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Abstract. A non-interactive zero-knowledge (NIZK) proof system for
a language L ∈ NP allows a prover (who is provided with an instance
x ∈ L, and a witness w for x) to compute a classical certificate π for
the claim that x ∈ L such that π has the following properties: 1) π can
be verified efficiently, and 2) π does not reveal any information about
w, besides the fact that it exists (i.e. that x ∈ L). NIZK proof systems
have recently been shown to exist for all languages in NP in the common
reference string (CRS) model and under the learning with errors (LWE)
assumption.

We initiate the study of NIZK arguments for languages in QMA. An ar-
gument system differs from a proof system in that the honest prover must
be efficient, and that it is only sound against (quantum) polynomial-time
provers. Our first main result is the following: if LWE is hard for quan-
tum computers, then any language in QMA has an NIZK argument with
preprocessing. The preprocessing in our argument system consists of (i)
the generation of a CRS and (ii) a single (instance-independent) quan-
tum message from verifier to prover. The instance-dependent phase of
our argument system, meanwhile, involves only a single classical mes-
sage from prover to verifier. Importantly, verification in our protocol is
entirely classical, and the verifier needs not have quantum memory; its
only quantum actions are in the preprocessing phase. NIZK proofs of
(classical) knowledge are widely used in the construction of more ad-
vanced cryptographic protocols, and we expect the quantum analogue to
likewise find a broad range of applications. In this respect, the fact that
our protocol has an entirely classical verification phase is particularly
appealing.

Our second contribution is to extend the notion of a classical proof of
knowledge to the quantum setting. We introduce the notions of argu-
ments and proofs of quantum knowledge (AoQK/PoQK), and we show
that our non-interactive argument system satisfies the definition of an
AoQK, which extends its domain of usefulness with respect to crypto-
graphic applications. In particular, we explicitly construct an extractor
which can recover a quantum witness from any prover who is successful
in our protocol. We also show that any language in QMA has an (in-
teractive) proof of quantum knowledge, again by exhibiting a particular
proof system for all languages in QMA and constructing an extractor for
it.

Keywords: zero-knowledge · non-interactive proof · argument systems
· QMA.
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1 Introduction

The paradigm of the interactive proof system is commonly studied in cryptogra-
phy and in complexity theory. Intuitively speaking, an interactive proof system is
a protocol in which an unbounded prover attempts to convince an efficient verifier
that some problem instance x is in some language L. The verifier represents an
entity less computationally powerful or less informed than the prover; the prover
holds some knowledge that the verifier does not (namely, that x ∈ L), and the
prover attempts to convince the verifier of this knowledge. We say that there is
an interactive proof system for a language L if the following two conditions are
satisfied. Firstly, for any x ∈ L, there must exist a prover (the ‘honest’ prover)
which causes the (honest) verifier to accept in the protocol with high probabil-
ity; and secondly, for any x /∈ L, there is no prover which can cause the honest
verifier to accept, except with some small probability. These two conditions are
commonly referred to as the ‘completeness’ and ‘soundness’ conditions. We can
also consider a relaxed soundness condition where, when x /∈ L, we require only
that it be computationally intractable (rather than impossible) to cause the ver-
ifier to accept. A protocol satisfying this relaxed soundness condition, and which
has an efficient honest prover, is known as an interactive argument system.

Some interactive proof and argument systems satisfy a third property known
as zero-knowledge [GMR85], which captures the informal notion that the verifier
(even a dishonest verifier) ‘learns no new information’ from an interaction with
the honest prover, except for the information that x ∈ L. This idea is formalised
through a simulator, which has the same computational powers as the verifier
V does, and can output transcripts that (for x such that x ∈ L) are indistin-
guishable from transcripts arising from interactions between V and the honest
prover. As such, V intuitively ‘learns nothing’, because whatever it might have
learned from a transcript it could equally have generated by itself. The prop-
erty of zero-knowledge can be perfect (PZK), statistical (SZK) or computational
(CZK). The difference between these three definitions is the extent to which
simulated transcripts are indistinguishable from real ones. In a PZK protocol,
the simulator’s output distribution is identical to the distribution of transcripts
that the honest prover and (potentially dishonest) verifier generate when x ∈ L.
In SZK, the two distributions have negligible statistical distance, and in CZK,
they are computationally indistinguishable. In this work we will primarily be
concerned with CZK.

A non-interactive proof system (or argument system) is a protocol in which
the prover and the verifier exchange only a single message that depends on
the problem instance x. (In general, an instance-independent setup phase may
be allowed in which the prover and verifier communicate, with each other or
with a trusted third party, in order to establish shared state that is used dur-
ing the protocol execution proper. We discuss this setup phase in more detail
in the following paragraph.) Non-interactive zero-knowledge (NIZK) proofs and
arguments have seen widespread application in classical cryptography, often in
venues where their interactive counterparts would be impracticable—including,
notably, in CCA-secure public-key cryptosystems [NY90,Sah99], digital signa-
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ture schemes [BG90,CP92,BMW03], verifiable delegated computation [PHGR13]
and, recently, a number of blockchain constructions [GGPR13,Com14,Lab17]. A
particularly attractive feature of classical NIZK systems is that they can be am-
plified in parallel to achieve better security parameters [BDSMP91], which is in
general not true of their interactive (private-coin) counterparts.

It is known [GO94] that NIZK proofs and arguments in the standard model
(namely, the model where the only assumption is that adversarial entities are
computationally efficient) exist only for languages in BPP. As such, in order
to construct NIZK protocols for more interesting languages, it is customary to
consider extended cryptographic models. Examples of these include the common
reference string (CRS) model, in which the verifier and the prover are assumed
to begin the protocol sharing access to a common string sampled from a specified
distribution; and the random oracle (RO) model, in which prover and verifier
have access to an efficiently evaluable function that behaves like a function sam-
pled uniformly at random from the set of possible functions with some specified,
and finite, domain and range. In these extended models, and under certain com-
putational hardness assumptions, non-interactive computational zero-knowledge
proof systems for all languages in NP are known. For instance, Blum, Santis,
Micali and Persiano [BDSMP91] showed in 1990 that NIZK proofs for all lan-
guages in NP exist in the CRS model, assuming that the problem of quadratic
residuosity is computationally intractable.

