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Abstract. This paper studies information-theoretically secure multiparty com-
putation (MPC) over rings Z/p`Z. In the work of [Abs+19a, TCC'19], a pro-
tocol based on the Shamir secret sharing over Z/p`Z was presented. As in
the �eld case, its limitation is that the share size grows as the number of
players increases. Then several MPC protocols were developed in [Abs+20,
Asiacrypt'20] to overcome this limitation. However, (i) their o�ine multiplica-
tion gate has super-linear communication complexity in the number of players;
(ii) the share size is doubled for the most important case, namely over Z/2`Z
due to infeasible lifting of self-orthogonal codes from �elds to rings; (iii) most
importantly, the BGW model could not be applied via the secret sharing given
in [Abs+20, Asiacrypt'20] due to lack of strong multiplication.
In this paper we overcome all the drawbacks mentioned above. Of independent
interest, we establish an arithmetic secret sharing with strong multiplication,
which is the most important primitive in the BGW model. Incidentally, our
solution to (i) has some advantages over the concurrent one of [PS21, EC'21],
since it is direct, is only one-page long, and furthermore carries over Z/p`Z.
Finally, we lift Reverse Multiplication Friendly Embeddings (RMFE) from
�elds to rings, with same (linear) complexity. Note that RMFE has become a
standard technique for communication complexity in MPC in the regime over
many instances of the same circuit, as in [Cas+18, Crypto'18] and [DLN19,
Crypto'19]. We thus recover the same amortized complexity of MPC over
Z/2`Z than over �elds.
To obtain our theoretical results, we use the existence of lifts of curves over
rings, then use the known results stating that Riemann-Roch spaces are free
modules. To make our scheme practical, we start from good algebraic geometry
codes over �nite �elds obtained from existing computational techniques. Then
we present, and implement, an e�cient algorithm to Hensel-lift the generating
matrix of the code, such that the multiplicative conditions are preserved over
rings. On the other hand, a random lifting of codes over rings does not preserve
multiplicativity in general. Finally we provide e�cient methods for sharing and
reconstruction over rings.
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1 Introduction

MPC over rings Z/p`Z, is a model relevant for secure computation of functions
which are naturally expressed over rings of integers Z/p`Z. The most important
case is Z/2`Z with ` (a multiple of) the length of machines integers. In this
model, the computation complexity is counted in terms of elementary additions
and multiplications in Z/p`Z, and the communication complexity is the number
of elements of Z/p`Z sent. By contrast, the previous model of MPC are arithmetic
circuits in Fp. But computations modulo p are not natively done by processors.
Unless p = 2, which is the case studied by MPC for the functions expressed
naturally as binary circuits. It appears from the literature that emulating MPC
over the integers, from MPC in Fp, incurs a substantial overhead in complexity.
For instance, the protocol of [Dam+06] for bit decomposition of numbers mod-
ulo a large p, in order to perform secure comparisons, costs log(p) log(log(p))
secure multiplications modulo p. Whereas comparisons directly between integers
modulo a power of 2 are much more e�cient ([Ara+18]).

1.1 Related works

In a recent line of work on e�cient MPC over Z/p`Z, signi�cant advances have
been made in order to avoid the overhead incurred by this emulation, by re-
designing basic arithmetic MPC so as to work �more directly� over the ring in
question. The �rst published paper [Cra+18] in this line introduces the SPDZ2k

protocol, a full redesign of the well-known SPDZ-protocol [Dam+12], the bench-
mark for the case of cryptographic security with dishonest majority in Beaver's
preprocessing model, that works directly over the rings in question and that is
essentially as e�cient as the most e�cient SPDZ-incarnation. See also the com-
pilers of [DOS18; Abs+19b] from passive security over rings to active security
over rings. For more discussion about practical advantages, see [Cra+18] and its
follow-up [Dam+19], which also reports on applications to machine-learning that
signi�cantly outperform approaches from �eld-based MPC. Maliciously secure
machine learning directly over the integers is now becoming the standard (e.g.
[PS20]).

Closer to us is the line of work [Abs+19a; Abs+20], that aims at answering
the question if information theoretically secure MPC over Z/p`Z, has complexity
equal to the one of MPC over Fp. The issue is simple: suppose that one has
the choice between two protocols with the same complexities: measured over
Fp for the former, and over Z/p`Z for the latter. Then the latter protocol is
automatically the most e�cient to securely compute any function over Z/p`Z,
since no emulation is needed. The present paper �rstly addresses this question
mainly in the plain model [CDN15, �5], denoted �BGW�, that is: assuming only
authenticated channels and requiring perfect security. So in particular, we have
that the number of malicious corruptions is t < n/3, since no broadcast channel
is available beyond this bound in the BGW model. [Abs+19a] considers MPC
in the BGW model over rings. It adapts the protocol of [BH08], including the
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secret sharing over Z/p`Z adapted from Shamir, and thus inherits the amortized
suboptimal O(n log(n)) communication complexity of [BH08].

We then consider the setting of Rabin&Ben-Or, denoted as �honest major-
ity�, which assumes a broadcast and requires unconditional statistical security,
tolerating t < n/2 corruptions. Until recently the best amortized communica-
tion complexity over �elds was [BFO12], in n log(n), plus a term in n2 times
the depth of the circuit. Let us �rst discuss the n2 term, which was removed
over �elds by [GSZ20]. As noticed in [Abs+20] (at the beginning of �6), the
main tool of [GSZ20] is the Batched Triple Sacrifice protocol of [BFO12], that
checks correctness of shared Beaver triples. It runs in the o�ine phase, and has
O(n log(n)) communication complexity (to be sure, the notation φ in [GSZ20]
stands for the log of the size of the �eld, it is required to be φ ≥ log(n)). This
Batched Triple Sacrifice was then carried over rings in [Abs+20], resulting in an
overall amortized communication complexity in O(n log(n)) also over rings.

Let us now discuss the log(n) overhead. Concurrently to our paper, it has
been removed by [PS21, EC'21], over �elds. Their technique use as black box
the RMFE with optimal rate of [Cas+18], which come from algebraic curves.

In addition to the above super-linear o�ine communication complexity, there
are some other drawbacks in [Abs+20]: (i) their secret sharing schemes with
(standalone) Multiplication are constructed with a double sharing, which thus
doubles the size (ii) their way around this doubling, only for p ≥ 3, uses asymp-
totically good families of self-dual codes, for which no practical construction is
known (by contrast with good families of codes from algebraic curves / function
�elds, whose computation is widely studied); (iii) most importantly, the secret
sharing scheme given in [Abs+20] cannot be adopted for the BGW model due
to lack of Strong multiplication.

1.2 Our focus

Our main focus are the two fundamental primitives for MPC in the BGW model.
We also deal with the asymptotic complexity of MPC under honest majority, es-
pecially the Batched Triple Sacrifice which costs the so-far log(n) communication
overhead. We are �nally concerned by the computational e�ciency of general
reconstruction methods of linear secret sharing schemes over rings, which was
not dealt with at all in previous works.

The �rst primitive for MPC in the BGW model is arithmetic secret sharing
with Strong multiplication (ASSSM). Recall that such a scheme with respect to
adversary bound t, guarantees both: secrecy from any t shares, and, reconstruc-
tion of the product of two shared secrets, from any list of n − t products of
pairwise shares of these secrets. By contrast, secret sharing with (standalone)
Multiplication only, requires all the n pairwise products of shares for recon-
struction of the product. The simplest example is the Veri�able secret sharing of
BGW itself. Importance of Strong multiplication is formalized in the Theorem
3 of [CDM00], as the building block of error-free MPC protocols. Namely, it is
emphasized in [CDN15, p114] as the tool enabling not to restart the execution
of the protocol, even when a player openly misbehaves. Notice that the log(n)
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overhead is inherited from Shamir's secret sharing, which operates in �nite �elds
of cardinality at least as large as the number of players. This limitation was re-
moved in the series of papers [CC06; Cas+09; CCX11] using algebraic geometric
codes over �elds. Notice that these state of the art ASSSM and constant size of
shares, motivated the �MPC in the head technique� [Ish+07], see [Cas16, �5] for
other applications. In this paper we ask if the same tight size of shares is achiev-
able over rings. We also ask if the same e�ciency of constructions is achievable
as over �elds [Hes02; Khu04; Shu+01; SG20]. Also, much optimisation has been
made for sharing/reconstruction algorithms over �elds [SW99; GS99; NW17].

The second primitive are Reverse multiplication friendly embeddings (RMFE).
They enable to emulate several circuits in parallel over small �nite �elds Fp, from
a single circuit over a large extension Fpm . They are introduced in [Cas+18],
and are the main tool for the upper bounds of [DLN19; BMN18; DLS20; CG20;
PS21]. RMFE enable to linearize the amortized communication complexity of
perfectly secure MPC, over multiple instances of the same circuit (with possi-
bly di�erent inputs), while preserving an optimal corruption tolerance. Recall
that a RMFE [Cas+18, De�nition 1] (recalled in �5.4), is an embedding from
some vector space Fkq over Fq, into some �eld extension Fqm , which �carries� the
multiplication in Fqm into the component-wise multiplication of vectors in Fkq
(the same one as for multiplicative secret sharing). The larger the ratio k/m,
the better the complexity of MPC is amortized. Again, RMFE with polynomial
encoding (as in Shamir secret sharing) exist up to k ≤ q+1. And again, this limit
of the �eld size was removed in [Cas+18, Theorem 3] with constructions from
algebraic geometry coding. Namely, they achieve for any �x q, a slowly growing
in�nite family of parameters k,m such that the ratios k/m are lower bounded
by a constant, which is optimal. We thus ask if the same ratios are achievable
over rings, and if constructions are as e�cient.

