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Abstract. Imagine one or more non-colluding servers each holding a
large public database, e.g., the repository of DNS entries. Clients would
like to access entries in this database without disclosing their queries to
the servers. Classical private information retrieval (PIR) schemes achieve
polylogarithmic bandwidth per query, but require the server to perform
linear computation per query, which is a significant barrier towards de-
ployment.
Several recent works showed, however, that by introducing a one-time,
per-client, off-line preprocessing phase, an unbounded number of client
queries can be subsequently served with sublinear online computation
time per query (and the cost of the preprocessing can be amortized over
the unboundedly many queries). Existing preprocessing PIR schemes
(supporting unbounded queries), unfortunately, make undesirable trade-
offs to achieve sublinear online computation: they are either significantly
non-optimal in online time or bandwidth, or require the servers to store
a linear amount of state per client or even per query, or require polylog-
arithmically many non-colluding servers.
We propose a novel 2-server preprocessing PIR scheme that achieves
Õ(
√
n) online computation per query and Õ(

√
n) client storage, while

preserving the polylogarithmic online bandwidth of classical PIR schemes.
Both the online bandwidth and computation are optimal up to a poly-
logarithmic factor. In our construction, each server stores only the origi-
nal database and nothing extra, and each online query is served within a
single round trip. Our construction relies on the standard LWE assump-
tion. As an important stepping stone, we propose new, more general-
ized definitions for a cryptographic object called a Privately Puncturable
Pseudorandom Set, and give novel constructions that depart significantly
from prior approaches.

1 Introduction

Imagine that a service provider has a large public database, DB, and is serving
clients who request records from DB. For example, in a search-engine scenario

? Please read the online full version [47] for complete details and proofs.
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each entry in DB may be the search result for a specific keyword; in the DNS
scenario, each entry contains the records for a specific domain name. Without loss
of generality, we may assume that the database DB ∈ {0, 1}n is an array of bits
indexed by {0, 1, . . . , n− 1}, and a client’s query is an index i ∈ {0, 1, . . . , n− 1}
into DB4. Although the database itself is public, the clients wish to hide their
queries from the server. This problem has been studied in a beautiful line of work
called Private Information Retrieval (PIR), first formulated by Chor, Goldreich,
Kushilevitz, and Sudan [18,19]. Since then, a rich line of work [4,9,10,13,16,17,
21,23,24,26,28,32,34,35,37,38,40,42–44] has improved the original construction
of Chor et al. [18]. This paper focuses on 2-server PIR, i.e., there are two non-
colluding servers, and the goal is to prevent each individual server from learning
anything about the clients’ actual queries.

Single- or multi-server PIR schemes with polylogarithmic bandwidth (bits
sent per query) and linear server work per query are well known [9,10,13,16,17,
24,28,32,34,37,38,42–44]. While these PIR schemes are elegant in construction
and achieve non-trivial asymptotic bounds, the prohibitive server running time
per query is a significant barrier towards practical deployment. For example,
in our motivating applications, the database may have billions or trillions of
entries. Unfortunately, in the original formulation phrased by Chor et al. [18],
linear server work is required to achieve privacy [6] — intuitively, if there is
a location that the server does not need to read, the query is definitely not
looking for that location. To avoid this drawback, a promising direction has been
suggested by a few recent works [6,20], namely, PIR with preprocessing. In PIR
with preprocessing, clients and servers are allowed to perform one-time offline
preprocessing. After preprocessing, the PIR scheme should support an unbounded
number of queries from each client. The cost of the offline preprocessing can
thus be amortized “away” over sufficiently many queries, and we can hope for
sublinear amortized (i.e., online) running time per query.

Preprocessing PIR was considered in several prior works [6, 38, 44]. Beimel,
Ishai, and Malkin [6] were the first to suggest using preprocessing to reduce the
server’s online computation. They constructed a statistically secure 2-server PIR
scheme with nε online bandwidth and running time for some constant ε ∈ (0, 1)
by having the servers preprocess the n-bit DB into an encoded version of poly(n)
bits. The line of work on preprocessing PIRs culminated in the elegant work by
Corrigan-Gibbs and Kogan [20], who showed that, assuming one-way functions,
there is a 2-server preprocessing PIR scheme with O(

√
n) online bandwidth

and running time (ignoring the dependence on the security parameter). In their
scheme the servers store only the original database DB and nothing extra, but
each client needs to store a “hint” of size O(

√
n). Corrigan-Gibbs and Kogan [20]

also proved that the O(
√
n) online computation is optimal, assuming that the

client downloads only O(
√
n) amount of information from the server during pre-

processing and that the servers store only the unencoded database (and the proof
works by reducing PIR to Yao’s Box problem [53]). The main drawback with

4 If the query is a keyword or domain name, it can be hashed to an index, and if each
entry has multiple bits, we can treat it as retrieving multiple indices.
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their scheme is the significantly non-optimal O(
√
n) online bandwidth which is

also much worse than classical PIR without preprocessing.

Given the state of affairs for preprocessing PIR, we ask the following question:

Can we construct a preprocessing PIR scheme that is simultaneously optimal
in online bandwidth and online time?

Before we present our results and contributions, we point out a couple of
important desiderata and clarify the problem statement:

– Unbounded query setting. First, we want the PIR scheme to support an un-
bounded number of queries after a one-time processing. This is necessary in the
vast majority of conceivable applications (e.g., oblivious DNS [1, 49], oblivi-
ous Safe Browsing [2], the four excellent use cases in the Splinter work [52],
and other applications [3,4]). Unsurprisingly, state-of-the-art PIR implemen-
tations invariably support unbounded number of queries too [3,4,52]. With-
out the unbounded requirement, there is indeed a scheme with O(

√
n) online

computation and Õ(1) online bandwidth shown in the same work of Corrigan-
Gibbs and Kogan [20] — unfortunately, this scheme supports only a single
query after the preprocessing, and thus the linear preprocessing cost should
be charged to each query, and cannot be amortized over multiple queries.

– No per-client server state. Second, the server should not have to store per-
client state. There are alternative solutions if we let the server store per-client
state (and often O(n) state per client). For example, one strawman candidate
is to use an Oblivious RAM (ORAM) scheme [29, 31, 48]. During the offline
phase, the client downloads the database from the server and uses a secret key
to compile the database into an ORAM which is then stored on the server.
This would allow queries to be supported in polylogarithmic running time and
bandwidth per query, and constant roundtrips (provided the server can per-
form computation) [22,25,27,39]. Unfortunately, Ω(n) per-client state on the
server would clearly be a barrier towards practicality in some motivating ap-
plications. Similarly, the recent doubly-efficient (1-server) PIR constructions
in the designated-client setting [11, 15] also suffers from the same drawback,
although they remove the need for clients to store persistent state. A doubly-
efficient PIR construction in the public-client setting promises to remove
the O(n) per-client state at the server. Unfortunately, the only known such
construction relies on virtual blackbox (VBB) obfuscation which is known to
be impossible [5]. We compare with additional related works in Section 7.

Besides the above, we also want the client-side storage to be small — if the
client could store the entire database, then there is no need to talk to the server.

Our results and contributions. We answer the above question affirmatively,
assuming Learning With Errors (LWE) [45]. Our scheme employs two servers, a
“left” server and a “right” server and, at a high level, works as follows.
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– During the offline preprocessing phase, each client sends a single message of
size roughly Õ(

√
n) to the left server5. The left server responds with a hint

of Õ(
√
n) bits, which is stored by the client. Then online queries begin.

– For each online query, the client sends a single poly-logarithmically sized
message to each server in parallel. In particular, the message sent to the right
server is used for answering the query. Using its locally stored hint and the
right server’s response, the client can reconstruct the correct answer to the
query except with negligible probability. The message sent to the left server
is used to partially “refresh” the client’s hint. The client uses the answer from
the left server and the outcome of the present query to update one entry in
the Õ(

√
n)-sized hint it stores.

More formally, we prove the following theorem:

Theorem 1 (2-server preprocessing PIR). Assuming the Learning With
Errors (LWE) assumption, there exists a 2-server preprocessing PIR scheme
that satisfies the following performance bounds:

– the offline server running time is Õ(n); the offline client running time and

bandwidth is Õ(
√
n).

– the online server and client time per query is Õ(
√
n); the online bandwidth

per query is Õ(1).

– each online query can be accomplished in a single roundtrip, that is, the client
sends a single message to each server in parallel, and reconstructs the answer
from the two servers’ responses respectively; and

– each server needs to store only the original database DB and no extra infor-
mation; each client needs to store Õ(

√
n) bits of information.

