elements from T2 that are
also in TS1 . This costs overall O(log2 λ).

2. So far, we took care of elements that appear in T2 and in TS1 and we need
to remove duplicates which appear in T2 and TM1 . For this, we scan every
remaining element in T2 and for each we touch the two locations in TM1 to
check if it is there. If so, we delete it from T2. Crucially, now we do not need
to visit the stash TS1 . When we look for the elements in T2 \ TS1 , we can go
directly to the main table and spend O(1) work per lookup, as we know that
the element is not in the stash TS1 !
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Eventually, we concatenate the elements of T1 together with what is left in
T2 after performing the above process. Overall, the cost of this algorithm is
O(n+ log2 λ) = O(n) whenever n is large enough compared to λ.

This algorithm is clearly non-oblivious and “naively” replacing the Cuckoo
hash with an oblivious version thereof does not meet our goal since known con-
structions require ω(n) time for building (since building an oblivious Cuckoo
hash uses oblivious sort). This is where the “shuffled inputs” assumptions comes
into play: we do not necessarily need the full power of Cuckoo hashing since
we are guaranteed that the input lists are shuffled. Therefore, instead of using
Cuckoo hash, we use in a white-box manner the linear-time oblivious hash table
for shuffled inputs from [2] (see also Section 3.4). This hash table has linear build
time and is secure only when the input array is randomly shuffled; otherwise, it
behaves conceptually in a similar manner to “standard” oblivious Cuckoo hash:
lookup is performed by a scan of a stash and O(1) accesses to a “main table”.
We therefore manage to use it for our purpose, deduplication.

Dealing with the shared stash. So far, we have assumed an idealized oblivious
hash table (for randomly shuffled inputs) without stashes. As mentioned earlier,
known instantiations of the oblivious hash table with the desired efficiency re-
quirements have an extra stash that must be visited during a Lookup operation,
and the constant-time lookup is only possible with a “shared stash” trick, i.e.,
by merging all logarithmically many stashes into a globally shared one.

Accommodating the shared stashes creates extra technicalities, as we men-
tioned in Challenge III in Section 2.2. To deal with them, the main idea is to
support more fine-grained access to the shared memory area. That is, while in [2],
every extract requires to atomically scan the shared memory to retrieve all ele-
ments that “belong” to some given level, in our construction we avoid such linear
scans by using more efficient data structures. Specifically, we use a version of an
oblivious dictionary which supports lookup of elements w.r.t. various auxiliary
keys such as the level they came from or the logical address.

To elaborate, recall that each level is associated with a stash of O(log λ)
elements, and thus the shared stash consists of O(logN · log λ) elements. All
such elements are store the oblivious dictionary accompanied with the auxiliary
keys. Specifically, an element is inserted to the dictionary when a level is newly
built, is queried by a logical address when lookups are performed during the fetch
phase, and is popped from the dictionary when a level is being extracted. Recall
that each operation of the oblivious dictionary takes only poly log(logN + log λ)
time, e.g., by instantiating a perfect ORAM [8], and that each level is at least
poly(logN+log λ) in size. The efficiency follows as inserting or popping elements
take only a o(1) fraction of time during build or extract a level, and only O(1)
queries are performed during a fetch. The security follows since the dictionary
is perfectly oblivious.

Organization. The remaining of the paper is organized as follows. In Section 3
we provide the preliminaries, which includes definition of obliviousness, some ba-
sic building blocks we use in our construction, our 2-key dictionary and revisit
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and overview the oblivious hash table construction of [2]. In Section 4 we pro-
vide our deduplication algorithm, and in Section 5 we provide our deamortized
construction. The case of combining the stashes is deferred to the full version.

3 Preliminaries

The security parameter is denoted λ and it is given as input to algorithms
in unary (i.e., as 1λ). A function negl : N → R+ is negligible if for ev-
ery constant c > 0 there exists an integer Nc such that negl(λ) < λ−c

for all λ > Nc. Two sequences of random variables X = {Xλ}λ∈N and
Y = {Yλ}λ∈N are computationally indistinguishable if for any probabilistic poly-
nomial time algorithm A, there exists a negligible function negl(·) such that∣∣Pr
[
A(1λ, Xλ) = 1

]
− Pr

[
A(1λ, Yλ) = 1

]∣∣ ≤ negl(λ) for all λ ∈ N. For n ∈ N,
denote [n] = {1, . . . , n}.

Random-access machines (RAM). A RAM (or a RAM program) is an interactive
Turing machine that consists of a memory and a CPU. The program maps some
input to an output where its computation is performed by the CPU and using
the interaction with the memory. The memory is denoted as mem[N,w] and is
indexed by the logical address space [N ] = {1, 2, . . . , N}. We denote by w to
denote the bit-length of each block. The CPU has an internal state that consists
of O(1) words. The memory supports read/write instructions (op, addr, data)
where op ∈ {read,write}, addr ∈ [N ] and data ∈ {0, 1}w ∪ {⊥}:

– If op = read then data = ⊥ and the returned value is the content of the block
located in the logical address addr in the memory.

– If op = write then the memory data in logical address addr is updated to
data.

