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Abstract. A secret-sharing scheme allows to distribute a secret s among
n parties such that only some predefined “authorized” sets of parties can
reconstruct the secret, and all other “unauthorized” sets learn nothing
about s. The collection of authorized /unauthorized sets can be captured
by a monotone function f : {0,1}" — {0,1}. In this paper, we focus
on monotone functions that all their min-terms are sets of size a, and
on their duals — monotone functions whose max-terms are of size b. We
refer to these classes as (a,n)-upslices and (b, n)-downslices, and note
that these natural families correspond to monotone a-regular DNFs and
monotone (n — b)-regular CNFs. We derive the following results.

1. (General downslices) Every downslice can be realized with total
share size of 1.5"T°(" < 295857 Gince every monotone function
can be cheaply decomposed into n downslices, we obtain a similar
result for general access structures improving the previously known
20:637n40(n) complexity of Applebaum, Beimel, Nir and Peter (STOC
2020). We also achieve a minor improvement in the exponent of lin-
ear secrets sharing schemes.

2. (Random mixture of upslices) Following Beimel and Farras (TCC
2020) who studied the complexity of random DNFs with constant-
size terms, we consider the following general distribution F over
monotone DNFs: For each width value a € [n], uniformly sample
ko, monotone terms of size a, where k = (k1,...,ky) is an arbi-
trary vector of non-negative integers. We show that, except with
exponentially small probability, F' can be realized with share size
of 20-57F°(M) and can be linearly realized with an exponent strictly
smaller than 2/3. Our proof also provides a candidate distribution
for “exponentially-hard” access structure.

We use our results to explore connections between several seemingly
unrelated questions about the complexity of secret-sharing schemes such
as worst-case vs. average-case, linear vs. non-linear and primal vs. dual
access structures. We prove that, in at least one of these settings, there
is a significant gap in secret-sharing complexity.

1 Introduction

Secret-sharing schemes, introduced by Shamir [32] and Blakley [12], are a central
cryptographic tool with a wide range of applications including secure multiparty



computation protocols [9,14], threshold cryptography [17], access control [28],
attribute-based encryption [22, 36], and oblivious transfer [33, 35]. In its general
form [24], an n-party secret-sharing scheme for a family of authorized sets F' C
2[7] (referred to as access structure) allows to distribute a secret s into n shares,
S1,...,8n, one for each party, such that: (1) every authorized set of parties,
A € F, can reconstruct s from its shares; and (2) every unauthorized set of
parties, A ¢ F', cannot reveal any partial information on the secret even if the
parties are computationally unbounded. For example, in the canonical case of
threshold secret sharing the family F' contains all the sets whose cardinality
exceeds some certain threshold. For this case, Shamir’s scheme [32] provides a
solution whose complexity, measured as the total share-size ), |s;|, is quasi-
linear, O(nlogn), in the number of parties n. Moreover, Shamir’s scheme is
linear, that is, each share can be written as a linear combination of the secret
and the randomness that are taken from a finite field. This form of linearity
turns to be useful for many applications. (See the full version of the paper for a
formal definition of secret sharing and linear secret sharing.)

The complexity of general secret-sharing schemes. Determining the complexity
of general access structures is a basic, well-known, open problem in information-
theoretic cryptography. Formally, given a (monotone) access structure! F we
let SSize(F') := minp yealizes 7 |D|, where |D| denotes the total share size of a
secret-sharing scheme D. For over 30 years, since the pioneering work of Ito et
al. [24], all known upper-bounds on SSize(F) are tightly related to the compu-
tational complexity of the characteristic function F'. Here we think of F as the
monotone function that given a vector x € {0,1}" outputs 1 if and only if the
corresponding characteristic set A = {i:2; = 1} is an authorized set. Specifi-
cally, it is known that the complexity of an access structure is at most polynomial
in the representation size of F' as a monotone CNF or DNF [24], as a monotone
formula [10], as a monotone span program [25], or as a multi-target monotone
span program [11]. This leads to an exponential upper-bound of on(1=o(1)) for
any n-party access structure F'.

On the other hand, despite much efforts, the best known lower-bound on the
complexity of an n-party access structure is §2(n?/logn) due to [15]. Moreover,
we have no better lower-bounds even for non-explicit functions! This leaves a
huge exponential gap between the upper-bound and the lower-bound. For the
case of linear schemes, a counting argument (see, e.g., [8]) shows that for most
monotone functions F' : {0,1}™ — {0, 1}, the complexity of the best linear secret-
sharing (LSS) scheme, denoted by LSSize(F'), is at least 2*/27°(") 2 Furthermore,
Pitassi and Robere [30] (building on results of [31,29]) prove that for every n
there exists an explicit n-input function F' such that LSSize(F) = 292(n) In his

! Monotonicity here means that for any A C B it holds that A € F = B € F. It is not
hard to see that a non-monotone access structure does not admit a secret-sharing
scheme, and therefore this requirement is necessary.

2 The bound holds for any finite field. From now on when the field is unspecified
we take it, by default, to be the binary field. This only makes our positive results
stronger.



1996 thesis [4], Beimel conjectured that an exponential lower-bound of 22(™)
also holds for the general case. Resolving this conjecture has remained one of
the main open problems in the field of secret sharing [5]. Taking a broader view,
similar exponential communication-complexity gaps exist for a large family of
information-theoretic secure computation tasks [19,23,3,21,6]. Among these,
secret-sharing is of special interest due to its elementary nature: Secret data is
only stored and revealed without being processed or manipulated.

Recent advances: slices, multislices and general access structures. In the past
three years, the seemingly tight correspondence between computational com-
plexity and secret-sharing complexity was challenged by several works. In a
breakthrough result, Liu, Vaikuntanathan and Wee [27,26] showed that any
general access structure can be realized with complexity of 209947 thus break-
ing the formula-size (or even circuit-size) barrier of 2"~°("). The exponent was
further reduced to 0.64 in follow-up works of Applebaum, Beimel, Farras, Nir
and Peter [1,2]. From a technical point of view, all these works reduced the prob-
lem of realizing a general monotone function F' to the problem of realizing the
simpler case of slice functions and multislice functions (originally referred to as
“fat slices” by [26]). Formally, (a : b, n)-multislices are monotone functions that
are unconstrained on inputs x of weight wt(x) € [a, b], but must take the value
0 on lighter inputs, and the value 1 on heavier inputs. An (a : a,n)-multislice is
referred to as an (a,n)-slice. Roughly, the results of [26] were obtained by a se-
quence of 3 reductions: (1) Secret sharing for slice functions with sub-exponential
share size of 2°(¥V™) based on constructions of Conditional Disclosure of Secrets
(CDS) [27]; (2) Secret sharing for ((0.5 — €)n, (0.5 + €)n,n)-multislices (aka e-
midslice) with non-trivial cost of 2°" for some ¢ < 1 based on slice functions;
and (3) Secret sharing for general access structures with 2¢ complexity based on
midslice secret sharing. The work of [1] showed how to improve Step 3 based on
combinatorial covers, and the work of [2] improved the second step by presenting
and constructing robust-CDS schemes. A combination of these results allows us
to realize any n-party access structure by a secret sharing scheme of complexity
20-64n+0(n) and by a linear secret sharing scheme of complexity 20-762n+o(n)

Intriguing questions. This state of affairs leaves open several intriguing questions.
Firstly, what is the best-achievable exponent of secret-sharing schemes? Secondly,
which access structures are the hardest to realize? While the above results do
not seem to yield sub-exponential share size, they also do not give rise to a
candidate “hard” access structure. That is, to the best of our knowledge, we do
not have an explicit candidate distribution over access structures whose cost is
22(n) even if one restricts the attention to the current schemes. Indeed, it was
recently observed by Beimel and Farras [7] that a randomly chosen monotone
function is likely to be a (n/2 —1,n/2 + 2, n)-multislice, and therefore it can be
realized with sub-exponential complexity.