Due to the lower bound of Corrigan-Gibbs and Kogan [20], our scheme’s total
online time is optimal up to poly-logarithmic factors, assuming that the client
downloads only approximately

√
n amount of information from the server during

preprocessing. In comparison, the prior state-of-the-art scheme [20] can achieve
optimal online computation, but their

√
n online bandwidth is significantly non-

optimal. We improve their bandwidth consumption by a roughly
√
n factor, and

thus achieve near optimality in both online computation and bandwidth. Table 1
compares our result with the most relevant prior work.

Theorem 1 does not give the exact constant c in the hidden logc n factor; how-
ever, in the online full version [47], we give a more careful analysis of the concrete
constants. Specifically, we show that with some fine-tuning, we can get the fol-
lowing more precise asymptotical performance where α(λ) denotes an arbitrarily
small super-constant function: the offline server time is O(n log2 n log λ) · α(λ),
the offline client time is O(

√
n log2 n log λ) · α(λ), and the offline client band-

width is O(
√
n log2 n log λ) · α(λ). Moreover, the online client time per query is

5 The Õ(·) notation hides polylogarithmic factors and dependence on the security
parameter.

4



Table 1: Comparison with prior schemes. Includes only schemes where the

servers need not store per-client state, has sublinear online time, and supports an

unbounded number of queries (possibly after a one-time preprocessing). Sections 1

and 7 review additional related work in the broader design space, when we are willing

to relax these desiderata. “C-Time”, “S-Time”, and “BW” denote client time, server

time, and bandwidth, respectively. “OLDC” means oblivious locally decodable codes,

and “VBB Obf.” means virtual-blackbox obfuscation. ε ∈ (0, 1) is a constant.

F: Beimel et al. [6] requires the servers to store a large poly(n) amount of state.

Offline Online
Scheme #server Assumpt. C-Time S-Time BW C-Time S-Time BW

[6]F 2 None 0 poly(n) 0 nε nε nε

[20]
2 OWF O(

√
n) O(n) O(

√
n) O(

√
n) O(

√
n) O(

√
n)

2 OWF O(
√
n) O(n) O(

√
n) O(n5/6) O(

√
n) Õ(1)

[11] 1 OLDC, VBB Obf. 0 0 0 nε nε nε

Our PIR 2 LWE Õ(
√
n) Õ(n) Õ(

√
n) Õ(

√
n) Õ(

√
n) Õ(1)

LB [20] - - - - n/β - β -

O(
√
n log2 n log λ) · α(λ), the online server runtime is O(

√
n log n log λ) · α(λ),

and the online bandwidth per query is O(log n · log λ) · α(λ).
Furthermore, in the online full version [47], we also discuss how to tune the

parameters to get near optimality of the online bandwidth and computation, for
every choice of offline bandwidth, in light of the known lower bound [20].

Remark 1. Like in earlier works [20], for simplicity, in our asymptotical perfor-
mance bounds, we hide a security parameter χ(λ) factor that is related to the
strength of the LWE assumption. If we assume standard polynomial security,
χ(λ) is polynomially bounded in λ; if we assume subexponential security, χ(λ)
is poly-logarithmic in λ.

Technical highlight. Our 2-server preprocessing PIR scheme is inspired by the
very recent work of Corrigan-Gibbs and Kogan [20]. At a high level, their work
shows how to construct a 2-server preprocessing PIR scheme using a crypto-
graphic object which they call a Puncturable Pseudorandom Set (PRSet). A
PRSet scheme provides an algorithm for generating a secret key sk that can
be used to generate a pseudorandom subset Set(sk) ⊆ {0, 1, . . . , n − 1}; sk
thus serves as a succinct representation of the set Set(sk). Further, there is
an efficient puncturing algorithm: suppose some element x ∈ Set(sk), then
Puncture(sk, x) outputs a punctured key skx that effectively removes x from
the set, i.e., Set(skx) = Set(sk)\{x}.

Unfortunately the Corrigan-Gibbs and Kogan [20] PRSet scheme is not ef-
ficient in all dimensions, namely, set enumeration time, membership test time,
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and punctured key size. As a tradeoff, they opt for efficient set enumeration
and efficient membership test, allowing their PIR scheme to achieve roughly√
n online running time. Their PRSet scheme, however, adopts a trivial punc-

turing algorithm. The punctured key is simply the entire punctured set itself
minus the element x to be removed, which causes their online bandwidth to be
roughly

√
n, which is asymptotically worse than classical PIR schemes without

preprocessing [10,13,17,24,26,28,37,38,42].

To achieve our stated result, an important stepping stone is to construct
a new Privately Puncturable Pseudorandom Set (PRSet) that is efficient in all
dimensions. Unfortunately, as explained in Section 2, these requirements seem
to be inherently conflicting, and we were not able to directly reconcile them —
likely Corrigan-Gibbs and Kogan [20] encountered the same barriers.

Our key insight is to observe that the Corrigan-Gibbs and Kogan formulation
of a PRSet scheme seems too restrictive. We generalize their PRSet abstraction
in the following ways.

1. Emulating a customized sampling distribution. Corrigan-Gibbs and Kogan
consider only PRSet schemes that emulate simple distributions, such as sam-
pling a random

√
n-sized subset among n elements, or sampling each element

at random with probability 1/
√
n. By contrast, we generalize the PRSet def-

inition to allow it to emulate an arbitrary distribution of choice. Later we
discuss the challenges of choosing this distribution.

2. Relaxed correctness definition. Corrigan-Gibbs and Kogan’s definition insists
on almost-always correctness. We observe that a weaker notion, which we call
“occasional correctness,” is sufficient for obtaining a 2-server preprocessing
PIR (since our PIR construction relies on parallel repetition to amplify the
correctness to 1 − negl(λ)) where λ denotes the security parameter globally.
Specifically, we want the puncturing algorithm to remove the point x being
punctured, and only the point x — but we only need this to happen with
considerable but not overwhelming probability.

Therefore, one technical contribution we make is to devise a more general-
ized/relaxed abstraction of a Privately Puncturable Pseudorandom Set (PRSet)
scheme that is suitable and sufficient for constructing an efficient 2-server prepro-
cessing PIR. To do so, we need to identify an appropriate sampling distribution
that the PRSet should emulate. In our carefully chosen distribution, each ele-
ment from {0, 1, . . . , n−1} is included in the set with roughly 1/(

√
n ·poly log n)

probability, but the sampling is not completely independent among the elements.
For example, if some element x is included in the set, it might make some other
element y more likely to be included. As we explain in more detail in Sections 2
and 4.4, an independent distribution seems to facilitate an efficient membership
test, but preclude efficient set enumeration; on the other hand, having more de-
pendence and the right type of dependence can enable efficient set enumeration,
but may destroy the efficiency of the membership test. We seek a middle ground
by choosing a distribution that has a limited amount of dependence, and the
right type of dependence.
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We next show how to construct a PRSet scheme that emulates our carefully
chosen distribution, and prove the construction secure under our new defini-
tions. Our construction relies on the existence of Privately Puncturable PRFs
which can be constructed assuming LWE [7, 9, 12, 14]. Our PRSet construction
is remotely inspired by the line of work on designing block ciphers and format
preserving encryption from pseudorandom functions [41,46,50], but our problem
definition and solutions are novel and fundamentally different from prior works.

Finally, we use our PRSet scheme to construct a 2-server preprocessing PIR
scheme and prove the PIR scheme correct and secure. Our construction is in-
spired by Corrigan-Gibbs and Kogan [20] but differs in several important details.
The proofs are rather technical and involved. Perhaps somewhat surprisingly,
proving correctness turns out to be the most technically challenging part of
our proof, although proving privacy is also non-trivial. Our PIR scheme runs
k parallel instances of a single-copy PIR scheme. We need to prove occasional
correctness of each single-copy scheme, and use majority voting among all in-
stances to amplify correctness. Unfortunately, we cannot easily argue occasional
correctness of the single-copy PIR from the occasional correctness of the PRSet
scheme. Part of challenge arises from the fact that conditioning on events that
have taken place skews the distribution of the pseudorandom sets, and we need
to make an occasional correctness argument even for this skewed distribution
(which does not even have a clean and succinct description). At a very high
level, to make the argument work, we make an involved stochastic domination
argument that effectively shows that conditioning on the events that have taken
place will not worsen the probability of certain bad events that could lead to
incorrectness. We refer the reader to Section 4.4 for more detailed discussions
on the technicalities in the proof.