1.3 Our contributions

1.3.1 Asymptotically optimal Strong multiplication over rings

Main Theorem 1. For every p and `, for any �xed even r larger than some
r̂(p), we have a slowly growing in�nite family of number of integers n, such that
there exists an ASSSM over the �xed ring Z/p`Z, with n shares, with constant
size of shares r and t-adversary bound such that 1/3 − t/n > 0 a constant
arbitrarily close to 0 (in O(p−r/2)).

More precisely and generally: all parameters (n, p, r̂(p), t) published in [CC06;
Cas+09] over �elds Fp, also hold over rings. We have stronger than privacy:
uniformity of the projection on any t shares of the space of vectors of shares of
any given �xed secret. Moreover, the scheme obtained by reduction modulo p
may be assumed to be asymptotically good as well. 6 Last but not least, sharing
and reconstruction over Z/p`Z have the same computational complexity than for
ASSSM over �elds Fp.
6 This fact is quite useful in some practical protocol applications but it is not strictly
necessary for general arithmetic MPC
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This thus closes the gap between the complexity of ASSSM over �elds, and
over rings. Since this result is tight, we do not further justify why our construc-
tion uses �Galois rings� extensions as an intermediary step. Although we hope
that it will be clear from �1.4, �2.1 (and also [Abs+19a; Abs+20]) that these
objects play the same auxiliary role over rings, as �nite �elds extensions do over
�elds. Concretely, under the hood is that Fp is embedded into Fpr in order to
access ASSSM/RMFE with good properties, which are then lifted over Galois
ring extensions, then seen as free modules over Z/p`Z. But for simplicity, we
refrained from stating that the above theorem also holds for any Galois ring ex-
tension of degree r, with the same parameters (n, p, r(p), t) than [CC06; Cas+09]
over Fpr . We also kept simple the formula and made explicit only the case where
t is close to n/3. To be sure, the parameters of [Cas+09] also enable smaller
sizes of shares, at the cost of a lower t (using multiplication friendly embed-
dings). The last claim, on e�ciency, will follow from the algorithms of Theorem
5 below. Technically, Theorem 5 applies here since the componentwise squares
(see �3.1) of the codes constructed are included in �free codes� of dimension as
small as the codes of the ASSSM over �nite �elds.

1.3.2 Optimal communication of MPC under honest majority. We
remove the so-far aforementioned amortized log(n) communication overhead,
which also held over �elds. The bottleneck comes from the o�ine phase, in
the subprotocol of [BFO12] checking triples, e.g., as transposed over rings in
[Abs+20, �6.6]. Recall that the baseline method of [BFO12] proceeds by encod-
ing many triples in three polynomials, then succinctly check the multiplicative
relation between these polynomials. We start by replacing it by an alternative
construction of Batched Triple Sacrifice over �elds of �xed size. This construction
is closely related to the strong multiplication property, it is stated and proven in
Proposition 16. It enables to recover the main result of [PS21] in only one page.
We then lift the construction over rings with the same methods as before.

Main Theorem 2. In the model of [RB89]: honest majority and assuming
broadcast, then there exists a statistically secure MPC protocol with guaran-
teed output delivery and amortized communication complexity (both online and
o�ine) linear in the number of players per multiplication gate.

Anticipating on the next result, notice that we could also have directly lifted
over rings the construction of [PS21]. Indeed, theirs is based on the RMFE of
[Cas+18], which we lift over rings with the same asymptotic rates.

1.3.3 Amortized complexity of MPC over rings. We construct, in �5.2
an in�nite family of RMFE over rings with same constant asymptotic ratio as
the ones of [Cas+18]. Combined with the tight complexities of general LSSS
proven in Theorem 5, this enables to carry over rings the results of [Cas+18]
with the same computational and communication complexities:
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Main Theorem 3. In the BGW-model, there is an e�cient MPC protocol for
n parties secure against the maximal number of active corruptions t < n/3 that
computes Ω(log n) evaluations of a single circuit over Z/p`Z in parallel with an
amortized communication complexity (per instance) of O(n) elements of Z/p`Z
per gate, and same computational complexity than in [Cas+18, Thm 1 & 2].
Combining with the Franklin-Yung paradigm [FY92], we get:

In the BGW-model, for every ε > 0, there is an e�cient MPC protocol for n
parties secure against a submaximal number of active corruptions t < (1− ε)n/3
that computes Ω(n log n) evaluations of a single circuit over Z/p`Z in parallel
with an amortized communication complexity (per instance) of O(1) elements
of Z/p`Z per gate.

1.3.4 Optimal share sizes and computability under honest majority
The asymptotically good ASSSM of Theorem 1 have a fortiori standalone Mul-
tiplication. So they can be used as a replacement for the schemes constructed in
[Abs+20, �4.1]. Especially for p = 2, recall that Multiplication of their schemes
is obtained via a double sharing, which thus doubles the size of the shares (as
stressed in the roadmap of [Abs+20, �3]). Our construction thus divides their
sizes of shares by 2 for p = 2. A corollary of above, is that the active protocol
presented in Section 6 of [Abs+20], which requires standalone Multiplication,
now works with share sizes reduced to half, and now using computable families
of codes, including from AG/function �elds.

1.3.5 Practical computability (continued) Main Theorems 1, 2 and 3
rely on objects (ASSSM or RMFE or the related ones of Proposition 16) with
good asymptotic properties of which we prove existence. We then describe in �4
e�cient algorithms to construct these objects.

Theorem 4. Starting from any ASSSM over any �xed �eld Fp considered in
[CC06; Cas+09; CCX11], then, obtaining the lifts over Z/p`Z for any `, as pre-
dicted by Main Theorem 1, boils down to solving ` instances of a linear system
over Fp with Ω(n6) coe�cients. Alternatively, log(`) linear systems: modulo

p, p2, p4, . . . , (p`)
1
2 .

We have an analogous system to obtain the RMFE predicted by Main The-
orem 3, from the ones of [Cas+18, Theorem 5].

A formal description is given in �4 (for ASSSM) and �5.4 (for RMFE), a toy
example in �3.1. A proof of Theorem 4 is given in the long version. It requires to
prove that AG codes have a free lift whose square is also free, which requires ad-
ditional methods than those given in �3.3. We illustrate e�ciency of our method
in �4.1 by lifting a strongly multiplicative secret sharing scheme over F16 for 64
players and adversary threshold t = 13, into a scheme over the Galois extension
of degree four of Z/2100Z, in a minute on a single processor.
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1.3.6 Tight computational complexity of linear secret sharing schemes
(LSSS) over rings Although theoretical results for error correction over rings
are shown in [Abs+19a, Construction 1 & Proposition 1], it is not yet clear in the
literature if there exists e�ective algorithms for even the simple task of recon-
struction of a secret with only erasures. We �ll this gap by providing algorithms
for sharing and reconstruction of linear secret sharing schemes (LSSS) over rings
that arize from free codes. In particular it proves our e�ciency claims in the
Main Theorems above. A free code C over Z/p`Z is by de�nition the linear span
of independent vectors with coordinates in Z/p`Z, in particular it is of same di-
mension than its reduction C modulo p, which is a code over Fp. In particular,
all the ASSSM constructed in this paper have this property, as well as the ob-
jects studied in [Abs+20] and in [Abs+19a] (which considers the speci�c case of
Shamir secret sharing over rings). On the other hand, LSSS arising from nonfree
codes have bad computational complexity, as we illustrate in Counterexample
10. We provide computational complexities that match the ones over �nite �elds,
so which are tight. For simplicity the following theorem is stated over Z/p`Z, but
it will be clear from the proof that it obviously also holds over any Galois ring
extension.

Theorem 5. Let n, ` be integers, consider a free code C in (Z/p`Z)n+1 and let
ψ the corresponding (LSSS) with n shares in Z/p`Z, such that (without loss of
generality) the secret is encoded in the 0-th coordinate of codewords. Denote C
the code reduced modulo p and ψ the corresponding LSSS (which is ψ modulo
p) over Fp. We have:

(A) The task of computing a generating matrix of C in systematic form, from
any generating matrix of C and, more generally, Gauss pivot, has same
computational complexity as modulo p, plus O((dimC)(log `)).

(A') Then, sharing a secret using ψ (thus of bitsize ` times larger) has same
computational complexity than using ψ. As for sharewise multiplication.

(B) Let I ⊂ {1, . . . , n} be a set of n − d(C) + 2 indices of shares. Then, there
exists a linear map φI : (Z/p`Z)|I| −→ Z/p`Z that reconstructs the secret,
with the same complexity than a reconstruction map φI for ψ. Moreover,
φI can be compiled from a reconstruction map φI for the LSSS modulo p,
essentially for the cost of one matrix inversion in (Z/p`Z)|I|×|I|.

Notice that the matrix inversion required in (B) can be computed using the
Gauss pivot of (A).

1.4 Di�culties and intuitions of the constructions

Only algebraic-geometric (AG) constructions such as in [CC06] are so far known
to enable ASSSM over �elds of constant sizes for an arbitrarily large number
of shares. They follow the same pattern than the scheme of Shamir, which is a
particular case. First, select an algebraic curve (e.g. all the points in Fq plus the
�point at in�nity�, in the case of Shamir). Second, select a �Riemann-Roch� vector
space of functions (e.g. the polynomials of degree ≤ d in the case of Shamir: said
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otherwise, the space L(d∞) of polynomials �vanishing at order at least d at
in�nity�). Then, select a particular point P0 on the curve (e.g. the point 0 in
Shamir). To share a secret s, select a function at random in the Riemann-Roch
space that evaluates to s at P0. Then evaluate it on n prede�ned points of the
curve to obtain the shares. In what follows we will instead take a coding-based
approach. This has both the advantage to make proofs which are more black
box in the AG codes used, and also, our e�cient methods will actually directly
lift the generating matrices of such AG codes over �elds.