At this point, a natural question arises: what happens in the quantum set-
ting? Ever since Shor’s algorithm for factoring [Sho95] was published in 1995, it
has been understood that the introduction of quantum computers would render
a wide range of cryptographic protocols insecure. For example, quadratic residu-
osity is known to be solvable in polynomial time by quantum computers. Given
that this is so, it is natural to ask the following question: in the presence of quan-
tum adversaries, is it still possible to obtain proof systems for all languages in
NP that are complete and sound, and if it is, in which extended models is it feasi-
ble? This question has been studied in recent years. For example, Unruh showed
in [Unr15] that quantum-resistant NIZK proof systems for all languages in NP
exist in the quantum random oracle (QRO) model, a quantum generalisation of
the random oracle model. More recently, Peikert and Shiehian [PS19] achieved
a more direct analogue of Blum et al.’s result, by showing that NIZK proofs
for all languages in NP exist in the CRS model, assuming that learning with
errors (LWE)—a problem believed to be difficult for quantum computers—is
computationally intractable. 1

1 Peikert and Shiehan construct, based on LWE, a NI(C)ZK proof system in the
common reference string model, and a NI(S)ZK argument system in the common
random string model. They do not explicitly consider the applications of either result
to the quantum setting. We show, however, for our own purposes, that the latter of
these results generalises to quantum adversaries. In other words, we show (in Section
1.3 of the Supplementary Material) that the Peikert-Shiehan NIZK argument system
in the common random string model is adaptively sound against quantum adversaries
and adaptively (quantum computational) zero-knowledge.
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However, the advent of large-scale quantum computers would not only ren-
der some cryptosystems insecure; it would also provide us with computational
powers that extend those of our current classical machines, and give rise to new
cryptographic tasks that were never considered in the classical literature. A sec-
ond natural question which arises in the presence of quantum computers is the
following: in which models is it possible to obtain a NIZK proof or argument sys-
tem not only for all languages in NP, but for all languages in ‘quantum NP’ (i.e.
QMA)? Loosely speaking, NIZK protocols for NP languages allow the prover
to prove any statement that can be checked efficiently by a classical verifier
who is given a classical witness. A NIZK protocol for QMA languages would,
analogously, allow the prover to prove to the verifier (in a non-interactive, zero-
knowledge way) the veracity of statements that require a quantum witness and
quantum computing power to check. To our knowledge, the question of achiev-
ing NIZK protocols for QMA has not yet been studied. In 2016, Broadbent, Ji,
Song and Watrous [BJSW16] exhibited a zero-knowledge proof system for QMA
with an efficient honest prover, but their protocol requires both quantum and
classical interaction.

In this work, our first contribution is to propose a non-interactive (compu-
tational) zero-knowledge argument system for all languages in QMA, based on
the hardness of LWE, in which both verifier and prover are quantum polyno-
mial time. The model we consider is the CRS (common reference string) model,
augmented by a single message of (quantum) preprocessing. (The preprocess-
ing consists of an instance-independent quantum message from the verifier to
the prover.) The post-setup single message that the prover sends to the verifier,
after it receives the witness, is classical; the post-setup verifier is also entirely
classical; and, if we allow the prover and verifier to share EPR pairs a priori,
as in a model previously considered by Kobayashi [Kob02], we can also make
the verifier’s preprocessing message classical. Like classical NIZK protocols, our
protocol shows itself to be receptive to parallel repetition (see Section 2.3 of
the supplementary material), which allows us to amplify soundness concurrently
without affecting zero-knowledge. Our model and our assumptions are relatively
standard ones which can be fruitfully compared with those which have been
studied in the classical setting. As such, this result provides an early benchmark
of the kinds of assumptions under which NIZK can be achieved for languages in
QMA.

An example of an application in which the unique properties of our proto-
col might be useful is the setting of verifiable delegated computation, in which
a prover (who is generally a server to whom a client, the verifier, has delegated
a quantum task) wishes to prove to the verifier a statement about a history
state representing a certain computation. Suppose that the prover and the veri-
fier complete the setup phase of our protocol when the delegation occurs. After
the setup phase is complete, the verifier does not need to preserve any quan-
tum information, meaning that it could perform the setup phase using borrowed
quantum resources, and thereafter return to the classical world. When it receives
the prover’s single-message zero-knowledge proof, the verifier can verify its del-
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egated computation without performing any additional quantum operations—a
property that our protocol shares with protocols that have purely classical verifi-
cation, such as Mahadev’s classical-verifier argument system for QMA [Mah18].
An additional advantage of our protocol, however, is that the server can free
the quantum memory associated with the verifier’s computation immediately af-
ter the computation terminates, rather than holding the history state until the
verifier is available to perform the verification.

Our second contribution is to show that our protocol also satisfies a notion
of argument of quantum knowledge. In the classical setting, some proof systems
and argument systems for NP languages satisfy a stronger notion of soundness
wherein a witness can be extracted from any prover P who convinces the verifier
to accept with high probability. More formally, in such a setting, there is an
extractor machine which—given black-box access to any P who convinces the
verifier to accept with high probability (on the input x)—is able to efficiently
compute a witness w that testifies that the problem instance x is in the language
L. Such protocols are known as proofs and arguments of knowledge (PoK and
AoK). Intuitively speaking, the notion of PoK/AoK is a framework for describ-
ing situations where the prover is not necessarily more powerful, but only better
informed, than the verifier. In these situations, the prover possesses knowledge
(the witness w, which could represent a password or some other form of private
information) that the verifier does not; and the prover wishes to convince the
verifier, possibly in a zero-knowledge way (i.e. without revealing sensitive infor-
mation), that it indeed ‘knows’ or ‘possesses’ the witness w (so that it might, for
example, be granted access to its password-protected files, or cash a quantum
cheque). The idea of a machine ‘knowing’ some witness w is formalised by the
existence of the extractor.