Non-goals and open questions. Previous preprocessing PIR schemes in the
unbounded query setting are significantly non-optimal in either online bandwidth
or computation. Our work is primarily a theoretical exploration aimed at bridging
the important theoretical gap in our understanding. We do not claim immediate
practicality of our scheme. We believe, however, that achieving asymptotical
near optimality represents an important step forward towards eventually having
a practical PIR scheme. Specifically, we suggest the following possible future
directions towards better concrete performance: 1) the parameters in our current
theorems are not tight, therefore concrete security parameterization is a potential
improvement; and 2) designing a concretely efficient Privately Puncturable PRF
would be critical to concrete performance. For example, instantiations based on
other assumptions might be more efficient than the current LWE-based schemes.

Besides improving concrete performance, there are also interesting theoretical
open questions. One seemingly challenging question is whether we can asymptot-
ically reduce the client online time — the lower bound by Corrigan-Gibbs and
Kogan [20] shows that the server computation (or the combined server-client
computation) must be at least

√
n per query, assuming the client downloads

√
n

information from the server during pre-processing. The known lower bound does
not rule out schemes with asymptotically smaller client online time.
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2 Strawman Attempts

To understand our ideas, it helps to first illustrate a strawman scheme and see
why it fails — the toy scheme below is a variant (and slight simplification) of the
elegant 2-server preprocessing PIR scheme by Corrigan-Gibbs and Kogan [20].
This toy scheme is meant for illustrating the “core” of the scheme, and is not
concerned about compressing storage or bandwidth.

An Inefficient Toy Scheme: Single-Copy Version

Offline preprocessing. (DBk denotes the k-th bit of the database)

– Client generates
√
n sets S1, S2, . . . , S√n. Each Sj ⊆ {0, 1, . . . , n − 1}

where j ∈ [
√
n] is sampled by including each element i ∈ {0, 1, . . . , n−1}

with independent probabilitya 1/
√
n.

– Client sends the resulting sets S1, . . . , S√n to Left. For each set j ∈ [
√
n],

Left responds with the parity bit pj := ⊕k∈Sj
DBk of indices in the set.

– Client stores the hint T := {Tj := (Sj , pj)}j∈[√n].

Online query for index x ∈ {0, 1, . . . , n− 1}.

– Query: (Client⇔ Right)
1. Find an entry Tj := (Sj , pj) in its hint table T such that x ∈ Sj . Let
S∗ := Sj if found, else let S∗ be a fresh random set containing x.

2. Send the set S := Resample(S∗, x) to Right, where Resample(S∗, x)
outputs a set almost identical to S∗, except that the coin used to
determine x’s membership is re-tossed.

3. Upon obtaining a response p := ⊕k∈SDBk from Right, output the
candidate answer β′ := pj ⊕ p or β′ := 0 if no such Tj was found
earlier.

4. Client obtains the true answer β := DBx — the full scheme will repeat
this single-copy scheme k times, and β is computed as a majority vote
among the k candidate answers, which is guaranteed to be correct
except with negligible probability.

– Refresh (Client⇔ Left)
1. Client samples a random set S containing x, and then lets S′ :=

Resample(S, x), and sends S′ to Left (notice that this is equivalent to
just sampling a fresh set, but we write it this way for later conve-
nience).

2. Left responds with p := ⊕k∈S′DBk. If a table entry Tj containing x
was found and consumed earlier, Client replaces Tj with (S, p⊕ β).

a The work of Corrigan-Gibbs and Kogan [20] samples a set of fixed size
√
n,

whereas in our particular variant, the size of each set is a random variable
whose expectation is

√
n.

In this toy scheme, during pre-processing, the client samples
√
n sets each

containing
√
n randomly chosen bits, and downloads the parity of each set from
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the left server. During an online query, suppose the client wants the index i,
it finds a set S∗ containing i. It then resamples the decision whether i should
belong to the set, and the resampled set S removes i with high probability. It
sends the resampled set S to the right server, which returns its parity. Now,
if such a set S∗ was found, XORing the parity of the set S∗ and the set S
gives client the correct answer with high probability. To support an unbounded
number of queries, the client performs a refresh procedure with the left server
to replenish the set that was just consumed.

Correctness amplification through parallel repetition. The above toy
scheme guarantees correctness for the query x, provided that 1) an entry Tj :=
(Sj , pj) containing x is found, and 2) Resample(Sj , x) happens to remove x from
the set Sj . It is not hard to prove that correctness is guaranteed with probability
at least 3/5 for sufficiently large n. To amplify correctness, we can run k copies
of the scheme, and instead of calling the true-answer oracle to obtain the answer
β, we set β to be the majority vote among the k candidate answers, which is
correct with 1 − 2−Θ(k) probability due to the standard Chernoff bound. If we
set k = ω(log λ), then the failure probability would be negligibly small in λ.

Privacy. In the inefficient toy scheme, left-server privacy is easy to see: basically
the left server Left sees

√
n random sets during the offline phase. During each

online query, it sees a random set as well.

Arguing right-server privacy is a little more subtle. The right server Right
is not involved during the offline phase. We want to show that for each online
query, Right sees a fresh random set. Recall that during a query for x, the client
finds an entry Tj := (Sj , pj) such that Sj 3 x. It lets S∗ := Sj if such an entry
Tj is found, else S∗ is a fresh random set containing x. The client now sends
Resample(S∗, x) to Right and if such a Tj was found and consumed, it replaces
Tj with a fresh set containing x. We can prove right-server privacy by induction:
suppose that conditioned on Right’s view so far, the client’s hint table T contains√
n independent random sets (note that this is true at the beginning of the online

phase). Then, we can argue that during the next query for x, Resample(S∗, x)
is distributed as a fresh random set conditioned on Right’s view so far; and
moreover, at the end of the query, the client’s hint table T is distributed as

√
n

independent random sets conditioned on Right’s view so far.

Performance bounds. In the toy scheme, the bandwidth and server runtime
are O(

√
n) for each online query. If the client adopts an efficient data structure

for testing set membership, the client’s runtime can also be upper bounded
by O(

√
n) per query, but its storage is O(n). We want to reduce the online

bandwidth to polylogarithmic and reduce the client-side storage to sublinear,
while preserving the Õ(

√
n) online time for both the server and the client.

Strawman ideas for improving efficiency. A failed attempt to improve effi-
ciency is the following. Let us generate each set using a pseudorandom function
(PRF) rather than using true randomness. Specifically, we may assume that the
PRF(sk, ·) outputs a number in [n], and an element i ∈ {0, 1, . . . , n − 1} is con-
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sidered in the set iff PRF(sk, i) ∈ [1,
√
n]. Moreover, sampling a pseudorandom

set would boil down to sampling a fresh PRF secret key.

In this way, a pseudorandom set can be succinctly represented by a PRF
secret key, and we can improve the client’s storage to

√
n ·χ(λ) where χ(λ) is an

upper bound on the length of the PRF key. During the online phase, the client
needs to resample the set at the point x where x ∈ {0, 1, . . . , n−1} is the current
query. If we could represent this locally resampled set succinctly too, then we
can reduce the online bandwidth.

To achieve this, our idea is to adopt a Privately Puncturable PRF [7,9,14]. A
Puncturable PRF is a PRF with the following additional functionality: given a
point x and the secret key sk, one can call the skx ← Puncture(sk, x) function
to obtain a secret key skx that allows one to evaluate the PRF correctly at any
point other than x. In an ordinary Puncturable PRF construction [30], using
the punctured key skx to evaluate over the point x could result in an invalid
symbol ⊥. In contrast, a Privately Puncturable PRF allows one to remove a
point x and obtain a punctured key skx; however, the punctured key skx does
not disclose the point x. For skx to hide x, it must be that using skx to evaluate
over the point x yields a non-⊥ outcome r. Not only so, imprecisely speaking, to
a computationally bounded adversary, calling Puncture(sk, x) should behave
just like resampling the PRF’s outcome at the point x.

If we use a Privately Puncturable PRF to construct a pseudorandom set like
above, during each online query, we obtain a construct which we call a Privately
Puncturable Pseudorandom Set. Generating a pseudorandom set is achieved by
sampling a PRF key sk. Further, given a set represented by sk that contains
a specific element x, one can perform a puncturing operation at x to derive a
punctured secret key skx — this puncturing procedure acts as if we resampled
the coins that determine whether x is in the set or not.

With such a Privately Puncturable Pseudorandom set, during each online
query, the client can find a secret key sk from its table T that contains the
queried element x ∈ {0, 1, . . . , n − 1} (or sample a random sk containing x if
not found), puncture the element x from the set sk, and send the punctured key
skx to the right server. Similarly, to perform a refresh operation with the left
server, the client simply samples a key sk′ such that the associated set contains
x, puncture x from sk′, and send the resulting punctured key sk′x to the left
server. This approach allows us to compress the online bandwidth to O(χ(λ))
bits per copy (and recall that there are k = ω(log λ) parallel copies), where χ(λ)
denotes the length of a punctured key.