For C a code (over a �eld or a ring), we denote as componentwise square
C∗2 the code of same length which is generated by all the products of any two
codewords of C component by component. Strong multiplication of the LSSS
from C thus requires that C∗2 has large distance, thus be of small size. The
central problem of this paper is thus brought down to: starting from a free code
C over a ring (typically a �nite �eld) which has free square of small dimension,
then �nd a code C̃ in a larger ring, that reduces to C mod p`, and has square
contained in a free code of small size. On the one hand, it is trivial to lift Reed-
Solomon (RS) codes over rings, in a way that preserves their remarkably small
componentwise square. Indeed, lifts of RS codes are given for free: these are the
RS codes over rings. RS codes over rings were studied in [Abs+19a], but, as over
�nite �elds, these RS codes have a log(n) size overhead. This ine�ciency is one
of the main motivations of the present paper. On the other hand, when trying
to lift AG codes with larger genus, in order to remove this overhead, we hit the
main di�culty of this paper. Namely, we illustrate in �3.1 that lifting at random
(as done in [Abs+20]) almost certainly fails to preserve the small dimension of
the square.

But our theoretical results imply that a solution exists, which we are able to
compute e�ciently. Anticipating on them, we �rst present a toy example in �3.2.
Recall that RS codes are the simplest case of AG codes, namely, over the curve
P1 (the �projective line�), which is of genus 0. This is why our toy example �3.2
illustrates the simplest nontrivial example, which is a curve of genus 1.

To obtain our theoretical results over rings, we �rst use known theorems
that state the existence of lifts of curves over rings. We then apply results of
Judy Walker that state that Riemann Roch spaces are free modules, and also,
the codes deduced from their injective evaluation at points of the curve. On the
other hand, to compute the codes concretely, we will follow a direct approach.
Namely, instead of lifting curves over rings, we will directly lift a generating
matrix of the code, such that the multiplicative conditions are preserved. On
the face of it, there are more constraints than variables. But a result is always
returned. Proving this fact requires strictly more than that C lifts with a small
square. Indeed, it also requires freeness of the square of the lift C̃∗2, which is
harder. This is why we prove it in the long version only.

The reader may wonder why we did not directly compute lifts of the curves.
The reason is that the theoretical results require that the curves be represented
with �smooth� equations, in particular, with many variables. But in practice,
good curves are expressed in terms of equations with two variables only. And
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there is no e�cient method today to compute smooth lifts of such �plane� models,
that have many �non smooth� points. Let alone computing Riemann-Roch spaces
of smooth models curves over rings, which is out of the scope of existing research
(except Walker-Voloch, for smooth curves in the plane).

1.5 Roadmap

In �2 we show that LSSS derived from free codes over Galois rings have same
privacy and reconstruction threshold as over the �eld modulo p. In �2.3 and �2.4
we present e�cient sharing and reconstruction algorithms (proof of Theorem 5
(A) (A') and (B)). We show conversely in Counterexample 10 that there does
not exist a linear reconstruction map for a large class of linear codes over rings
which are not free. This is why we focus on LSSS derived from free codes. Let
us mention for the hurry reader that the results in �2.3 and �2.5 are not used
for the proof of Main Theorem 1.

In �3 we highlight the nontriviality of Main Theorem 1 on a toy example in
�3.1, then illustrate in �3.2 how to compute a multiplicative lift of it. We then
prove the Theorem in �3.3.

In �4 we elaborate more on the Hensel lifting method illustrated in the toy
example.

In �5 we prove the aforementioned applications of the theory to MPC. First
with a proof of Proposition 16 (the triples sacri�ce algorithm over a �eld/ring
of constant size), then with a proof of Main Theorem 3. The proof involves
RMFE over rings with same asymptotically constant rate than over �elds: we
also describe the e�ective algorithm to construct them in �5.4.

2 LSSS from Free Codes have Optimal Complexity

In �2.1 we introduce Galois ring extensions, and highlight that they the same size
and computational overhead over Z/p`Z, than �nite �eld extensions have over
Fpr . The presentation should be self-contained, but the reader can also refer to
[Abs+20; Abs+19a]. In �2.2 and �2.3 we consider general LSSS from free codes
over rings, and prove the tight complexity claims (A') and (B) of Theorem 5 for
sharing and reconstruction. In �2.5 we show that free codes are generated from
any lift of any basis. All the basics are recalled, but the reader can alternatively
refer to [Abs+20, �2-�4]

2.1 Optimal Complexities in Galois Rings Extensions R`(r)

2.1.1 Equal Computational and Sizes for Elementary Operations Let
p be a positive prime number and Fp := Z/pZ the �nite �eld. Then, when
operating on objects with coordinates in Fp, we say that the computational
complexity is the number of elementary operations in Fp (where one can possibly
weight di�erently additions, scalar multiplications and bilinear multiplications).
Now, ` ≥ 1 denoting an integer, the second context encountered in this paper
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are objects with coordinates in Z/p`Z the ring of integers modulo p`. In these
cases, we say that the computation complexity is the number of elementary
operations in Z/p`Z (where one gives the same weights as before to additions,
scalar multiplications and bilinear multiplications). Likewise, the communication
(or size) complexity is, in the �rst context: the number of elements in Fp which
are sent by honest players; whereas in the second context it is the number of
elements in Z/p`Z which are sent.

Galois-rings are de�ned as follows. Let r ≥ 1 be a positive integer and f(X) ∈
Fp[X] a monic irreducible polynomial of degree r. This de�nes the �nite �eld
extension or degree r:

Fpr = Fp < δ >:= Fp[X]/f(X)

which is a vector space of dimention r over Fp with basis 1, δ, . . . , δr−1 and
multiplication rule de�ned by the multiplication modulo f(X). Now, consider
any monic polynomial f(X) ∈ Z/p`Z which reduces to f(X) modulo p. Then
this de�nes the Galois ring extension of degree r:

(1) R`(r) = Z/p`Z < ∆ >:= Z/p`Z[X]/f(X)

which is in particular equal to Z/p`Z when r = 1. This is a free module over
Z/p`Z of dimention r. That is: it is isomorphic to (Z/p`Z)r, with basis 1, ∆, . . . ,∆r−1.
Multiplication in R`(r) is de�ned by the multiplication modulo f(X). Notice that
an equivalent de�nition of R`(r) is to consider the unrami�ed extension of degree
r of the ring Zp of p-adic integers, which is denotedW (Fpr ) the �Witt ring�, then
reduce it modulo p`. This will be used in �3.3, and is also a useful point of view
for the Hensel lifting algorithm of �4.

We say that an element x ∈ R`(r) is invertible modulo p if its reduction
x̄ ∈ Fpr is invertible. A key property of Galois rings is that an element invertible
modulo p, is then also invertible in R`(r). Indeed, consider an arbitrary lift y of
x−1. Then we have a formula xy = 1− pλ which holds in R`(r) for some λ. But
the right hand side of the equation is invertible, of inverse 1+pλ+ · · ·+(pλ)`−1.
From this formula we see that inversion in R`(r) costs essentially one inversion
in Fpr , and O(log(`)) squarings in R`(r).

2.1.2 Embeddings, and their equal complexities than over �elds From
the previous, we see that considering Z/p`Z as embedded in R`(r), multiplies by
r the size (an element x is mapped to the vector (x, 0, . . . , 0) with r coordinates)
by the same factor than when embedding Fp in Fpr . It follows from the de�-
nition (1) that the naive schoolboy multiplication algorithm in R`(r) has the
same complexity than the one in Fpr . For large Galois rings, we have e�cient
multiplication algorithms, which are motivated by their usage in LWE. Hence,
the references pointed in [Abs+19a, page 4] and [PC] show that they have also
the same complexity than in Fpr .

Finally, one may also need to make the converse operation, and �descend�
from secret sharing schemes over R`(r), to secret sharing schemes over Z/p`Z.
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The technique to do this over �elds is introduced in [Cas+09, Theorem 7 & 8],
and based on linear maps called �multiplication friendly embeddings (MFE)�:
Fpm −→ F2m−1

p , which have the property to bring the multiplication in Fpm ,
into the componentwise product in F2m−1

p . For the same reason as Reed Solomon
codes lift trivially over rings, we have that the MFEs of [Cas+09, Theorem 8]
carry over Z/p`Z with the same parameters, and thus we have exactly the same
�expansion rates� ((2m− 1)/m).

2.2 General LSSS & ASSSM over Rings

Let R be any �nite ring (including R = Fpr or R`(r)), and n, k be positive
integers. To share a secret s in R, one samples uniformly an element w ∈ Rk−1
(the randomness space) then applies a certain linear map ψ on the whole to
obtain n �shares� : ψ(s,w) ∈ Rn. For I ⊂ {1, . . . n} a set of indices, we denote
|I| the size of I and πI : Rn → RI the projection on these components. For
any vector x ∈ Rn, we denote for short xI := πI(x) this projection, i.e., the
components of x in I, and likewise, for any linear map ψ in Rn, we denote for
short ψI := πI ◦ψ the �components of ψ in I�. Let 0 ≤ t < n be a positive integer.
Let k, n ≥ 1 be integers, we say that a linear secret sharing scheme (LSSS) over
R with n shares and randomness space Rk−1, is an R-linear map:

ψ :R×Rk−1 −→ Rn

(s,w) −→ ψ(s,w)

We say that it has t-privacy if for any share vector, any t coordinates are
independent of the secret, and it has rec-reconstruction if any rec coordinates
of a vector of shares determine the secret s.

