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Abstract. We study the notion of zero-knowledge secure against quan-
tum polynomial-time verifiers (referred to as quantum zero-knowledge)
in the concurrent composition setting. Despite being extensively studied
in the classical setting, concurrent composition in the quantum setting
has hardly been studied.
We initiate a formal study of concurrent quantum zero-knowledge. Our
results are as follows:

– Bounded Concurrent QZK for NP and QMA: Assuming post-
quantum one-way functions, there exists a quantum zero-knowledge
proof system for NP in the bounded concurrent setting. In this set-
ting, we fix a priori the number of verifiers that can simultaneously
interact with the prover. Under the same assumption, we also show
that there exists a quantum zero-knowledge proof system for QMA
in the bounded concurrency setting.

– Quantum Proofs of Knowledge: Assuming quantum hardness
of learning with errors (QLWE), there exists a bounded concurrent
zero-knowledge proof system for NP satisfying quantum proof of
knowledge property.
Our extraction mechanism simultaneously allows for extraction prob-
ability to be negligibly close to acceptance probability (extractability)
and also ensures that the prover’s state after extraction is statisti-
cally close to the prover’s state after interacting with the verifier
(simulatability).
Even in the standalone setting, the seminal work of [Unruh EU-
ROCRYPT’12], and all its followups, satisfied a weaker version of
extractability property and moreover, did not achieve simulatabil-
ity. Our result yields a proof of quantum knowledge system for QMA
with better parameters than prior works.

1 Introduction

Zero-knowledge [GMR85] is one of the foundational concepts in cryptography. A
zero-knowledge system for NP is an interactive protocol between a prover P , who



receives as input an instance x and a witness w, and a verifier V who receives as
input an instance x. The (classical) zero-knowledge property roughly states that
the view of the malicious probabilistic polynomial-time verifier V ∗ generated
after interacting with the prover P can be simulated by a PPT simulator, who
doesn’t know the witness w.

Protocol Composition in the Quantum Setting. Typical zero-knowledge proof sys-
tems only focus on the case when the malicious verifier is classical. The potential
threat of quantum computers forces us to revisit this definition. There are already
many works [ARU14, BJSW16, BG19, BS20, ALP20, VZ20, ABG+20], starting
with the work of Watrous [Wat09], that consider the definition of zero-knowledge
against verifiers modeled as quantum polynomial-time (QPT) algorithms; hence-
forth this definition will be referred to as quantum zero-knowledge. However,
most of these works study quantum zero-knowledge only in the standalone set-
ting. These constructions work under the assumption that the designed protocols
work in isolation. That is, a standalone protocol is one that only guarantees se-
curity if the parties participating in an execution of this protocol do not partake
in any other protocol execution. This is an unrealistic assumption. Indeed, the
standalone setting has been questioned in the classical cryptography literature by
a large number of works [DS98, DCO99, Can01, CLOS02, CF01, RK99, BS05,
DNS04, PRS02, Lin03, Pas04, PV08, PTV14, GJO+13, CLP15, FKP19] that
have focussed on designing cryptographic protocols that still guarantee security
even when composed with the other protocols.

A natural question to ask is whether there exist quantum zero-knowledge
protocols (without any setup) that still guarantee security under composition.
Barring a few works [Unr10, JKMR06, ABG+20], this direction has largely been
unaddressed. The couple of works [JKMR06, ABG+20] that do address composi-
tion only focus on parallel composition; in this setting, all the verifiers interacting
with the prover should send the ith round messages before the (i + 1)th round
begins. The setting of parallel composition is quite restrictive; it disallows the
adversarial verifiers from arbitrarily interleaving their messages with the prover.
A more reasonable scenario, also referred to as concurrent composition, would
be to allow the adversarial verifiers to choose the scheduling of their messages in
any order they desire. So far, there has been no work that addresses concurrent
composition in the quantum setting.

Concurrent Quantum Zero-Knowledge. In the concurrent setting, quantum zero-
knowledge is defined as follows: there is a single prover, who on input instance-
witness pair (x,w), can simultaneously interact with multiple verifiers, where
all these verifiers are controlled by a single malicious quantum polynomial-time
adversary. All the verifiers can potentially share an entangled state. Moreover,
they can arbitrarily interleave their messages when they interact with the prover.
For example, suppose the prover sends a message to the first verifier, instead of
responding, it could let the second verifier send a message, after which the third
verifier interacts with the prover and so on.
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We say that zero-knowledge in this setting holds if there exists a quantum
polynomial-time simulator (with access to the initial quantum state of all the
verifiers) that can simultaneously simulate the interaction between the prover
and all the verifiers.

We ask the following question in this work:

Do there exist quantum zero-knowledge proof systems that are secure
under concurrent composition?

1.1 Our Contributions

Bounded Concurrent QZK for NP. We initiate a formal study of concurrent com-
position in the quantum setting. We work in the bounded concurrent setting:
where the prover interacts only with a bounded number of verifiers where this
bound is fixed at the time of protocol specification. This setting has been well
studied in the classical concurrency literature [Lin03, PR03, Pas04, PTW09].
Moreover, we note that the only other existing work that constructs quantum
zero-knowledge against multiple verifiers albeit in the parallel composition set-
ting, namely [ABG+20]∗, also works in the bounded setting. We prove the fol-
lowing.

Theorem 1 (Informal). Assuming the existence of post-quantum one-way
functions†, there exists a bounded concurrent quantum zero-knowledge proof sys-
tem for NP. Additionally, our protocol is a public coin proof system.

Our construction satisfies quantum black-box zero-knowledge‡. We note that
achieving public-coin unbounded concurrrent ZK is impossible [PTW09] even in
the classical setting.

Quantum Proofs of Knowledge. Our construction, described above, only satisfies
the standard soundness guarantee. A more desirable property is quantum proof
of knowledge. Roughly speaking, proof of knowledge states the following: sup-
pose a malicious (computationally unbounded) prover can convince a verifier to
accept an instance x with probability ε. Let the state of the prover at the end of
interaction with the verifier be |Ψ〉§. Then there exists an efficient extractor, with

∗They achieve bounded parallel ZK under the assumption of quantum learning
with errors and circular security assumption in constant rounds. While the notion they
consider is sufficient for achieving MPC, the parallel QZK constructed by [ABG+20]
has the drawback that the simulator aborts even if one of the verifiers abort. Whereas
the notion of bounded concurrent QZK we consider allows for the simulation to proceed
even if one of the sessions abort. On the downside, our protocol runs in polynomially
many rounds.

†That is, one-way functions secure against (non-uniform) quantum polynomial-time
algorithms.

‡The simulator has oracle access to the unitary V and V †, where V is the verifier.
§We work in the purified picture and thus we can assume that the output of the

prover is a pure state.
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black-box access to the prover, that can output a witness w for x with probabil-
ity δ. Additionally, it also outputs a quantum state |Φ〉. Ideally, we require the
following two conditions to hold: (i) |ε − δ| is negligible and, (ii) the states |Ψ〉
and |Φ〉 are close in trace distance; this property is also referred to as simulata-
bility property. Unruh [Unr12] presented a construction of quantum proofs of
knowledge; their construction satisfies (i) but not (ii). Indeed, the prover’s state,
after it interacts with the extractor, could be completely destroyed. Condition
(ii) is especially important if we were to use quantum proofs of knowledge pro-
tocols as a sub-routine inside larger protocols, for instance in secure multiparty
computation protocols.

Since Unruh’s work, there have been other works that present constructions
that satisfy both the above conditions but they demonstrate extraction only
against computationally bounded adversaries [HSS11, BS20, ALP20]. Thus, it
has been an important open problem to design quantum proofs of knowledge
satisfying both of the above conditions.

We show the following.

Theorem 2 (Informal). Assuming that learning with errors is hard against
QPT algorithms (QLWE), there exists a bounded concurrent quantum zero-
knowledge proof system for NP satisfying quantum proofs of knowledge property.

Unlike all of the previous quantum proof of knowledge protocols which make use
of Unruh’s rewinding technique, we make black-box use of Watrous rewinding
lemma in conjunction with novel cryptographic tools to prove the above theorem.
On the downside, our protocol runs in polynomially many rounds, while Unruh’s
technique works for the existing 3-message Σ protocols.