Unfortunately, this idea completely fails because to generate the set from a
secret key sk, the server would have to do a linear amount of work! This defeats
our original goal of achieving sublinear online runtime.

Corrigan-Gibbs and Kogan’s variant and why it fails too. At this point,
we also briefly overview the approach of Corrigan-Gibbs and Kogan [20]. They
adopt a different PRSet construction that indeed allows efficient set enumera-
tion in roughly

√
n (rather than linear in n) time. Unfortunately, their scheme

does not offer a puncturing procedure that achieves any non-trivial efficiency;
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thus in each online query, the client has to send an entire (
√
n − 1)-sized set

(rather than a punctured secret key) to each server. More specifically, Corrigan-
Gibbs and Kogan [20] use a Pseudorandom Permutation (PRP) on the domain
{0, 1, . . . , n−1} to sample a pseudorandom set. A secret key sk of a PRP scheme
defines a corresponding set {PRP(sk, i)}i∈{0,1,...,√n−1}. Thus, the definition of
the set itself gives an efficient set enumeration algorithm. To determine whether
an element x ∈ {0, 1, . . . , n − 1} is in the set generated by sk, simply check
whether PRP−1(sk, x) ∈ {0, 1, . . . ,

√
n−1}. Their approach samples the set from

a different distribution than our earlier strawman — in particular, the sampled
set is of fixed size

√
n, and therefore x being in the set is not independent of

whether y 6= x is in the set (even when the PRP is replaced with a completely
random permutation). For this reason, during the online phase, they adopt a
slightly different approach than our earlier strawman: after finding a set either
from the table T or freshly generated that contains the queried element x, they
remove x from the set with high probability, but with a small probability, they
remove a random element other than x. In this way, the right server sees a
random set of size exactly

√
n− 1, and the same applies to the left server.

The main problem with their approach is that it is not amenable to punc-
turing (with non-trivial efficiency). In fact, Boneh, Kim, and Wu proved the
non-existence of Puncturable PRPs [8]. In our case, the domain size n is polyno-
mially bounded, and even if we punctured a point x from the PRP, the adversary
can easily recover PRP(sk, x) by evaluating PRP(sk, ·) at all other points.

To get around the non-existence of puncturable PRP barrier, one might be
tempted to compute the pseudorandom set as {PRF(sk, i)}i∈{0,1,...,√n−1} instead,
i.e., essentially the “dual” of our earlier PRF-based strawman scheme. While this
approach allows for efficient set enumeration, it precludes efficient membership
testing which, in our context, would make the client’s online runtime linear.

3 Generalized Privately Puncturable Pseudorandom Set

To summarize the above discussion, we would like to construct a Privately Punc-
turable Pseudorandom Set (PRSet) scheme with some non-trivial security and
efficiency requirements which we shall state shortly after defining the syntax:

– (sk,msk) ← Gen(1λ, n): given the security parameter 1λ and the universe
size n, samples a secret key sk and a corresponding master secret key6 msk;

– S ← Set(sk): a deterministic algorithm that outputs a set S given the secret
key sk;

– b←Member(sk, x): given a secret key sk and an element x ∈ {0, 1, . . . , n−
1}, output a bit indicating whether x ∈ Set(sk); and

6 The secret key sk is needed to enumerate the set, whereas the msk contains extra
secret information needed for computing a punctured key. Jumping ahead, in our
PIR scheme, the secret key sk can be sent to the server whereas the master secret
key msk is kept secret by the client.

11



– skx ← Puncture(msk, x): given a master secret key msk and an element
x ∈ {0, 1, . . . , n− 1}, outputs a secret key skx punctured at x.

We note that a PRSet scheme is parametrized by a family of distributions Dn.
The pseudorandom set generated by the PRSet scheme should emulate the dis-
tribution Dn — we will define this more formally shortly.

Efficiency requirements. Our goal is to use the PRSet scheme to sample
pseudorandom sets of size roughly

√
n. For efficiency, we want that enumerating

the set can be accomplished with the Set(sk) algorithm, taking time roughly√
n (rather than linear in n). Additionally, we want that the membership test

algorithm, i.e., Member(sk, x), completes in polylogarithmic time.

3.1 Security Definitions

For security, we want the following:

1. Pseudorandomness w.r.t. some distribution Dn: given a randomly sam-
pled secret key (sk, ) ← Gen(1λ, n), the associated set Set(sk) is computa-
tionally indistinguishable from a set sampled at random from some distribu-
tion Dn — we shall specify the distribution Dn later;

2. Security w.r.t. puncturing I: we want the following two distributions to
be computationally indistinguishable for any x ∈ {0, 1, . . . , n− 1}:
– Sample (sk,msk)← Gen(1λ, n) until Set(sk) contains x, and output Puncture(msk, x).

– Sample (sk, )← Gen(1λ, n) and output sk.

The above definition says that a key punctured at any point is computa-
tionally indistinguishable from an unpunctured key, which implies that a
punctured secret key should be simulatable without knowledge of the point
x being punctured. In our PIR scheme, we only need the latter property, i.e.,
that a punctured key is simulatable without knowledge of the point being
punctured — but we define this slightly stronger version for simplicity.

3. Security w.r.t. puncturing II (defined w.r.t. Dn): we want the follow-
ing two distributions to be computationally indistinguishable for any x ∈
{0, 1, . . . , n− 1}:
– Sample (sk,msk)← Gen(1λ, n) until Set(sk) contains x, let skx←Puncture(msk,
x), and output (Set(sk), x ∈ Set(skx)) where “x ∈ Set(skx)” denotes the
boolean predicate whether x ∈ Set(skx).

– Sample (sk,msk)← Gen(1λ, n) until Set(sk) contains x, and output (Set(sk),
Bernoulli(ρ)) where ρ := Pr

S
$←Dn

[x ∈ S].

Intuitively, the above says that knowing the unpunctured set reveals nothing
about whether x still belongs to the set after puncturing x from the set.

Remark 2. Jumping ahead, the “security w.r.t. puncturing I” property will be
used in proving the privacy of our PIR scheme, and the “security w.r.t. punc-
turing II” property will be needed for proving correctness — it turns out that
the correctness proof is rather technical (see Section 4.4 for further discussions).
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3.2 Defining Occasional Correctness

From the strawman attempts described in Section 2, we are essentially faced with
the following dilemma. Consider some distribution Dn which the pseudorandom
set tries to emulate. On one hand, we want each element to be included in the
set with independent probability, since this would enable puncturing and efficient
membership test. On the other hand, we do not want complete independence
among elements, since it would preclude efficient set enumeration. It seems like
we have hit a wall, but what comes to our rescue is the observation that our
single-copy scheme need not guarantee (1 − negl(λ))-correctness. Since we can
take majority vote among k = ω(log λ) parallel copies, it suffices for each copy
to have 2/3-correctness. We therefore hope to seek middle ground between the
seemingly conflicting requirements by relaxing correctness.

Informally speaking, we want the following notion of occasional correctness:
with 1− o(1) probability over the choice of a PRSet secret key that contains an
element x ∈ {0, 1, . . . , n− 1}, puncturing at an arbitrary point x would remove
the point x from the set, and only x. Recall that earlier, we said that puncturing
at x should behave as if we resampled the choice whether x is in the set or
not, independent of the unpunctured set (see “security w.r.t. puncturing II”).
Thus, the relaxed correctness requirement intuitively implies that the resampling
that happens at puncturing should only choose to include x in the punctured
set with small (but possibly non-negligible) probability. Furthermore, jumping
ahead, in our construction, puncturing at x may occasionally end up removing
other elements besides x from the set, but this should not happen too often.

It turns out that to formally prove our PIR scheme secure, we actually need a
more refined occasional correctness definition. Specifically, our formal definition
lets us specify exactly which set of elements are related to x such that they might
accidentally get evicted from the set due to the puncturing of x. Further, we also
need to define an extra monotonicity condition that the puncturing operation
never adds an element to the set.

Formally, we define occasional correctness as below.

Functionality preservation under puncturing. To define functionality preser-
vation, we introduce a symmetric boolean predicate Related(x, y) : {0, 1, . . . , n−
1}2 → {0, 1}, that outputs whether two elements x and y are related or not. We
may assume that Related(x, y) = Related(y, x).

We say that PRSet := (Gen, Set, Member, Puncture) satisfies function-
ality preservation w.r.t. the Related predicate, iff for any λ, n ∈ N, with prob-
ability 1 − negl(λ) for some negligible function negl(·), the following holds: let
(sk,msk)← Gen(1λ, n), then, for any x ∈ Set(sk): let skx ← Puncture(msk, x):

1. Set(skx) ⊆ Set(sk);

2. Set(skx) runs in time no more than Set(sk);

3. for any y ∈ Set(sk)\Set(skx), it must be that Related(x, y) = 1.