De�nition 6. We say that a LSSS with privacy threshold t, is furthermore
Arithmetic with Strong multiplication (ASSSM), if for any two secrets s, s′ ∈ R,
consider any sharings of them: (si) = ψ(s,u) and (s′i) = ψ(s′,u′), then for any
set I of indices of size n− t, the data of the �sharewise� products (ψ(si)ψ(s′i))i∈I
determines uniquely ss′. Said otherwise, I is a �reconstruction set� for ψ × ψ.

Notice that this a fortiori implies n− t reconstruction threshold. If one replaces
n−t by n in the de�nition above, then this is the weakerMultiplication property.

2.3 Complexity of Sharing

From now on we specialize to a Galois ring R := R`(r) as de�ned in (1), e.g.,
equal to Z/p`Z when r = 1.

2.3.1 Proof of Th 5 (A): Systematic Form Let C ⊂ R`(r)
n+1 be a free

submodule of rank k, i.e., which is isomorphic to R`(r)k. Making a choice of
n + 1 coordinates in R`(r)

n+1, we denote this a �free code�. Likewise, we say
that k elements in R`(r)

n+1 form a free family if they generate a submodule

11



isomorphic to R`(r)k (we then say: �freely generate�). Recall that this implies
that the reduction C of C modulo p is a vector space of same dimension k. [This
follows immediately from the fact that if a square matrix with entries in R`(r)
is invertible, then its reduction modp is invertible.] For the same reason, in the
other direction, starting from a code C over Fpr of dimension k, and considering
any basis, then arbitrary lifts in R`(r) of these basis vectors generate a free code
C of same rank k.

We denote that a matrix G ∈ R`(r)
k×(n+1) is in echelon form, if for each

row i ∈ {1, . . . , k}, there exists a column ji ∈ {0, . . . , n} containing a 1 entry
on row i and 0 everywhere else. We say in particular that G is in systematic
form if of the form (Idk|N). We say that matrix G′ is deduced from matrix G by
�elementary row operations�, if there exists a sequence of elementary row opera-
tions that transforms G into G′. Equivalently, if there exists an invertible matrix
E ∈ R`(r)k×k such that G′ = EG. Let us restate for convenience existence the
systematic form of free codes, which is used at least since Calderbank-Sloane
[CS95] (see also [SAS17, �5.1.1]). We re-prove it with an explicit construction,
which has same complexity than over �elds, which thus proves Theorem 5 (A).

Proposition 7. Let G ∈ R`(r)k×(n+1) be a matrix such that the rows form a
free family. Then there exists a matrix in echelon form which is obtained from G
by elementary row operations. And thus, up to reordering the n+1, coordinates,
in systematic form.

Proof. Consider the reduction of G in Fpr . By the Gauss pivot, there exists an
invertible k × k matrix E and a matrix G′ in echelon form, such that G′ =
EG. Let E ∈ R`(r)k×k be an arbitrarily lift of E. E being invertible (since its
determinant is invertible modulo p), the matrix G′ := EG is deductible from G
by elementary row operations. G′ being a lift of G′, we have furthermore, for
each row i, existence of a column ji such that the entry G′i,ji is a lift of 1, and
thus invertible in R`(r). Using this entry as a pivot, we anihilate all the other
entries on this column ji by elementary row operations. Finally, we divide the
row i by G′i,ji , thus entry (i, ji) becomes 1. Repeating for all i yields a matrix
G′′ deduced from G′ by elementary row operations.

2.3.2 Sharing Up to permutation of the coordinates, we may now assume
G ∈ R`(r)k×(n+1) of C in systematic form. By Th 5 (A) (Prop 7), the (one-shot)
complexity of computing this form is essentially the same as over �elds. Then,
sharing a secret s ∈ R`(r) with respect to the 0-th coordinate of C, boils down
to the following. First, sample a vector w ∈ R`(r)

k−1, uniformly at random.
This has complexity O(k) (or in terms of bits: O(`k log2(p))). Then, deduce the
vector of shares from the left multiplication:

ψ : R`(r)×R`(r)k−1 −→ R`(r)
n(2)

(s,w) −→ (s,w)G[1,...,n].(3)

Where G[1,...,n] denotes the n last columns of G. The complexity claim of The-
orem 5(A') then follows from the fact that dim (C) = rk (C) = k, and thus that
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the generating matrices have the same sizes, combined with the fact pointed in
�2.1, that complexity of the multiplication in R`(r) (by de�nition relatively to
elementary operations in Z/p`Z) is the same as the one in Fpr (by de�nition
relatively to Fp).

2.4 Privacy (with Uniformity) and E�cient Reconstruction from
Free Codes

Let us now bound privacy and reconstruction. The following states that Theorem
11.77 and Corollary 11.79 [CDN15] also hold over rings. Moreover, we will also
prove computational e�ciency of (4) (reconstruction) along the proof.

Proposition 8. Let C be a free code in R`(r)n+1 of rank k. Denote C the code

over Fpr obtained by reduction modulo p, C
⊥

the dual, and d(C), d(C
⊥

) the
minimal distances. Consider the LSSS with n shares in R`(r) obtained from C.
Recall that rec denotes the reconstruction threshold. Then we have:

rec ≤ n+ 1− (d(C)− 1) = n− d(C) + 2(4)

For all t ≥ d(C
⊥

)− 2 , we have that:(5)

each set of t shares is uniformly random in R`(r)
t, in particular we have t-privacy.

2.4.1 Reconstruction: Constructive proof of (4), thus of Thm 5 (B)
Notice that Equation (4) is proven on a speci�c case in [Abs+20, Theorem 6]. But
it actually holds in general. Let us take the opportunity to make a constructive
proof, which will thus support our complexity claim of Thm 5 (B). We keep the
notations of Equation (2).

Let I ⊂ {1, . . . , n} be a subset of n+ 1− (d(C)− 1) indices. By de�nition of
the minimal distance, the linear map ψI : Fpr × Fk−1pr −→ FIpr is injective. Since
it is de�ned over �elds, it thus has a linear left inverse. We conclude by applying
Lemma 9 to M := R`(r)

k, m := |I| and f := ψI .

Lemma 9. Let M be a free R`(r)-module (say of rank v) and f : M → R`(r)
m

be a R-linear map. Assume that the map modulo p:

f : (M mod p) = Fvpr −→ Fmpr

is an injection. Then f has a linear left inverse g : R`(r)
m −→M . In particular,

the image of f is a free R`(r)-module.

Proof. The matrix matf of f , of size m × v is such that, by assumption, when
we reduce it modulo p, then it contains a v × v invertible minor. But then this
minor in matf is also invertible (recall that (1 +λp)−1 = 1 +

∑
i λ

ipi). Inverting
this minor (e.g. with Gauss pivot over R`(r), for e�ciency), and completing with
m− v zero columns, yields a map g : R`(r)

m −→ R`(r)
v such that g ◦ f = Idv.

The last claim follow from the fact that f is in particular injective, so de�nes
an isomorphism between M , which is free, and its image inside R`(r)m.
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Our claim about the computational complexity then follows as previously
from linearity of the reconstruction map ψI , and the fact (�2.1) that multiplica-
tions in R`(r) has same complexity than in Fpr .

2.4.2 Warning: Loss of E�cient Reconstruction for Non-Free Codes
Recall that reconstructibility of a code means that, for any set of d − 1 coordi-
nates, the map consisting in puncturing these coordinates is an injection; and
that e�cient reconstruction means that it has a linear left-inverse, which we
denote a retraction, as known as the reconstruction map. In the following Coun-
terexample 10 we show that, without the assumption to be free, there exists
submodules of R`(r)n+1 for which the puncturing map is an injection, but for
which there does not exists any linear retraction. This motivates why we restrict
to free codes in R`(r)n+1 in order to construct LSSS.

Counterexample 10. Let C be a code in R`(r)
n+1 with d := d(C) ≥ 2 such

that there exists a punctured C∗ ⊂ R`(r)
n+1−(d−1) which is not free. [For ex-

ample

C = 〈(p, p, p, 0), (1, 0, 0, 1)〉 ∈ R`(r)4, (e.g. R`(r) := Z/p`Z )

with d(C) = 2 and injectivity in R`(r)
3 when puncturing the last coordinate.]

Then there does not exist any linear reconstruction map, i.e., any retraction

R`(r)
n+1−(d−1) −→ C.

The proof is that, supposing such a retraction, then, composing it on the left with
the puncturing map, yields a left-inverse to the inclusion C∗ ⊂ R`(r)n+1−(d−1).
Denoting G∗ ∈ R`(r)

k×(n+1−(d−1)) a generating matrix of C∗ (in rows) and
L ∈ R`(r)(n+1−(d−1))×k the matrix of this left-inverse, we would thus have by
assumption G∗L = Idk. In particular G∗ modulo p would be of maximal dimen-
sion, k, thus G∗ would generate a free module, a contradiction.

2.4.3 Privacy (with Uniformity): Proof of (5) The bound (5) is proven
in [Abs+20, Theorem 6]: although on a speci�c LSSS, the arguments actually
apply in general. The key to prove this formula over rings is their Lemma 3. Let
us recall it here, and provide a both shorter and self-contained proof for it.