Until now, the witness w has always been classical, and the notion of a proof
of quantum knowledge (PoQK) has not been formally defined or studied. In this
paper, we formulate a definition for a PoQK that is analogous to the classical
definition of a PoK,2 and we exhibit a protocol that is an (interactive) PoQK for
any language in QMA.3 We also introduce the notion of an argument of quantum
knowledge (AoQK), and we prove that our NIZK protocol for QMA is (under
this definition) a zero-knowledge argument of quantum knowledge. We present
our definitions of PoQK and AoQK in section 2.4.

There are two main difficulties in extending the classical notion of a PoK to
the quantum setting. The first is that we must precisely specify how the extractor
should be permitted to interact with the successful (quantum) prover. For this,
we borrow the formalism of quantum interactive machines that Unruh [Unr12]
uses in defining quantum proofs of classical knowledge. The second difficulty is to
give an appropriate definition of success for the extractor. In the classical setting,
the NP relation R which defines the set of witnesses w for a problem instance x is
binary: a string w is either a witness or it is not. In the quantum setting, on the

2 This definition is joint work with Broadbent and Grilo.
3 This result is also obtained in independent and concurrent work by Broadbent and

Grilo [BG19].



6 Andrea Coladangelo, Thomas Vidick, and Tina Zhang

other hand—unlike in the classical case, in which any witness is as good as any
other—different witnesses might be accepted with different probabilities by some
verification circuit Q under consideration. In other words, some witnesses may be
of better ‘quality’ than others. In addition, because QMA is a probabilistic class,
the choice of Q (which is analogous to the choice of the NP relation R) is more
obviously ambiguous than it is in the classical case. Different (and equally valid)
choices of verifiers Q for a particular language L ∈ QMA might have different
probabilities of accepting a candidate witness ρ on a particular instance x. In our
definition, we define a ‘QMA relation’ with respect to a fixed choice of verifying
circuit (family) Q; we define the ‘quality’ of a candidate witness ρ for x to be the
probability that Q accepts (x, ρ); and we require that the successful extractor
returns a witness whose quality lies strictly above the soundness parameter for
the QMA relation.

The interactive protocol from [BJSW16]

Our protocol is inspired by the protocol exhibited in [BJSW16], which gives
a zero-knowledge (interactive) proof system for any language in QMA. The
[BJSW16] protocol can be summarized as follows. (For a more detailed exposi-
tion, see section 2.2.)

1. The verifier and the prover begin with an instance x of some interest-
ing problem, the latter of which is represented by a (promise) language
L = (Lyes, Lno) ∈ QMA. The prover wishes to prove to the verifier that
x ∈ Lyes. The first step is to map x to an instance H of the QMA-complete
local Clifford Hamiltonian problem. In the case that x is a yes instance, i.e.
x ∈ Lyes, the prover, who receives a witness state |Φ〉 for x as auxiliary input,
performs the efficient transformation that turns the witness |Φ〉 for x into a
witness |Ψ〉 for H. (The chief property that witnesses |Ψ〉 for H have is that
〈Ψ |H |Ψ〉 is small—smaller than a certain threshold—which, rephrased in
physics terminology, means that |Ψ〉 has low energy with respect to H.) The
prover then sends an encoding of |Ψ〉 to the verifier (under a specified quan-
tum authentication code which doubly functions as an encryption scheme).
The prover also commits to the secret key of the authentication code.

2. The Clifford Hamiltonian H to which x has been mapped can be written as
a sum of polynomially many terms of the form C∗ |0k〉 〈0k|C, where C is a
Clifford unitary. (This is the origin of the name ‘Clifford Hamiltonian’.) The
verifier chooses a string r uniformly at random. r plays a role analogous to
that of the verifier’s choice of edge to check in the 3-colouring zero-knowledge
protocol introduced by [GMR85]: intuitively, r determines the verifier’s chal-
lenge to the prover. Each r corresponds to one of the terms C∗r |0k〉 〈0k|Cr
of the Clifford Hamiltonian.

The verifier then measures the term C∗r |0k〉 〈0k|Cr on the encoded witness
(this can be done ‘homomorphically’ through the encoding). The outcome
z obtained by the verifier can be thought of as an encoding of the true
measurement outcome, the latter of which should be small (i.e. correspond
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to low energy) if |Ψ〉 is a true witness. The verifier sends z (its measurement
outcomes) and r (its choice of Hamiltonian term) back the prover.

3. Finally, using a zero-knowledge NP proof system,4 the prover provides an
(interactive) ZK proof for the following NP statement: there exists an open-
ing to its earlier (perfectly binding) commitment such that, if the verifier
had the opened encoding keys, it would accept. This is an NP statement
because the witness string is the encoding keys. Proving that the verifier
‘would accept’ amounts to proving that the verifier’s measurement outcomes
z, decoded under the keys which were committed to earlier, would corre-
spond to a low-energy outcome. Because the proof that the prover provides
is zero-knowledge, the verifier learns nothing substantial from this exchange,
but it becomes convinced that it should accept.
In the protocol from [BJSW16], it is critical to soundness that the prover

sends the encoding of the witness to the verifier before the verifier chooses r.
The zero-knowledge property holds because the encoding that the prover ap-
plies to the witness state functions like an authenticated encryption scheme: its
encryption-like properties prevent the verifier from learning anything substantial
about the witness while handling the encoded state, and its authentication code–
like properties ensure that the verifier cannot deviate very far from its honest
behaviour.