We use the standard setting that w = Θ(logN) (so an address can be stored in
a word). We follow the standard convention that the CPU performs one word-
level operation per unit time, i.e., such that additions or subtraction (arithmetic
operations), bitwise operations such as AND, OR, NOT or shift, memory accesses
or evaluation of pseudorandom function.

3.1 Oblivious Machines

Intuitively, we say that a machine M is oblivious if there exists a simulator that
can simulate its access pattern without knowing the input. Specifically, there
exists a simulator Sim such that, for all inputs x, all memory accesses in the
computation M(x) can be simulated by Sim where Sim just receives the length
of x (i.e., |x|) and not the input itself.

We say that a RAM program Mf oblivious simulates a (deterministic) RAM
program f if for every input x it holds that Mf (x) = f(x), and that Mf is
oblivious. For randomized functionalities, we require that the joint distribution of
the output ofMf and the access pattern of the simulator is indistinguishable from
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the joint distribution of the output of f and its access pattern in the computation.
See discussion in [2]. We are now ready for the definition of oblivious simulation:

Definition 3.1 (Oblivious simulation). Let f,Mf : {0, 1}∗ → {0, 1}∗ be two
RAM machines. We say that Mf obliviously simulates f if there exists a proba-
bilistic polynomial time simulator Sim such that for every input x ∈ {0, 1}∗, the
following holds:{

(out,Addr) : (out,Addrs)←Mf (1λ, x)
}
λ
≈
{(
f(x),Sim(1λ, 1|x|

)}
λ

depending on whether ≈ refers to computational, statistical, or perfectly indistin-
guishable we say that Mf is computationally, statistically, or perfectly oblivious,
respectively.

Reactive random-access machines. We consider functionalities that are reactive,
i.e., proceed in stages, where the functionality preserves an internal state between
stages. Such a reactive functionality can be described as a sequence of RAM
machines, where each machine also receives as an input a state, updates it, and
the output is the input state for the next machine. We use it to capture building
blocks such as oblivious hash tables (see Section 3.4).

A reactive machine F receives commands of the form (commandi, inpi) and
produces an output outi while maintaining some (secret) internal state. Our
definition considers an adversary A (a distinguisher) that participates in either a
real execution or an ideal one, and with each command receives the access pattern
(resp. simulated access pattern) and the output of the algorithm (resp. output
of the functionality). The adversary A can then adaptively choose the next
command to execute.

Definition 3.2 (Oblivious simulation of a reactive functionality). We say that
a reactive machine MF is an oblivious implementation of the reactive function-
ality F if there exists a PPT simulator Sim such that for any non-uniform PPT
(stateful) adversary A, the view of the adversary A in the following two experi-

ments Exptreal,MF (1λ) and Exptideal,F
A,Sim (1λ) is computationally indistinguishable:

Exptreal,MF
A (1λ):

Let (cmdi, inpi)← A
(
1λ
)

Loop while cmdi 6= ⊥:
outi,Addri ←MF

(
1λ, cmdi, inpi

)
(cmdi, inpi)← A

(
1λ, outi,Addri

)

Exptideal,FA,Sim (1λ):

Let (cmdi, inpi)← A
(
1λ
)

Loop while cmdi 6= ⊥:
outi ← F(cmdi, inpi).
Addri ← Sim

(
1λ, cmdi

)
.

(cmdi, inpi)← A
(
1λ, outi,Addri

)
We define statistical or perfect simulation analogously, requiring the two ex-

periments to be either statistically close or identically distributed.

ORAM simulation overhead. We consider the standard ORAM functionality,
implementing a logical memory. In this functionality, the user gets to choose the
next command (i.e., either read or write) as well as the address and data according
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to the access pattern it has observed so far. During its life span, the functionality
holds (as an internal state) N memory blocks, each of size w. Denote the internal
state X[1, . . . , N ]. Initially, X[addr] = 0 for every addr ∈ [N ]. The functionality
is as follows:

– Access(op, addr, data): where op ∈ {read,write}, addr ∈ [N ] and data ∈
{0, 1}w.
1. If op = read, set data∗ := X[addr].

2. If op = write, set X[addr] := data and data∗ := data.

3. Output data∗.

Typically, the metric of interest for ORAM construction is known as compu-
tation overhead and it is is defined as the (multiplicative) blowup in runtime of
the compiled program. We distinguish between the worst-case and the amortized
variants:

– Amortized computation overhead: We say that the amortized compu-
tation overhead of the ORAM is g : N → N if for every sequence of opera-
tions ((op1, addr1, data1), . . . , (opq, addrq, dataq)) at most g(N) · q computa-
tion steps are taken during the execution of the ORAM.

– Worst-case computation overhead: We say that the amortized compu-
tation overhead of the ORAM is g : N → N if every sequence of operations
((op1, addr1, data1), . . . , (opq, addrq, dataq)), handling each operation in the
sequence consumes g(N) computation steps.

It is immediate that worst-case overhead g(N) directly implies amortized
overhead of g(N) but the converse is not necessarily true.

3.2 Basic Building Blocks

We briefly describe few functionalities that we use in our construction, and refer
to [2] for their implementation:

1. Intersperse(X,Y ) is an algorithm that takes two arrays, each is randomly
shuffled, returns a randomly shuffled array, and runs in linear time (i.e.,
O(|X|+|Y |)). It obliviously implements the ideal functionality FShuffle–which
takes an array and randomly shuffled it.