Lemma 11. Let C be a submodule of R`(r)
n, denote d

⊥
the dual distance of

the reduction C modulo p. Let I be a set of indices with |I| = d
⊥ − 1. Then,

projection of C on the indices in I is the full space R`(r)
I .

Proof. By assumption, CI = FIq . Hence CI contains |I| vectors so that the
matrix formed by them has an invertible determinant, thus has an inverse, thus
these vectors generate R`(r)I .

Then, the bound (5) follows by applying the Lemma to any set IA of t
indices, to which we add the index {0}. Indeed, we then have surjectivity of the
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projection C −→ C{0} × CIA . In particular, for any �xed secret s ∈ R`(r) (0th
coordinate), we have surjectivity of the projection from the a�ne submodule Cs
of codewords with 0th coordinate equal to s, onto any subset of t shares. Thus
by de�nition the shares of s under the LSSS are such that any t of them vary
uniformly in R`(r)t, which was to be proven.

2.5 (Free) Generation from Any Lift of Any Basis

The following important fact is not formalized in the literature to our knowledge:

Theorem 12. Let C be a free code in R`(r)
n+1. Consider the reduced code

modulo p: C ⊂ Fpr , and any basis (e′i) of C. Then C is freely generated by any
lift of (e′i) inside C.

Proof. Let k denote the rank of C. The �freely� claim again follows from the
fact that a family whose reduction modulo p is free, is itself free (the generating
matrix containing an invertible k × k determinant). Now, consider (e′i=1...k) an
arbitrary lift of the (e′i) inside C. It generates a submodule in C, which is free
of rank k by the �rst part of the proof. But C is itself a free module of rank k.
Thus this de�nes an injection R`(r)k ↪→ R`(r)

k, which is by assumption also an
injection modulo k. Thus by Lemma 9 it has a left inverse, thus it is a bijection.

Corollary 13. If E ⊂ G are two lifts Rn of the same code G, and G is free,
then they are equal (in particular E is also free).

Proof. Indeed E contains a lift of a basis of G which, by Theorem 12, generate
the whole G. ut

3 Main Theorem 1

3.1 A Random Free Lift of a Code of Small Square mostly Fails to
Have a Small Square

For C a code (over a �eld or a ring), we denote as componentwise square C∗2 the
code of same length which is generated by all the products of any two codewords
of C component by component. Strong multiplication of the LSSS from C thus
requires that C∗2 has large distance, thus be of small size. The central problem
of this paper is, starting from a free code C ∈ R`(r)

n (typically ` = 1, i.e.,
R`(r) is a �nite �eld) which has free square of small dimension, then �nd a
code C̃ in a larger ring than C, that reduces to C mod p`, is also free, and has
square of small size. Ideally, the square C̃∗2 is desired to be also free, in which
case it is automatically of same rank as C∗2 (since the determinant is invertible
mod p`). We denote this desirable object informally as a �multiplication friendly
lift� in the exposition, whereas in the statements it will be replaced by precise
speci�cations. Let us revisit the family of [Abs+20, Example 2], and explain
why they provide also counterexamples where arbitrarily lifting fails to yield a
multiplication friendly lift.
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Counterexample 14. Let C̄ and D̄ be codes over Fpr of same dimension and
let us assume that dim D̄∗2 < dim C̄∗2. Let us now build a code E over R`(r)
with ` ≥ 3 and of length equal to the sum of the lengths of C̄ and D̄. Let (c̄i)i
and (d̄i)i be bases of C̄ and D̄, let (ci)i and (di)i be arbitrary lifts and de�ne E
the code generated by the vectors (di, pci)i. Then E is free, because of dimension
dim D̄ = dim Ē, and is a lift of Ē. Suppose by contradiction that the square E∗2

would be free, then we would have:

dimE∗2 ≥ dim C̄∗2 > dim D̄∗2 = dim Ē∗2 .

On the other hand if it was free, then it would be of same rank than Ē∗2 by
Theorem 12. So we have a contradiction. Thus E∗2 is not free, thus it is strictly
larger than some free lift of Ē∗2 inside him.

3.1.1 The desirable case of small square: sparsity of solutions, if
any, illustrated on a toy example Let us now illustrate hardness of the
multiplicative lifting problem on a tiny AG code. Consider the elliptic curve
y2 + xy + y − x3 + 1 over

F23 = F2 < δ > with polynomial δ3 + δ + 1 = 0,

with 14 places, P0 the place at in�nity, the divisor D0 = 4P0 and the Riemann-
Roch space L(4P0), with basis eii=1...4 equal to the functions (1, x, x2, y). Let us
de�ne the evaluation code C(D0) at the P1, . . . , P13, (not at P0, for simplicity).
We compute the following generating matrix:

G =


1 1 1 1 1 1 1 1 1 1 1 1 1
δ δ δ2 δ2 δ3 δ3 δ4 δ4 δ5 δ5 δ6 δ6 1
δ2 δ2 δ4 δ4 δ6 δ6 δ δ δ3 δ3 δ5 δ5 1
1 δ 1 δ2 δ2 δ4 1 δ4 δ δ2 δ δ4 0


Let us consider the 10 componentwise products ei ∗ ej , with indices (i, j)

ordered as: (1, 1), (1, 2), (1, 3), (1, 4), (2, 2), (2, 3) etc. (i.e.: j increases �rst). They
generate by de�nition C(D0)∗2. We verify that, removing (2, 2) and (4, 4) from
the indices in this list, then the remaining 8 products: B := (ek ∗ el)(k,l)∈B
generate C(D0)∗2, where B denotes the remaining indices ordered as before.
In particular e2 ∗ e2 and e4 ∗ e4 decompose themselves on this basis B, with
decomposition coe�cients (λ2,2,k,l)k,l∈B and (λ4,4,k,l)k,l∈B given by the following
2× 8 matrix, called �Reduc� in the implementation:

(6)
(
transp

(
λ2,2,k,l, λ4,4,k,l

))
(k,l)∈B

=

[
0 0 1 0 0 0 0 0
1 0 0 1 1 1 0 0

]
Then we repeated the following experiment 108 times: randomly lift the (ei)i

modulo 22, to obtain vectors (ei)i with coordinates in R2(3) = Z/22Z < ∆ >.
Let Cbad the code generated by these lifts. By Theorem 12, it is always free.
But we observed in all the experiments that e2 ∗ e2 and e4 ∗ e4 do not anymore
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decompose themselves on the lifts of the previous basis of C(D0)∗2: B := (ek ∗
el)(k,l)∈B �see two paragraphs later for an explanation of how this checks were
done e�ciently with linear algebra. So in these situations C∗2bad is not a free lift
of the square C(D0)∗2, because if it were, then by Theorem 12 the lifted basis
B would generate it.

3.1.2 Why solutions may likely not exist at all Let us give a feeling of
why most codes with small squares are likely to have no multiplication friendly
lift. Let C be a code over, say, Fp = Z/pZ of dimension k and length n, such that

the square C
2
has small dimension, say, 3k < n. We would like to �nd a code C

over Z/p2Z (namely: a free submodule of (Z/p2Z)n) of same rank k, that lifts

C modulo p2, and such that the square C2 is also a free lift of C
2
. As argued

with the toy example, it follows from Theorem 12 that these requirements are
equivalent to the following: let (ei)i be any basis of C lifting a basis (ei) of C;
let B be any basis of C2; then B lifts modulo p2 to a basis of the square C2, in
particular generates the componentwise products (ei ∗ ej)i,j . To �x ideas let us
choose a basis of the form B = (ek ∗ el)(k,l)∈B as in the toy example. Then the
previous equivalent condition translates itself into the fact that the equations
expressing ei ∗ ej on this basis:

(7) ei ∗ ej =
∑

(k,l)∈B

λi,j,k,l ek ∗ el (mod p)

lift modulo p2. The number of degrees of freedom (the unknowns) are: (i) the
choices of lifts for the ei, so a total of nk coordinates to lift in Z/p2Z; (ii) and lifts
for the coe�cients λi,j,k,l: a total of 3k× k(k+ 1)/2 unknowns in Z/p2Z. So the
number of unknowns is asymptotically equivalent to (ii): 3k×k(k+1)/2. Whereas
the number of equations is nk(k + 1)/2 (namely: k(k + 1)/2 vectorial equations
with n coordinates in Z/p2Z each). Notice that 3k < n, so that there are more
constraints than variables. Finally, as will be detailed in the next paragraph, and
then further in �4 notice that this quadratic system over a ring simpli�es modulo
p2 to a linear system over the �eld Fp. Thus, the system being overdetermined,
then a priori no solution is likely to exist.

3.2 A technique to �nd them when they exist, illustrated on the
toy example

We will formalize the general technique in �4. Existence of a solution to the
system for AG codes, is further evidence that these codes are highly non-generic
among those with small square.