Our non-interactive protocol

We wish to make the protocol from [BJSW16] non-interactive. To start with,
we can replace the prover’s proof in step 3 with a NIZK proof in the CRS
model. NIZK proofs for all languages in NP have recently been shown to ex-
ist [CLW19,PS19] based on the hardness of LWE only, and we prove that the
Peikert-Shiehian construction from [PS19] remains secure (i.e. quantum com-
putationally sound and zero-knowledge) against quantum adversaries, assuming
that LWE is quantum computationally intractable. However, the more substan-
tial obstacle to making the [BJSW16] protocol non-interactive is the following:
in order to do away with the verifier’s message in step 2, it seems that the
prover would have to somehow predict z (the verifier’s measurement outcomes)
and send a NIZK proof corresponding to this z. Unfortunately, in order for the
authentication code to work, the number of possible outcomes z has to be expo-
nentially large (and thus the prover cannot provide a NIZK proof of consistency
for each possible outcome). Even allowing for an instance-independent prepro-
cessing step between the verifier and the prover, it is unclear how this impasse
could be resolved.

Our first main idea is to use quantum teleportation. We add an instance-
independent preprocessing step in which the verifier creates a number of EPR
pairs and sends half of each to the prover. We then have the verifier (prema-
turely) make her measurement from step 2 during the preprocessing step (and

4 It is known that there are quantumly sound and quantumly zero-knowledge proof
systems for NP: see [Wat09].
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hence independently of the instance! ), and send the measurement outcomes z
to the prover. Once x is revealed, the prover teleports the encoded witness to
the verifier, and sends the verifier the teleportation outcomes d, along with a
commitment to his encoding keys. The prover then provides an NIZK proof of
an opening to the committed keys such that d, z and the encoding keys are con-
sistent with a low-energy outcome. The hope is that, because the prover’s and
the verifier’s actions commute (at least when the prover is honest), this proto-
col will be, in some sense, equivalent to one where the prover firstly teleports
the witness, then the verifier makes the measurements, and finally the prover
sends an NIZK proof. This latter protocol would be essentially equivalent to the
[BJSW16] protocol.

There are three main issues with this strategy:
1. In the preprocessing step, the verifier does not yet know what the instance
x (and hence what the Clifford Hamiltonian) is. Thus, she cannot measure
the term C∗r |0k〉 〈0k|Cr, as she would have done in what we have called step
2 of the protocol from [BJSW16].

2. The second issue is that the verifier cannot communicate her choice of r in
the preprocessing step in the clear. If she does, the prover will easily be able
to cheat by teleporting a state that passes the check for the rth Hamiltonian
term, but that would not pass the check for any other term.

3. The third issue is a bit more subtle. If the prover knows the verifier’s mea-
surement outcomes z before he teleports the witness state to the verifier,
he can misreport the teleportation outcomes d, and make a clever choice of
d such that d, z and the committed keys are consistent with a low-energy
outcome even when he does not possess a genuine witness.
The first issue is resolved by considering the (instance-independent) verifying

circuit Q for the QMA language L (recall that Q takes as input both an instance
x and a witness state), and mapping Q itself to a Clifford Hamiltonian H(Q).
(For comparison, in the protocol from [BJSW16], it is the circuit Q(x, ·) which is
mapped to a Clifford Hamiltonian.) In the instance-dependent step, the prover
will be asked to teleport a “history state” corresponding to the execution of
the circuit Q on input (x, |Ψ〉), where |Ψ〉 is a witness for the instance x. In
the preprocessing step, the verifier will measure a uniformly random term from
H(Q), and will also perform a special measurement (with some probability)
which is meant to certify that the prover put the correct instance x into Q when
it was creating the history state. Of course, the verifier does not know x at the
time of this measurement, but she will know x at the point where she needs to
verify the prover’s NIZK proof.

Our second main idea, which addresses the second and the third issues above
(at the price of downgrading our proof system to an argument system), is to
have the prover compute his NIZK proof homomorphically. During the prepro-
cessing step, we have the verifier send the prover a (computationally hiding)
commitment σ to her choice of r; and, in addition, we ask the verifier to send
the prover a homomorphic encryption of r, of the randomness s used to commit
to σ, and of her measurement outcomes z. At the beginning of the instance-
dependent step, the prover receives a witness |Ψ〉 for the instance x. During the
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instance-dependent step, and after having received the verifier’s ciphertexts in
the preprocessing step, we ask the prover firstly to commit to some choice of
encoding keys, and then to teleport to the verifier (an encoding of) the history
state corresponding to the execution of Q on input (x, |Ψ〉). Let d be the out-
come of the teleportation measurements. After the prover has committed to his
encoding keys, we ask the prover to homomorphically encrypt d and his encoding
keys, and homomorphically run the following circuit: check that r, s is a valid
opening to σ, and (using the properties of the authentication code) check also
that the verifier performed the honest measurement during preprocessing. If all
the checks pass, then the prover homomorphically computes an NIZK proof that
there exist encoding keys consistent with his commitment such that these keys,
together with r, z, d, indicate that the verifier’s measurement result was a low-
energy outcome. The homomorphic encryption safeguards the verifier against a
malicious prover who may attempt to take advantage of knowing r, or of the
freedom to cleverly choose d, in order to pass in the protocol without holding a
genuine witness.

In summary, the structure of our protocol is as follows. Let Q be a QMA
verification circuit, and let H(Q) be the Clifford Hamiltonian obtained from Q
by performing a circuit-to-Clifford-Hamiltonian reduction.