2. IntersperseRD(X) takes an array that contains real and dummy elements, and
is assumed that all real elements are shuffled among themselves, but there is
no guarantee about the locations of the dummies in the array (e.g., they can
all reside at the end of the array). The algorithm returns a randomly shuffled
array, runs in linear time, and obliviously implements the ideal functionality
FShuffle.

3. Compaction: Given an array in which some of the elements are distinguished,
it moves all distinguished elements to the beginning of the array and runs
in linear time.
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3.3 Perfectly Oblivious 2-Key Dictionary

In this section we use known results to get a new oblivious dictionary-like data
structure. Our structure, termed two-key dictionary, needs to support three op-
erations: Insert, PopKey, and PopTime. Each element has a key k and a label t for
“time”. The Insert operation takes the key k along with timestamp t and a value
v and adds (k, t, v) to the dictionary, the k appears at most once in the dictionary
(so that it overwrites if there is a previous tuple (k, t′, v′) for the same k). One
can pop an element with key k by using PopKey(k)—the operation returns and
removes the element with the key k. Analogously, PopTime(t1, t2) takes as input
a time period [t1, t2] and returns an element that is labeled with a timestamp t
in the given period. This (reactive) functionality appears as Functionality 3.3.

Functionality 3.3: F2KeyDict - Dictionary Functionality

– Initialization of the state: let M be an empty list indexed by k ∈ [K] for the
given key space K, where all M [k] are initialized as ⊥.

– F2KeyDict.Insert(k, t, v):
• Input: a key k, time t ∈ N, and a value v, where k might be ⊥, i.e., a

dummy insertion.

• The procedure:
1. If k 6= ⊥, set M [k] := (t, v).

• Output: The Insert operation has no input.

– F2KeyDict.PopKey(k):
• Input: a key k (that might be ⊥, i.e., dummy).

• The procedure:
1. Set (t∗, v∗) := M [k] and then set M [k] := ⊥.

• Output: The valude v∗.

– F2KeyDict.PopTime(t1, t2):
• Input: time t1, t2 ∈ N such that t1 < t2.

• The procedure:
1. Let k be the smallest index such that M [k] = (t∗, ·) for some t∗ ∈

[t1, t2]. If no such k exists, set v∗ := ⊥. Otherwise, set (t∗, v∗) := M [k]
and then set M [k] := ⊥.

• Output: The value v∗.

Theorem 3.4. Assume the tuple of (k, t, v) (i.e., key, time, and value) can be
stored in a constant number of memory words. Assume further that the two-key
dictionary needs to support at most n elements. There exists a perfectly oblivious
implementation of functionality F2KeyDict such that each operation Insert, PopKey,
and PopTime takes O(log4 n) time in the worst-case.

Proof. The first step is to obtain a perfectly oblivious ORAM that has O(log3 n)
worst-case overhead when simulating a memory of size n. Such an ORAM can be
obtained by applying the deamortization technique of Ostrovsky and Shoup [29]
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on the (amortized) O(log3 n) overhead perfect ORAM construction of Chan et
al. [8]. It directly works (although never formally stated to the best of our knowl-
edge) since the construction of Chan et al. is based exactly on the original hier-
archical framework of Goldreich and Ostrovsky [16, 17] which was deamortized
in Ostrovsky and Shoup [29].

Given this ORAM, it is straightforward to prove the theorem by just com-
piling a non-oblivious implementation of F2KeyDict. For the latter, we instantiate
two balanced binary search trees (e.g., red-black tree), where the first tree or-
ders elements according to the key k, and the second tree orders elements by
the given time t. This implementation has logarithmic cost for each operation.
Therefore, compiling it using the above worst-case perfect ORAM, we have a per-
fectly oblivious implementation of F2KeyDict taking O(log4 n) time in the worst
case.

3.4 Oblivious Hash Table for Shuffled Inputs

Here we recall what an oblivious hash table is and the shuffled inputs assumption
(taken from [2, Section 4.4]). An oblivious hash table is a (reactive) functionality
that supports three operations: Build, Lookup and Extract that are defines as
follows. The Build operation gets as input an array of items, Lookup is used to
search for an item and then delete it, and finally Extract returns the “remaining”
elements in the table. Obliviousness means, as usual, that the access patterns
throughout the life time of the system should be unrelated to the elements in the
array nor the values being searched for. We will achieve this guarantee assuming
the input to Build is random shuffled.

Functionality 3.5: FHT - Hash Table Functionality for Non-Recurrent
Lookups

FHT.Build(I): The input

– Input: an input array I = (a1, . . . , an) containing n elements, where each

ai is either dummy or a (key, value) pair denoted (ki, vi) ∈ {0, 1}D ×{0, 1}D
for some D ∈ N. We assume that both the key and the value can be stored
in O(1) memory words, i.e., D = O(w) where w denotes the word size.

– The procedure:
1. Initialize the internal state state to I,P where P = ∅. P will store the

keys that were already queried.