Bounded Concurrent QZK for QMA. We also show how to extend our result to
achieve bounded concurrrent zero-knowledge proof system for QMA [KSVV02]
(a quantum-analogue of MA).

We show the following.

Theorem 3 (Informal). Assuming post-quantum one-way functions, there ex-
ists a bounded concurrent quantum zero-knowledge proof system for QMA.

This improves upon the existing QZK protocols for QMA [BJSW16, BG19,
CVZ20, BS20] which only guarantee security in the standalone setting.

Our construction considers a simplified version of the framewok of [BJSW16]∗

and instantiates the underlying primitives in their protocol with bounded con-
current secure constructions.

We could combine the recent work of Coladangelo et al. [CVZ20] with our
quantum proof of knowledge system for NP to obtain a proof of quantum knowl-
edge system for QMA. This result yields better parameters than the one guaran-
teed in prior works [CVZ20, BG19]. Specifically, if the malicious prover convinces

∗For the reader familiar with [BJSW16], we consider a coin-flipping protocol se-
cure against explainable adversaries as against malicious adversaries as considered
in [BJSW16].
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the verifier with probability negligibly close to 1 then the extractor (in our re-
sult) can extract a state that is negligibly close to the witness state whereas the
previous works did not have this guarantee.

1.2 Guide to the Reader

We present the overview of our results in the technical sections, just before
presenting a formal description of the results.

– In Section 2, we present the definitions of concurrent QZK proof systems for
NP and QMA. In the same section, we present definitions of quantum proof
of knowledge.

– Bounded Concurrent QZK: In Section 3, we present the construction of
bounded concurrent QZK for NP. We first begin with an overview of the
construction and then present the formal construction in the same section.
The proofs are presented in the Appendix (see the relevant references at the
end of Section 3).

– QZK Proof of Knowledge: In Section 4.1, we present the construction
of bounded concurrent QZK proof of knowledge for NP. We first begin with
an overview of the construction and then present the formal construction in
the same section. This construction involves the tool of oblivious transfer;
we present the definition and the construction of oblivious transfer in the
Appendix.

– Bounded Concurrent QZK for QMA: Finally, we present a construction
of bounded concurrent QZK for QMA in Section 5.

2 Concurrent Quantum ZK Proof Systems: Definitions

We denote the security parameter by λ.
We denote the (classical) computational indistiguishability of the two distri-

butions D0 and D1 by D0 ≈c,ε D1, where ε is the distinguishing advantage. In
the case when ε is negligible, we drop ε from this notation.

We define two distributions D0 and D1 to be quantum computationally in-
distinguishable if they cannot be distinguished by QPT distinguishers; we define
this formally in the full version. We denote this by D0 ≈Q,ε D1, where ε is
the distinguishing advantage. We denote the process of an algorithm A being
executed on input a sample from a distribution D by the notation A(D).

Languages and Relations. A language L is a subset of {0, 1}∗. A (classical)
relation R is a subset of {0, 1}∗ × {0, 1}∗. We use the following notation:

– Suppose R is a relation. We define R to be efficiently decidable if there exists
an algorithm A and fixed polynomial p such that (x,w) ∈ R if and only if
A(x,w) = 1 and the running time of A is upper bounded by p(|x|, |w|).
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– Suppose R is an efficiently decidable relation. We say that R is a NP relation
if L(R) is a NP language, where L(R) is defined as follows: x ∈ L(R) if and
only if there exists w such that (x,w) ∈ R and |w| ≤ p(|x|) for some fixed
polynomial p.

In Section 2.1, we define the notion of bounded concurrent QZK for NP. In
Section 2.2, we define the notion of bounded concurrent ZK for QMA. We present
the definition of quantum proof of knowledge in Section 2.3.

2.1 Bounded Concurrent QZK for NP

We start by recalling the definitions of the completeness and soundness proper-
ties of a classical interactive proof system.

Definition 1 (Proof System). Let Π be an interactive protocol between a
classical PPT prover P and a classical PPT verifier V . Let R(L) be the NP
relation associated with Π.

Π is said to satisfy completeness if the following holds:

– Completeness: For every (x,w) ∈ R(L),

Pr[Accept← 〈P (x,w), V (x)〉] ≥ 1− negl(λ),

for some negligible function negl.

Π is said to satisfy (unconditional) soundness if the following holds:

– Soundness: For every prover P ∗ (possibly computationally unbounded), ev-
ery x /∈ R(L),

Pr [Accept← 〈P ∗(x), V (x)〉] ≤ negl(λ),

for some negligible function negl.

Remark 1. We will later define a stronger property called proof of knowledge
property that subsumes the soundness property.

To define (bounded) concurrent QZK, we first define Q-session adversarial ver-
ifiers. Roughly speaking, a Q-session adversarial verifier is one that invokes Q
instantiations of the protocol and in each instantiation, the adversarial verifier
interacts with the honest prover. In particular, the adversarial verifier can inter-
leave its messages from different instantiations.

Definition 2 (Q-session Quantum Adversary). Let Q ∈ N. Let Π be an
interactive protocol between a (classical) PPT prover and a (classical) PPT ver-
ifier V for the relation R(L). Let (x,w) ∈ R(L). We say that an adversarial
non-uniform QPT verifier V ∗ is a Q-session adversary if it invokes Q ses-
sions with the prover P (x,w).

Moreover, we assume that the interaction of V ∗ with P is defined as follows:
denote by V ∗i to be the verifier algorithm used by V ∗ in the ith session and denote
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by Pi to be the ith invocation of P (x,w) interacting with V ∗i . Every message sent
by V ∗ is of the form

(
(1,msg1) , . . . ,

(
Q,msgQ

))
, where msgi is defined as:

msgi =

{
N/A, if V ∗i doesn’t send a message,
(t, z), if V ∗i sends z in the round t

Pi responds to msgi. If msgi = N/A then it sets msg′i = N/A. If V ∗i has sent the
messages in the correct order∗, then Pi applies the next message function on its
own private state and msgi to obtain z′ and sets msg′i = (t + 1, z′). Otherwise,
it sets msg′i = (⊥,⊥). Finally, V ∗ receives

(
(1,msg′1), . . . , (Q,msg′Q)

)
. In total,

V ∗ exchanges `prot · Q number of messages, `prot is the number of the messages
in the protocol.

While the above formulation of the adversary is not typically how concurrent ad-
versaries are defined in the concurrency literature, we note that this formulation
is without loss of generality and does capture all concurrent adversaries.

We define quantum ZK for NP in the concurrent setting below.

Definition 3 (Concurrent Quantum ZK for NP). An interactive protocol
Π between a (classical) PPT prover P and a (classical) PPT verifier V for
a language L ∈ NP is said to be a concurrent quantum zero-knowledge
(QZK) proof system if it satisfies completeness, unconditional soundness and
the following property:

– Concurrent Quantum Zero-Knowledge: For every sufficiently large λ ∈ N,
every polynomial Q = Q(λ), every Q-session QPT adversary V ∗ there ex-
ists a QPT simulator Sim such that for every (x,w) ∈ R(L), poly(λ)-qubit
bipartite advice state, ρAB, on registers A and B, the following holds:

ViewV ∗ 〈P (x,w), V ∗(x, ρAB)〉 ≈Q Sim(x, ρAB)

where V ∗ and Sim only have access to register A. In other words, only the
identity is performed on register B.

In this work, we consider a weaker setting, called bounded concurrency. The
number of sessions, denoted by Q, in which the adversarial verifier interacts
with the prover is fixed ahead of time and in particular, the different complexity
measures of a protocol can depend on Q.

Definition 4 (Bounded Concurrent Quantum ZK for NP). Let Q ∈ N.
An interactive protocol between a (classical) probabilistic polynomial time (in Q)
prover P and a (classical) probabilistic polynomial time (in Q) verifier V for
a language L ∈ NP is said to be a bounded concurrent quantum zero-
knowledge (QZK) proof system if it satisfies completeness, unconditional
soundness and the following property:

∗That is, it has sent (1, z1) first, then (2, z2) and so on.
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– Bounded Concurrent Quantum Zero-Knowledge: For every sufficiently large
λ ∈ N, every Q-session concurrent QPT adversary V ∗, there exists a QPT
simulator Sim such that for every (x,w) ∈ R(L), poly(λ)-qubit bipartite
advice state, ρAB, on registers A and B, the following holds:

ViewV ∗ 〈P (x,w), V ∗(x, ρAB)〉 ≈Q Sim(x, ρAB)

where V ∗ and Sim only have access to register A. In other words, only the
identity is performed on register B.