1. (preprocessing step) The verifier creates a (sufficiently large) number of EPR
pairs, and divides them into ‘her halves’ and ‘the prover’s halves’. She in-
terprets her halves as the qubits making up (an encoding of) a history state
generated from an evaluation of the circuit Q. Then, the verifier samples r
(her ‘challenge’) uniformly at random, and according to its value, does one
of two things: either she measures a uniformly random term of H(Q) on
‘her halves’ of the EPR pairs, or she makes a special measurement (on her
halves of the EPR pairs) whose results will allow her later to verify that the
circuit Q was evaluated on the correct instance x. Following this, the verifier
samples a public-key, secret-key pair (pk, sk) for a homomorphic encryption
scheme. She sends the prover:

(a) pk;

(b) the ‘prover’s halves’ of the EPR pairs;

(c) a commitment to her choice of challenge r;

(d) homomorphic encryptions of

i. r,
ii. the randomness s used in the commitment, and

iii. the measurement outcomes z.

2. (instance-dependent step) Upon receiving x, and a witness |Ψ〉, the prover
computes the appropriate history state, and samples encoding keys. Then,
he teleports an encoding of the history state to the verifier using the half
EPR pairs that he previously received from her. Notice that the verifier has
already measured the other half of the EPR pairs on her side during the
preprocessing step: hence the encoded history state is not being physically
teleported. Nonetheless, because the measurements of the verifier and the
prover commute, the net effect in terms of measurement outcome statistics
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is the same. Let d be the teleportation measurement outcomes. The prover
sends to the verifier:
(a) d;
(b) a commitment σ to his encoding keys;
(c) a homomorphic encryption of a NIZK proof (homomorphically com-

puted) of the existence of an opening to σ such that the opened keys,
together with d, z, r, are consistent with a low-energy outcome.

Upon receiving d, σ, and an encrypted proof π̃ from the prover, the verifier
decrypts π̃ to obtain π, and checks that π is a valid proof and that it is
consistent with d and σ (i.e the d and σ from steps (a) and (b) are the same
that appear in the statement being proven).

Analysis

Our protocol is a non-interactive, zero-knowledge argument system in the CRS
model with a one-message preprocessing step. It is straightforward to see that
the protocol satisfies completeness.

Intuitively, soundness follows from the fact that the encryptions the prover re-
ceives in the preprocessing step should be indistinguishable (assuming the prover
is computationally bounded) from encryptions of the zero string. As such, the
encryptions of z, r, s (and the commitment to r) cannot possibly be helping
the prover in guessing r or in selecting a false teleportation measurement out-
come d′ which makes z, r, d′ and the authentication keys consistent with a low-
energy outcome. Soundness then essentially reduces to soundness of the protocol
in [BJSW16].

The zero-knowledge property follows largely from the properties of the proto-
col in [BJSW16] that allowed Broadbent, Ji, Song and Watrous to achieve zero-
knowledge. One key difference is that, in order to avoid rewinding the (quantum)
verifier, the authors of [BJSW16] use the properties of an interactive coin-flipping
protocol to allow the efficient simulator to recover the string r (recall that r de-
termines the verifier’s challenge) with probability 1. (The traditional alternative
to this strategy is to have the simulator guess r, and rewind the verifier if it
guessed incorrectly in order to guess again. This is typical in classical proofs of
zero-knowledge [GMR85]. However, because quantum rewinding [Wat09] is more
delicate, the authors of [BJSW16] avoid it for simplicity.) As our protocol is non-
interactive, we are unable to take the same approach. Instead, we ask the verifier
to choose r and commit to it using a commitment scheme with a property we
call extractability. Intuitively, extractability means that the commitment scheme
takes a public key determined by the CRS. We then show that the simulator can
efficiently recover r from the verifier’s commitment by taking advantage of the
CRS. For an LWE-based extractable commitment scheme, see Section 1.2 of the
Supplementary Material.

Another subtlety, unique to homomorphic encryption, is that the verifier may
learn something about the homomorphic computations performed by the prover
(and hence possibly about the encoding keys) by looking at the encryption ran-
domness in the encryption (of an NIZK proof) that the prover sends the verifier.
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(Recall that the verifier possesses the decryption key sk for the homomorphic
encryption scheme.) This leads us to require the use of a fully homomorphic en-
cryption scheme which satisfies the property of circuit privacy. For a definition
of this property, see Section 1.2 of the Supplementary Material.

Remark 1. The technique we proposed to remove interaction from the protocol
of [BJSW16] is based on two main ingredients: the use of quantum teleportation,
which allows the verifier to anticipate her measurements of the state she receives
from the prover in the instance-dependent step, and the use of classical homo-
morphic encryption to allow the prover to demonstrate (homomorphically) that
he has performed a certain computation correctly. These two ingredients work
in tandem to ensure that the soundness and the zero-knowledge property of the
[BJSW16] protocol are preserved. We believe that this technique could find use
more broadly. In particular, it may be applicable as a general (soundness and
zero-knowledge preserving) transformation to any interactive proof system for
QMA with an efficient honest prover. We leave a more thorough investigation of
this as a direction for future work.

A non-interactive argument of quantum knowledge

One desirable feature of our non-interactive argument system is that it is also
an argument of quantum knowledge. As we mentioned earlier, one of our con-
tributions is to generalize the definitions of PoKs and AoKs for NP-relations
to definitions of PoKs and AoKs for QMA relations. In the latter setting, the
prover wishes to convince the verifier that he ‘knows’ or ‘possesses’ the quantum
witness for an instance of a QMA problem. In order to show that our proto-
col satisfies this additional property, we need to exhibit an extractor that, for
any yes instance x, and given quantum oracle access to any prover that is ac-
cepted with high probability in our protocol, outputs a quantum state which is
a witness for x. In section 6, we explicitly construct such an extractor K for
our non-interactive protocol. The intuition is the following. K (the extractor)
has oracle access to a prover P ∗, and it simulates an execution of the protocol
between P ∗ and the honest verifier V . We show that, if P ∗ is accepted in our
protocol with sufficiently high probability, then it must teleport to V (and hence
to K) the encoding ρ̃ of a witness state, and a commitment σ to the encoding
keys. If K knew the encoding keys, it would be able to decode ρ̃, but it is not
clear a priori how K could obtain such keys. Crucially, the same feature of our
protocol that allows the zero-knowledge simulator to extract r from the verifier’s
commitment to r also plays in K’s favour: when K simulates an execution of
the protocol, it samples a common reference string which is given to both V and
P ∗, and in our protocol, the CRS contains a public key which P ∗ uses to make
his commitment. As such, in order to extract a witness from P ∗, the extractor
samples a CRS containing a public key pk for which it knows the corresponding
secret key sk, and provides this particular CRS as input to P ∗. Then, when K
receives ρ̃ and σ from P ∗, it is able to extract the committed keys from σ, and
use these to decode ρ̃.
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An interactive proof of quantum knowledge