2. Output: The Build operation has no input.

FHT.Lookup(k):

– Input: a key k ∈ {0, 1}D ∪ {⊥}.
– The procedure:

1. Parse the internal state as state = (I,P).

2. If k ∈ P (i.e., k is a recurrent lookup) then halt and output fail. (Security
is only guaranteed if no such recurrent lookup is performed, so in the
construction we do not need to check this explicitly.)
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3. If k = ⊥ or k 6∈ I then set v∗ = ⊥.

4. Otherwise, set v∗ = v where v is the value that corresponds to the key
k in I.

5. Update P = P ∪ {(k, v)}.
– Output: The element v∗.

FHT.Extract():

– The procedure:
1. Parse the internal state state = (I,P).

2. Define an array I′ = (a′1, . . . , a
′
n) as follows. For i ∈ [n] set a′i = ai if

ai = (k, v) 6∈ P. Otherwise, set a′i = dummy.

3. Shuffle I′ uniformly at random.

– Output: The array I′.

The work of Asharov et al. [2, Corollary 8.9] shows a construction of a hash
table, denoted as CombHT, with the following properties:

Theorem 3.6. Assume that one-way functions exist. Then, for any c ∈ N,
there exists a construction, denoted as CombHT, that (computationally) obliv-
iously implements the FHT functionality (Functionality 3.5) with the following
properties:

1. The input array is log9+c λ ≤ n ≤ 2λ;

2. The input assumption is that the input array is randomly shuffled;

3. Build and Extract each take O(n) time. Build outputs a main table and a
stash of size O(log λ);

4. Lookup takes O(1) time in addition to linearly scanning a stash of size
O(log λ).

The high-level idea of this construction is given in the full version for com-
pleteness, and we refer to [2, Section 8.4] for full details.

4 Oblivious Deduplication in Linear Time

Consider two arrays X1 of size n and X2 of size 2n, where it is guaranteed that
at least half of the elements in X2 are dummies,8 and the keys in each array are
unique. In what follows we describe an algorithm for merging the (real) contents
of the arrays while removing duplicates, preferring the ones in X1. That is,
viewing the input arrays as sets, we compute X1 ∪X2 while preferring duplicate
elements from X1. We start with the abstract functionality FDedup and then give
our implementation.

8 One could easily modify our algorithm to work more generally for a list X2 of size
m which has at least n dummies and result with an array of size m. We chose to be
concrete for simplicity.
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The functionality FDedup. The exact functionality is described next. It can be
viewed as a non-efficient non-oblivious implementation. The input consists of
an array X1 of size n and an array X2 of size 2n. The array X2 contains at
most n real elements. Every key appears at most once in each input list (a
key may appear once in each of the arrays with different associate values). The
functionality does the following:

1. Initialize an array Y of size 2n.

2. Copy to Y all real elements in both arrays X1 and X2. If the two arrays
contain the same key (with possibly different associated value), then remove
the copy from X2 and prefer the one in X1. Pad Y with dummies to be of
size 2n.

3. Uniformly shuffle Y and return it.

The main theorem of this section is stated next.

Theorem 4.1. There is an algorithm that implements the functionality FDedup

in time O(n) for n ≥ log11 λ (and with negligible error probability). The algo-
rithm is computationally oblivious if one-way functions exist and if the input
arrays are independently randomly shuffled.

Recall the O(n) time non-oblivious algorithm from Section 2—it is clearly
non-oblivious and “naively” replacing the Cuckoo hash with an oblivious version
thereof does not meet our goal since known constructions require ω(n) time for
building. However, we do not necessarily need the full power of Cuckoo hashing
since we are guaranteed that the input lists are shuffled. Therefore, instead of
using Cuckoo hash, we use the hash table CombHT from Section 3.4 which has
linear build time and otherwise behaves conceptually in a similar manner to
“standard” oblivious Cuckoo hash: lookup is performed by a scan of a stash and
O(1) accesses to a “main table”. The idea therefore is conceptually in the same
spirit, but we rearrange and then compose the procedures of CombHT (in a non-
black-box way) to guarantee obliviousness. Namely in Step 3, for each duplicate
that reside in the first hash table, we mark the element by its counterpart in the
second hash table; then in Step 5, we are able to emulate identically the lookup
procedures on the second table (even we perform no access on its stash). We refer
the reader to the construction of CombHT in the full version for a comprehensive
construction.

The algorithm Dedup(X1, X2) works as follows:

1. Perform T1 := HT.Build(X1) and T2 := HT.Build(X2).

2. Denote T1 = (sk1,OBins1,CombS1,T,CombS1,S,OF1,T,OF1,S) and T2 = (sk2,
OBins2,CombS2,T,CombS2,S,OF2,T,OF2,S).

3. Initialize an empty array L. Linearly scan OF2,S and Comb2,S, and for each
element (k, v), perform the following:
(a) Perform a real lookup (k′, v′) := T1.Lookup(k). If k is found in T1 then:

i. Mark the element (k′, v′) at T1 as “CombS” if k comes from CombS2,S,
or “OF” if k comes from OF2,S.
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ii. Mark the element (k, v) as “accessed” in T2.

(b) Write (k′, v′) to the next slot in L (including the mark when k is found).
In the end of this loop, obliviously shuffle L.