2.2 Bounded Concurrent QZK for QMA

We start by recalling the definitions of completeness and soundness properties
of a quantum interactive proof system for promise problems.

Definition 5 (Interactive Quantum Proof System for QMA). Π is an
interactive proof system between a QPT prover P and a QPT verifier V , as-
sociated with a promise problem A = Ayes ∪ Ano ∈ QMA, if the following two
conditions are satisfied.

– Completeness: For all x ∈ Ayes, there exists a poly(|x|)-qubit state |ψ〉
such that the following holds:

Pr[Accept← 〈P (x, |Ψ〉), V (x)〉] ≥ 1− negl(|x|),

for some negligible function negl.

Π is said to satisfy (unconditional) soundness if the following holds:

– Soundness: For every prover P ∗ (possibly computationally unbounded), ev-
ery x ∈ Ano, the following holds:

Pr [Accept← 〈P ∗(x), V (x)〉] ≤ negl(|x|),

for some negligible function negl.

To define bounded concurrent QZK for QMA, we first define the notion of Q-
sesssion adversaries.

Definition 6 (Q-session adversary for QMA). Let Q ∈ N≥1. Let Π be a
quantum interactive protocol between a QPT prover and a QPT verifier V for a
QMA promise problem A = Ayes∪Ano. We say that an adversarial non-uniform
QPT verifier V ∗ is a Q-session adversary if it invokes Q sessions with the prover
P (x, |ψ〉).

As in the case of concurrent verifiers for NP, we assume that the inter-
action of V ∗ with P is defined as follows: denote by V ∗i to be the verifier al-
gorithm used by V ∗ in the ith session and denote by Pi to be the ith invoca-
tion of P (x,w) interacting with V ∗i . Every message sent by V ∗ is of the form(
(1,msg1) , . . . ,

(
Q,msgQ

))
, where msgi is defined as:

msgi =

{
N/A, if V ∗i doesn’t send a message,
(t, ρ), if V ∗i sends the state ρ in the round t
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Pi responds to msgi. If msgi = N/A then it sets msg′i = N/A. If V ∗i has sent
the messages in the correct order, Pi applies the next message function (modeled
as a quantum circuit) on msgi and its private quantum state to obtain ρ′ and
sets msg′i = (t + 1, ρ′). Otherwise, it sets msg′i = (⊥,⊥). Finally, V ∗ receives(
(1,msg′1), . . . , (Q,msg′Q)

)
. In total, V ∗ exchanges `prot ·Q number of messages,

where `prot is the number of the messages in the protocol.

Remark 2. To invoke Q different sessions, we assume that the prover has Q
copies of the witness state.

Remark 3. We assume, without loss of generality, the prover will measure the
appropriate registers to figure out the round number for each verifier. This is
because the malicious verifier can always send the superposition of the ordering
of messages.

We define quantum ZK for QMA in the bounded concurrent setting below.

Definition 7 (Bounded Concurrent QZK for QMA). Let Q ∈ N. An in-
teractive protocol Π between a QPT prover P (running in time polynomial in Q)
and a QPT verifier V (running in time polynomial in Q) for a QMA promise
problem A = Ayes ∪ Ano if it satisfies completeness, unconditional soundness
and the following property:

– Bounded Concurrent Quantum Zero-Knowledge: For every sufficiently
large λ ∈ N, for every Q-session QPT adversary V ∗, there exists a QPT sim-
ulator Sim such that for every x ∈ Ayes and any witness |ψ〉, poly(λ)-qubit
bipartite advice state, ρAB, on registers A and B, the following holds:

ViewV ∗ 〈P (x, |ψ〉), V ∗(x, ρAB)〉 ≈Q Sim(x, ρAB)

where V ∗ and Sim only have access to register A. In other words, only the
identity is performed on register B.

2.3 Quantum Proofs of Knowledge

We present the definition of quantum proof of knowledge; this is the traditional
notion of proof of knowledge, except that the unbounded prover could be a
quantum algorithm and specifically, its intermediate states could be quantum
states.

Definition 8 (Quantum Proof of Knowledge). We say that an interac-
tive proof system (P, V ) for a NP relation R satisfies (ε, δ)-proof of knowledge
property if the following holds: suppose there exists a malicious (possibly compu-
tationally unbounded prover) P ∗ such that for every x, and quantum state ρ it
holds that:

Pr
[
(ρ̃, decision)← 〈P ∗(x, ρ), V (x)〉

∧
decision = accept

]
= ε

9



Then there exists a quantum polynomial-time extractor Ext, such that:

Pr
[
(ρ̃′, decision, w)← Ext (x, ρ)

∧
decision = accept

]
= δ

Moreover, we require T (ρ̃, ρ̃′) = negl(|x|), where T (·, ·) denotes the trace distance
and negl is a negligible function.

We drop (ε, δ) from the notation if |δ−ε| ≤ negl(|x|), for a negligible function
negl.

Remark 4 (Comparison with Unruh’s Proof of Knowledge [Unr12]). Our defini-
tion is a special case of Unruh’s quantum proof of knowledge definition. Any
proof system satisfying our definition is a quantum proof of knowledge system
(according to Unruh’s definition) with knowledge error κ, for any κ. Moreover,
in Unruh’s definition, the extraction probability is allowed to be polynomially
related to the acceptance probability whereas in our case, the extraction proba-
bility needs to be negligibly close to the acceptance probability.

Definition 9 (Concurrent Quantum ZK PoK). We say that a concurrent
(resp., bounded) quantum ZK is a concurrent (resp., bounded) QZKPoK if it
satisfies proof of knowledge property.

2.4 Intermediate Tool: Quantum Witness-Indistinguishable Proofs
for NP

For our construction, we use a proof system that satisfies a property called
quantum witness indistinguishability. We recall this notion below.

Definition 10 (Quantum Witness-Indistinguishability). An interactive
protocol between a (classical) PPT prover P and a (classical) PPT verifier V for
a language L ∈ NP is said to be a quantum witness-indistinguishable proof
system if in addition to completeness, unconditional soundness, the following
holds:

– Quantum Witness-Indistinguishability: For every x ∈ L and w1, w2

such that (x,w1) ∈ R(L) and (x,w2) ∈ R(L), for every QPT verifier V ∗

with poly(λ)-qubit advice ρ, the following holds:

{ViewV ∗ (〈P (x,w1), V ∗(x, ρ))} ≈Q {ViewV ∗ (〈P (x,w2), V ∗(x, ρ))}

Instantiation. By suitably instantiating the constant round WI argument sys-
tem of Blum [Blu86] with statistically binding commitments (which in turn can
be based on post-quantum one-way functions [Nao91]), we achieve a 4 round
quantum WI proof system for NP. Moreover, this proof system is a public-coin
proof system; that is, the verifier’s messages are sampled uniformly at random.

3 Bounded Concurrent QZK for NP

We first give an overview of bounded concurrent QZK for NP.
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3.1 Bounded Concurrent QZK for NP

Black Box QZK via Watrous Rewinding. The traditional rewinding technique
that has been used to prove powerful results on classical zero-knowledge cannot
be easily ported to the quantum setting. The fundamental reason behind this
difficulty is the fact that to carry out rewinding, it is necessary to clone the
state of the verifier. While cloning comes for free in the classical setting, the
no-cloning theorem of quantum mechanics prevents us from being able to clone
arbitrary states. Nonetheless, the seminal work of Watrous [Wat09] demonstrates
that there are rewinding techniques that are amenable to the quantum setting.
Watrous used this technique to present the first construction of quantum zero-
knowledge for NP. This technique is so powerful that all quantum zero-knowledge
protocols known so far (including the ones with non-black box simulation [BS20,
ABG+20]!) either implicitly or explicitly use this technique.