2 Our Contribution

We make progress towards answering the above questions by shifting the focus
from slices and multislices to downslices and upslices. Before stating our results,
let us introduce these new access structures.

2.1 Upslice and Downslices

A monotone function f : {0,1}" — {0,1} is an (a,n)-upslice if all its min-
terms are of size exactly a. Similarly to (a,n)-slice functions, an (a,n)-upslice
is unconstrained for inputs of weight a and takes the value 0 on lighter inputs,
however, in contrast to slice functions, an input y of weight larger than a takes the
value 1 only if there exists a smaller input x < y of weight a on which the function
takes the value 1.2 This means that f is the pointwise smallest function among
all the monotone functions that agree with f on inputs of weight a. Downslices
are defined in a dual way. That is, a monotone function f is a (b, n)-downslice if
all its maa-terms are of size exactly b. This means that f is unconstrained over
b-weight inputs, takes the value 1 on heavier inputs, and (unlike slice functions)
evaluates to 0 on an input y of weight smaller than b only if there exists a larger
input = > y of weight b on which the function evaluates to 0. Accordingly, f
is the pointwise largest function among all the monotone functions that agree
with f on inputs of weight b. (An example of upslices and downslices is depicted
in Figure 1.)

Fig.1: An example of a 2-upslice access structure F' and a 2-downslice access
structure G. Both access structures are defined over 4 parties and colored nodes
correspond to authorized sets. Note that in this example ' and G agree on sets
of size 2.

3 We use the standard partial order over strings that is induced by inclusion over the
corresponding characteristic sets. That is, x < y if for every index i it holds that
i < Yi.



Why Upslices and Downslices? Upslices and downslices are natural classes of
monotone functions. Indeed, (a,n)-upslices (resp., (b, n)-downslices) are exactly
the functions that can be represented by logical formulas in a Disjunctive Nor-
mal Form (resp., Conjunctive Normal Form) in which each term (resp., clause)
consists of exactly a variables (resp., n — b variables). Therefore, these function
families capture the basic computational models of regular monotone-DNFs and
regular monotone-CNFs. Additionally, every monotone function can be decom-
posed into a disjunction of its upslices, i.e., f = \/ae[n] fa where f, is the (a,n)-
slice function that agrees with f on its a-weight inputs (hereafter referred to as
the a-upslice of f). Similarly, f can be written as a conjunction of its downslices.
Using standard closure properties of secret sharing, we conclude that the secret-
sharing complexity of worst-case monotone functions is at most n times larger
than the secret-sharing complexity of downslices/upslices. This should be con-
trasted with the status of “simple” slice functions whose complexity seems signif-
icantly smaller (i.e., sub-exponential) than the complexity of general monotone
functions. Indeed, one can show that the complexity of an a-slice function f is
the smallest among all monotone functions that agree with f on inputs of weight
a (ignoring low-order terms).? For general values of a and b, the best known se-
cret sharing schemes of (a,n)-upslices and (b, n)-downslices are based on their
DNF and CNF representations and therefore have total share size of (Z) and (2),
respectively. Up to logarithmic improvements, these worst-case bounds have re-
mained unchanged even for the special case of (2,n)-upslices that correspond
to graph access structures [13] (not to be confused with forbidden graph access
structures [34] that correspond to (2,n)-slices). See [7] for additional references.

2.2 Worst-Case Downslices

In Section 4 we show that every (b, n)-downslice admits a secret sharing scheme
with complexity of (3/ 2)”"‘0("). Using the completeness of downslices this allows
us to improve the complexity of general access structures. Formally, following [2],
we define the secret-sharing exponent of a monotone function f : {0,1}" —
{0,1}, denoted by S(f) := n~!-log, SSize(f) and define the (worst-case) secret-
sharing exponent S to be S = limsup,, ., maxysecaq(n) S(f), where M(n) is the
family of all monotone functions over {0,1}" (equivalently, all n-party access
structures). We prove the following theorem.

Theorem 2.1 (Main theorem). Every access structure over n parties can be
realized by a secret-sharing scheme with a total share-size of 1.5"t°(") . That is,

S <log 3 < 0.585.

Recall that the previous best exponent, due to [2], was 0.637. The proof of
the theorem is based on two schemes for (Sn,n)-downslices. The first scheme

4 To see this, observe that if f is the a-slice of a monotone function g, we can write
fas f=(gATaz1)V Toatr1 where Ty is the k threshold function over n-bit inputs.
By using standard closure properties of secret sharing, one can therefore transform
a secret sharing for g into a secret sharing for f with an additive cost of O(logn).



is tailored to low downslices with 8 < 1/2 and achieves an exponent of 3, and
the second scheme is tailored to high downslices with 8 > 1/2 and achieves an
exponent of Ha(8) — (1 — 3) where Hs is the binary entropy function. The most
expensive downslice corresponds to the case where § = 2/3 and has an exponent
of log(2). (See Figure 2 in Section 4.) The two schemes are based on adaptation
of previous tools, such as robust-CDS and combinatorial covers, to the current
setting. See Section 4 for details.

Linear schemes. We also obtain a minor improvement for the exponent of lin-
ear secret-sharing schemes. Let Sy denote the linear exponent, that is defined
analogously to S, except that SSize(F') is replaced with LSSize(F'), the minimal
complexity of a linear scheme that realizes F.

Theorem 2.2 (Worst-case linear exponent). Fuvery access structure over
n parties can be realized by a linear secret sharing scheme with a total share-size
of 20-7576n+o(n) - That is, the linear exponent Sy is at most 0.7576.

Recall that the previous best linear exponent, due to [2], was 0.762. Again the
theorem is based on LSS for (n,n)-downslices for an arbitrary density 5. Un-
fortunately, a naive approach that mimics the proof of Theorem 2.2 yields an
exponent of % + g or, for 5 > 0.5, an exponent of Hy () — %(1 — 3). For densities
larger than 1/2, the exponent can be as large as 0.772 which is strictly larger
than the exponent 0.762 that is achieved by [2]. To overcome this difficulty, we
introduce several additional tools that are tailored to the linear setting. Most
notably, we present a bootstrapping technique that starts with an LSS for a
target downslice with a given density 7, transforms it into an LSS for upslices
of various densities and then exploits the new schemes, to obtain a better LSS
for the target (yn,n)-downslice. We apply this procedure iteratively to several
key values of 7, and use these pivots to propagate the improvement to all other
values of 8. See Section 5 for details.

2.3 Random Upslices and Mixed DNFs

Following [7], we study the complexity of randomly-chosen upslices. For this we
define a family of distributions over monotone-DNFs that is parameterized by
an arbitrary vector k = (kq,. .., ky) of non-negative integers. We sample a DNF
from the k-DNF' distribution as follows: For each width parameter a, select k,
random clauses uniformly at random from the set of all possible (Z) monotone
a-clauses. We prove the following theorem.

Theorem 2.3 (Average case exponents). For every non-negative vector k,
a randomly chosen k-DNF f can be realized with complexity of 2050 except
with exponentially small probability of 2= For linear schemes, we get an
exponent which is strictly smaller than 2/3.

Observe that there is a polynomial gap between the average-case complexity and
the best-known worst-case complexity. It is instructive to compare this gap with



the results of Beimel and Farras [7] who considered (1) The uniform distribution
over all access structures, and (2) the uniform distribution over (a = O(1),n)-
upslices with exactly k, min-terms for an arbitrary value of k,. For these dis-
tributions, [7] have established super-polynomial gaps between the average case
complexity and the best-known worst-case complexity. Our results may indicate
that such dramatic gaps are an artifact of the chosen distribution. Technically,
the proof of Theorem 2.3 extends the ideas of [7] to handle arbitrary large values
of a € [n]. (We note that the proof of [7] suffers from an a* dependency and so
it cannot be applied to (a = 2(n), n)-upslices.)