4. Perform S′1 := T1.Extract(). Then, perform S1 := Intersperse(S′1‖L).

5. Linearly scan S1, and for each element (k, v), perform the following:
(a) If k is marked as “OF”, then perform a real lookup

(k′, v′) := T2.Lookup(k) while not scanning the stashes (OF2,S,CombS2,S)
and proceeding as if k is found in OF2,S.

(b) If k is marked as “CombS”, then perform a real lookup
(k′, v′) := T2.Lookup(k) while not scanning the stashes (OF2,S,CombS2,S)
and proceeding as if k is found in CombS2,S.

(c) If k is not marked, then perform a real lookup (k′, v′) := T2.Lookup(k)
while not scanning the stashes (OF2,S,CombS2,S) and proceeding as if k
is not found in the stashes.

6. Perform S2 := T2.Extract() (recall that “accessed” elements in T2 are not
extracted).

7. Run Z := Intersperse(S1‖S2). Run tight compaction on Z to move all dummy
elements to the end. Truncate the array to be of size 2n. Run IntersperseRD
to randomly shuffle Z.

8. Output Z.

The full proof of Theorem 4.1 appears in the full version. Here, we briefly
argue that the efficiency is as required. In step 3, we scan the stashes of T2 and
then for each element perform a O(log λ)-time lookup, and then we shuffle L.
Since the stashes are of size O(log λ), the running time of this step is O(log2 λ) ≤
O(n). Step 5 consist of a linear scan of a list and then an O(1) lookup on each
item. Steps 4 and 6 consume O(n) time. Step 7 consumes O(n) time, as well.
Overall, the overhead is linear in n, as needed.

5 The ORAM Construction with Worst Case Complexity

In this section we present our deamortized construction.

The combined stash technique. As we saw in Section 3.4, our hash table supports
lookup in O(1) time in addition to a lookup in a stash of size O(log λ). To allow
faster lookups, constructions use “the combined stash” technique (see [2,7,20]).
According to this technique, all stashes of all levels are combined into one global
stash. Then, utilizing the fact that we look for the same element in all levels (or
dummy lookup once the element is found), we have to search for the element
only once in the global stash (instead of searching for it in O(logN) different
stashes), and then spend just O(1) lookup time per level.

As we mentioned in the introduction, the fact that there is a shared memory
to all levels introduces some complications in the final construction. We therefore
present our deamortized construction in two steps:

20



1. In Section 5.1 we look at a somewhat idealized construction in which the
main building block is a hash table that takes O(1) time per lookup, while
it takes linear time for Extract and Build (on shuffled inputs). That is, “there
is no stash”. We emphasize that we do not know how to realize such an
oblivious hash table. Nevertheless, we describe this construction for aiding
understanding and capturing the main ideas behind our deamortized con-
struction.

2. In the full version we proceed to our final construction, in which the hash
table is implemented as in Section 3.4, that is, O(1) lookup time in addition
to a scan of a stash of size O(log λ). To achieve effectively O(1) time per
lookup, we have also to use the combining stash technique as we described
above.

5.1 Assuming Hash Table with O(1) Lookup Time

In this section, we assume the existence of a construction of a hash table, denoted
as HT, that achieves the following:

Assumption 5.1. Assume that for any c ∈ N there exists a construction,
denoted as HT that obliviously implements the FHT functionality (Functional-
ity 3.5) with the following properties:

1. The input array is log9+c λ ≤ n ≤ 2λ;

2. The input assumption is that the input array is randomly shuffled;

3. Build and Extract each take O(n) time.

4. Lookup takes O(1) time.

This is equivalent to Theorem 3.6 where the construction has no stash and
Lookup takes worst-case O(1) time. We proceed to the construction. We first
start with the underlying primitives and the memory organization, and proceed
to the specification of the construction.

Structure: Let ` = d11 log log λe and L = dlogNe.

1. Each level i ∈ {` + 1, . . . , L} consists of four instances of HT as in As-
sumption 5.1, each of capacity 2i. We denote the levels as (AHF

`+1, . . . ,A
HF
L ),

(AF
`+1, . . . ,A

F
L), (BHF

`+1, . . . ,B
HF
L ) and (BF

`+1, . . . ,B
F
L).

2. Two perfect dictionaries (see Section 3.3), denotes as A`,B`, each of capacity
2`+1+O(logN ·log λ). Each dictionary holds elements of the form (addr, data)
where addr ∈ [N ], data ∈ {0, 1}w.

3. Pointers (A`, . . . ,AL), (B`, . . . ,BL) where each Ai points to either
{AHF

i ,AF
i , Null} and each Bi to {BHF

i ,BF
i , Null}, where Null is a null pointer.

4. A global counter ctr, initialized as 0.

Construction 5.2: Oblivious RAM Access(op, addr, data)

– Input: op ∈ {read,write}, addr ∈ [N ] and data ∈ {0, 1}w.
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– Secret state: As above.

– Initialization: ctr is initialized to 0 as above, and all other data structures
are initialized as empty.

– The algorithm:
Lookup:
1. Initialize found = false, data∗ = ⊥.