Our non-interactive protocol is an argument system, which means that it is
sound only against computationally bounded provers. In Section 7, we introduce
a separate but complementary result to our NIZK argument (of knowledge)
for QMA by showing that the zero-knowledge proof system for QMA exhib-
ited in [BJSW16] (with some minor modifications) is also a proof of quantum
knowledge.

2 Preliminaries

2.1 Notation

For an integer ` ≥ 1, [`] denotes the set {1, . . . , `}. We use poly(n) and negl(n)
to denote an arbitrary polynomial and negligible function of n respectively (a
negligible function f is any computable function such that f(n)q(n) →n→∞ 0
for all polynomials q). For an integer d ≥ 1, D(Cd) denotes the set of density
matrices on Cd, i.e. positive semidefinite ρ on Cd such that Tr(ρ) = 1. For a set

S and an element s ∈ S, we write s
$←− S to mean that s is sampled uniformly at

random from S. For an integer l, we denote by {0, 1}≤l the set of binary strings
of length at most l. We use the notation SN to denote the set of all permutations
of a set of N elements.

We use the terminology PPT for probabilistic polynomial time and QPT for
quantum polynomial time to describe algorithms;

2.2 The [BJSW16] protocol

The following exposition is taken from [VZ19]. For an introduction to the Local
Hamiltonian problem, and the associated notation, we refer the reader to the
Supplementary Material.

In [BJSW16], Broadbent, Ji, Song and Watrous describe a protocol involv-
ing a quantum polynomial-time verifier and an unbounded prover, interacting
quantumly, which constitutes a zero-knowledge proof system for languages in
QMA. (Although it is sound against arbitrary provers, the system in fact only
requires an honest prover who is provided with a single witness state to perform
quantum polynomial-time computations.) We summarise the steps of their pro-
tocol below. For details and fuller explanations, we refer the reader to [BJSW16,
Section 3].

Notation. Let L be any language in QMA. For a definition of the k-local Clif-
ford Hamiltonian problem, see [BJSW16, Section 2] (this is the defined analo-
gously to the k-local Hamiltonian problem, except that the Hamiltonian instance
consists of Clifford terms, as introduced in the previous subsection). The k-local
Clifford Hamiltonian problem (with exponentially small ground state energy) is
QMA-complete for k = 5; therefore, for all possible inputs x, there exists a 5-
local Clifford Hamiltonian H (which can be computed efficiently from x) whose
terms are all operators of the form C∗ |0k〉 〈0k|C for some Clifford operator C,
and such that
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– if x ∈ L, the ground energy of H is ≤ 2−p,
– if x /∈ L, the ground energy of H is ≥ 1

q ,
for some positive integers p and q which are bounded above by polynomials in
|x|.

Parties. The proof system involves a verifier, who implements a quantum
polynomial-time procedure; a prover, who is unbounded, but who is only required
by the protocol to implement a quantum polynomial-time procedure. The verifier
and the prover communicate quantumly.

Inputs.
1. Input to the verifier: (a) The Hamiltonian H. (b) A quantum computation-

ally concealing, perfectly binding (classical) commitment protocol. In this
section, we refer to the commitment algorithm from this protocol as commit;
commit(µ, s) takes as input a message µ and a random string s and produces
a commitment string z. (c) A proof system for NP sound against arbitrary
quantum provers.

2. Input to the prover: (a) The Hamiltonian H. (b) The n-qubit quantum state
ρ, where ρ is a ground state of the Hamiltonian H. (c) A quantum compu-
tationally concealing, perfectly binding (classical) commitment protocol. (d)
A proof system for NP sound against arbitrary quantum provers.

Protocol.
1. The prover’s encoding step. The prover applies the following encoding to the

witness state ρ.

Auth.Enc:
Parameters: N(·), a polynomially bounded function in |x|. (N functions as a security
parameter.)
Input: An m-qubit state ρ.
The prover firstly applies a concatenated Steane code (which maps every one qubit to
N(|x|) qubits) to each qubit in ρ. (For details on the concatenated Steane code,
see [BJSW16, Appendix A.6]. It will be important to Broadbent et al.’s purposes,
and ours, that this code admits transversal applications of Clifford operations.) It
then executes the following steps:

(a) Concatenate N trap qubits to the end of each logical qubit (alternatively, to the
end of each N -qubit block) in the result of applying the concatenated Steane
code to ρ. Each trap qubit is initialised uniformly at random to one of
|0〉 , |+〉 , |+y〉. (|+y〉 here refers to the state 1√

2
(|0〉+ i |1〉).) Denote the string

that records the choices of trap qubits for all m logical qubits by
t = t1, . . . , tN ∈ {|0〉 , |+〉 , |+y〉}mN .

(b) Permute each 2N -tuple of qubits in the result of (a) according to a uniformly
random permutation π ∈ S2N . (Note that the same permutation π is applied to
every 2N -tuple.)

(c) Apply a Pauli one-time pad XaZb, for uniformly random a, b ∈ {0, 1}2mN , to the
entire 2mN -qubit state.