Candidate hard distribution. We believe that random upslices form a good candi-
dates for exponentially-hard distributions. Concretely, the proof of Theorem 2.3
suggests that the hardest case (for existing schemes) corresponds to the uniform

distribution over (n/2,n)-upslices with ,/ (n%) = 27/2+°(") min-terms. (Equiv-

alently, random DNF that contains (7:;2) random monotone terms of width

n/2). We believe that identifying such a candidate hard distribution is a valuable
first step towards achieving further progress either at the upper-bound front or
at the lower-bound front.

Is the worst-case/average-case gap real? Recall that in the average-case, we
derive an exponent of 0.5 for general schemes and an exponent slightly better
than 2/3 for linear schemes, whereas the worst-case exponents are log(3/2) and
slightly over 3/4 respectively. Admittedly, we do not know whether this gap
is “real”; and as far as we can see, there may be a way to reduce the worst-
case exponents to the average-case ones. (We do not have good candidates for
separation either.) While we cannot prove the existence of such a gap, we can
relate it to other central questions in the complexity of secret sharing like the
power of non-linearity and closure under duality. Define the dual access structure
of an n-party access structure f to be the n-party access structure that accepts
of all sets  whose complements Z are unauthorized under f, i.e., DUAL(f)(z) =
1 — f(z). We prove the following gap theorem.

Theorem 2.4 (Gap theorem). At least one of the following gaps hold:

1. (Duality gap) There exists an n-party monotone access structure® f whose
secret-sharing exponent is strictly smaller than the secret-sharing exrponent
of its dual.

2. (Non-linearity gap) The (general) secret sharing exponent S is strictly
smaller than the linear secret sharing exponent Sy.

3. (Average-case gap) Every k-DNF distribution can be realized, except with
exponentially small probability, with an exponent S that is strictly smaller
than the worst-case secret sharing exponent S.

5 Formally, for asymptotic purposes one should think of f as a sequence of access
structures {fn : {0, 1}" — {0, 1}}, -



Let us elaborate on the first two possibilities. The first item asserts that
SSize(f) < SSize(DUAL(f)) - 2°(™). The absence of a duality gap, hereafter re-
ferred to as the duality hypothesis, asserts that SSize(f) = SSize(DUAL(f))-2°(™).
That is, the primal and dual access structure have similar secret-sharing com-
plexity up to sub-exponential difference. This hypothesis is known to hold for
LSS, and, to the best of our knowledge, its status for general secret-sharing
schemes is wide open. In fact, a recent paper of Csirmaz [16] refers to a stronger
version of this hypothesis (e.g., SSize(f) = SSize(DUAL(f)) as a long-standing
open problem. Item 1 asserts that the complexity-gap between primal and dual
structures may be exponentially large.

The second item asserts that there is an exponential gap between linear-
schemes and non-linear schemes even in the worst-case! While we can prove
such a result for concrete cases (e.g., random slice functions), we do not know
whether non-linearity significantly helps for worst-case functions, and one may
guess that eventually the two exponents S, and S will collapse to, say 1/2. Ttem 2
asserts that this is not the case.

Proving Theorem 2.4. To prove the theorem, we show that, under the duality
hypothesis, one can improve Theorem 2.3 so that a random DNF, that is sampled
from an arbitrary k-DNF' distribution, can be realized with an exponent that
is strictly smaller than 0.5, except with exponentially small probability. If, in
addition, there is no Average-case gap, we get that the worst-case exponent S
is smaller than 0.5. Since it is known that the linear exponent S, cannot be
smaller that 0.5 (e.g., by counting), we conclude that the linear exponent must
be strictly larger than the general exponent. (See Section 6.)

3 Preliminaries

General. By default, all logarithms are taken to base 2. For positive integers
k<n,welet () :=3,c;c, (7). We use the following standard estimate for
the binomial coefficients ~—

(Z) — Ok 1/29Hak/m)ny (1)

where Hy(+), denotes the binary entropy function, that maps a real number « €
(0,1) to Hy(a) = —alogar — (1 — o) log(1 — «) and is set to zero for o € {0,1}.

Secret sharing. Standard background on secret-sharing schemes is deferred to the
full version of the paper, while formal definitions of slices, multislices, downslices,
and upslices can be found in Appendix A. Let us just mention the following
complexity conventions. Given a (monotone) access structure f : {0,1}" —
{0,1} we let SSize(f) := minp reatizes s |P|, where |D| denotes the total share
size of a secret-sharing scheme D. The exponent of f is n=! - log, SSize(f), and
it is denoted by S(f). If F is a collection of n-party access structures then

SSize(F) := r}lea}(SSize(f), and S(F) := r}1€a}( S(f).



When F = {F,} is a sequence of collections F,, of n-party access structures
we think of SSize(F) as a function of n, and define the secret-sharing exponent
S(F) to be S(F) := limsup,,_,. S(F»). All these definitions naturally extend to
the linear setting as well.

We denote by D(b,n) (resp., Dy(b,n)) the secret-sharing exponent (resp.,
the LSS exponent) of (b,n)-downslices and by D(53) (resp., D¢(8)) the secret-
sharing exponent (resp., the LSS exponent) of (8n,n)-downslices. The notation
U(a,n),Us(a,n), U(a) and Uy(a) is defined analogously for the secret-sharing
exponents and LSS exponents of (a,n)-upslices and (an, n)-upslices. The secret-
sharing exponents and LSS exponents of (a : b, n)-multislices and (an : fn,n)-
multislices are denoted by M(a : b,n), My(a : b,n), M(a : 8) and My(a : 3).

3.1 Covers
We will make use of the following combinatorial concept of “covers”.

Definition 3.1 (Covering a slice). We say that a collection of subsets G =
{G;} over a ground set [n] upcovers a slice t if for every set A of size t, exists a
set G; € G such that A C G;. Analogously, we say that G downcovers a slice t,
if for every set A of size t, exists a set G; € G such that G; C A.

We start by introducing a fact about combinatorial covering designs by Erdés
and Spenser:

Fact 3.2 ([18]). For every positive integers a < b < n, there exists a family
G = {Gi}le of b-subsets of [n] that upcovers the slice a where G is of size

L =Lina,0) < [(1)/ ()] [t +108 (3]

We will make use of the following dual fact.

Fact 3.3. For every positive integers a < b < n, there exists a family G =
{Gi}iLzl of a-subsets of [n] that downcovers the slice b where G is of size L =

Lin,a.b) < [(,",)/(225)] [t +108 (35)] -

Moreover, for some constant C' > 1, a random family G of a-subsets of n of
size at least L(n, a,b) = [(Z)/(Z)] -n downcovers the slice b except with probability
c—n.

The reader should note that {(Z)/(b)} = {( " )/("_“)}

a n—>b n—>b

Proof. Whenever a collection {Gi}le upcovers the slice a, the collection of com-

plement sets {éi}le downcovers the slice n — a. Fact 3.2 therefore implies the
first part.

For the “Moreover” part. Sample G by sampling each G; uniformly at random
among all a-subsets of [n]. Fix some b-subset B C [n]. For every i € [L], the
probability that G; C B is p = (2) / (Z), and therefore

Pr[ViaGi ,¢_ B} < (1 _p)L = (1 _p)ﬂ/p < e_na



where the equality follows by noting that L(n, a, b) -p = n. Therefore, by a union
bound over all sets of size b, the probability that there is some b-set that does
not contain any G; is at most (}) -e™" < 2"-e " =1/C" for C' = ¢/2. O

4 General secret-sharing for downslices

Recall that D(8) and Dy(3) denote the secret-sharing exponent and LSS expo-
nent of (Bn, n)-downslices. The classical CNF-based scheme [24] that enumerates
over all of the max-terms of size fn, yields an LSS exponent of Hy(5). One can
also get an exponent of 0.637 via the general-purpose secret-sharing scheme of [2].
In this section, we improve these results and show that D(5) < log(3/2) for any

8.