We can abstractly think of Watrous technique as follows: to prove that a
classical protocol is quantum zero-knowledge, first come up with a (classical)
PPT simulator that simulates a (classical) malicious PPT verifier. The classical
simulator needs to satisfy the following two conditions:

– Oblivious Rewinding: There is a distribution induced on the decision bits
of the simulator to rewind in any given round i. This distribution could
potentially depend on the randomness of the simulator and also the state of
the verifier.
The oblivious rewinding condition requires that this distribution should be
independent of the state of the verifier. That is, this distribution should
remain the same irrespective of the state of the verifier∗.

– No-recording: Before rewinding any round, the simulator could record (or
remember) the transcript generated so far. This recorded transcript along
with the rewound transcript will be used for simulation. For instance, in
Goldreich and Kahan [GK96], the simulator first commits to garbage values
and then waits for the verifier to decommit its challenges. The simulator
then records the decommitments before rewinding and then changing its
own commitments based on the decommitted values.
The no-recording condition requires the following to hold: in order for the
simulator to rewind from point i to point j (i > j), the simulator needs to
forget the transcript generated from jth round to the ith round. Note that
the simulator of [GK96] does not satisfy the no-recording condition.

Once such a classical simulator is identified, we can then simulate quantum
verifiers as follows: run the classical simulator and the quantum verifier† in su-
perposition and then at the end of each round, measure the appropriate register
to figure out whether to rewind or not. The fact that the distribution associated

∗A slightly weaker property where the distribution is “approximately” independent
of the state of the verifier also suffices.

†Without loss of generality, we can consider verifiers whose next message functions
are implemented as unitaries and they perform all the measurements in the end.
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with the decision bits are independent of the verifier’s state is used to argue
that the state, after measuring the decision register, is essentially not disturbed.
Using this fact, we can then reverse the computation and go back to an earlier
round. Once the computation is reversed (or rewound to an earlier round), the
simulator forgets all the messages exchanged from the point – to which its being
rewound to – until the current round.

Incompatibility of Existing Concurrent ZK Techniques. To realize our goal of
building bounded concurrent QZK, a natural direction to pursue is to look for
classical concurrent ZK protocols with the guarantee that the classical simula-
tor satisfies both the oblivious rewinding and no-recording conditions. However,
most known classical concurrent ZK techniques are such that they satisfy one
of these two conditions but not both. For example, the seminal work of [PRS02]
proposes a concurrent ZK protocol and the simulator they describe satisfies the
oblivious rewinding condition but not the no-recording condition. More relevant
to our work is the work of Pass et al. [PTW09], who construct a bounded con-
current ZK protocol whose simulator satisfies the no-recording condition but not
the oblivious rewinding condition.

In more detail, at every round, the simulator (as described in [PTW09])
makes a decision to rewind based on which session verifier sends a message in
that round. This means that the probability of whether the simulator rewinds
any given round depends on the scheduling of the messages of the verifiers.
Unfortunately, the scheduling itself could be a function of the state of the verifier.
The malicious verifier could look at the first bit of its auxiliary state. If it is 0,
it will ask the first session verifier to send a message and if it is 1, it will ask the
second session verifier to send a message and so on. This means that a simulator’s
decision to rewind could depend on the state of the verifier.

Bounded Concurrent QZK. We now discuss our construction of bounded concur-
rent QZK and how we overcome the aforementioned difficulties. Our construc-
tion is identical to the bounded concurrent (classical) ZK construction of Pass
et al. [PTW09], modulo the setting of parameters. We recall their construction
below.

The protocol is divided into two phases. In the first phase, a sub-protocol,
referred to as slot, is executed many times. We will fix the number of executions
later when we do the analysis. In the second phase, the prover and the verifier
execute a witness-indistinguishable proof system.

In more detail, one execution of a slot is defined as follows:

– Prover sends a commitment of a random bit b to the verifier. This com-
mitment is generated using a statistically binding commitment scheme that
guarantees hiding property against quantum polynomial-time adversaries
(also referred to as quantum concealing).

– The verifier then sends a uniformly random bit b′ to the prover.

We say that a slot is matched if b = b′.
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In the second phase, the prover convinces the verifier that either the instance
is in the language or there is a large fraction, denoted by τ , of matched slots.
This is done using a proof system satisfying witness-indistinguishability prop-
erty against efficient quantum verifiers. Of course, τ needs to be carefully set
such that the simulator will be able to satisfy this constraint while a malicious
prover cannot. Before we discuss the precise parameters, we first outline the
simulator’s strategy to prove zero-knowledge. As remarked earlier, the classical
simulation strategy described in Pass et al. [PTW09] is incompatible with Wa-
trous rewinding. We first discuss a new classical simulation strategy, that we call
block rewinding, for this protocol and then we discuss how to combine this strat-
egy along with Watrous rewinding to prove quantum zero-knowledge property
of the above protocol.

Block Rewinding. Suppose Q be the number of sessions the malicious verifier
initiates with the simulator. Since this is a bounded concurrent setting, Q is
known even before the protocol is designed. Let `prot be the number of messages
in the protocol. Note that the total number of messages exchanged in all the
sessions is at most `prot ·Q. We assume for a moment that the malicious verifier
never aborts. Thus, the number of messages exchanged between the prover and
the verifier is exactly `prot ·Q.

The simulator partitions the `prot · Q messages into many blocks with each
block being of a fixed size (we discuss the parameters later). The simulator then
runs the verifier till the end of first block. At this point, it checks if this block
contains a slot. Note that the verifier can stagger the messages of a particular
session across the different blocks such that the first message of a slot is in one
block but the second message of this slot could be in a different block. The
simulator only considers those slots such that both the messages of these slots
are contained inside the first block. Let the set of all the slots in the first block
be denoted by µ(B1), where B1 denotes the first block. Now, the simulator picks
a random slot from the set µ(B1). It then checks if this slot is matched or not.
That is, it checks if the bit committed in the slot equals the bit sent by the
verifier. If indeed they are equal, it continues to the next block, else it rewinds
to the beginning of the first block and then executes the first block again. Before
rewinding, it forgets the transcript collected in the first block. It repeats this
process until the slot it picked is matched. The simulator then moves on to
the second block and repeats the entire process. When the simulator needs to
compute a witness-indistinguishable proof for a session, it first checks if the
fraction of matched slots for that particular session is at least τ . If so, it uses
this information to complete the proof. Otherwise, it aborts.

It is easy to see why the no-recording condition is satisfied: the simulator
never stores the messages sent in a block. Let us now analyze why the oblivious
rewinding condition is satisfied. Suppose we are guaranteed that in every block
there is at least one slot. Then, we claim that the probability that the simulator
rewinds is 1

2 ± negl(λ), where negl is a negligible function and λ is the security
parameter. This is because the simulator rewinds only if the slot is not matched
and the probability that a slot is not matched is precisely 1

2 ± negl(λ), from the

13



hiding property of the commitment scheme. If we can show that every block
contains a slot, then the oblivious rewinding condition would also be satisfied.

Absence of Slots and Aborting Issues: We glossed over a couple of issues in
the above description. Firstly, the malicious verifier could abort all the sessions
in some block. Moreover, it can also stagger the messages across blocks such
that there are blocks that contain no slots. In either of the above two cases, the
simulator will not rewind these blocks and this violates the oblivious rewinding
condition: the decision to rewind would be based on whether the verifier aborted
or whether there were any slots within a block. In turn, these two conditions
could depend on the state of the verifier.

To overcome these two issues, we fix the simulator as follows: at the end of
every block, it checks if there are any slots inside this block. If there are slots
available, then the simulator continues as detailed above. Otherwise, it performs
a dummy rewind: it picks a bit uniformly at random and rewinds only if the bit
is 0. If the bit is 1, it continues its execution. This ensures that the simulator will
rewind with probability 1

2 ± negl(λ) irrespective of whether there are any slots
inside a block. Thus, with this fix, the oblivious rewinding condition is satisfied
as well.

Parameters and Analysis: We now discuss the parameters associated with
the system. We set the number of slots in the system to be 120Q7λ. We set

τ to be b 60Q
7λ+Q4λ

120Q7λ c. We set the number of blocks to be 24Q6λ. Thus, the

size of each block is b 120Q
7λ

24Q6λ c. Recall that the reason why we need to set these
parameters carefully is to ensure that the malicious prover cannot match more
than τ slots with better than negligible probability whereas the simulator can
beat this threshold with overwhelming probability.