Intuitively, the above requires that puncturing results in a subset of the original
set; and the set enumeration time can only reduce once a set has been punctured.
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Moreover, puncturing x can only cause elements related to x to be removed from

the set. Later on, when we instantiate the distribution S
$←Dn that the PRSet

scheme tries to emulate, we shall see that most elements in the sampled set S
likely do not have other related elements in S.

3.3 Choosing a Sampling Distribution

Recall that each element wants to decide at random whether to be included
in the sampled set. Our idea is to allow weak dependence in the coins chosen
by different elements. Such weak dependence should be sufficient to allow ef-
ficient set enumeration, and yet without destroying efficient membership tests.
Of course, we have to pay a price for introducing the weak dependence among
elements, and indeed we pay in terms of the correctness of puncturing. In our
PRSet scheme, puncturing a secret key msk at a point x may, with some small
but non-negligible probability over the choice of msk, not only cause the coins
for x to be resampled, but also the coins for some elements other than x. When
this happens, puncturing at the point x may end up removing other elements
from the set, and possibly lead to an incorrect output in our single-copy PIR.

Even with this high-level intuition, identifying a construction that works is
challenging. To this end, our approach is very remotely inspired by the line of
work on designing block ciphers and format-preserving encryption [41, 46, 50].
Despite the remote reminiscence, of course, our problem definition and solutions
are fundamentally different from block ciphers.

To convey the intuition, let us first describe the distribution our PRSet scheme
aims to emulate, assuming the existence of a random oracle7 RO : {0, 1}∗ →
{0, 1}. Suppose we sample an RO at random which will determine a pseudo-
random set of expected size roughly

√
n/ log2 n. To determine if an element

x ∈ {0, 1, . . . , n− 1} is in the set associated with RO or not, write x as a log n-
bit string, i.e., x := {0, 1}logn. We then say that x is in the set iff using RO to
“hash” every sufficiently long suffix of 02 log logn||x outputs 1. More formally, set
membership of x ∈ {0, 1}logn is defined with the following algorithm:

1. let z := 0B ||x, i.e., prepend B := d2 log log ne number of 0s in front of the
string x;

2. we say that x is in the set iff RO(z[i :]) = 1 for every i ∈ [1, 12 log n+B],
where z[i :] denotes the suffix z[i : log n+ B] starting at the index i. For
example, z[1 :] = z, z[2 :] is the string z removing the first bit, and so on.

0010 RO(10)= 1?

RO(010)= 1?

RO(0010)= 1?

xpadding

Fig. 1: A toy example.

Toy example. Figure 1 gives a toy example: sup-
pose that n = 4, and thus B = 2 log log n = 2, and
1
2 log n+B = 3. Then, the string x = 10 is in the
set iff RO(0010) = RO(010) = RO(10) = 1.

The above sampling distribution has the fol-
lowing properties.

7 Our final scheme does not need any random oracle, the RO is only for exposition.
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Expected set size. Each x ∈ {0, 1}logn is in-

cluded in the set with probability 2−(
1
2 logn+B) ≈

1/(
√
n log2 n), and the expected set size is roughly

√
n/ log2 n.

Fast membership test. The definition itself gives a fast algorithm to test if
an element x ∈ {0, 1}logn is in the set, by making 1

2 log n+B calls to RO.

Fast set enumeration. Enumerating all elements in the set can be accom-
plished by making roughly

√
n · poly log n calls to RO with at least 1 − o(1)

probability. Let ` ≥ 1
2 log n+1, and let Z` be the set of all strings z of length ex-

actly `, such that using RO to “hash” all suffixes of z of length at least 1
2 log n+1

outputs 1. To enumerate the set generated by RO, we can start out Z 1
2 logn+1,

which takes at most 2
1
2 logn+1 RO calls to generate. Then, for each ` := 1

2 log n+2
to 1

2 log n + B, we will generate Z` from Z`−1. This can be accomplished by
enumerating all elements z′ ∈ Z`−1, and checking whether RO(0||z′) = 1 and
RO(1||z′) = 1. In our supplementary materials, we will prove that with at least
1 − o(1) probability, all the Z` sets encountered along the way will not exceed√
n · poly log n in size. Thus, with 1 − o(1) probability, set enumeration can be

accomplished by making at most
√
n · poly log n calls to RO.

Occasional correctness of “puncturing”. Suppose that we sample an RO
whose associated set contains the element x ∈ {0, 1}logn. In this idealized world
with RO, imagine that puncturing the point x from RO means that we resample
the outcomes for RO((0B ||x)[i :]) for every i ∈ [1, 12 log n+B]. We want to make
sure that with 1 − o(1) probability over the choice of the RO, puncturing the
point x removes x and only x from the resulting set. We prove (a more refined
version of) this statement in our supplementary materials. At a high level, to
prove this statement, it suffices to prove that the expected number of related
elements in the set is o(1), where an element x′ 6= x is related to x, iff the longest
common suffix of x and x′ has length at least 1

2 log n+ 1.

3.4 Our PRSet Scheme

Given the above distribution Dn, we can derive a PRSet scheme by replacing the
RO with a privately puncturable PRF [7,9,14] — we review the formal definition
for a privately puncturable PRF in the online full version [47]. Puncturing a point
x ∈ {0, 1}logn simply punctures all queries we must make to the PRF to deter-
mine x’s membership. For a punctured key to be indistinguishable from a freshly
generated secret key, we puncture a set of “useless” points from a freshly gener-
ated secret key as well, since original keys and punctured keys may be trivially
distinguishable in the the underlying privately puncturable PRF scheme. More
formally, let PRF := (Gen,Eval,Puncture,PEval) be a privately puncturable
PRF scheme where Eval and PEval denote the evaluation algorithms using a
normal key and a punctured key, respectively. Our PRSet scheme is described
below:
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Our PRSet scheme

– Gen(1λ, n): let B := d2 log log ne,
1. call PRF.Gen with the appropriate parameters to generate a normal

PRF key sk′.

2. let P be an arbitrary set of 1
2 log n+B distinct strings in {0, 1}logn+B

that begin with the bit 1;

3. call sk← PRF.Puncture(sk′, P ), and output (sk,msk = sk′).

– Set(sk): similar to the earlier set enumeration algorithm for the distribu-
tion Dn, but replace RO(·) calls with calls to PRF.PEval(sk, ·) instead;

– Member(sk, x):

1. write x ∈ {0, 1}logn as a binary string, and let z := 0B ||x;

2. if for every 1 ≤ i ≤ 1
2 · log n + B, PRF.PEval(sk, z[i :]) = 1, then

output 1; else output 0.

– Puncture(msk, x):
1. write x ∈ {0, 1}logn as a binary string, and let z := 0B ||x;

2. let P := {z[i :]}i∈[1, 12 ·logn+B] and skP ← PRF.Puncture(msk, P );
output skP .

Performance bounds. Our privately puncturable PRF scheme must support
puncturing O(log n) many points. As stated in the online full version [47], we

can construct such a privately puncturable PRF with Õ(1) runtime for Gen,

Eval, and PEval, and moreover, each punctured key is of length Õ(1). Using

such a privately puncturable PRF, our resulting PRSet scheme achieves Õ(1)
time for PRSet.Gen, PRSet.Member, and PRSet.Puncture operations, and the
expected runtime for PRSet.Set is Õ(

√
n). Bounding the runtime of PRSet.Set

will require a probabilistic analysis of the distribution Dn, which we defer to the
online full version [47].

We also defer to Section 5 a detailed proof of security for our PRSet scheme.

4 Putting it All Together: Our PIR Scheme

4.1 Definitions: Two-Server Preprocessing PIR

In our definition below, the two servers are treated as stateful algorithms Left
and Right, respectively (but in our construction, the only state they need to
store is the database itself). The client is treated as a stateful algorithm denoted
Client. Initially, all of Client, Left, and Right receive the parameters 1λ and n.

– Offline setup. Client receives nothing and each of Left and Right receives
the same database DB ∈ {0, 1}n as input. Client sends a single message to
Left, and Left responds with a single message often called a hint.

– Online queries. The following can be repeated for a priori-unknown poly-
nomially many steps. Upon receiving an index x ∈ {0, 1, . . . , n− 1} to query,
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Client sends a single message to Left and a single message to Right. It receives
a single response from each server Left and Right. Client then performs some
computation and outputs an answer β ∈ {0, 1}.