Theorem 4.1. FEvery n-party downslice access structure can be realized with
complexity of 2'°8B/2n+o(n) = Additionally, for LSS, Dy(B) < %—i—g and, for
B> 0.5, it holds that Dy(8) < Ha(B) — 2(1 - j3).

The linear exponent will be improved in the next section. Before proving The-
orem 2.1, we will need the following simple observation whose proof is deferred
to the full version of the paper.

Observation 4.2. Let f be an access structures over n parties, and assume that
F;, the i-downslice of f, can be realized (resp., linearly realized) with total share
size of S; for every i € [0,n]. Then, f can be realized (resp., linearly realized)
with share size of Z?:o S; < nmax; S;.

We can now prove Theorem 2.1.

Proof (Proof of Theorem 2.1). Fix some access structure f over n parties and let
F), denote the (b, n)-downslice of f. By Theorem 4.1 the access structure Fj, can

be realized with total share size S;, of at most 21°g(%)"+0("), and so by Observa-
tion 4.2, f can be realized with complexity of max;(Sy) - n < glog(5)nto(m)

The proof of Theorem 4.1 is based on the following two lemmas.

Lemma 4.3 (low-density downslices). Secret sharing for (b, n)-downslices
can be realized (resp., linearly realized) with share size of 2°t°(™)  (resp.,
2b/2+n/2+0(n) ) - Consequently, for any constant 8 € [0,1], it holds that

DE) < and  DyF) <5+
The proof of Lemma 4.3 appears in Section 4.1 and it is based on a scheme for
multislices that will be employed also in the next sections. Lemma 4.3 presents an
improvement over previously known schemes for (b, n)-downslices in the regime
b € [0,0.637n], i.e., as long as the level b is smaller than the exponent of [2].
Higher levels, for which Lemma 4.3 provides no improvement, are treated by the
following lemma.
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Lemma 4.4 (high-density downslices). For every integers n and b €
(0.5n,n], every (b,n)-downslice can be realized with share size of

() o))

and can be realized by a linear scheme with share size

n 2n — 2b
. 2(3n73b)/2+0(n)'
GG

Consequently, for every constant B € (0.5,1], it holds that

D(5) <H(B)~(1-5)  and  Dy(B) < Hy(8) — 51— 6).

We note that the maximal value of D(f) is log (2) and it is obtained when 8 =
2/3. Therefore, a combination of Lemma 4.3 and Lemma 4.4 yield Theorem 4.1.
The proof Lemma 4.4 is deferred to Section 4.2 and is based on a general cover-
reduction that will be also useful for the next sections.

The exponents of the above lemmas together with the CNF-based exponent
and the exponent of [2] are depicted in Figure 2.

4.1 Low-density downslices via multislices

Secret sharing schemes for (a : b,n) multislice access structures were consid-
ered in [26,1,2], for the special cases of “mid-slices” where a = (% — 5) n,
b = (3 +06)n for some constant § € [0,0.5]. It is possible to generalize the
scheme of [2] that was originally designed to handle mid-slices to handle any
pair a < b € [n] as follows. Recall that, for every constants 0 < a < 8 < 1, we
let M(a : 3) (resp., My(« : 8)) denote the exponent (resp., LSS exponent) of
(an : fn,n)-multislice access structures.

Lemma 4.5 (multislice lemma). For every a < b € [n], every (a : b,n)-
multislice access structure can be realized by a secret-sharing scheme with share

b ) 20" and by a linear scheme with share size ,/(>ba) -gn/2+o(n) - Con-

>a =
sequently, for every constants 0 < a < B < 1, the exponent M(a : ) of
(an : Bn,n)-multislice access structures satisfies

size (

Mia: f) < W () ifa>p/2
T s ifa<pB/2

and, for the linear case, the exponent My(a : B) satisfies

%+§H2(%) if > p/2

M(azﬁ)s{ :
! 1408 if a < B2
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Fig.2: A description of the exponents of four general schemes for (8n,n)-
downslices. The horizontal axis represents the density 5 of the slice, and the
vertical axis represents the resulting exponents. The solid red curve corresponds
to the exponent of the CNF-based scheme. The constant exponent of the gen-
eral access structures scheme of [2] appears as the dashed blue line. The dotted
green straight line represents the exponent that is achieved by the scheme of
Lemma 4.3, and the dotted green curve which starts at x = 0.5 represents the
scheme for downslices of Lemma 4.4.

The proof follows the exact steps of the proof of Lemma 5.10 from [2] except that
we use a more general setting of parameters. See the full version of the paper
for details. By using multislices to implement downslices, we derive Lemma 4.3.

Proof (Proof of Lemma 4.3). Let F be a (b,n)-downslice and let F’ be the
(0 : b,n)-multislice of F'. Observe that F' equals F”, and so by Lemma 4.5 it can

be implemented with the desired share sizes since (>bo) =2t a

4.2 Reducing high-density downslices to low downslices

In order to prove Lemma 4.4 we reduce the problem of realizing (b, n)-downslices
for b > 0.5n to the problem of realizing (b',n’)-downslices over a smaller set of
parties n’ < n and for density b’ = n’/2. This is, in fact, a special case of the
following more general reduction that will be also applied in its full power later
in Section 5.

Lemma 4.6 (cover reduction lemma). Let v < b < n be positive integers.
If (b—v,n—v)-downslices can be realized (resp., linearly realized) with share size
z2(b—v,n—v) then (b,n)-downslices can be realized (resp., linearly realized) with

12



share size of

[ T | | T | e I

Consequently, for every constants 0 < a < f < 1, if (am, m)-downslices can be
realized (resp., linearly realized) with exponent of z'(«) then (Bn,n)-downslices
can be realized with an exponent of

(3)

Ha(s) - (1- 9) (=),

The proof of Lemma 4.6 is deferred to Section 4.3.

Remark 4.7 (Generalizations of Lemma 4.6 and completeness of downslices).
The proof of Lemma 4.6 relies on downcovers. One can use upcovers to prove
a similar lemma that reduces low-density downslices to high-density downslices.
Moreover, both, Lemma 4.6 and its low-to-high variant, can be also proved for
the dual setting of upslices. So overall, Lemma 4.6 represents four possible trans-
formations. (The other three will not be used in this work.) By combining these
reductions with the completeness of downslices/upslices (Observation 4.2), we
conclude that it is possible to reduce a general access structure to downslices or
upslices of specific density.

We are now ready to realize high-density downslices.

Proof (Proof of Lemma 4.4). Let f be a (b,n)-downslice with b € (0.5n,n]. Let
v = 2b — n, and observe that v € (0,b] since b € (0.5n,n]. We use the cover
reduction lemma (Lemma 4.6) to realize f based on secret-sharing scheme for
downslices with parameters (b — v,n — v) = (n — b,2n — 2b).% The latter can
be realized (non-linearly) with share size of on=b+o(n) Ly Lemma 4.3. Overall,
Lemma 4.6 yields a (non-linear) scheme for f with total share size of

[(717i b) / (22 _ ib)] [1 +log (QZ - ib)] gn—bron)

which equals {(nib)/(QZ:gb)} .gn=b+e(n) Tn the linear case, we realize (n—b, 2(n—

b))-downslices using the linear secret-sharing scheme promised by Lemma 4.3.
This results in the desired share size:

n 2n — 2b 2n — 2b
. 9(3n—3b)/2+0(n)
[ e 1 R G |

which equals {( " )/(2”_%)} .2(8n=3b)/2+0(n) 1f we plug in b = fn for a constant

n—b n—b
B8 € (0.5,1] and make use of (1), the general and linear share sizes translate
to 2(H2(A)=2(1-p)+(1-B))n+o(n) apq 2(H2(8)—2(1-)+5(1-))n+o(n) leading to the

desired exponents. a

5 This choice of v can be shown to be optimal for both for the general and linear case.
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4.3 Proof of the cover reduction
The proof of Lemma 4.6 is based on the following construction.