We now argue that the classical simulator can successfully simulate all the
Q sessions. To simulate any given session, say the ith session, the number of
matched slots needs to be at least 60Q7λ+Q4λ. Note that the number of blocks
is 24Q6λ; the best case scenario is that each of these blocks contain at least
one slot of the ith session and the simulator picks this slot every time. Even in
this best case scenario, the simulator can match at most 24Q6λ slots and thus,
there still would remain 60Q7λ+Q4λ− 24Q6λ number of slots to be matched.
Moreover, even the likelihood of this best case scenario is quite low.

Instead, we argue the following:

– The simulator only needs to match 3Q4λ number of slots for the ith session.
We argue that with overwhelming probability, there are 3Q4λ blocks such
that (i) there is at least one slot from the ith session and, (ii) the simulator
happens to choose a slot belonging to this session in each of these blocks.

– Roughly, 120Q7λ−3Q4λ
2 � 60Q7λ − 2Q4λ number of slots are matched by

luck, even without the simulator picking these slots and trying to match.
This follows from the fact that with probability 1

2 , a slot is matched and the
number of remaining slots that need to be matched are 120Q7λ− 3Q4λ.
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From the above two bullet points, it follows that with overwhelming probability,
the total number of slots matched is at least 60Q7λ+Q4λ.

We note that although the simulation strategy of Pass et al. [PTW09] is quite
different, their analysis follows the same template as above.

Simulation of Quantum Verifiers: So far we have demonstrated a sim-
ulator that can simulate classical verifiers. We describe, at a high level, how to
simulate quantum verifiers. The quantum simulator runs the classical simulator
in superposition. At the end of every block, it measures a single-qubit register,
denoted by Dec, which indicates whether the simulator needs to rewind this
block or not. If this register has 0, the simulator does not rewind, otherwise it
rewinds. We can show that, no matter what the auxiliary state of the malicious
verifier is, at the end of a block, the quantum state is of the following form:

√
p|0〉Dec|ΨGood〉+

√
1− p|1〉Dec|ΨBad〉,

where |ΨGood〉 is a superposition of all the transcripts where the chosen slot is
matched and on the other hand, |ΨBad〉 is a superposition of all the transcripts
where the chosen slot is not matched. Moreover, using the hiding property of the
commitment scheme, we can argue that |p − 1

2 | ≤ negl(λ). Then we can apply
the Watrous rewinding lemma, to obtain a state that is close to |ΨGood〉. This
process is repeated for every block. At the end of the protocol, the simulator
measures the registers containing the transcript of the protocol and outputs this
along with the private state of the verifier.

3.2 Construction

We present the construction of quantum zero-knowledge proof system for NP in
the bounded concurrent setting in Figure 1. As remarked earlier, the construction
is the same as the classical bounded concurrent ZK by Pass et al. [PTW09],
whereas our proof strategy is significantly different from that of Pass et al.

The relation associated with the bounded concurrent system will be denoted
by R(L), with L being the associated NP language. Let Q be an upper bound
on the number of sessions. We use the following tools in our construction.

– Statistically-binding and quantum-concealing commitment protocol, denoted
by (Comm,R).

– Four round quantum witness-indistinguishable proof system ΠWI (Defini-
tion 10). The relation associated with ΠWI, denoted by RWI, is defined as
follows:

RWI =

{((
x, r1, c1, b

′
1, . . . , r120Q7λ, c120Q7λ, b

′
120Q7λ

)
;
(
w, r1, . . . , r120Q7λ

))
: (x,w) ∈ R(L)

∨
∃j1, . . . , j60Q7λ+Q4λ ∈ [120Q7λ] s.t.

60Q7λ+Q4λ∧
i=1

Comm(1λ, rji , b
′
ji ; rji) = cji

}
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Input of P : Instance x ∈ L along with witness w.
Input of V : Instance x ∈ L.

Stage 1: For j = 1 to 120Q7λ,

– P ↔ V : Sample bj
$←− {0, 1} uniformly at random. P commits to bj using the

statistical-binding commitment scheme. Let the verifier’s message (verifier plays
the role of the receiver) be rj and let the prover’s message be cj .

– V → P : Sample b′j
$←− {0, 1} uniformly at random. Respond with b′j .

// We refer to one execution as a slot. So, P and V execute 120Q7λ number of slots.

Stage 2: P and V engage in ΠWI with the common input being the following:

(x, r1, c1, b
′
1, . . . , r120Q7λ, c120Q7λ, b

′
120Q7λ)

Additionally, P uses the witness (w,⊥, . . . ,⊥).

Fig. 1. Construction of classical bounded concurrent ZK for NP.

We present the proofs of completeness, soundness and quantum zero-knowledge
in the full version.

4 Quantum Proofs of Knowledge

We first present a construction of standalone quantum proof of knowledge for NP.
We extend this construction to the bounded concurrent setting in Section 3.1.

4.1 Standalone Quantum Proofs of Knowledge

Towards building a bounded-concurrent QZK system satisfying quantum proof of
knowledge property, we first focus on the standalone QZK setting. The quantum
proof of knowledge property roughly says the following: for every unbounded
prover convincing a verifier to accept an instance x with probability p, there
exists an extractor that outputs a witness w with probability negligibly close to
p and it also outputs a state |Φ〉 that is close (in trace distance) to the output
state of the real prover.

Our approach is to design a novel extraction mechanism that uses oblivious
transfer to extract a bit from a quantum adversary.
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Main Tool: Statistical Receiver-Private Oblivious Transfer. Our starting point
is an oblivious transfer (OT) protocol [Rab05]. This protocol is defined between
two entities: a sender and a receiver. The sender has two bits (m0,m1) and the
receiver has a single bit b. At the end of the protocol, the receiver receives the
bit mb.

The security against malicious senders (receiver privacy) states that the
sender should not be able to distinguish (with non-negligible probability) whether
the receiver’s bit is 0 or 1. The security against malicious receivers (also called
sender privacy) states that there is a bit b′ such that the receiver cannot dis-
tinguish (with non-negligible probability) the case when the sender’s input is
(m0,m1) versus the setting when the sender’s input is (mb′ ,mb′).

We require receiver privacy to hold against unbounded senders while we
require sender privacy to hold against quantum polynomial-time receivers. The
reason we require receiver privacy against unbounded senders is because our goal
is to design extraction mechanism against computationally unbounded provers.

We postpone discussing the construction of statistical receiver-private obliv-
ious transfer to the Appendix. We will now see how to use this to achieve ex-
traction.

One-bit Extraction with
(
1
2 ± negl

)
-error. We begin with a naive attempt to

design the extraction mechanism for extracting a single secret bit, say s∗. The
prover and the verifier execute the OT protocol; prover takes on the role of the
OT sender and the verifier takes on the receiver’s role. The prover picks bits b
and α uniformly at random and then sets the OT sender’s input to be (s, α) if
b = 0, otherwise if b = 1, it sets the OT sender’s input to be (α, s). The verifier
sets the receiver’s bit to be 0. After the OT protocol ends, the prover sends the
bit b. Note that if the bit b picked by the prover was 0 then the verifier can
successfully recover s, else it recovers α.

We first discuss the classical extraction process. The quantum extractor runs
the classical extractor in superposition as we did in the case of quantum zero-
knowledge. The extraction process proceeds as follows: the extractor picks a bit
b̃ uniformly at random and sets b̃ to be the receiver’s bit in the OT protocol.
By the statistical receiver privacy property of OT, it follows that the probability
that the extractor succeeds in recovering s is negligibly close to 1

2 . Moreover,
the success probability is independent of the initial state of the prover. This
means that we can apply the Watrous rewinding lemma and amplify the success
probability.

Malicious Provers: However, we missed a subtle issue: the malicious prover
could misbehave. For instance, the prover can set the OT sender’s input to be
(r, r) and thus, not use the secret bit s at all.

∗For instance, s could be the firt bit of the witness.
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We resolve this issue by additionally requiring the prover to prove to the
verifier that one of its inputs in the OT protocol is the secret bit∗ s. This is
realized by using a quantum zero-knowledge protocol, denoted by Π.