Correctness. Given a database DB ∈ {0, 1}n where the bits are indexed 0, 1, . . . , n−
1, the correct answer for a query x ∈ {0, 1, . . . , n− 1} is the x-th bit of DB.

For correctness, we require that for anyQ,n that are polynomially bounded in
λ, there is a negligible function negl(·), such that for any database DB ∈ {0, 1}n,
for any sequence of queries x1, x2, . . . , xQ ∈ {0, 1, . . . , n−1}, an honest execution
of the offline/online PIR scheme with DB and queries x1, x2, . . . , xQ returns all
correct answers with probability 1− negl(λ).

Privacy. For privacy, we require the following.

– Left-server privacy. There is a probabilistic polynomial time (p.p.t.) stateful
simulator Sim, such that for any arbitrary (even computationally unbounded)
algorithm Right∗, for any non-uniform p.p.t. adversary A, A’s views in the
Real and Ideal experiments are computationally indistinguishable:
1. Real: The honest Client interacts with A who acts as the left server and

may deviate arbitrarily from the prescribed protocol, and an arbitrary (even
computationally unbounded) algorithm Right∗ acting as the right server. In
every online step t, A adaptively chooses the next query xt ∈ {0, 1, . . . , n−
1}, and Client is invoked with xt.

2. Ideal: The simulated client Sim interacts with A who acts as the left server,
and an arbitrary (even computationally unbounded) algorithm Right∗ act-
ing as the right server. In every online step t, A adaptively chooses the next
query xt ∈ {0, 1, . . . , n− 1}, and Sim is invoked without receiving xt.

– Right-server privacy. Right-server privacy is defined in a symmetric way as
above by exchanging left and right.

Intuitively, the above privacy definition requires that any single server alone
cannot learn anything about the client’s queries; further, this must hold even
when both servers can behave maliciously. However, recall that we do not guar-
antee correctness if one or both server(s) fail to respond correctly.

4.2 Construction

We describe our PIR scheme below, where Client, Left, Right denote the client,
the left server, and the right server, respectively.

Our PIR Scheme

Run k = ω(log λ) parallel copies of the single-copy scheme described below.

Offline setup. For i = 1 to lenT := 6
√
n · log3 n in parallel:

1. Client: Sample (ski,mski)← PRSet.Gen(1λ, n), send ski to Left.

2. Left: Run Si ← PRSet.Set(ski). If the runtime of PRSet.Set(ski), mea-
sured in terms of PRF.PEval calls, exceeds maxT := 6

√
n log5 n, return
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pi := 0 to Client. Else, return the parity bit pi ∈ {0, 1} of the set Si to
Client.

3. Client: Save Ti := (ski,mski, pi) where T := (T1, T2, . . . , TlenT) denotes a
table saved by Client.

Online query for index x ∈ {0, 1, . . . , n− 1}.

– Query (Client⇔ Right):
1. Client:
(a) Sample (sk,msk)← PRSet.Gen(1λ, n) subject to PRSet.Member(sk,

x) = 1, append (sk,msk, 0) to the end of the table T . (?)

(b) Henceforth parse Ti := (ski,mski, pi). Let j be the smallest entry in
the table T such that PRSet.Member(skj , x) = 1.

(c) Call s̃kj := PRSet.Puncture(mskj , x). Send s̃kj to Right.

2. Right: Run S ← PRSet.Set(s̃kj). If the runtime exceeds maxT, return
p := 0 to Client. Else, return the parity bit p ∈ {0, 1} of the set S to
Client.

3. Client: Let β′ := p ⊕ pj be a candidate answer of this copy. Let β be
the majority vote among the candidate answers of all k copies.

– Refresh (Client⇔ Left):
1. Client:
(a) Sample a new (sk′,msk′) ← PRSet.Gen(1λ, n) subject to the con-

straint PRSet.Member(sk′, x) = 1. (?)

(b) Call sk′x ← PRSet.Puncture(msk′, x), and send sk′x to Left.

2. Left: Run S ← PRSet.Set(sk′x). If the runtime exceeds maxT, return
p := 0 to Client. Else, return the parity bit p ∈ {0, 1} of the set S to
Client.

3. Client: Replace Tj := (sk′,msk′, p ⊕ β). Finally, remove the last entry
from the table T .

Remark. To obtain deterministic performance bounds, we can have the
client run the Step 1(a) of both the Query and Refresh phases, marked
with (?), at the very beginning of each online query, and simply abort if
the number of tries exceeds maxT — in this case, no message is sent and
the client outputs a canonical bit 0 as the candidate answer. It is not hard
to see that this change does not affect the privacy proof and adds only o(1)
correctness failure probability for each instance per query.

Intuitively, the idea here is to summarize the random sets in the earlier toy
scheme with the keys of a PRSet scheme, i.e., the client stores the lenT number
of keys to represent lenT sets; moreover, the client sends punctured keys to the
servers rather than the full sets. By construction, in each copy, the client always
obtains answers from the respective servers during the query and refresh phases,
but the answers may be incorrect with some small probability. The k = ω(log λ)
parallel repetions make the overall error probability negligibly small.
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Specifically, the answer from the right-server during the query phase may
be incorrect if 1) the queried index x is not found in the lenT sets stored by
the client; 2) x is found to be in some set represented by (skj ,mskj), but the
parity bit stored by the client is incorrect (see why the refresh phase may cause
error shortly); 3) puncturing the key mskj does not result in exactly the set
Set(skj)\{x}; or 4) the right server exceeds maxT set enumeration time.

The refresh phase can incur error with small probability too, and thus cause
the client to store an incorrect parity bit for the refreshed set. Recall that during
refresh, the client computes the parity bit of a newly refreshed set as β+p where
β is the client’s belief of the answer to the present query, and p is the answer
returned by the left server. If either β or p is wrong, the refreshed parity bit
may be incorrect. Specifically, p can be wrong if the left server exceeded maxT
set enumeration time. Moreover, if the punctured key sk′x does not give exactly
Set(sk′)\{x}, then the parity p returned by the left server could be incorrect.

4.3 Performance Analysis

For our performance analysis, we will assume that Step 1(a) of both the Query
and Refresh phases, marked (?) in the PIR scheme, are capped at maxT runtime,
since this will give us deterministic performance bounds — see the remark at
the end of the PIR algorithm.

We now analyze the performance bounds for each instance of PIR — keep in
mind that our final scheme involves k = ω(log λ) = Õ(1) parallel instances. Our
analysis below also shows how to translate the runtime of the underlying PRSet
scheme to the runtime of the resulting PIR scheme. Specifically, we will use our
PRSet scheme whose performance bounds are stated in Section 3.4.

– The offline bandwidth and client computation are Õ(
√
n), the offline server

computation is Õ(n). The offline client computation is dominated by running

PRSet.Gen for lenT = Õ(
√
n) number of times; the bandwidth is dominated

by transmitting lenT number of PRSet keys to the server and then for the
server to transmit 1 parity bit back for each of the lenT keys; and the server
computation is dominated by running the PRSet.Set algorithm for lenT num-
ber of times, where each PRSet.Set call is capped at maxT = Õ(

√
n) runtime.

– The online server and client runtime is Õ(
√
n), and the online bandwidth is

Õ(1). Specifically, during the “Query” phase, the client’s runtime is bounded
by the following: Step 1(a) is capped at maxT calls to PRSet.Gen and
PRSet.Member; Step 1(b) involves running PRSet.Member at most lenT
number of times; the runtime of Step 1(c) and Step 3 is dominated by other
steps. During the “Refresh” phase, the client’s runtime involves the following:
Step 1(a) is capped at maxT calls to PRSet.Gen and PRSet.Member, and
the runtime of Step 1(b) and 3 is dominated by Step 1(a). Both the left and
right server’s runtime includes a single call to PRSet.Set capped at maxT,
and the cost of computing the parity of at most maxT number of bits. The
online bandwidth involves the client sending a single PRSet key to each of
the left and right server, and each server sending back one bit.
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4.4 Proof Roadmap

Proving our PIR scheme secure turns out to be very much non-trivial. Somewhat
surprisingly at first, the most challenging part is actually the proof of occasional
correctness of the single-copy version of our PIR scheme (see Sections 5 and
the online full version [47]) — even though we are only asking for a relaxed
correctness requirement. At a high level, the challenge arises from the fact that
the distribution of the PRSet key sk becomes skewed, when conditioning on the
fact that the key sk is chosen during the online query phase, since it is the first
entry in the client’s hint table T that contains the queried element x. In one part
of the occasional correctness proof, we need to argue that, imprecisely speaking,
despite this skewed distribution, the selected secret key can provide a correct
answer to the present query with 1−o(1) probability. In a key technical step, we
make a stochastic domination type of argument that roughly speaking, proves
the following: conditioned on the secret key not having been consumed so far and
now being consumed by the present query, it makes it less likely, in comparison
with a freshly generated PRSet key, for certain bad events to happen that might
lead to incorrectness. To make this argument work, we rewrite the randomized
experiment into an equivalent one where the sampling of a subset of the random
coins is delayed to the point when they are consumed. In our scheme, multiple
bad events can lead to incorrectness of a single copy of the scheme. Therefore,
in our proof, we bound the probability of each of these bad events (see the
appendices) — to do so, we often view the randomized experiment in different
lights, to facilitate the analyses of different bad events.