2. Perform fetched := A`.PopKey(addr).

3. If fetched 6= ⊥: then B`.PopKey(⊥).
Otherwise, fetched := B`.PopKey(addr).

4. If fetched 6= ⊥: set found = true.

5. For each i ∈ {`+ 1, . . . , L} in increasing order, do (if Ai (or Bi resp.) is
Null, then let the result of Lookup be ⊥):
(a) If found = false:

i. Set fetched := Ai.Lookup(addr).

ii. If fetched 6= ⊥ then set found := true and data∗ := fetched.

(b) Else, perform Ai.Lookup(⊥).

(c) If found = false:
i. Set fetched := Bi.Lookup(addr).

ii. If fetched 6= ⊥ then set found := true and data∗ := fetched.

(d) Else, perform Bi.Lookup(⊥).
Write back:
6. If found = false, i.e., this is the first time addr is being accessed, set

data∗ = 0.

7. Let (k, v) := (addr, data∗) if this is a read operation; else let
(k, v) := (addr, data).

8. Insert (k, v) into A` and B` using Insert(k, ctr mod 2`+1, v).
Rebuild:
9. Increment ctr by 1.

10. For i ∈ {`+ 1, . . . , L}:
(a) If ctr ≡ 2i−2 mod 2i then continue to 1-out-of-4 case:

If ctr ≡ 0 mod 2i 2i−2 mod 2i 2 · 2i−2 mod 2i 3 · 2i−2 mod 2i

Set Ai := Null AHF
i Null AF

i

Set Bi := BF
i BF

i BHF
i Null

Start RebuildHF(AHF
i ) RebuildHF(BHF

i ) RebuildF(AF
i ) RebuildF(BF

i )

By starting a task we mean to add the relevant task into the list Tasks.
The procedures RebuildHF and RebuildF are defined below.

11. In a round robin fashion, for each task t ∈ Tasks, execute t.eachEpoch
steps.

12. Return v.

Before proceeding, we refer the reader to depictions of the rebuilding scheduling
in Figures 2 and 3. In Step 10a, the schedule of the rebuild tasks is asymmetric
(AHF
i and AF

i always start earlier than the Bi counterparts). This leads to the
asymmetry between the setting of pointers Ai and Bi in Step 10a. Due to the
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asymmetry in schedule, there is a period such that both pointers Ai and Bi are
available and storing distinct sets of elements (i.e., from ctr ≡ 2i−2 mod 2i to
ctr ≡ 2 · 2i−2 mod 2i). Hence, Step 5 has to fetch addr in both Ai and Bi as their
contents are distinct (our schedule is determinisitic, but fetching addr in both
tables is necessary as we do not know which table stores addr).

The procedure RebuildF. In this procedure, we build the table AF
i from the

two tables AF
i−1 and AHF

i (similarly, BF
i from BF

i−1 and BHF
i ). This is done by

extracting the two tables, running Dedup (see Section 4) on the two tables, and
then building the hash table. All those operations take linear work, and therefore
we can spend O(1) time per Access to the ORAM and finish the task in linear
time. This is formalized in the eachEpoch variable.

In case the level to be rebuilt is ` + 1, we extract all elements from the
dictionary of level `. This takes O(poly log logN) per element. This will also be
the eachEpoch value. That is, we spend O(poly log logN) work for the rebuilding
of level `+ 1 with each Access to the ORAM.

RebuildF(CF
i ):

– Input: The task has input CF
i ∈ {AF

i ,B
F
i } for some index i ∈ {` +

1, . . . , L}.
– eachEpoch: The total time allocated to this task is 2i−2.

1. If i = `+1: Let W ∈ O(2i ·poly(log logN)) bound the total work
of this procedure. Set eachEpoch = W/2i−2 = poly log logN .9

2. If i > ` + 1: The total work is W ∈ O(2i). Set eachEpoch =
W/2i−2 ∈ O(1).

– The task:
1. If i = `+ 1, run Ci−1.PopTime(0, 2`− 1) repeatedly for 2` times.

That is, we extract all elements with ctr mod 2`+1 ∈ [0, 2` − 1],
i.e., all elements that were added to the dictionary while building
AHF
i and BHF

i . Let X be the list of popped elements, and then
obliviously shuffle X. Run Y := CHF

i .Extract().

2. Else i > `+ 1, run X := CF
i−1.Extract() and Y := CHF

i .Extract().

3. Run Z := Dedup(X,Y ).

4. Run CF
i := HT.Build(Z).

The procedure RebuildHF. In this procedure, we rebuild table AHF
i from the

contents of the table AF
i−1 (or BHF

i from BF
i−1). This is performed by adding

dummy elements and building the next level. For i > ` + 1 this requires linear
work, and therefore we can spend O(1) time per Access to the ORAM and finish
the task in linear time. Likewise the case of RebuildF, the level ` + 1 requires
some more work but we have to finish also in linear time, so we spend more work
with each access to the ORAM.

9 Note that this implies that we run poly log logN work per each access for the first
level.
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For the case of i = L we do not simply build AHF
L from AF

L−1. Instead, we also

have to merge the contents on AF
L and AF

L−1 into AHF
L . This is performed similarly

to RebuildF: We first extract the two levels, run deduplication, and build level L.