Error amplification. A malicious verifier can successfully recover the secret s with
probability 1

2 . To reduce the verifier’s success probability, we execute the above
process (i.e., first executing the OT protocol and then executing the ZK protocol)
λ number of times, where λ is the security parameter. First, the prover will
additively secret share the bit s into secret shares sh1, . . . , shλ. It also samples
the bits b1, . . . , bλ uniformly at random. In the ith execution, it sets the OT
sender’s input to be (shi, αi) if bi = 0, otherwise it sets the OT sender’s input to
be (αi, shi), where αi is sampled uniformly at random. After all the OT protocols
are executed, the prover is going to prove using a QZK protocol Π, as considered
above, that the messages in the OT protocols were correctly computed.

We first argue that even in this protocol, the extraction still succeeds with
overwhelming probability. In each OT execution, the extractor applies Watrous
rewinding, as before, to extract all the shares sh1, . . . , shλ. From this, it can re-
cover s. All is left is to argue that this template satisfies quantum zero-knowledge
property. It turns out that arguing this is challenging†.

Challenges in Proving QZK and Distinguisher-Dependent Hybrids. We first de-
fine the simulator as follows:

– The simulator uses (αi, αi) as the sender’s input in the ith OT execution,
where αi is sampled uniformly at random.

– It then simulates the protocol Π.

To prove that the output distribution of the simulated world is computationally
indistinguishable from the real world, we adopt a hybrid argument. The first
hybrid, Hyb1, corresponds to the real world. In the second hybrid, Hyb2, simulate
the protocol Π. The indistinguishability of Hyb1 and Hyb2 follows from the
QZK property of Π. Next, we define the third hybrid, Hyb3, that executes the
simulator. To prove the indistinguishability of Hyb2 and Hyb3, we consider a
sequence of intermediate hybrids, denoted by {Hyb2.j}j∈[λ]. Using this sequence
of hybrids, we change the inputs in all the λ OT executions one at a time. Finally,
we define the third hybrid, Hyb3, that corresponds to the ideal world. Proving

∗For now, assume that there exists a predicate that can check if s is a valid secret
bit.

†We would like to point out that we are designing the standalone PoK protocol
as a stepping stone towards the bounded concurrent PoK protocol. If one were to
be interested in just the standalone setting, then it might be possible to avoid the
subtelties described above by making use of a simulation-secure OT rather than an
indistinguishable-secure OT. The reason why we use an indistinguishable-secure OT in
the concurrent PoK setting instead of a simulation-secure OT is because we want to
avoid using more than one simulator in the analysis; otherwise, we would have multiple
simulators trying to rewind the verifier, making the analysis significantly complicated.
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the indistinguishability of the consecutive hybrids, Hyb2.j and Hyb2.j+1, in this
sequence turns out to be challenging.

The main issue is the following: suppose we are in the jth intermediate hybrid
Hyb2.j , for j ≤ λ. At this point, we have changed the inputs to the first j OT

executions and we are about to change the input to the (j + 1)th OT. But what
exactly are the inputs we are using for the first j OT executions? It is unclear
whether we use the input (shi, shi) or the input (αi, αi), for i ≤ j, in the ith

OT execution. Note that the OT security states that we can either switch the
real sender’s inputs to either (shi, shi) or (αi, αi), based on the sender’s and
the distinguisher’s randomness. And hence, we define an inefficient intermediate
hybrid, which is a function (not necessarily computable), that determines for
every i, where i ≤ j, whether to use (shi, shi) or (αi, αi). Moreover, this hybrid
depends on the distinguisher, that distinguishes the two intermediate hybrids.

The indistinguishability of the consecutive pair of inefficient hybrids, say
Hyb2.j and Hyb2.j+1, is proven by a non-uniform reduction that receives as input
the advice corresponding to the first j executions of OT, where the sender’s
inputs are correctly switched to either (shi, shi) or (αi, αi), for i ≤ j. This
in turn depends on the distinguisher distinguishing these two hybrids. Then,
the reduction uses the (j + 1)th OT execution in the protocol to break the
sender privacy property of OT. If the two hybrids can be distinguished with non-
negligible probability then the reduction can succeed with the same probability.

In the hybrid Hyb2.λ−1, we additionally include an abort condition: if the
inputs in the first λ − 1 OT executions are all switched to (shi, shi) then we
abort. We show that the probability that Hyb2.λ−1 aborts is negligible. This is
necessary to argue that the verifier does not receive all the shares of the secret.

Note that only the intermediate hybrids, namely {Hyb2.j}j∈[λ], are inefficient,
and in particular, the final hybrid Hyb3 is still efficient.

Extraction of Multiple Bits. To design a quantum proof of knowledge protocol,
we need to be able to extract not just one bit, but multiple bits. To achieve this,
we design the prover as follows: on input a witness w, it sequentially executes
the above extraction template for each bit of the witness. That is, for every
i ∈ [`w], where `w is the length of w, it additively secret shares wi into the
shares (shi,1, . . . , shi,λ). It then invokes `w · λ number of OT executions, where
in the (i, j)th execution, it chooses the input (shi,j , αi,j) if bi,j = 0, or the input
(αi,j , shi,j) if bi,j = 1, where αi,j , bi,j are sampled uniformly at random. Finally,
it uses a QZK protocol to prove that it behaved honestly in the earlier OT
executions.

The proofs of quantum proof of knowledge and the QZK properties follow
along the same lines as the single-bit extraction case.

4.2 Construction of (Standalone) QZKPoK

We construct a (standalone) QZKPoK (P, V ) for an NP relation R(L). The
following tools are used in our construction:
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– A post-quantum statistical receiver-private oblivious transfer protocol,ΠOT =
(S,R) satisfying perfect correctness property.
We say that a transcript τ is valid with respect to sender’s randomness r
and its input bits (m0,m1) if τ can be generated with a sender that uses r
as randomness for the protocol and uses (m0,m1) as inputs.

– A (standalone) QZK proof system Πzk for R(Lzk). We describe the relation
R(Lzk), parameterized by security parameter λ, below.

R (Lzk) =

{((
x, {τ (i,j)OT , bi,j}i∈[`w],j∈[λ]

)
;

(
w,
{
r
(i,j)
OT , shi,j , αi,j

}
i∈[`w],j∈[λ]

))
:

(
∀i∈[`w],j∈[λ],

τ
(i,j)
OT is valid w.r.t

r
(i,j)
OT and (((1−bi,j)shi,j+bi,j ·αi,j), (bi,jshi,j+(1−bi,j)·αi,j))

)∧(
∀i∈[`w],

⊕λj=1shi,j=wi

)∧
(x,w) ∈ R(L)

}
In other words, the relation checks if the shares {shi,j} used in all the
OT executions so far are defined to be such that the XOR of the shares
shi,1, . . . , shi,λ yields the bit wi. Moreover, the relation also checks if w1 · · ·w`w
is the witness to the instance x.

We describe the construction in Figure 2.

We present the proofs of completeness, quantum proof of knowledge and quan-
tum zero-knowledge in the full version.

4.2.1 Quantum PoK in the Bounded Concurrent Setting Our con-
struction of bounded concurrent quantum proof of knowledge is the same as the
one described in Section 4.1, except that we instantiate Π using the bounded
concurrent QZK protocol that we constructed in Section 3∗.

However, proving the bounded concurrent QZK protocol turns out to be even
more challenging than the standalone setting. To grasp the underlying difficul-
ties, let us revisit the proof of QZK in Section 4.1. To prove the indistinguisha-
bility of the real and the ideal world, we first simulated the protocol Π. Since we
are in the bounded concurrent setting, the simulator of Π is now simultaneously
simulating multiple sessions of the verifier. Then using a sequence of intermedi-
ate hybrids, we changed the inputs used in the OT executions of all the sessions
one at a time. However, in the bounded concurrent setting, the OT messages
can be interleaved with QZK messages. This means that the simulator of QZK
could be rewinding the OT messages along with the QZK messages. This makes
it difficult to invoke the security of OT.