Construction 4.8. Let F' be a (b,n)-downslice. We share the secret s according
to F as follows:

1. Pick a family G = {Gi}iL:1 of sets of size v that downcovers the slice b.

2. For every G; € G define the access structure F; over the participant’s set
[n] \ G; as follows:

F;(z") = F(2' UG;)

where &' is viewed as a subset of [n] \ G;.

3. Split the secret s with an (L-out-of-L) LSS scheme to random shares
S1y...,81 € {0,1} such that s1 & --- @ s, = s. For every 1 <1i < L share s;
according to the access structure F;.

Claim 4.9. Construction 4.8 realizes the access structure F.

Proof. Tt suffices to show that F' = A, F;. Assume that z is authorized under F,
we will show that it is also authorized by Fj for every i. Fix i and let 2/ = 2N G;,
we claim that 2’ is authorized under F;. Indeed, by definition, F;(z’) = F(2'UG;)
which is 1 since 2’ U G; contains z and is therefore authorized under F'.

Next, assume that « is unauthorized under F'. Since F' is a (b, n)-downslice,
must be a subset of some unauthorized set B of size b, and by the down-covering
property there exists an index ¢ € [L] such that G; is a subset of the same set
B. Again letting 2’ = 2 N G, we then get that 2’ UG; C B, and therefore
F;(2') = F(2' UG;) = 0. The claim follows. O

Claim 4.10. For every 1 <i < L, F; is a (b—v,n —v)-downslice access struc-
ture.

Proof. Fix a maximal unauthorized set ' C [n] \ G; of F;. We show that 2’
contains exactly b — v parties. For this, it suffices to show that z = 2’ UG, is a
maximal unauthorized set of F'. By definition, 2’ U G; is unauthorized under F'.
Moreover, every strict super-set y of z’UG; must be F-authorized. Otherwise, if y
is F-unauthorized then the set ' = yNG; must be also Fj-unauthorized and since
y' is a strict-super set of 2/, this contradicts the fact that 2’ is max-unauthorized
under F;. Finally, since any max-term of F' is of size b, the max-terms of F; is
of size b — v. O

Share size analysis: Due to Fact 3.3 we can pick a family G for step 1 of the

scheme of size
v= |GG s (0]

and for every set in G we use a secret sharing scheme with share size z(b—v, n—v),
which results in the desired share size. This completes the proof of the first part
of Lemma 4.6.

14



The “Consequently” part follows immediately by plugging-in b = [fn], v =
Vf_;aan], and noting that a, = Z:Z converges to a when n goes to infinity.

Observe that the exponent of (a,(n — v),(n — v))-downslices is the same as
the exponent, z'(c), of a-downslice.” Now, by applying (1) and noting that
Brn =b/n = [Bn]/n converges to § when n grows, we derive an exponent of

1-8 1-8
Ho(8) — — Hy(1 — (@) -
2(8) — 7 He(l =) +2(a) - ——,
which equals the expression in (3), as required. O

5 Linear secret sharing for downslices

In this section we present a LSS for general access structures with an exponent
of 0.7576 (Theorem 2.2). As in Section 4, this is done by showing that downslices
can be linearly realized with this exponent.

Theorem 5.1. Every n-party downslice access structure can be linearly realized
with complexity of 20-7576n+o(n)

The proof of Theorem 5.1 is based on a bootstrapping procedure which strongly
exploits the duality properties of LSS.

Section Organization In Section 5.1 we describe a property of linear schemes for
dual access structures. In Section 5.2 we reduce downslices to upslices and vice
versa. In Section 5.3 we iteratively employ these reductions together with tools
from the previous section, to obtain a LSS for downslices with lower exponents
than before. Lastly in Section 5.4 we prove Theorem 2.2. Some additional opti-
mizations for low downslices (that do not affect Theorem 5.1) appear in the full
version of the paper.

5.1 Exploiting duality

Definition 5.2 (Dual Access structures). The dual access structure of an
n-party access structure f is an m-party access structure, denoted by DUAL(f),
that consists of all sets x whose complements T are unauthorized under f. View-
ing f as a function, this means that for every input x

DUAL(f)(x) = 1 — f(2).

Consequently, the complement of every min-term of f is a mazx-term of the dual
DUAL(f), and the complement of every maz-term of f is a min-term of DUAL(f).

We make the following observation.

" More generally, whenever |g(n) — ¢'(n)| = o(n), the exponent of (g(n), n)-downslices
is equal to the exponent of (g'(n), n)-downslices. To see this, observe that (g(n), n)-
downslices can be written as a sub-exponential formula over (g’(n), n)-downslices.
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Fact 5.3 (Duals of slice access structures). Let f be an access structure.
Then:

1. If f is an (a,n)-slice then its dual is an ((n — a),n)-slice.

2. If f is an (a,n)-upslice then its dual is a ((n — a),n)-downslice, and vice
versa.

3. If f is an (a : byn)-multislice then its dual is an (n —b: n — a,n)-multislice.

It is known that for linear schemes the total share size of an access structure
is equal to the total share size of its dual.

Fact 5.4 ([20]). A linear secret sharing scheme for an access structure f can
be converted into a linear scheme for the dual access structure DUAL(f) with the
same total share size.

By Fact 5.4, Fact 5.3, Lemma 4.3, and Lemma 4.4, we get the following corollary.

Corollary 5.5 (Duality reduction). For every integers a < n, the LSS com-
plezity of the family of (a,n)-downslices equals to the LSS complexity of the
family (n — a,n)-upslices.

By Lemma 4.4 and Lemma 4.3, for any constant 0 < a < 1, the family of
(an, n)-upslices can be linearly realized with an exponent of

Ug(a) <

{Hg(a) —3(a) ifa<

1 11—« :
3t if a2

N[ N[

5.2 High-density downslices from low-density upslices and
mid-range multislices

In the following lemma we improve the exponent of a (c¢,n)-downslice f by
decomposing it into two access structures: one that has the same min-terms as
f up to a specific size u (which will be realized using low-density upslices), and
one that is simply the (u : ¢, n) multislice of f.

Lemma 5.6 (Reducing downslices to upslices). Letu < ¢ < n be integers.
Given a LSS that realizes (a,n)-upslices with an exponent of Uj(a,n) and a LSS

that realizes the (u : c,n)-multislices with an exponent of My(u : ¢,n), there
exists a LSS that realizes (a,n)-downslices with an exponent of

Dy(c,n) < min [max (ringaj( {Uy(i,n)} ,Mj(u : c, n))] +0(1),

where o(1) stands for a quantity that tends to zero as n increases, regardless of
the values of u and c.
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Proof. Tt suffices to show that for every v < ¢ any downward-induced (c,n)
access structure f can be realized with an exponent of

max (m<ax {U(i,n)}, My(u : c, n)) +o(1). (4)
i<u
Fix some u € [0, c]. Define f, . to be the (u : ¢,n)-multislice of f, and fy%, as
the disjunction of the first u upslices of f. More formally, fo%, := \/ fi where
i=0

fi is the i-upslice of f. Clearly, & P can be linearly realized with an exponent

of max;<, {U}(i,n)} + O(n~logn) (just duplicate the secret u times and deal
the i-th copy via the access structure f;). Consequently, the access structure

0w V fu,e can be linearly realized with an exponent of (4). We complete the
proof by showing that f = f V fu ..