RebuildHF(CHF
i ):

– Input: The task gets as input a table CHF
i ∈ {AHF

i ,BHF
i } for some

index i ∈ {`+ 1, . . . , L}.
– eachEpoch: The total time allocated to this task is 2i−2.

1. If i = `+1: Let W ∈ O(2i ·poly(log logN)) bound the total work
of this procedure. Set eachEpoch = W/2i−2 = poly log logN .

2. If i > ` + 1: The total work is W ∈ O(2i). Set eachEpoch =
W/2i−2 ∈ O(1).

– The task:
1. If i = L:

(a) Run X := CF
L−1.Extract() and Y := CF

L.Extract().

(b) Run Z := Dedup(X,Y ).

(c) Run CHF
L := HT.Build(Z).

2. Otherwise:
(a) If i = `+ 1, run Ci−1.PopTime(2`, 2`+1− 1) repeatedly for 2`

times. That is, we extract all elements with ctr mod 2`+1 ∈
[2`, 2`+1− 1], i.e., all elements that were added to the dictio-
nary while building AF

i and BF
i . Let X be the list of popped

elements, and then obliviously shuffle X.

(b) Else i > `+ 1, run X := CF
i−1.Extract().

(c) Initialize an array Y of 2i−1 dummies.

(d) Intersperse X and Y into Z and run CHF
i .Build(Z).

Analysis We next prove the following theorem:

Theorem 5.3. Let N be the capacity of the ORAM and let λ ∈ N be a security
parameter. Assuming the existence of HT as in Assumption 5.1, Construction 5.2
obliviously implements the ORAM functionality, and each Access takes O(logN+
log4 log λ) in the worst case.

Proof. We start with the efficiency analysis. Each access requires two lookups
(PopKey) at the dictionaries A`,B` (Steps 2 and 3) and writing back to the two
dictionaries (Step 8). Each dictionary contains at most 2` ≤ log12 λ, and each
access costs O(log4 log λ) time (see Section 3.3).

Then, we perform one access to each one of the tables A`+1, . . . ,AL,
B`+1, . . . ,BL, each takes O(1) time by Assumption 5.1, and overall it takes
O(logN) times. So overall, the lookup and write back take O(logN + log4 log λ)
work.

In the rebuild process, by construction we have exactly one task being rebuilt
in each level, and start the next task only when the previous one finishes. It is
easy to see that each process takes a linear time in the size of the level, and
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therefore we spend O(1) per task with each Access to the ORAM, except for level
`+ 1. The procedures for level `+ 1 require 2` accesses to the dictionaries, each
translates to O(log4 log λ) work (total O(2` · log4 log λ), and oblivious shuffle of a
list of size 2` which can also be implemented in total O(2` · log4 log λ). Therefore,
we spend O(logN + log4 log λ) work for the rebuilding of all levels, combined.

Security. Since the ORAM functionality is deterministic, it is enough to sepa-
rately consider correctness and obliviousness. We show here obliviousness, and
then discuss correctness.

We show security in the hybrid model where we invoke F2KeyDict, FHT, FDedup,
FShuffle instead of oblivious dictionary, oblivious hash table, oblivious dedupli-
cation and intersperse, respectively. Replacing all ideal functionalities with the
corresponding construction is straightforward using the composition theorem.

It is easy to simulate Construction 5.2: We access the two dictionaries, and
then access the two hash tables in each level and finally write back to the dictio-
naries. The rebuild process and which hash table we use has a public schedule
known to the adversary. Likewise which tasks are currently running.

We now show how to simulate the two procedures: RebuildF and RebuildHF.
For the case of i > ` + 1, in RebuildF: We just have two ideal calls to Extract.
Since Extract returns an oblivious permutation of the element in the hash table,
this implies that the input assumption of Dedup is preserved. We then obtain an
array of size 2i which is randomly shuffled and therefore the input assumption of
FHT is preserved. Simulation is just these three ideal calls. Simulating RebuildHF
is similar for the case of i = L, and for the case of i ∈ {` + 2, . . . , L − 1} it is
also just ideal calls to FHT.Extract, FShuffle (to intersperse the two arrays) and
FHT.Build. As for i = ` + 1, in both procedures we have ideal calls to F2KeyDict

and we shuffle the output so that input assumptions are preserved.

Correctness. We also prove the correctness in the hybrid model, and our goal
is to show that every Access to an address addr reads the data that was
most recently written to addr, i.e., satisfying the ORAM functionalities: Each
Access(read, addr,⊥) for a given addr will have the answer data, according to the
last operation Access(write, addr, data) that was given to the ORAM (with the
same addr). We begin with describing two invariants in Definitions 5.4 and 5.5
and show that they hold.

Definition 5.4 (Vertical invariant). Fixing any addr ∈ [N ], we say that
(addr, data) is the freshest version at some given time ctr if the pair (addr, data)
is the most recent pair having addr read or written by Access operation to the
ORAM. Then, for every addr ∈ [N ], it holds that

– every level in the hierarchy HA := {Ai}i∈[`,L] consists of at most one version
of addr, and

– Among all levels in {AHF
i ,AF

i }i∈[`,L] that contain addr (in which some might
be rebuilt and unavailable), the freshest version of addr must reside in the
smallest level.
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This holds symmetrically for hierarchy HB := {Bi}i∈[`,L].