Fig. 1. The authentication code
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We refer to t, π, a, b as ‘the authentication keys’ or ‘the encoding keys’.
The prover’s encoding applied to ρ is denoted by E(ρ), and the procedure
E is fully determined by the encoding key (t, π, a, b) which the prover chose
to use. At this point, the prover sends the state E(ρ) to the verifier, along
with a commitment (using some perfectly binding, computationally conceal-
ing classical commitment protocol) to the tuple (π, a, b). (A commitment to
the sequence of trap qubits t is unnecessary because, in a sense, the trap
qubits exist only to check the verifier.) Let the prover’s commitment string
be denoted z.

2. Coin-flipping protocol. The prover and the verifier execute a coin-flipping
protocol, choosing a string r of fixed length uniformly at random. This ran-
dom string r determines a local Hamiltonian term Hr = C∗r |0k〉 〈0k|Cr that
is to be tested. (This step can be implemented [DL09] using the same clas-
sical commitment protocol that the prover employed in the previous step.)

3. Verifier’s challenge. The verifier applies the Clifford Cr transversally to the
qubits on which the k-local Hamiltonian term Hr acts nontrivially, and mea-
sures them in the standard basis. It then sends the measurement results
ui1 , . . . , uik which it obtained to the prover. (Each ui is a 2N -bit string, and
i1, . . . , ik are the indices of the logical qubits on which the term Hr acts
nontrivially.)

4. Prover’s response. The prover receives the verifier’s measurement results u,
and firstly checks whether they cause a predicate Q̃(t, π, a, b, r, u) to be satis-
fied. (We will explain the predicate Q̃ in more detail shortly. Intuitively, Q̃ is
satisfied if and only if both verifier and prover behaved honestly. Note that
we have used the notation Q̃ to represent this predicate, while the authors
of [BJSW16] simply call it Q. We add the tilde in order to differentiate their
predicate from our predicate Q, the latter of which we define in Definition
13.) If Q̃ is not satisfied, the prover aborts, causing the verifier to reject.
If Q̃ is satisfied, then the prover proves to the verifier, using an NP zero-
knowledge protocol, that there exists randomness sP and an encoding key
(t, π, a, b) such that z = commit((π, a, b), sP ) and Q̃(t, π, a, b, r, u) = 1.
Here Q̃ represents the prover’s check after it has update the one-time pad

keys based on the Clifford Cr, and reversed the effects of the one-time pad keys.
We refer the reader to [BJSW16] for a formal definition of Q̃.

2.3 Argument systems

Interactive quantum machines The definitions of interactive quantum ma-
chines, their executions and oracle access to an interactive quantum machine are
taken from [Unr12], and are omitted from this version due to space constraints.

Oracle access to an interactive quantum machine We say that a quan-
tum algorithm A has oracle access to an interactive quantum machine M (and
we write this as AM , or sometimes A|M〉 to emphasize that M is a quantum
machine and that oracle access includes the ability to apply the inverse of M) to
mean the following. Besides the security parameter and its own classical input
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x, we allow A to execute the quantum circuit Mµx specifying M , and its inverse
(these act on the an “internal” register S and on a “network” register N of M).
Moreover, we allow A to provide and read messages from M (formally, we allow
A to act freely on the network register N). We do not allow A to act on the
internal register S of M , except via Mµx or its inverse.

Argument systems with setup First we define the kinds of relations that
underlie our argument systems. Classically, a relation over finite sets X × Y is
a subset R ⊆ X × Y. An NP relation R = {(x,w) : V|x|(x,w) = 1} has the
additional property that given any x ∈ X and w ∈ Y, the claim that (x,w) ∈
R can be verified by a uniformly generated family of circuits V = {Vn} (the
“verifier”).

In the quantum case the “input” x (the first argument to the relation) remains
classical, but the “witness” w (the second argument) can be a quantum state |ψ〉.
Before we give our definition of a QMA relation we introduce some notation. Fix
a uniformly generated family of polynomial-size quantum circuits Q = {Qn}n∈N
such that for every n, Qn takes as input a string x ∈ {0, 1}n and a quantum
state σ on p(n) qubits (for some polynomial p(n)) and returns a single bit as
output. For any 0 ≤ γ ≤ 1 define

RQ,γ =
⋃
n∈N

{
(x, σ) ∈ {0, 1}n ×D(Cp(n))

∣∣ Pr(Qn(x, σ) = 1) ≥ γ
}

and

NQ,γ =
⋃
n∈N

{
x ∈ {0, 1}n

∣∣ ∀σ ∈ D(Cp(n)) , Pr(Qn(x, σ) = 1) < γ
}
.

Note the presence of the parameter γ, that quantifies the expected success prob-
ability for the verifier; γ can be thought of as a measure of the “quality” of a
witness |ψ〉 (or mixture theoreof, as represented by the density matrix σ) that
is sufficient for the witness to be acceptable with respect to the relation R.

Definition 1 (QMA relation). A QMA relation is specified by triple (Q,α, β)
where Q = {Qn}n∈N is a uniformly generated family of quantum circuits such
that for every n, Qn takes as input a string x ∈ {0, 1}n and a quantum state
|ψ〉 on p(n) qubits and returns a single bit, and α, β : N → [0, 1] are such that
α(n)− β(n) ≥ 1/p(n) for some polynomial p and all n ∈ N. The QMA relation
associated with (Q,α, β) is the pair of sets RQ,α and NQ,β.

We say that a language L = (Lyes, Lno) is specified by a QMA relation
(Q,α, β) if

Lyes ⊆
⋃
n∈N

{
x ∈ {0, 1}n|∃σ ∈ D(Cp(n)) s.t. (x, σ) ∈ RQ,α

}
, (1)

and Lno ⊆ NQ,β.
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Note that in contrast to an NP relation, we define a QMA relation using two
sets: the first set, RQ,α, is the set of (instance, witness) pairs that are deemed to
form part of the relation. The second set, NQ,β , is the set of instances that are
deemed to be such that they are in relation to no witness. Some instances may
lie in neither (the projection of) RQ,α or NQ,β ; this is analogous to the necessity
for a “promise” between the completeness and soundness parameters α and β in
the definition of the class QMA, that do not appear in the definition of NP. In
particular, note that, whenever α−β > 1/ poly(n), a language L that is specified
by (Q,α, β) lies in QMA. Conversely, any language in QMA is specified by some
QMA relation (of course such relation is not unique).