To reduce the indistinguishability of hybrids to breaking OT, we will carefully
design the security reduction such that it does not rewind the blocks (the defi-
nition of a block is the same as the one described in Section 3.1) containing the

∗We emphasize that we use the specific bounded concurrent QZK protocol that we
constructed earlier and we do not know how to provide a generic transformation.
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Input of P : Instance x ∈ L along with witness w. The length of w is denoted to be
`w.
Input of V : Instance x ∈ L.

– For every i ∈ [`w], P samples the shares shi,1, . . . , shi,λ uniformly at random
conditioned on ⊕λj=1shi,j = wi, where wi is the ith bit of w.

– For every i ∈ [`w], P samples the bits αi,1, . . . , αi,λ uniformly at random.

– For i ∈ [`w], j ∈ [λ], do the following:
• P ↔ V : P and V execute ΠOT with V playing the role of the receiver in ΠOT

and P playing the role of the sender in ΠOT. The input of the receiver in this
protocol is 0, while the input of the sender is set to be (shi,j , αi,j) if bi,j = 0,
otherwise it is set to be (αi,j , shi,j) if bi,j = 1, where the bit bi,j is sampled
uniformly at random.

Call the resulting transcript of the protocol to be τ
(i,j)
OT and let r

(i,j)
OT be the

randomness used by the sender in OT.

• P → V : P sends bi,j to V .

– P ↔ V : P and V execute Πzk with P playing the role of the prover of Πzk and V

playing the role of the verifier of Πzk. The instance is

(
x,
{
τ
(i,j)
OT , bi,j

}
i∈[`w],j∈[λ]

)
and the witness is

(
w,
{
r
(i,j)
OT , shi,j , αi,j

}
i∈[`w],j∈[λ]

)
. If the verifier in Πzk rejects,

then V rejects.

Fig. 2. Construction of (standalone) QZKPoK for NP.

messages of the OT protocol. This ensures that we can embed the messages ex-
changed with the external challenger (in the OT game) without the fear of being
rewound. Of course, we need to be cautious: the decision to not rewind a specific
block could leak information about the private state of the verifier and this could
affect the zero-knowledge propety of the underlying QZK protocol. To overcome
this issue, for a block containing the OT messages, we perform a dummy rewind
where the transcript of conversation in this block does not change. Thus, we
can still interact with the external challenger using the messages in this block.
Another issue that arises is that we might end up not rewinding as many blocks
as the round complexity of the underlying OT protocol, which is polynomially
many rounds. We show that the simulator of the bounded concurrent QZK we
constructed in Section 3.1 can be modified in such a way that it can successfully
simulate all the sessions even if polynomially many blocks are ignored.
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We present the formal details in Section 3.1.

5 Bounded Concurrent QZK for QMA

We show a construction of bounded concurrent QZK for QMA. Our starting
point is the QZK protocol for QMA from [BJSW16], which constructs QZK for
QMA from QZK for NP, a commitment scheme and a coin-flipping protocol. We
first simplify the protocol of [BJSW16] as follows: their protocol requires security
of the coin-flipping protocol to hold against malicious adversaries whereas we
only require the security to hold against adversaries who don’t deviate from
the protocol specification. Once we simplify this step, the resulting protocol will
satisfy the property that the QZK simulator only rewinds during the execution of
the underlying simulator simulating the QZK protocol for NP. This modification
makes it easier for us to extend this protocol to the bounded concurrent setting.
We simply instantiate the underlying QZK for NP protocol with its bounded
concurrent version.

5.1 Bounded Concurrent QZK for QMA

We first recall the QZK for QMA construction from [BJSW16]. Their protocol
is specifically designed for the QMA promise problem called k-local Clifford
Hamiltonian, which they showed to be QMA-complete for k = 5. We restate it
here for completeness.

Definition 11 (k-local Clifford Hamiltonian Problem [BJSW16]). For

all i ∈ [m], let Hi = Ci|0⊗k〉〈0⊗k|C†i be a Hamiltonian term on k-qubits where
Ci is a Clifford circuit.

– Input: H1, H2, . . . ,Hm and strings 1p, 1q where p and q are positive integers
satisfying 2p > q.

– Yes instances (Ayes): There exists an n-qubit state such that Tr[ρ
∑
iHi] ≤

2−p

– No instances (Ano): For every n-qubit state ρ, the following holds: Tr[ρ
∑
iHi] ≥

1
q

BJSW Encoding. A key idea behind the construction from [BJSW16] is for
the prover to encode its witness, |ψ〉, using a secret-key quantum authentication
code (that also serves as an encryption) that satisfies the following key properties
needed in the protocol. For any state |ψ〉, denote the encoding of |ψ〉 under the
secret-key s by Es(|ψ〉).

1. Homomorphic evaluation of Cliffords. Given Es(|ψ〉), and given any Clifford
circuit C, it is possible to compute Es′(C|ψ〉) efficiently. Moreover, s′ can be
determined efficiently by knowing C and s.
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2. Homomorphic measurements of arbitrary Clifford basis. For any Clifford cir-
cuit C and any state |ψ〉, a computational basis measurement on C|ψ〉 can
be recovered from a computational basis measurement on Es′(C|ψ〉) along
with C and s. Formally, there is a classically efficiently computable function
g such that if y is sampled from the distribution induced by measuring the
state Es′(C|ψ〉) in the computational basis, then g(s, C, y) is sampled from
the distribution induced by measuring the state C|ψ〉 in the computational
basis.

3. Authentication of measurement outcomes. For any s and any clifford C, there
is a set Ss,C such that for any state |ψ〉, and any computational basis mea-
surement outcome y performed on Es′(C|ψ〉), it holds that y ∈ Ss,C . Fur-
thermore, for any y, given s and C, it can be efficiently checked whether
y ∈ Ss,C .

4. Simulatability of authenticated states: there exists an efficient QPT algo-
rithm B such that for any adversary A, every x ∈ Ayes along with wit-
ness |ψ〉, poly(λ)-qubit advice ρ, the following holds: the probability that

P(s, C†r∗ ,A(Es(|ψ〉))) outputs 1 is negligibly close to the probability that

P(s, C†r∗ ,A(B(x, s, r∗)))) outputs 1, where P is defined below.

P(s, C†, y) =

{
1 if g(s, C†, y) 6= 0

0 otherwise

In both the events, s and r∗ are chosen uniformly at random.

The QMA verifier of the k-local Clifford Hamiltonian problem measures terms
of the form C|0⊗k〉〈0⊗k|C† where C is a Clifford circuit on a witness |ψ〉. Specif-
ically, a verifier will first apply C† and then measure in the computational basis.
If the outcome of the measurement is the 0 string, it rejects. Otherwise, it ac-
cepts. In the zero-knowledge case, the witness will be encoded, Es(|ψ〉), but the
verifier can still compute Es(C

†|ψ〉) and measure to obtain some string y. Then,
the prover can prove to the verifier (in NP) that y corresponds to a non-zero
outcome on a measurement of C†|ψ〉 instead using the predicate P.

We follow the approach of BJSW [BJSW16], except that we instantiate the
coin-flipping protocol in a specific way in order to get concurrency when instan-
tiating the underlying QZK for NP with our bounded concurrent construction.

Construction. We use the following ingredients in our construction:

– Statistical-binding and quantum-concealing commitment scheme, (Comm,R).
– Bounded concurrent QZK proof system, denoted by ΠNP, for the following

language (Section 3.2).

L =

((r, c, r′, c′, r∗, y, b) ; (s, `, a, `′)) :

P(s,C†
r∗ ,y)=1∧

Comm(1λ,r,s;`)=c∧
Comm(1λ,r′,a;`′)=c′∧

a⊕b=r∗


Let Q be the maximum number of sessions associated with the protocol.

23



We describe the construction of bounded concurrent QZK for QMA (with bound
Q) in Figure 5.1. We prove the following.

Instance: A k-local Clifford Hamiltonian, H =
M∑
r=1

Cr|0⊗k〉〈0⊗k|C†r .

Witness: |ψ〉

– P ↔ V : Prover P samples a secret-key s
$←− {0, 1}poly(k,M), and commits to s using

the commitment protocol (Comm,R). Let r be the first message of the receiver
(sent by V ) and c be the commitment.
// We call this commitment, the secret-key commitment.

– P → V : P sends Es(|ψ〉).