First, �x a free lift Cbad of C(D0) by lifting arbitrarily the basis to (ei
′)i,

for example by lifting the coordinates from F2 < δ > to Z/22Z < ∆ > by the
dummy rule: 1→ 1 and δ → ∆. This gives formally the same generating matrix
as G, with δ replaced by ∆. With the same dummy rule, lift the decomposition
coe�cients (λ2,2,k,l)(k,l)∈B and (λ4,4,k,l)(k,l)∈B to λ′2,2,k,l and λ′4,4,k,l, so that
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their matrix is formally the same as in (6). As the case for the huge majority
of arbitrarily chosen lifts (and illustrated with random tests two paragraphs
above), the vectors e′2 ∗ e′2 and e′4 ∗ e′4 do not decompose themselves on B :=
(ek
′ ∗ el′)(k,l)∈B , let alone with coe�cients equal to λ′2,2,k,l and λ′4,4,k,l. As a

matter of fact, we encounter nonzero error vectors 2D2,2 and 2D4,4 when trying
to write the decompositions in Z/22Z < ∆ >:

(8) e′2 ∗ e
′
2 =

∑
(k,l)∈B

λ′2,2,k,lek
′ ∗ el′ + 2D2,2 and likewise for e′4 ∗ e

′
4

Let us insist on the remarkable fact that the error vectors are multiples of 2,
since the equalities (8) do hold without error term modulo 2. �Dividing� by 2,
their coe�cients are

transp(D2,2,D4,4) =

[
0 0 δ4 δ4 δ δ 1 1 δ5 δ5 δ δ 0
0 0 δ δ 0 1 δ2 δ2 δ4 0 0 δ5 1

]
Which we express in F23 by abuse of notation (remember that an element 2x ∈
Z/22Z < ∆ > is determined by the residue x ∈ F23 mod 2). Now, let us look
for corrective terms 2f ′

i and 2µ′i,j,k,l, which we need only to �nd modulo 2:

(9) ei = e′i + 2f ′
i and λi,j,k,l = λ′i,j,k,l + 2µ′i,j,k,l

So that, replacing ei
′ in (8) by the corrected ei of (9) �where the corrective

terms are treated as unknows�, simplifying and removing the terms that are
multiples of 22 �because they vanish in Z/22Z < ∆ >�, we observe that all
the terms remaining in the system are multiples of 2. So �dividing� the system
by 2, we fall back to a linear system in F23 :
(10)
e2∗f ′

2+e2∗f ′
2−D2,2 =

∑
(k,l)∈B

µ′2,2,k,lek∗el+λ2,2,k,l(ek∗f ′
l+el∗f ′

k) (same for e4∗e4 )

as could be expected from Hensel's Lemma. Solving this system for the cor-
rective terms, we deduce the corrected basis (ei)i de�ned as in (9), that de�ne
the corrected code Cgood, whose coordinates are given in the big left-hand rotated
matrix on the �rst formula page of the Appendix.

Likewise we deduce the corrected decomposition coe�cients (λ2,2,k,l)k,l∈B
and (λ4,4,k,l)k,l∈B as given in the centered right-hand formula.

We can �nally check straightforwardly that, with these corrected values, then
e2∗e2 and e4∗e4 now decompose themselves on B with the corrected coe�cients,
without anymore parasitic error vectors. So with these corrected lifts (ei)i, we
have now that the square of the corrected code Cgood is also a free lift. That is,
we have succeeded in modifying the free lift Cbad into a multiplication-friendly
lift Cgood.

3.3 Proof of Main Theorem 1

3.3.1 Roadmap of the proof.
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First Consider a smooth curve over Fpr and a divisor D0 on this curve (that
is: a set of points with multiplicities), such that the degree (the sum of the
multiplicities) is deg (D0) < n. Then, the curve has a lift de�ned over the ring
R`(r) (provided it is given under an equivalent form where equations have no
singular points). Lifting the points then applying Judy Walker's results, we have
the existence of lifts of the Riemann-Roch spaces: L(D) and L(2D) which are
free modules, and such that we have inclusions of products of spaces of global
sections

(11) L(D)⊗2 = L(2D) ,

where the traditional notation L(D)⊗2 stands for the space generated by
all products fg of pairs of sections (f, g) in L(D). Then, from Judy Walker's
Theorem 15 below, we deduce that the evaluation codes over rings C(D) and
C(2D), arising from evaluation of these free lifts of Riemann-Roch spaces, are
also free. We will detail this material in the two next subsections

Next The key property of these free lifts is that they behave well with respect
to inclusions and squares:

(12) C(D)∗2 ⊂ C(2D) .

Here the code C(2D) is free for the same reasons, with same rank as the classical
AG code C(2D0) below modulo p. So this forces the square C(D)∗2 to stay small,
contrary to the square of an arbitrary free lift, which may �spread out� too much
(as seen in Counterexample 14).

Deducing the parameters By freeness of C(D), Proposition 8 (5) implies that a
LSSS from C(D) has privacy threshold at least as large as a LSSS from the code
below modulo p: C(D0).

Likewise, by Proposition 8 (4), a LSSS from the free code C(2D) has full
reconstruction from any n − d(C(2D0)) + 2 shares. Thus, by inclusion (12), so
does a LSSS from the subcode C(D)∗2. Said otherwise, a LSSS from C(D) has
reconstruction of the product, from a number of pairwise products of shares which
is as small as for a LSSS from C(D0).

For sake of completeness we review the concrete parameters of these schemes
in �3.4, exampli�ed on the ones of [CC06].

3.3.2 Lift of curves, divisors and Riemann-Roch spaces Let us follow
Walker's [Wal99] notations. Note R = R`(r) the (Artinian local) Galois ring,
with residue ring R/(p) = Fpr .X0 being a smooth projective curve over Fpr , then
from [Ill05, Theorem 5.19 ii)] (or [SGA1, III Corollaire 7.4]), X0 has a smooth
projective lift over the ring of Witt vectors W (Fpr ). Which, after reduction
mod p`, yields a projective lift X over R (because these properties are preserved
by base change). Also, R being local, Fpr -points of X0 lift to R-points of X by
the formal smoothness criterion (see [Wal99, Remark 4.5] or next paragraph for
details). As a consequence, divisors with support on rational points (actually
any divisor) lift to X �and thus also do the line bundles L0 arising from them.
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An explicit procedure for simultaneous compatible free lifts of line bundles. By
[Wal99, Lemma 4.4] we can construct lifts of divisors D0 on X from the following
recipe. First, for every rational point P (j)

0 of X0, �x a closed point of degree one
P (j) of X above P0, as described in [Wal99, Remark 4.5] (lift arbitrarily P (j)

0 to
an R-point, then choose P (j) inside the image).

Then we can simultaneously lift divisors D0 and 2D0 on X0 as follows. For
every rational point P0 of X0 in the support of the line bundle D0, let m be
the valuation of D0 at P0 and let P be the closed point lying above P0 as �xed
earlier. Deduce from it a divisor mP , then sum over the points P0 in the support
of D0, to obtain a lift D of D0. Likewise for the divisor 2D, equal to the same
formal sum of R-points as in D and with twice the multiplicities. In particular,
note L := L(D) the line bundle associated to D, and likewise for L(2D).

Proof of (11) This formula well known for curves over �elds. Let us justify that
it also holds over rings. The reason is that, by smoothness of the lift of the curve,
this guarantees that, in a small enough neighborhood U of P , we also have a
uniformizer denoted tU (see [Wal, Proposition 4.9]). Thus, as long as U does not
contain the other points of the support of D, we have:

(13) LU = t−mU OU .

Thus t−mU t−mU ∈ LU (2D), hence the claimed inclusion of products of global
sections (11).

3.3.3 Deducing AG codes by Evaluation of Global Sections. For any
divisor D on X, we denote as the �Riemann-Roch space� Γ (X,L) the space
of global sections. In the rest of the paper it is denoted instead L(D). By the
argument above [Wal99, Theorem 4.7], f is a free R-module that reduces modulo
p to Γ (X0,L0). With slightly narrower conditions on the degree, then have the
following compatibilities, as wrapped-up in [Wal99, Theorem 5.5]:

Theorem 15 (Lifts of Riemann-Roch spaces and AG codes). Consider

n rational points P0 =
(
P

(j)
0

)
j=1...n

on X0, D0 a divisor of degree:

2g − 2 < degD0 < n

with associated line bundle L0, and the injective evaluation map γ0 yielding an
algebraic geometry code C in Fnpr . Then this data lifts to objects over R: X,P
and D, with associated line bundle L, yielding an evaluation code C, such that
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we have the following commutative diagram:

(14) Γ (X,L) // //
_�

eval

��

Γ (X,L)⊗R Fpr
˜ // Γ (X0,L0)

_�

eval

��
⊕jΓ (P (j),L|P (j))

γ∼=

��

⊕jΓ (P
(j)
0 ,L0|P (j)

0
)

γ0
∼=

��
Rn

.⊗RFpr // Fnpr

Where: - the top left horizontal arrow and the bottom horizontal arrow are
tensorisation by ⊗RFpr - the top right isomorphism is constructed canonically
as in the proofs of [Wal99, Lemma 4.6 & proof of Th 4.7]

- the top vertical arrows are the canonical restriction maps - the bottom left
vertical arrow is a collection of arbitrary isomorphisms for all j:

γj : Γ (P (j),L|P (j)) −→ A

that reduce to γ0 by tensorisation by ⊗RFpr (and if not, then rede�ne γ0 ac-
cordingly without changing the code in Fnpr ).

Notice that the name �evaluation maps� of the top vertical arrows is abusive
in general (because of poles, etc: see the �rst example of �4.1), but they do play
this role.

In conclusion, as explained in [Wal99], the code C(D) (likewise C(2D)) is
free because it is the image of a free module: Γ (X,L), under the evaluation
map which is an injection modulo (p), and thus its image is a free submodule of
R`(r)

n by Lemma 9.

3.4 Reminders on the asymptotic parameters

Recall �rst the tradeo� of [CC06, �5] for secret sharing in �nite �elds Fp. Let us
cast a secret in Fp, into the extension Fpr of degree r, such that

pr ≥ 49 .

Then for adversary threshold 1/3− ε, and for in�nitely many number of players,
there exists an ASSSM over Fpr and size r of shares, such that:

ε <
4

3(pr/2 − 1)
,

[CC06, �5] In particular, choosing r̂(ε) = −2 log(ε) yields an adversary bound
1/3− ε when ε is su�ciently small.