For inputs « such that |z < u, f(z) = fi'%(z) and f,(x) = 0. For inputs x
such that u < |2] < ¢, it holds that (1) f(x) = fu.(z), and (2) fyh, < f since
the min-terms of f(li P are a subset of those of f. We therefore conclude that for
such inputs f(x) = fo' (2)V fu.c(z). Finally, for inputs = with |z| > ¢, both f(x)
and fy () take the value 1, and so equality holds in this case as well. a

5.3 Bootstrapping (¢, n)-downslices

In this section we construct an LSS for (¢, n)-downslices via an iterative process.
In each iteration, we will start with an LSS for (¢, n)-downslices and end-up with
a new LSS for (¢, n)-downslices whose exponent is at least as good as the one
achieved in the previous iteration. Each iteration ¢ is composed of three steps:
(1) We generate LSS for all downslices of density larger than ¢; (2) We generate
LSS for all upslices of density smaller than n—¢; (3) We use the current schemes
for (u,n)-upslices for u < wu; for some parameter u; to obtain a new LSS for
(¢, m)-downslices. Note that the target slice ¢ is kept fixed across iterations. The
structure of a single iteration that consists of the three reductions is depicted
below. The process is formally defined in Construction 5.7.

Construction 5.7 (Bootstrapping downslices). Given integer n, a target
slice ¢ < n, and time-bound t € N, initialize an LSS for (¢,n)-downslice based
on Theorem 4.1 and set Dy(c,n)[0] to be its exponent, and repeat the following
steps for i € [t] iterations:

1. For every d € (c¢,n], apply the cover reduction (Lemma 4.6) and transform
the current LSS for (c,n)-downslices to an LSS for (d,n)-downslices with
exponent

Dl i+ 1) = Ha(d/n) — (- afn) (FULL=BAEDD) 4 o) )

2. For every d € (¢,n], apply the duality reduction (Corollary 5.5) and trans-
form the LSS for (d,n)-downslices to an LSS for (n — d,n)-upslices with an
exponent of

Uy(n —d,n)[i+ 1] = Dy(d,n)[i + 1]. (6)
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Three reductions of Construction 5.7

1. The cover reduction (Lemma 4.6):
Transform a scheme for (c¢,n)-downslices
with to a scheme for downslices with higher
density.

2. Duality reduction: Transform high
downslices to low upslices (Corollary 5.5): &
Transform a scheme for downslices of high =~ ZLLLLLLLlrry
density in (¢,n] to a scheme for upslices 0 n—c

with low density in [0,n — c¢).

K B
=/

3. Reducing high downslices to low

upslices (Lemma 5.6): For an integer u < >
. LLLLLL LS I

¢, transform a scheme for upslices in the

range [0,u] and a scheme for the (u:¢,n)- 0 u c n

multislice to a scheme for the c-downslice.

Fig. 3: We place all slices on an horizontal axis with an arrow which represents
the direction of the transformation.

3. Construct an LSS for (c,n)-downslices by applying Lemma 5.6 where (j,n)-
upslices for every j < n — c are instantiated with the LSS that were derived
in the previous step. Accordingly, the new LSS for (c,n)-downslices has an
exponent of

Dy(e,n)[i+1] = m<in {max (mgXUg(j,n)[i + 1, M%(u : ¢, n))} +o(1). (7)
u<c i<u

where MY (a : b,n) denotes the linear exponent of (a : b, n)-multislice access

structures that is achieved in Lemma 4.5.

Now by Lemma 4.6, Corollary 5.5 and Lemma 5.6, for any parameter ¢,
Construction 5.7 yields an LSS for (¢, n)-downslices. For a given v € [0,1] and
constant ¢, we can define a function @;(y) that captures the asymptotic expo-
nent that is achieved for (yn,n)-downslices after running Construction 5.7 for ¢
iterations. Formally,

1 1 M
7_|_, lf <
@(7):_{2 27 /=

N[ D=

Ha(y) = 5(1=17) ify>
is set to be the exponent derived from Theorem 4.1. Then by (5), (6) and (7)
Pisa() = min e (o (U3 (2), My (00 )|
vel0,7] x€[00] "~

where

Ha(v) — @'(7)) 7

Uy(x,7) := H2(X)—X( 1—~
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and
3 +37Ha(v/7) ify/2<v <y
143y ifv<~y/2

M (v,7) = {

We therefore conclude that

Lemma 5.8. For every constant t € N and constant v € [0,1], and for all n’s,
the LSS constructed by invoking Construction 5.7 for t steps on (yn,n), has an
exponent of P(y) + e(n) where e(n) tends to zero when n grows.

Lemma 5.8 suffices for proving Theorem 5.1 (see Section 5.4).

Remark 5.9. Assuming the duality hypothesis, the same bootstraping idea can
be employed for general (non-linear) schemes. However, it does not yield better
general exponents than the ones shown in the previous section for any downwslice

5.4 Proof of Theorem 5.1

A natural approach for proving Theorem 5.1 would be to run the bootstrapping
scheme for each possible target ¢ € [n], and then glue together all the (¢, n)-
downslices. This approach fails since the exponents of some slices will still be
too high. Instead we will apply Construction 5.7 for only two concrete values of ¢
and use the cover reduction to handle downslices of higher densities. Downslices
with low density will be treated by Lemma 4.5. Details follow.

By applying Construction 5.7 with v; = 0.5 and v5 = 0.535 for ¢ = 7 times,
we derive the following claim from Lemma 5.8.

Claim 5.10. Set v; = 0.5 and v2 = 0.535. The family of (y1n,n)-downslices
and the family of (yan,n)-downslices can be linearly realized with exponents of
z1 = 0.736 and zo = 0.748.

Let f be a (d,n)-downslice. We distinguish between the following cases.

1. For d € [0,0.5n] linearly realize f by Lemma 4.3 with a maximal exponent
of 0.75.

2. For d € [0.5n,0.535n] linearly realize f by applying the cover re-
duction (Lemma 4.6) instantiated with the LSS for (0.5n,n)-downslices
of Claim 5.10. This yields an exponent of

Ha(d/n) — (1 — d/n)w < Hy(d/n) —0.528(1 —d/n) (8

which is upper-bounded by 0.751 for d € [0.5n,0.535n].

3. For d € [0.535n,n] linearly realize f by applying the cover reduc-
tion (Lemma 4.6) instantiated with the LSS for (0.535n,n)-downslices
of Claim 5.10. This yields an exponent of

H _
Ha(d/n) — (1 — d/n)W < Hay(d/n) — 0.534(1 — d/n) + o(1) (9)
— 72
which is upper-bounded by 0.7576 for d € [0.535n,n].
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The proof of Theorem 5.1 follows. a

Remark 5.11. A more careful analysis allows to obtain a better exponent for
values of d < 0.535n. We sketch this result in the full version of the paper.

6 Random upslices

Recall that, for a vector of non-negative integers k = (ki,...,ky), the k-DNF
distribution is defined by selecting, for each parameter a, k, clauses uniformly at
random from the set of all possible (Z) monotone a-clauses. (We allow repetitions
though this choice does not change the results.) When k = (0%~ 'k,0"%) is
supported on a single level a, we refer to this distribution as a random (a, k., n)-
upslice. Observe that this special case is complete in the following sense.

Observation 6.1. For every k = (k1,...,ky) the following holds. If, for every
a € [n], a random (a,kq,n)-upslice can be realized (resp., linearly realized) with
total share size of at most S, except with probability €, then, a random k =
(k1,...,kn) can be realized (resp., linearly realized) with an complexity of at
most Y S, except with probability ne.

Proof. A random k-DNF f can be written as f = \/_ fo where each f, is a
random (a, k., n)-upslice. Hence, we can share f by duplicating the secret n
times and sharing the ath copy according to f,. The claim follows by applying
union-bound. O

We can therefore reduce Theorem 2.3 to the following refined statements
(Theorem 6.2 and Theorem 6.3) about random (a, k4, n)-upslices. Specifically,
we prove the following theorem in Section 6.1.