– P ↔ V : Prover samples a random string a
$←− {0, 1}log(M), and commits to a using

the commitment protocol (Comm,R). Let r′ be the first message of the receiver
and c′ be the commitment.
// We call this commitment, the coin-flipping commitment.

– V → P : Verifier samples a random string b
$←− {0, 1}log(M). Verifier sends b to the

prover.

– P → V : Prover sends r∗ := a⊕ b to the verifier.

– Verifier computes Eval
(
C†r∗ ,Es(|Ψ〉)

)
→ Es(C

†
r∗ |ψ〉) and measures in the compu-

tational basis. Let y denote the measurement outcome. Verifier sends y to the
prover.

– Prover checks that y ∈ Ss,C†
r∗

and that P(s, C†r∗ , y) = 1. If not, it aborts.

– Prover and verifier engage in a QZK protocol for NP, ΠNP, for the statement
(r, c, r′, c′, r∗, y, b) and the witness (s, `, a, `′).

Fig. 3. Bounded-Concurrent QZK for QMA

Theorem 4. Assuming that ΠNP satisfies the definition of bounded concurrent
QZK for NP, the protocol given in Figure 5.1 is a bounded concurrent QZK
protocol for QMA with soundness 1

poly .

Remark 5. The soundness of the above protocol can be amplified by sequential
repetition. In this case, the prover needs as many copies of the witness as the
number of repetitions.
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Proof (Proof Sketch).
Completeness follows from [BJSW16].

Soundness. Once we argue that r∗ produced in the protocol is uniformly dis-
tributed, even when the verifier is interacting with the malicious prover, we can
then invoke the soundness of [BJSW16] to prove the soundness of our protocol.

Suppose the verifier accepts the ΠNP proof produced during the execution of
the above protocol. From the soundness of ΠNP, we have that r∗ = a⊕ b where
a is the string that the prover initially committed to in c′. By the statistical
binding security of the commitment, and the fact that b is chosen at random
after a has been committed to, we have that r∗ is sampled uniformly from [M ].

Bounded-Concurrent Quantum Zero-Knowledge. Suppose x ∈ Ayes. Suppose V ∗

is a non-uniform malicious QPT Q-session verifier. Then we construct a QPT
simulator Sim as follows.

Description of Sim: it starts with the registers Xzk,Xanc,M,Aux. The regis-
ter Xzk is used by the simulator of the bounded concurrent QZK protocol,
Xanc is an ancillary register, M is used to store the messages exchanged be-
tween the simulator and the verifier and finally, the register Aux is used for
storing the private state of the verifier. Initialize the registers Xzk,M with
all zeroes. Initialize the register Xanc with (

⊗Q
j=1 |sj〉〈sj |) ⊗ (

⊗Q
j=1 |r∗j 〉〈r∗j |) ⊗

(
⊗Q

j=1 ρj) ⊗ |0⊗poly〉〈0⊗poly|, where si, r
∗
i are generated uniformly at random

and ρj ← B(x, sj , r
∗
j ) is defined in bullet 4 under BJSW encoding.

Sim applies the following unitary for Q times on the above registers. This
unitary is defined as follows: it parses the message ((1,msg1), . . . , (Q,msgQ)) in
the register M. For every round of conversation, it does the following: if it is
V ∗’s turn to talk, it applies V ∗ on Aux and M. Otherwise,

– Let S1 be the set of indices such that for every i ∈ S1, msgi is a message in
the protocol ΠNP. Finally, let S2 = [Q]\S1.

– It copies ((1,msg1), . . . , (Q,msgQ)) into Xzk (using many CNOT operations)
and for every i /∈ S1, replaces msgi with N/A. We note that msgi is a quan-
tum state (for instance, it could be a superposition over different messages).

– For every i ∈ S2, if msgi is the first prover’s message of the ith session,
then set msg′i to be |ci〉〈ci| ⊗ ρi, where ci is the secret-key commitment of
0. If msgi corresponds to the coin-flipping commitment, then set msg′i to be
|c′i〉〈c′i| where c′i is a commitment to 0.

– It applies the simulator ofΠNP on Xzk to obtain ((1,msg′1,zk), . . . (Q,msg′Q,zk)).

The ith session simulator of ΠNP takes as input (ri, ci, r
′
i, c
′
i, r
∗
i , yi, bi), where

r∗i was generated in the beginning and ri, ci, r
′
i, c
′
i, yi, bi are generated as

specified in the protocol.
– Determine ((1,msg′1), . . . , (Q,msg′Q)) as follows. Set msg′i = msgi,zk, if i ∈ S1.

Output of this round is ((1,msg′1), . . . , (Q,msg′Q)).

We claim that the output distribution of Sim (ideal world) is computationally
indistinguishable from the output distribution of V ∗ when interacting with the
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prover (real world).

Hyb1: This corresponds to the real world.

Hyb2: This is the same as Hyb1 except that the verifier V ∗ is run in superposition
and the transcript is measured at the end.

The output distributions of Hyb1 and Hyb2 are identical.

Hyb3: Simulate the zero-knowledge protocol ΠNP simultaneously for all the ses-
sions. Other than this, the rest of the hybrid is the same as before.

The output distributions of Hyb2 and Hyb3 are computationally indistin-
guishable from the bounded concurrent QZK property of ΠNP.

Hyb4.i for i ∈ [Q]: For every j ≤ i, the coin-flipping commitment in the jth

session is a commitment to 0 instead of ai. For all j > i, the commitment is
computed as in the previous hybrid.

The output distributions of Hyb4.i−1 (or Hyb3 if i = 1) and Hyb4.i are compu-
tationally indistinguishable from the quantum concealing property of (Comm,R).

Hyb5.i for i ∈ [Q]: For every j ≤ i, the secret-key commitment in the jth session
is a commitment to 0. For all j > i, the commitment is computed as in the
previous hybrid.

The output distributions of Hyb5.i−1 (or Hyb4.Q if i = 1) and Hyb5.i are com-
putationally indistinguishable from the quantum concealing property of (Comm,R).

Hyb6.i for i ∈ [Q]: For every j ≤ i, the encoding of the state is computed instead
using B(x, si, r

∗
i ), where si, r

∗
i is generated uniformly at random.

The output distributions of Hyb6.i−1 and Hyb6.i are statistically indistin-
guishable from simulatability of authenticated states property of BJSW encod-
ing (bullet 4). This follows from the following fact: conditioned on the prover not
aborting, the output distributions of the two worlds are identical. Moreover, the
property of simulatability of authenticated states shows that the probability of
the prover aborting in the previous hybrid is negligibly close to the probability
of the prover aborting in this hybrid.

Hyb7: This corresponds to the ideal world.
The output distributions of Hyb6.Q and Hyb7 are identical.

Proof of Quantum Knowledge with better witness quality. We can define an
anologous notion of proof of knowledge in the context of interactive protocols
for QMA. This notion is called proof of quantum knowledge. See [CVZ20] for a
definition of this notion. Coladangelo, Vidick and Zhang [CVZ20] show how to
achieve quantum proof of quantum knowledge generically using quantum proof of
classical knowledge. Their protocol builds upon [BJSW16] to achieve their goal.
We can adopt their idea to achieve proof of quantum knowledge property for a
bounded concurrent QZK for QMA system. In Figure 5.1, include a quantum
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proof of classical knowledge system for NP (for instance, the one we constructed
in Section 4.2) just after the prover sends encoding of the witness state |Ψ〉,
encoded using the key s. Using the quantum proof of classical knowledge system,
the prover convinces the verifier of its knowledge of the s. The rest of the protocol
is the same as Figure 5.1. To see why this satisfies proof of quantum knowledge,
note that an extractor can extract s with probability negligibly close to the
acceptance probability and using s, can recover the witness |Ψ〉.

For the first time, we get proof of quantum knowledge (even in the standalone
setting) with (1−negl)-quality if the acceptance probability is negligibly close to
1, where the quality denotes the closeness to the witness state. Previous proof of
quantum knowledge [BG19, CVZ20] achieved only 1− 1

poly qualtiy; this is because

these works use Unruh’s quantum proof of classical knowledge technique [Unr12]
and the extraction probability in Unruh is not negligibly close to the acceptance
probability.
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