Notice that the classical bound for the dual distance of AG codes over �elds
is not stated explicitly in [Cas+09; CCX11]. But its parameters are well known
since Goppa (recalled e.g. in [Wal99, Theorem 2.1]), and also asymptocially
optimal in our regime 2g − 2 < degD0 < n. Which supports the claims of
[Cas+09; CCX11], and thus ours by Proposition 8.
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4 Computing Hensel Lift of a Code with a Small Square

Starting from any code C ⊂ Fpr , for any positive L, the following Hensel lift
algorithm lifts the code to a free code CL ⊂ RL(r)n such that the square remains

generated by a lift of a basis of the square C
∗2
. It proceeds in L recursive steps.

Each of the steps consists in solving one instance of the same linear system
over Fpr , of size O(n3)×O(n3) . Thus the overall complexity is linear in L and
polynomial in n. The algorithm was already illustrated in �3.2, let us formalize
it.

Let (ei)i∈[dimC] be a basis of the code C1 := C. By de�nition, the square C
∗2

is generated by the n(n+1)/2 distinct componentwise products (ei∗ej)(i,j). C
∗2
1

being a vector space, one can extract a basis from the previous family, which we
denote (ek ∗ el)(k,l)∈B , where

∣∣B∣∣ = dimC
∗2
1 .

A recursive step is as follows. The input is a free lift C` ∈ R`(r)
n of C,

together with a basis (ei)i∈[dimC], and coe�cients
(
λi,j,k,l

)
i≤j, (k,l)∈B in R`(r),

such that we have the following invariant. The family of componentwise products
(ek ∗ el)(k,l)∈B generates the square C∗2` . The coe�cients express the larger
generating family (ei ∗ ej)(i≤j) on the smaller generating family, namely:

(15) ei ∗ ej =
∑

(k,l)∈B

λi,j,k,l ek ∗ el for all i ≤ j

The output of a step is a lift C`+1 ∈ R`+1(r)n, together with a basis (ei
′′)i∈[dimC]

that lifts (ei)i∈[dimC], and coe�cients
(
λ′′i,j,k,l

)
i≤j, (k,l)∈B in R`+1(r) that lift the(

λi,j,k,l
)
i≤j, (k,l)∈B such that the same invariant holds (this time with respect to

the square C∗2`+1).
The computation of a step is as follows. Fix arbitrary lifts ei

′ of the ei in
R`+1(r)n, and λ′i,j,k,l of the λi,j,k,l in R`+1(r). We obtain error terms p`Di,j

when evaluating the equations in R`+1(r)n:

(16) ei
′ ∗ ej ′ =

∑
k,l

λ′i,j,k,lek
′ ∗ el′ + p`Di,j for all i ≤ j

Solving the system means �nding correct lifts ei
′′ and λ′′i,j,k,l such that the

error terms p`Di,j are all equal to 0. We express ei
′′ and λ′′i,j,k,l from ei

′ and
λ′i,j,k,l, added with corrective terms p`f ′

i and p
`µ′i,j,k,l:

(17) ei
′′ = ei

′ + p`f ′
i and λ

′′
i,j,k,l = λ′i,j,k,l + p`µ′i,j,k,l

So that, replacing ei′ in (16) by the corrected ei
′′ of (17) (where the corrective

terms are treated as unknows), simplifying and moding out the terms that are
multiples of p`+1, we observe (Hensel's trick) that all the terms remaining in the
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system are multiples of p`. Thus, dividing by p`, we fall back to the following
linear system in Fpr :

(18) ei ∗f ′
j +ej ∗f ′

i −Di,j =
∑
k,l

µ′i,j,k,lek ∗el +λi,j,k,l(ek ∗f ′
l +el ∗f ′

k) ∀i ≤ j

which we notice is the same system for all steps. Finally, as for the size of
the system, each vectorial equation for (i, j) expands itself in n scalar equations,
so a total of nk(k + 1)/2. The lifts of the (ei)i are n unknowns and the lifts of

λi,j,k,l are k(k + 1).dim (C
∗2

) unknowns.

Complexity in log(L) It was suggested by a reviewer of Eurocrypt that, applying
the Hensel lifting method in its full version would enable a lifting complexity in
only O(log2 L) steps. This comes from the possibility to lift (15) directly modulo
p2` (full Hensel method). However, this requires to determine the corrective terms
modulo p`, and not anymore just modulo p as in (18). This thus requires the
task of solving a linear system modulo p`, not anymore just modulo p. This task
is e�ciently computable, as proven in �5 (A). But for simplicity, we nevertheless
implemented the method in L steps.

4.1 Example of a multiplication friendly lift modulo 2100

Here we illustrate e�ciency of our method by lifting a strongly multiplicative
secret sharing scheme over F16 for 64 players and adversary threshold t = 13,
into a scheme over Z/2100Z, in a minute on a single processor.

LetX0 be the �Hermitian" plane curve over F16 de�ned by equation f(x, T ) =
T 4+T−x4+1. Then it is well known that this curve has genus g = 4(4−1)/2 = 6
and n+ 1 := |X0(F16)| = 1 + 43 = 65 rational points (which reaches the Hasse-
Weil upper-bound). Let us denote these points P0, . . . , Pn=64, consider the divisor
D0 = 25P0, whose Riemann-Roch space L(D0) is of dimension 20. Let C be the
algebraic geometry code C of length n + 1 de�ned as evaluations of L(D0) on
all the rational points of X0, including the support {P0} of D0. Phrased with
the notations of [CC06, �3], this means that we allow in addition to evaluate
at Q. We do this to enable +1 on the adversary bound t. Evaluate at a point
P0 of the support of D0, simply proceeds by pre-multiplying the function to be
evaluated, by a uniformizer of P0 to the power the order of P0 in D0. For the
sake of illustration notice that, with t = 13, we have degD0 = 2g + t so that
the condition 39 = 3t < n − 4g = 40 of [CC06, Proposition 2] is satis�ed, thus
from C we can deduce a secret sharing scheme with strong multiplication for
adversary bound t = 13.

Before going on, we compute the square code C
2
and the (a priori larger)

AG code associated to L(2D0), and check that both are equal. By the Riemann-
Roch formula we have that C(2D0) is of dimension 2.25 + 1− 6 = 45. From the

generating set (ei ∗ej)i≤j of C
2
we extract a basis (ek ∗el)(k,l)∈B . We now look

at the matrix expressing the (ei ∗ej)i≤j in terms of this basis (with the previous
notations, this is the matrix of the coe�cients λi,j,k,l). It has (dim (C)(dim (C)+
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1))/2 = 210 lines (all ordered pairs i ≤ j). Obviously the lines where the index
(i, j) belongs to B contain a single coe�cient, equal to one. And obviously these
coe�cients will remain equal to one in every lift mod p` so we can remove these
ndimC

2
= 64× 45 relations (and the corresponding variables) from the system

from now on. This means that equality actually holds in (12). It is left outside
of the scope of the paper to prove why this equality is actually implied by the
condition degD0 ≥ 2g + 1.

After some optimizations outside of the scope of this paper, we end up with
a system (18) of 10725 equations with 3305 unknowns but, surprisingly, of (still)
very large kernel: dimension 83 (dimension 200 before applying the trick). We
solve it in one second on a single processor.

Finally we repeat the operation, following the Hensel-lift algorithm: we rein-
ject the solution (the lifted vectors ei and coe�cients λi,j,k,l) in a system mod
23 (as in (15)), which is a multiple of 22 after simpli�cation, thus falls back to
a system mod 2 after �division by 22�. Note the general fact that the matrix
of the new system obtained is exactly the same as the initial one (18), because
the coe�cients depend only on the values modulo 2 of ei and λi,j,k,l. To which
we �nd again a solution (the mysterious lucky heuristic) �in one second as
expected� then repeat exactly 97 times (always the lucky heuristic) to reach a
multiplication friendly lift over R100(4).

5 Applications to MPC

5.1 Proof of Main Theorem 2

Proposition 16. For any �xed p and `, consider any �x number n of players,
and choose any �xed even integer r such that pr ≥ 64, and security parameter κ.
Then there exists a slowly growing in�nite sequence of integers N such that: for
any set of N triples ai, bi, ci in Z/p`Z (resp. in Fp), which are shared between
the players using any linear secret sharing scheme, then there exists a protocol
that has the following properties

� The protocol consumes an additional number of triples, which is asymptoti-
cally N(1 + 2p−r/2), that are opened (so cannot be used anymore);

� Either all triples considered are correct: aibi = ci then it outputs true,
or at least one is incorrect, then it outputs false except with probability
O(p−(rκ−1)/2(1 + 4p−κ/2))

� The communication complexity is nr(N+2κ2) of elements of Z/p`Z (resp. of
Fp) sent, the computational complexity is O(N) linear operations in Z/p`Z
(resp. in Fp) per player.