Definition 5.5 (Horizontal invariant). For every addr ∈ [N ], it holds that the
freshest version of addr must fall in one of the following cases:

1. It is in the same level of the two hierarchies, i.e., it is in both Ai and Bi for
some i ∈ [`, L].

2. It is in RebuildF(AF
i ) and BHF

i for some i ∈ [`+ 1, L], and Bi = BHF
i .

3. It is in AF
i and RebuildF(BF

i ) for some i ∈ [`+ 1, L], and Ai = AF
i .

4. It is in Bi and either in RebuildHF(AHF
i+1) or in RebuildF(AF

i+1) for some
i ∈ [`, L− 1].

5. It is in Ai+1 and either in RebuildHF(BHF
i+1) or in RebuildF(BF

i+1) for some
i ∈ [`, L− 1].

The invariants imply correctness. Using the above vertical and horizontal invari-
ants (whose proofs are below), it suffices to syntactically check the correctness:
we list all possible locations of the newest version below and conclude the cor-
rectness of Access.

– In both A` and B`: the element from A` is outputted (following Step 2).

– In B` while A`+1 is rebuilding (A`+1 takes elements from A` but A`+1 is still
unavailable): the element from B` is outputted (following Step 3).

– In A`+1 while B`+1 is rebuilding (B`+1 takes elements from B` but B`+1 is
still unavailable): the element from A`+1 is outputted (Step 5(a)i).

– In both Ai and Bi, i ∈ [`+1, L]: the element from Ai is outputted (Step 5(a)i).

– In Bi while Ai+1 is rebuilding down, for i ∈ [`+1, L−1]: there are two cases,
either Ai−1 has finished its rebuild down to Ai, or Ai−1 has not yet. In both
cases, the element from Bi is outputted by Step 5(c)i.

– In Ai+1 while Bi is rebuilding down, i ∈ [`+ 1, L−1]: the element from Ai+1

is outputted (Step 5(a)i).

Notice that for two addresses addr, addr′, it may happen that addr is in Case 4
for some i and that addr′ is in Case 5 for i′ = i − 1. This means addr is in Bi
while addr′ is in Ai, so that both Ai and Bi are available for lookup, but they
have disjoint contents addr and addr′. This special case explains the reason we
perform lookup on both Ai and Bi in Steps 5(a)i and 5(c)i.

In the full version, we prove two lemmas showing that both the vertical
invariant (Definition 5.4) and the horizontal invariant (Definition 5.5) hold in
the construction. This concludes the proof.

Moreover, in the full version we also use the combined stash technique and
show how to deamortize it as well. We show:

Theorem 5.6. Let N be the capacity of the ORAM and let λ ∈ N be a security
parameter. Assuming the existence of one-way functions, the construction de-
scribed above obliviously implements the ORAM functionality. The construction
has O(logN + log4 log λ) worst case overhead.
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A Figures

Fig. 1: The rebuild process of [3]: The first three levels are “full” and the forth is
the first level which is “half full”. Each level is pushed down, while levels 3 and 4 are
merged. After this operation, the first level is empty, two levels are “half full” and the
last level is full.
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i+1, Null)
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i+1 BHF

i+1 AF
i+1 BF
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Fig. 2: The Rebuild process (for levels i and i+1), demonstrating which table is being
rebuilt at each stage and which tables we lookup in with each access. The timeline goes
left-to-right, each colored box is rebuilding the enclosed table, and the left/right side
of the box denotes the starting/ending time of the rebuild. Notice that the rebuild at
level i+1 changes the status in both levels i and i+1, e.g., the starting of BF

i+1 (on the
bottom-right) switches both Bi and Bi+1 to Null, and its ending assigns Bi+1 := BF

i+1.
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(a) At time (0) (i.e., ctr ≡ 0 mod 2i), we start rebuilding AHF
i which pulls elements

from level i− 1 (colored orange next).

(b) At time (1) (i.e., ctr ≡ 2i−2 mod 2i), the table AHF
i is ready, and we start rebuilding

BHF
i .

(c) At time (2), BHF
i is ready, and we start rebuilding AF

i – merging elements from AHF
i

and pulling new elements from level i− 1 (colored red next).

(d) At time (3) AF
i is ready, start rebuilding BF

i .

(e) At time (4) BF
i is ready, and we again rebuild AHF

i , pulling new elements (colored
green next). AHF

i+1 start rebuilding, pulling the elements from AF
i .

(f) At time (5), AHF
i is ready with a new content (colored green), while BF

i is still active,
and BHF

i starts to rebuild. AF
i+1 is still rebuilding, as it is bigger.

(g) At time (6), AHF
i+1 is ready with the old content, and BHF

i is ready with the new
content. We start rebuilding AF

i to fetch new content from Ai−1.

(h) At time (7), AF
i and AF

i+1 are both full, BF
i and BF

i+1 are rebuilding.

Fig. 3: The rebuilding process. AHF
i and AF

i are both shown in the same table, likewise
BHF

i and BF
i .
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