5 Proofs for our PRSet Scheme

Lemma 1 (Correctness, pseudorandomness, and functionality preser-
vation under puncturing). The above PRSet construction satisfies correct-
ness. Further, suppose that the PRF scheme satisfies pseudorandomness; then
the PRSet scheme also satisfies pseudorandomness and functionality preserva-
tion under puncturing.

Proof. Correctness follows directly from the construction. Pseudorandomness
relies on the pseudorandomness of the PRF through a straightforward reduc-
tion. To see functionality preservation, let (sk,msk) ← Gen(1λ, n), let skx ←
Puncture(msk, x), and below we may ignore the negligible probability event
that the underlying puncturable PRF violates its functionality preservation prop-
erty. Notice that for every string z that is a suffix of 0B ||x of length at least
1
2 log n+1, PRF.PEval(sk, z) = 1, but there may exist such z where PRF.PEval(skx, z)
becomes 0 instead. For any string z that is not a suffix of 0B ||x of length at least
1
2 log n + 1, PRF.PEval(sk, z) = PRF.PEval(skx, z). Given the above observa-
tion, “functional preservation under puncturing” is easy to verify.

Lemma 2 (Security w.r.t. puncturing). Suppose that the PRF scheme sat-
isfies pseudorandomness and privacy w.r.t. puncturing as defined in the online
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full version [47]. Then, the above PRSet construction satisfies security w.r.t.
puncturing.

Proof. We need to prove two properties.

First property. We begin by proving the first property, that is, the following
distributions are computationally indistinguishable for any x ∈ {0, 1, . . . , n−1}:

– Expt0: Repeat (sk,msk)← Gen(1λ, n) until x ∈ Set(sk), let skx ← Puncture(msk, x),
output skx.

– Expt1: (sk,msk)← Gen(1λ, n) and output sk.

We define an intermediate hybrid experiment Hyb: sample (sk,msk)← Gen(1λ, n),
let skx ← Puncture(msk, x), and output skx.

Claim 1 Suppose that the puncturable PRF satisfies pseudorandomness as de-
fined in the online full version [47]. Then, Expt0 and Hyb are computationally
indistinguishable.

Proof. Suppose that there is an efficient adversary A that can distinguish Expt0
and Hyb with non-negligible probability. We can construct an efficient reduction
B that breaks the pseudorandomness of the PRF scheme.

Let Px denote the set containing the m = 1
2 log n + B queries we need to

make to determine whether x is in the set. B asks its own challenger denoted C
for a PRF key punctured at Px, and it obtains skPx

. It forwards skPx
to A. B then

obtains a vector of bits denoted β := (β1, . . . , βm) as the purported outcomes
for {Eval(sk, y)}y∈Px

. If β = 1, then B outputs whatever A outputs. Else, it
outputs a random bit.

Case 1. If the challenger C is using real values for {Eval(sk, y)}y∈Px
, then A’s

view is identically distributed as Expt0. The probability that B outputs 1 is

p := Pr[A(Expt0) = 1] · Pr[β = 1] +
1

2
· Pr[β 6= 1]

Case 2. If the challenger C is using random values in place of {Eval(sk, y)}y∈Px ,
then A’s view is identically distributed as Hyb. In this case, the probability that
B outputs 1 is equal to

p′ := Pr[A(Hyb) = 1] · Pr[β = 1] +
1

2
· Pr[β 6= 1]

Note that in Case 1, |Pr[β = 1]−1/2m| ≤ negl(λ) due to the pseudorandomness
of the PRF; and in Case 2 Pr[β = 1] = 1/2m. Moreover, 1/2m is non-negligible
due to the choice of m. Therefore, if |Pr[A(Expt0) = 1] − Pr[A(Hyb) = 1]| is
non-negligible, then |p− p′| would be non-negligible, too.

Claim 2 Suppose that the puncturable PRF satisfies privacy w.r.t. puncturing
as defined in the online full version [47]. Then, Hyb is computationally indistin-
guishable from Expt1.
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Proof. Follows from a straightforward reduction to the privacy w.r.t. puncturing
property of the PRF.

The computational indistinguishability of Expt0 and Expt1 now follows from
Claim 1 and Claim 2.

Second property. We next prove the second property, that is, we want to show
that the following two distributions are computationally indistinguishable:

– Expt∗0: Repeat (sk,msk)← Gen(1λ, n) until x ∈ Set(sk), let skx ← Puncture(msk, x),
and output (Set(sk), x ∈ Set(skx)) where x ∈ Set(skx) denotes a boolean
predicate.

– Expt∗1: Repeat (sk,msk)← Gen(1λ, n) until x ∈ Set(sk), and output (Set(sk),Bernoulli(ρ))

where ρ := 2−(
1
2 logn+B).

Let (sk,msk)← Gen(1λ, n) until x ∈ Set(sk), and let skx ← Puncture(msk, x).
Observe that there is a deterministic, polynomial-time function Reconstruct
such that Reconstruct(skx, x) = Set(sk). Essentially, Reconstruct uses an-
swers to PRF.PEval(skx, ·) calls to determine set membership, except that when
encountering any string z that is a suffix of 0B ||x of length at least 1

2 log n+ 1,
override the outcome of PRF.PEval(skx, z) to 1.

We can therefore rewrite Expt∗0 as the following experiment Hyb: repeat
(sk,msk) ← Gen(1λ, n) until x ∈ Set(sk), let skx ← Puncture(msk, x), and
output (Reconstruct(skx, x), x ∈ Set(skx)).

Due to the first property which we just proved, the above distribution Hyb is
computationally indistinguishable from the following Hyb′: (sk, )← Gen(1λ, n),
and output (Reconstruct(sk, x), x ∈ Set(sk)).

Now, consider the experiment Ideal which is defined just like in Hyb, except
that sampling a PRF secret key is replaced with sampling an RO, and to deter-
mine set membership, any call to PRF.PEval(sk, ·) is replaced with RO(·). In
Ideal, Reconstruct(RO, x) does not need to look at the coins that determine
x’s membership in the set. Based on this observation as well as the pseudo-
randomness of the underlying PRF, we conclude that Ideal is computationally
indistinguishable from Expt∗1.

Deferred contents. We defer the probabilistic analysis of the distribution Dn,
and proofs for the runtime of set enumeration to the online full version [47].

6 Proofs for our PIR Scheme

Single-copy varirant of our PIR scheme. In our proofs, we consider a single-
copy variant of our PIR scheme. In the single-copy scheme, we set the number of
parallel instances k := 1. Further, we imagine that the true answer β is obtained
from some true-answer oracle rather than taking majority vote.
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6.1 Privacy Proof

We focus on the single-copy variant, and prove its privacy.

Theorem 2 (Left-server privacy). Suppose that the PRSet scheme satisfies
(the first property in) “security w.r.t. puncturing”. Then, the single-copy scheme
satisfies left-server privacy.

Proof. We define the following simulator Sim which fully specifies the ideal ex-
periment Ideal:

– Offline setup. For i = 1 to lenT := 6
√
n · log3 n: sample (ski,mski) ←

PRSet.Gen(1λ, n) and send {ski}i∈[1,lenT] to A acting as the left server.

– Online queries. For each online query, sample (sk′,msk′)← PRSet.Gen(1λ, n)
and send sk′ to A acting as the left server.

The computational indistinguishability of A’s views in Real and Ideal fol-
low due to a straightforward hybrid argument relying on the “security w.r.t.
puncturing” property of the PRSet scheme. Specifically, let Q be the total num-
ber of queries in the online phase. We define a sequence of hybrid experiments
{Hybi}i∈{0,1,...,Q}, where in Hybi, during the first i online steps, A (acting as the
left server) receives a message constructed like in Ideal, and during the remain-
ing Q − i online steps, A receives a message constructed like in Real. Clearly,
Hyb0 = Real and HybQ = Ideal. It suffices to show that any two adjacent hy-
brid experiments are computationally indistinguishable, and this follows due to
a straightforward reduction to the “security w.r.t. puncturing” property of the
PRSet scheme.