Theorem 6.2 (random upslices). Let a € [n], k < (7) and let f be a ran-
domly chosen (a,kq,n)-upslice. Then, with probability 1 — 2~

SSize(f) < m 2°)  ifa € [0,a"n]
) \/6 20 if a € [@*n,n] 7

where o ~ 0.157 is the root of 0.25 Hy(a) — . Moreover, under the duality
hypothesis, with probability 1 — 2= the function f can be realized with an
exponent of at most 3 Ha(X) ~ 0.491, where X is the root of 1 Ha(A) — (1 —

A) Ha(125)-

The first part of the theorem (without the duality hypothesis), shows that, for
every density «a € [0, 1], a random (an,n)-upslice can be realized, whp, with an
exponent of 0.5. Thus, by Observation 6.1, the non-linear part of Theorem 2.3
follows. We further mention that we did not attempt to optimize the exponent
for a < a*n, and indeed a better exponent can be achieved in this case.
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Moving on to the second (“Moreover”) part of the theorem, recall that the
duality hypothesis asserts that for every f = {f,}, it holds that SSize(f) <
SSize(DUAL(f)) - 2°(™® and note that this part implies the gap Theorem ( The-
orem 2.4), based on Observation 6.1 and the outline given in Section 2.

‘We move on to handle the linear case.

Theorem 6.3 (LSS for random upslices). Leta € [n], k < (7) and let f be
a randomly chosen (a, k,,n)-upslice. Then, with probability 1 — 2-12(") it holds
that

1/3
LSSize(f) < (”) Lo +o(m)
a

Moreover, with probability 1 — 2= | f can be realized with an exponent of at
most 0.6651 < 2/3, where 0.6651 = Ha(X\) — (1 — A) Ha(725) for the X which is

the root of Ha(X) — 2(1 — X) Ha(125) — 3.

Together with Observation 6.1, Theorem 6.3 implies the non-linear part of The-
orem 2.3. The proof of Theorem 6.3 appears in Section 6.2.

6.1 Proof of Theorem 6.2

Given a random (a, kq,n)-upslice f we realize f via one of the following two
schemes depending on k,. Let t be some threshold parameter that will be chosen
later.

1. If k, <t realize f via a DNF scheme with complexity of k,.
2. If k, > t, set b to be the smallest integer solution of the inequality

NEIHE

If the min-terms of f downcover the slice b (that is, f(x) = 1 for every z of
weight at least b) realize f via the (a : b,n)-multislice of f with the general
scheme for multislices promised by Lemma 4.5. Otherwise, realize f via DNF
and call this event “failure”.

We analyze the complexity of the construction. We set ¢ to 4/ (Z) For k, <t we

rely on the first scheme and get complexity of at most ¢ = W/(Z)v as required.

We move on to the case where k, > t. By Fact 3.3, the probability of “failure”
is 27 and so by Lemma 4.5, the complexity in this case is (>ba) - 20(7)  We
will show that B

( b > - (=) 20 if a € [0,a*n] 1)

>a W 2900 ifa € [a*n,n]

8 In fact, a weaker hypothesis suffices that applies duality only to the family of (a :
b, n)-multislices; See Lemma 6.4.
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Let us start with the case of @ > a*n. We claim that

LQenfD e

Indeed, by plugging ¢ = /(%) into (10) and rearranging the terms, we get that

b is the smallest integer that satisfies (Z) >n- (Z) Therefore, (%) holds.

To establish the first inequality, it suffices to show that a + o(n) > b/2, or,
equivalently, that (2:) . 20(n) > (Z) By (%) it suffices to show that (2(1“) . 20(n) >

1/(2). Taking logarithms from both sides, the inequality holds whenever 2a +

o(n) > 0.5 Hz(a/n)n which is indeed the case for any a > a*n.
Next we deal with the case where a < a*n. By (10), in this regime, b grows
monotonically with a and so in this case it holds that b < 2a*. Therefore

(b>§<2an>§<2an>~2°(")§ <n>-20("),
>a >a a*n a*n

where the last inequality follows from the previous case. This completes the proof
of the first part of Theorem 6.2 (without the “Moreover” part.)

Proving the “Moreover” part under the duality hypothesis. Now we assume the
duality hypothesis and derive the last part of the proof. We will need the follow-
ing lemma that is implied by the duality conjecture and the multislice lemma
(Lemma 4.5).

Lemma 6.4. Assuming the duality hypothesis, if (a : b,n)-multislices can be
realized with share size of S, then the dual (n — b : n — a,n)-multislices can be
realized with share size of S-2°). Specifically, (a : b, n)-multislice can be realized
with share size of (2%) - 20(n)

It can be verified that the above lemma outperforms the original (a : b,n)-
multislice construction (Lemma 4.5) whenever b > n — a.

Getting back to the proof of Theorem 6.2, we will now realize random (a, n)-
upslices with the same scheme but with different parameters and ingredients.
We will analyze this scheme for a € [0, a**n], where a** ~ 0.686 is the solution
of the equation

1

Ha(a) + (1 — a*) Hy (1_O‘a> ~ 3 Ha(a") =0

and a* ~ 0.157 is defined as before to be the root of 0.25 Hy(«) — . For a random
(a,n)-upslice f, we will run the previous scheme with the following changes. In
step (2) we will set b to be the smallest integer solution of the inequality

Y R 10 R (R 1 e | R
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If in step (2) the min-terms of f downcover the slice b, we realize the (a b,n)-
multislice of f by the new construction (Lemma 6.4) with share size ( ) 2"(”)

If the min-terms do not downcover the slice b, the process fails (and we use DNF-

based secret sharing). In addition, we set the threshold ¢ to (g)

Claim. Under the duality hypothesis, for any a € [0,a**n] and any k, the
above scheme realizes a randomly chosen (a, k, n)-upslice with total share size

of \/(,",) - 2™ except with probability 272",

Proof. First observe that, by Fact 3.3, the scheme fail with probability at most

2-2(") Conditioned on not failing, the share size is max((f ~),t) and since

t= ,/ b =4 / nfb 1t suffices to prove the following inequalities
n—a < n—a 2o(n) n ] 20(71).
>n—b) “\n—-> *x n—=ob

Indeed, since b is the minimal integer that satisfies (13), we conclude that (xx)
holds. The first inequality can be established by showing that n — b + o(n) >
(n—a)/2, or, equivalently, that (2(7?:;’)) 20 > ("), By (%) it suffices to show

that (2(7:1:1717)) - 20(n) > 1/ (nT_Lb). Taking logarithms from both sides and dividing

by n, we get that the inequality holds whenever 2(1 —b/n) 4+ o(1) > 0.5 Hz(b/n)
which holds whenever b/n < 1—a*+0(1). We conclude the argument by showing
that b/n < 1—a*+o0(1). Since b is monotonically increasing with a (by (13)) and
since a < a**n, we may focus on the case where a = a**n. Let 8 = b/n. Taking
logarithms from both sides of (13) and dividing by n, we can write 3 Ha(3) =
Ho(a**) — BHa(a**/B) 4 o(1), which, by the definition of o**, guarantees that
B <1—a*+o0(1), as required. This completes the proof of Section 6.1.