For simplicity we prove it over �nite �elds. Then the same methods to lift it
over rings as in Main Theorem 1 apply. Consider the �nite �eld extension Fpr
and an optimal family of algebraic curves over Fpr with genera slowly growing
to in�nity. The best existing asymptotic ratio of the number of rational points
divided by the genus, is denoted A(pr) �the Ihara constant�. When r is even then

24



Ihara showed existence of in�nitely many curves with slowly growing genera such
that it matches the upper-bound bound of Drinfeld-Vladuts: A(pr) = pr/2 − 1.
Recall that this bound is one order of magnitude lower than the Weil upper
bound (which is relevant only for �nite genera). Fix a curve C in this family,
with genus g, such that it has at least 2(N + 2g−1) points (which is possible for
all N large enough since pr ≥ 64). Consider a �xed set of points P1, . . . , PN on
this curve, and G a point of degree N+2g−1 (existence is guaranteed by [Sti09,
Theorem 5.2.10 c)]). Then there exists an interpolation formula with coe�cients
linear in the ai (resp. the bi), that builds rational functions f (resp. g) in the
Riemann Roch space L(G), such that they take the values ai (resp. bi) at the
points P1, . . . , PN . [The technique for this is as in Lagrange's interpolation for-
mula: one considers for every point Pi a �xed public function χi that vanishes at
all the Pj for j 6= i but not at Pi. Existence of χi is guaranteed by a consequence
of the Riemann-Roch formula: `(G −

∑
i 6=j Pj) − `(G −

∑
j Pj) > 0. Then, the

function f is deduced as the linear combination
∑
i(ai/χi(Pi))fi]. The players

can thus obtain a secret sharing of coe�cients of f seen as a linear combination
of the public χi's (same for g). De�ne h = fg in L(2G). Consider the remaining
points of the curve: PN+1, . . . , P2(N+2g−1). Players sacri�ce N + 2g− 1 auxiliary
triples (possibly incorrect), in order to compute with the Beaver passively-secure
protocol (so possibly incorrectly) secret sharings of the products c̃i = f(Pi)g(Pi)
at all those remaining points. At this point, if all triples are correct and no cheat-
ing occured, then we should have h(Pi) = ci for all i = 1 . . . N and h(Pi) = c̃i
for all i = N + 1 . . . 2(N + 2g − 1) As above, players compute a secret sharing
of the unique function h̃ in L(2G) such that h̃(Pi) = ci for all i = 1 . . . N and
h̃(Pi) = c̃i (namely they locally compute a secret sharing of the coe�cients of
the linear decomposition of h̃ along the public χi). Then they sample a ran-
dom secret shared challenge value λ ∈ Fprκ , compute locally secret sharings of
the evaluations f(λ), g(λ) and h̃(λ), compute a (possibly false) secret sharing
of the product f(λ)g(λ) by sacri�cing 2κ2 triples (multiplication in Fprκ/Fpr
being done with the schoolboy algorithm), then perform a equal-to-zero check
on f(λ)g(λ)− h̃(λ). If it passes, then they return accept.

5.2 Existence of lifts of RMFE over rings, with constant rate

Let p be a prime and r, k, m ≥ 1 be positive integers. ∗ denotes the component-
wise product. We adapt over rings [Cas+18, De�nition 1] (where q = pr).

De�nition 17. A pair (φ, ψ) is called an (k,m)pr -Reverse Multiplication Friendly
Embedding (RMFE) if φ : R`(r)

k → R`(rm) and ψ : R`(rm)→ R`(r)
k are two

R`(r)-linear maps satisfying

(19) x ∗ y = ψ(φ(x)φ(y)) for all x, y ∈ R`(r)k

Theorem 18. Consider the family of �Reverse multiplication friendly embed-
dings� (RMFE) of [Cas+18, Theorem 5] (where q := pr), then there exists a
family of RMFE of (R`(r))

k into R`(rm), with k slowly growing to in�nity and
the same constant asymptotic expansion rates m/k.
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Let us review the construction over �elds of [Cas+18, Lem 6 & Cor 1] that
provides [Cas+18, Theorem 5], and use the tools of �3.3 to show that it lifts.
We consider a smooth curve over Fq of genus g, with k distinct rational points
denoted P1, P2, . . . , Pk. Let G be a divisor such that degG ≥ k+ 2g+ 1 (and for
simplicity, with support outside of {P1, . . . , Pk}). By the Riemann-Roch formula
we thus have dim FqL(G)−dim FqL(G−

∑
i Pi) = k. By �3.3, the Riemann Roch

spaces in this equality lift to free modules of same rank. Consider the evaluation
map π : L(G) −→ Fkq : f −→ (f(Pi))i∈[k], which has kernel L(G −

∑
i Pi).

Then π is surjective, since dim Fq Im(π) = dim FqL(G)−dim FqL(G−
∑
i Pi) = k.

Surjectivity is preserved over rings (by the invertible determinant mod p trick).
Choose a subspace W of L(G) of dimension k such that π induces an iso-

morphism between W and Fkq . Choose R a point of degree m > 2 deg (G), which
exists for m large enough by [Sti09, Theorem 5.2.10 c)]. For any f ∈ L(G),
we denote by cf the evaluation vector (f(Pi)), and by f(R) the evaluation.
The previous isomorphism induces the Fq-linear map φ : π(V ) = Fkq −→ Fqm :
cf → f(R). Then φ is injective, since deg (R) > deg (G). Thus the lift over rings
is also injective, by Lemma 9.

De�ne the Fq -linear map τ : L(2G) −→ Fqm : f → f(R) . Then τ is injective,
since m = deg(R) > deg(2G), and likewise for the lift by Lemma 9. Bijectivity
of Im(τ) with L(2G) induces the Fq-linear map ψ′ : Im(τ) ⊆ Fqm −→ Fkq :
f(R) → (f(Pi)). Then ψ′ surjective (but not injective), by the same degree
reason than π, and likewise for surjectivity of the lift. We extend φ′ from Im(τ)
to all of Fqm linearly, and denote the resulting map ψ.

Finally, RMFE follows from the fact that, for any cf , cg ∈ Fkq we have:

ψ(φ(cf )φ(cg)) = ψ(f(R)g(R)) = ψ((f.g)(R)) = cfg = cf ∗ cg

where f, g ∈W are uniquely determined from cf , cg by the injectivities above.
Note that (fg)(R) belongs to Im(τ) since fg ∈ L(2G).

5.3 Proof of Main Theorem 3

We can now compile a protocol for a circuit over a large Galois ring R`(r), into a
protocol for many evaluations in parallel of this circuit in Z/p`Z by casting over
rings the protocols of [Cas+18]. Since we choose to restrict ourselves to the case of
optimal adversary rate, we really need hyperinvertible matrices over Galois rings
for any number of players (not the alternative with suboptimal adversary bound
discussed in [Cas+18, �2.4]). Fortunately their construction is straightforward,
see e.g. [Abs+19a]. We can thus cast the original protocol of Beerliova-Hirt over
Galois rings, then compensate their bad asymptotic communication overhead
by amortizing it over several instances in parallel, exactly as done in [Cas+18,
Theorem 1 & 2]. Namely, the main tool are RMFE over rings with asymptotically
linear rate, which is solved above in �5.2. Whereas the �tensoring-up� trick carries
over rings without any technical di�culty.
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5.4 An analogous e�cient Hensel lift for RMFE

Again we consider for simplicity only the base �eld Fp, instead of Fpr . Let us
make the following useful rephrasing of the de�nition of a reverse multiplication
embedding (RMFE) of Fkp into Fpm Consider the �eld extension Fpm , equipped
with its internal multiplication law. Denoting the dual over Fp with ∗, this law is
captured by what is denoted as the multiplication tensor T ∈ F∗pm ⊗ F∗pm ⊗ Fpm
Its components Ti=1..m are Fp-bilinear forms from

(
Fpm × Fpm

)
to Fp. Now �x

a linear map
φ : Fkp −→ Fpm

The pull back of T :

φ∗T = T (φ(.), φ(.))

decomposes in Fpm in m components which are symmetric bilinear forms

φ∗Ti = Ti(φ(.), φ(.)) , i = 1..m

belonging by de�nition to the symmetric tensor space of the linear forms S2((Fkp)∗).

De�nition 19. Consider the (nonintegral) algebra Fkp, equipped with the multi-
plication law component-by-component. This law is captured by what is denoted
as the �multiplication tensor�, belonging to

(
Fkp
)∗⊗ (Fkp)∗⊗Fkp. We say that φ is

a reverse multiplication embedding i� these m bilinear forms φ∗Ti generate the
components (x∗1 ⊗ x∗1, ...x∗k ⊗ x∗k) of the multiplication tensor.

Lifting of an algorithm φ modulo p2: Suppose we are given a reverse multi-
plication friendly embedding φ, over Fp (r = 1 to make notations simple): for
each j = 1 . . . k, we have coe�cients λi,j such that:

(20) x∗j ⊗ x∗j =

m∑
i=1

λi,j . φ
∗Ti

(it is a tensorial equality: it takes place in the space of symmetric bilinear
forms of length k, so expands on coordinates as a set of k(k+1)/2 equations). We
want to lift φ and the coe�cients λi,j such that the equalities (20) hold modulo
p2. (So we have mk+mk unknowns and m equations, each of them taking place
in a symmetric tensor space of dimension k(k + 1)/2 ). Consider arbitrary lifts
φ′ and λ′i,j of φ and λi,j over Z/p2Z, we thus obtain the (tensorial) equalities
modulo p2 for j = 1..k :

x∗j ⊗ x∗j =

m∑
i=1

λ′i,jφ
′∗Ti + p∆j

and we would like to eliminate the error terms p∆j modulo p2 by choosing
better lifts of φ and of λi,j :

(21) φ′ + pψ and λ′i,j + pµi,j
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After replacing (21) in (20) then simpli�cation, the equation becomes the
following (tensorial) linear equation modulo p (so with coordinates in Fp):

m∑
i=1

2λ′i,jTi
(
φ′(.), ψ(.)

)
+ µ′i,jTi

(
φ′(), φ′i(.)

)
= −∆j

where the unknowns are ψ and µ′i,j .
How to repeat and compute higher lifts modulo p` then proceeds as in �4.
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