Theorem 3 (Right-server privacy). Suppose that the PRSet scheme satisfies
(the first property in) security w.r.t. puncturing. Then, the single-copy scheme
satisfies right-server privacy.

Proof. We define the following simulator Sim which fully specifies the ideal ex-
periment Ideal:

– Offline setup. A, acting as the right server, receives nothing.

– Online queries. For each online query, sample (sk′,msk′)← PRSet.Gen(1λ, n)
and send sk′ to A acting as the right server.

We now need to argue that any non-uniform p.p.t.A’s views in Real and Ideal
are computationally indistinguishable.

Real∗. First, we consider the following experiment Real∗.

– Offline setup. For each i ∈ [1, lenT], Client samples (ski,mski)← PRSet.Gen(1λ, n),
and lets Ti := (ski,mski). The adversary A, acting as the right server, receives
nothing.

– Online queries. For each online query x ∈ {0, 1, . . . , n− 1}:
a) Client samples (sk,msk)← PRSet.Gen(1λ, n) subject to PRSet.Member(sk, x) =

1, and appends (sk,msk) to the end of the table T .
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b) Client finds the smallest entry Tj := (skj ,mskj) in T such that PRSet.Member(skj , x) =
1. It sends PRSet.Puncture(mskj , x) to A acting as the right server.

c) Client samples (sk′,msk′)← PRSet.Gen(1λ, n) subject to PRSet.Member(sk, x) =
1, overwrites Tj with (sk′,msk′), and removes the last entry from T .

Real∗ is just a rewrite of Real throwing away terms that we do not care. Let
ViewReal and ViewReal∗ denote A’s view and the client’s table T (truncating the
third field of each entry in Real) at the beginning of each online query, in the ex-
periments Real and Real∗, respectively. We have that even for a computationally
unbounded A, ViewReal and ViewReal∗ are identically distributed.

Fact 1 In Real∗, for every online step t, even if A is computationally unbounded,
and even when conditioned on A’s view over the first t− 1 steps,

– let x ∈ {0, 1, . . . , n − 1} be the t-th online query, the message A receives in
the t-th query is distributed as: sample (sk,msk)← PRSet.Gen(1λ, n) subject
to PRSet.Member(sk, x) = 1 and output PRSet.Puncture(sk, x);

– at the end of the t-th online query, the client’s table T is a fresh uniform
sample from PRSet.Gen(1λ, n)lenT independent of the message A receives
during the t-th query, i.e., T contains a sample of lenT uniform, independent
entries from the distribution PRSet.Gen(1λ, n).

Proof. We can prove by induction.

Base case. At the end of the offline phase (henceforth also called the 0-th
query), indeed the client’s table T is a uniform sample from the distribution
PRSet.Gen(1λ, n)lenT.

Inductive step. Suppose that at the end of the t-th step, the client’s table T
is uniform sample from the distribution PRSet.Gen(1λ, n)lenT even when con-
ditioned on A’s view in the first t steps. We now prove that the stated claims
hold for t+ 1. Let x ∈ {0, 1, . . . , n− 1} be the query made in online step t+ 1,
the choice of x depends only on A’s view in the first t online queries. Hence-
forth, for i ∈ [1, lenT], let αi,x be the probability that in a random sample from
the distribution PRSet.Gen(1λ, n)lenT, the first entry that contains x is i. Let

αlenT+1,x := 1−
∑lenT
i=1 αi,x.

Consider the following experiment Expt:

– Client samples an index u ∈ [lenT + 1] such that u = i with probability αi,x.

– ∀j < u, Client samples Tj := (skj ,mskj) ← PRSet.Gen(1λ, n) subject to
PRSet.Member(skj , x) = 0.

– For u, Client samples (sk,msk) and (sk′,msk′) independently from the dis-
tribution PRSet.Gen(1λ, n) subject to PRSet.Member(skj , x) = 1. It sends

PRSet.Puncture(sk, x) to A and saves Tu := (sk′,msk′).

– ∀j ∈ [u+ 1, lenT + 1], Client samples Tj := (skj ,mskj)← PRSet.Gen(1λ, n).

– Finally, Client removes last entry from T .
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Let ViewReal∗

t+1 be the message A receives during the (t+1)-st query as well as the

client’s table T at the end of the (t + 1)-st query in Real∗. Let ViewExpt be the
message A receives as well as the client’s table T at the end in Expt. Suppose
that the induction hypothesis holds, then it is not hard to see that ViewExpt is
identically distributed as ViewReal∗

t+1 even when conditioning on the view of A in
the first t queries in Real∗, and even when A is computationally unbounded.

In the experiment Expt, it is not hard to see the distribution ViewExpt is
the following: T is sampled at random from PRSet.Gen(1λ, n)lenT, and A’s re-
ceived message is distributed as: sample (sk,msk) ← PRSet.Gen(1λ, n) subject
to PRSet.Member(sk, x) = 1 and output PRSet.Puncture(sk, x).

Given Fact 1, we can prove that any non-uniform p.p.t. A’s views in Ideal
and Real∗ are computationally indistinguishable through a standard hybrid ar-
gument, relying on the the “security w.r.t. puncturing” property of the PRSet
scheme — the hybrid sequence is similar to the proof of Theorem 2.

6.2 Correctness Proof

Deferred to the online full version [47].

7 Additional Related Work

Beimel et al. [6] proved that in the original formulation of PIR, the servers must
collectively probe all n bits of the database on average to respond to a client’s
query. Various techniques have been suggested to overcome this key performance
bottleneck, e.g., encoding the server-side database, storing per-client or even
per-query server state, batching, introducing assumptions like Virtual-Blackbox
obfuscation which is known to be impossible [5], or having many non-colluding
servers. We review this line of work below.

As mentioned in Section 1, the work of Beimel et al. achieves sublinear online
computation by encoding the database into a n1+ε to poly(n)-sized string. The
recent (designated-client) doubly efficient PIR schemes [11,15] rely on encoding
the database as well as having the server store Ω(n) state per client, which is
a significant barrier towards practicality in our motivating applications. Boyle
et al. [11] show that assuming Virtual-Blackbox Obfuscation which is known
to be impossible [5] (and additional non-standard assumptions that are not yet
well understood), one can indeed construct a preprocessing PIR with nε online
runtime and bandwidth, without having to store per-client state at the server.

A related notion called private anonymous data access (PANDA) was recently
introduced by Hamlin et al. [33]. PANDA is a form of preprocessing PIR which
requires a third-party trusted setup besides the client and the servers (which is
not necessary in our work); and moreover, the server storage and time grow
w.r.t. the number of corrupt clients. In our motivating examples, the number of
clients is essentially unbounded which makes known PANDA schemes unsuitable.
Some works [6, 23] suggested having the server store per-query state to reduce
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the online time. Specifically, the construction by Beimel et al. [6] requires a
linear amount of server storage per query, and this is even worse than per-client
storage. Other works [43] improve the online time by making the number of
public-key operations sublinear, along with a still linear number of symmetric-
key operations. Sharding has also been suggested to spread out the server work
online [21] but the total work across all servers is still linear.

A couple of works [38,44] construct preprocessing PIR schemes whose online
runtime is marginally sublinear, e.g., roughly O(n/ log n); and the complexity of
these protocols is much larger than Corrigan-Gibbs and Kogan [20].

An elegant line of work suggested batching queries from the same client [3,
4, 32, 34] or among multiple clients [6, 35, 40] to amortize the linear server work
among the batch. Our formulation can be viewed as a generalization of batched
PIR, since we do not require the requests to come in a batch, and we can nonethe-
less achieve small online bandwidth and work. The work by Beimel et al. [6] also
showed how to get a preprocessing PIR with polylogarithmic online bandwidth
and cost assuming polylogarithmically many non-colluding servers, and poly(n)
server space. Toledo et al. [51] consider how to relax the security definition and
achieve differential-privacy-style security, to improve the server time to sublinear.

The concurrent of Kogan and Corrigan-Gibbs [36] gives a practical instanti-
ation of their earlier work [20], with a clever trick to remove the k-fold parallel
repetition. Their implementation is indeed in the unbounded query setting. For
their particular application, i.e., private blocklist, it turns out that the dabase
is somewhat small, and therefore, they are willing to incur Θ(n) computation
per online query, in exchange for roughly O(

√
n) online time and logarithmic

bandwidth. While their implementation is indeed a practical sweetspot for the
private blocklist application, for larger databases, incurring linear client time
per online query could be prohibitive. Their trick to remove the k-fold repetition
does not seem to immediately apply to our construction because we have an
additional source of error from our underlying PRSet scheme.

Deferred Contents

In the interest of space, we defer additional details and proofs to the online full
version [47].
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