Combining the two schemes together. Overall we now can realize random (a, n)
upslices where a € [a*n, a**n] with share size

<,/ . 0(n) 1/ n_b 20("> (14)

where b = b(a,n) is the minimal integer that satisfies (13). Denote by ay the
value for which the two expressions in (14) are equal, i.e., b(ag,n) =n — ag. We
will later calculate ag and show that it is about 0.421n. For now let us record the
fact that ag < n/2 and that, consequently, for any a > ag it holds that b(a,n) >
b(ap,n) = n —ag > n/2 (since b(a,n) monotonically increases with a). Next,
observe that, the bound (14) on the complexity for an (a,n) upslice simplifies

to ,/(Z) -2°(") when a < ag and to ,/(nib) -2°(") when a > ag. Furthermore,

the first expression monotonically increases with a for @ < ap < n/2, and the
second expression monotonically decreases with a for a > ag (since b(a,n) > n/2
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and since b(a,n) increases with a). Hence, the upslice with the maximal share
size in the given range will be the (ag, n)-upslice. We move on to calculate ag.
Let a = an and b = n, by plugging (13) into the equation b(a,n) = n — a, we
conclude that ay = ag/n is the solution to the equation

;H2(1a)—H2(1a)(1a)Hz< ) >

11—«

and therefore ag ~ 0.421. Therefore (14) is upper-bounded by /(") - 2" <

20-5Hz(a0)nto(n) We conclude that random (a,n)-upslices can be realized with
an exponent of 0.5 Ha(ap) < 0.491 whenever a € [a*n, a**n]. We complete the
proof by noting that all random upslices below a*n and above a**n can also be
realized with exponents below 0.491 due to the first scheme. a

O

6.2 Proof of Theorem 6.3

We begin by proving the first part of Theorem 6.3 (without the moreover part).
The construction is identical to the first construction presented in Section 6.1,

except that the threshold ¢ is selected differently to be (Z)l/ % . 9n/3 Again for
ko <t we rely on the first scheme and get complexity of at most t = (Z) /3 on/3,
as required. For k, > t, by Fact 3.3 failure happens with 2= probability,
and, by Lemma 4.5, conditioned on not failing, the share complexity is at most
on/2+to(n) . / ( b ) To complete the first part of the proof, it suffices to show that

the latter quantity is at most ( ) /8 9%+o(m) This follows from the following

claim 2
b < b A 2o(n) < n . 2—n/3+o(n).
>a) ~ \a * \a

Indeed, by plugging ¢ = ( )1/ -2"/3 into (10) and rearranging the terms, we get

that b is the smallest integer that satisfies (a) >n- ( )2/3 2-"/3_ Therefore, (%)
holds. To establish the first 1nequahty, it suffices to show that a+o(n ) >b/2, or,
equivalently, that (*%) - 20 > ( ). By (%) it suffices to show that (%) - 20(") >
n)2/3 -27"/3_ Taking logarithms from both sides, the inequality holds whenever
2% +o(n) > (2 Ha(a/n) — 1/3)n which is indeed the case for every a € [n]. This
completes the proof of the first part of the theorem (without the moreover part).
To prove the “Moreover” part, we make use of the following lemma which is
implied by the multislice construction (Lemma 4.5) and the duality closure of
linear schemes (Fact 5.4):

Lemma 6.5 (LSS for multislices). Let a,b € [0,n] be integers, then the

family of (a : b,n)-multislices can be linearly realized with share size /(%) -
2n/2+o(n) )
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It can be verified that the above lemma outperforms the original linear (a : b, n)-
multislice construction (Lemma 4.5) whenever b > n — a.

This time for a random (a, n)-upslice f, we will run the previous linear scheme
with the following changes. In step (2), we will set b to be the smallest integer
solution of the inequality

)= (O] =[G Cop] oo

In addition, we set the threshold ¢ to (Z) 18 on/3.

Claim. For any a € [n] and any k, the above scheme realizes a randomly chosen

(a, k,n)-upslice with total share size of (nﬁb)l/3 . on/3,
Proof. First observe that by Fact 3.3 we fail with probability at most 2~(%),
Conditioned on not failing, the share size is max(,/ (;Ln_fb) - 2n/2+e(n) ) and

since t = (”)1/3 Son/3 = (nib)l/?) - 2n/3 it suffices to show that

b
n—a n \'?
N . on/24o(n) < .on/3  go(n) 1

(> n— b) —\n-b (16)

We prove (16) by establishing the following inequalities

2/3
PTAN (T gen) (T .9—n/3+o(n)_
>n—>b) —\n—0» > \n—2>

Indeed, since b is the minimal integer that satisfies (15), we conclude that (xx)
holds. The first inequality can be established by showing that n — b + o(n) >
(n — a)/2, or, equivalently, that (2(7:’__;7)) -20(n) > (Z:‘;) By (%*) it suffices to

show that (2(::;’)) - 20(n) > (nﬁb) 28 2-"/3_ Taking logarithms from both sides
and dividing by n, we get that the inequality holds whenever 2(1 —b/n)+o0(1) >
(2 Hz(b/n) — 1/3) which is indeed the case for every b € [n]. This completes the
proof of Section 6.2.

Combining the two schemes together. Overall we now can linearly realize random
(a,n) upslices with share size of

o\ /3 o \1/3
min ((a) . 2"/3+0("), (n B b) . 2n/3+0(n)> (17)

where b = b(a,n) is the smallest integer that satisfies (15). Similarly to the
analysis in the proof for the general (non-linear) case, denote by ag the value
for which the two expressions in (17) are equal, i.e., b(ag,n) = n — ag. We will
later calculate ag and show that it is about 0.4595n. For now let us record
the fact that ap < n/2 and that, consequently, for any a > a¢ it holds that
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b(a,n) > blag,n) = n — ag > n/2 (since b(a,n) monotonically increases with
a). Getting back to (17) observe that the complexity for an (a,n) upslice is
(2)1/32”/3“‘0(") when a < ag and ( )1/3-2"/3+0(") when a > ag. Furthermore,
the first expression monotonically increases with a for a < ag < n/2, and the
second expression monotonically decreases with a for a > ag (since b(a,n) > n/2
and since b(a,n) increases with a). Hence, the upslice with the maximal share
size in the given range will be the (ag,n)-upslice. We move on to calculate ay.
Let a = an and b = fn, by plugging (15) into the equation b(a,n) = n — a, we
conclude that ag = ag/n is the solution to the equation

n
n—b

1+1H2(1—a):H2(1—0z)—(1—04)H2( “ )>

3 3 l1—«

n)1/3.

ao

and therefore ay ~ 0.4595. It follows that (17) is upper-bounded by (

gn/3+o(n) < on" 2P +o(n) We conclude that a random (a,n)-upslice can be

linearly realized with an exponent of w < 0.6651 for any a, and the
“Moreover” part of Theorem 6.3 follows. a
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A Omitted Preliminaries

We formally define four different types of “slice access structures” that will be
used as key components in our general constructions. Throughout this section,
we fix some complete access structure f over n parties. The following definitions
were extensively used by [26]. For string z, 2’ € {0,1}", we write z < 2’ if for
every i € [n], z; < x}. We let wt(z) denote the Hamming weight of x.
Definition A.1 (Slices and Multislices). For a < b € [n], we define the
(@ : b)-multislice of f to be the access structure F : {0,1}™ — {0,1} for which

0 if wt(z) <a
Fz) = q f(z) if wi(z) € [a,0] -
1 if wt(z)>0b
We say that F is (a : b,n)-multislice access-structure (or just (a : b,n)-slice) if

F is an (a : b)-multislice of some n-party access structure f. An (a : a)-multislice
is refereed to as an a-slice.

As already mentioned, our constructions strongly exploit the following fine-
grained variants of slice access structures.

Definition A.2 (Upslices). For a € [n], we define the a-upslice of f to be the
access structure F : {0,1}™ — {0,1} for which
0 if wt(z) <a
F(z) =4 f(x) if wt(z) =a.
1l = F':wt(@)=a,2' <z f(@')=1 if wt(z)>a
We say that F is an (a,n)-upslice access structure (or just (a,n)-upslice) if F
is an (a,n)-upslice of some n-party access structure f.

Observe that F' is (a,n)-upslice if and only if all its min-terms are at level a.

Definition A.3 (Downslices). For b € [n], we define the b-downslice of f to
be the access structure F : {0,1}" — {0,1} for which

0 = Jz':wt(a))=bx <2/, f(z') =0 if wt(x) <D
F(z) =1 f(x) if wt(z)=5.
1 if wt(z) >b

We say that F is a (b, n)-downslice access structure (or just (b, n)-downslice) if
F is a b-slice of some n-party access structure f.

Observe that F is a (b, n)-downslice if and only if all its max-terms are at level

b.
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