Definition 2 (protocol with setup). A protocol with setup is a triple of
interactive machines (S, P, V ) with the following properties:
1. S = {Sµn}µ∈N depends on the security parameter µ and an instance size n,

takes no input and returns a classical output in the message registers NSP
and NSV . When the output in both registers is the same, we refer to it as
“common reference string”.

2. Each of P and V has two phases: P = (P1, P2) and V = (V1, V2). P1 =
{P1,µn} and V1 = {V1,µn} are interactive machines that depend on the se-
curity parameter µ and an instance size parameter n, take a classical mes-
sage input in register NSP and NSV respectively and return a quantum mes-
sage as output in registers NP1P2

and NV1V2
respectively. P2 = {P2,µn} and

V2 = {V2,µn} are interactive machines that depend on the security parameter
µ and an input size n. V2 takes as input the output of V1, in register NV1V2

,
as well as an instance x such that |x| = n. P2 takes as input the output of
P1, in register NP1P2 , an instance x such that |x| = n, and a quantum state
ρ. V2 returns a single bit b ∈ {0, 1} as output, and P2 returns no output. If
b = 1 then we say that V accepts, and otherwise we say that it rejects.

We refer to the first phase of P and V as the preprocessing phase, and to the
second phase as the instance-dependent phase.

Definition 3 (argument system with completeness c and soundness s).
Let (Q,α, β) be a QMA relation and s, c : N→ [0, 1]. An argument system (with
setup) for (Q,α, β), with completeness c and soundness s, is a protocol with
setup (S, P, V ) such that S, P, V are quantum polynomial-time and, in addition,
the following hold:
1. (Completeness) For all (x, ρ) ∈ RQ,α, for all integer µ, the execution (S, P (x, ρ), V (x))

returns 1 with probability at least c(µ).
2. (Soundness) For all x ∈ NQ,β, all integer µ and all polynomial-time P ∗ the

execution (S, P ∗(x), V (x)) returns 1 with probability at most s(µ) +negl(µ).

When the second phase of a protocol with setup (S, P, V ) consists of a single
message from P to V we refer to it as a non-interactive protocol with setup. If it
is a an argument system with setup, we refer to it as a non-interactive argument
system with setup. When the first phase involves some communication between
P and V , we specify that it is a non-interactive argument system with setup and
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preprocessing. When S outputs a common reference string (as defined in 2), we
refer to it as an argument system with CRS setup (possibly with preprocessing).

Note that Definition 3 requires that the execution (S, P (x, ρ), V (x)) returns
1 with probability at least c(µ). In the case of sequential or parallel repetition
of a protocol, it may not be possible for the prover to succeed with a single copy
of the witness ρ as input. In this case we may considering relaxing the definition
as follows.

Definition 4 (Completeness of argument system with setup — alter-
native definition). Let Qq be the circuit that runs Q on q registers, and ac-
cepts if all executions accept. There exists a polynomial q > 0, such that for all
(x, ρ) ∈ RQq,α, for all integers µ, the execution (S, P (x, ρ), V (x)) returns 1 with
probability at least c(µ).

We will clarify, whenever we refer to an argument system with setup, which
definition we refer to.

Finally, we define the notion of adaptive soundness, which captures security
against adversaries that are allowed to choose the common instance x after
having carried out the preprocessing phase.

Definition 5 (Adaptive soundness). An argument with setup (S, P, V ) for a
QMA relation (Q,α, β) has adaptive soundness s(µ) if for every QPT algorithm
P ∗ = {(P ∗1,µn, P ∗2,µn)}, for all µ,

Pr
(σPV )←(Sµn,P

∗
1,µn,V1,µn),

(x,τ)←P∗2,µn(σP )

(
x ∈ NQ,β∧(P ∗2,µn(x, τ), V2,µn(x, σV )) = 1

)
≤ s(µ)+negl(µ) .

The terminology that follows Definition 3 is modified in the natural way in
the case of adaptive soundness.

2.4 Proofs and arguments of quantum knowledge

The content of this subsection, as it pertains to proofs of quantum knowledge,
was written in collaboration with Broadbent and Grilo, and appears with slight
differences in [BG19].

A Proof of Knowledge (PoK) is an interactive proof system for some relation
R such that if the verifier accepts some input x with high enough probability,
then she is “convinced” that the prover “knows” some witness w such that
(x,w) ∈ R. This notion is formalized by requiring the existence of an efficient
extractor K that is able to return a witness for x when given oracle access to
the prover (including the ability to rewind its actions, in the classical case).

Definition 6 (Classical Proof of Knowledge). Let R ⊆ X ×Y be a relation.
A proof system (P, V ) for R is a Proof of Knowledge for R with knowledge error
κ if there exists a polynomial p > 0 and a polynomial-time machine K such
that for any classical interactive machine P ∗, any µ ∈ N, any polynomial l > 0,



18 Andrea Coladangelo, Thomas Vidick, and Tina Zhang

any instance x ∈ {0, 1}n for n = poly(µ) and any string y: if the execution
(P ∗(x, y), V (x)) returns 1 with probability ε > κ(µ), we have

Pr
((
x,KP∗(x,y)(x)

)
∈ R

)
≥ p

(
ε− κ(µ),

1

µ

)
− negl(µ)

In this definition, y corresponds to the side information that P ∗ has, possibly
including some w such that (x,w) ∈ R.

PoKs were originally defined only considering classical adversaries, and this
notion was first studied in the quantum setting by Unruh [Unr12]. The first
issue that arises in the quantum setting is to formalize the type of query that the
extractorK is able to make. In order to do so, we assume that P ∗ always performs
a fixed unitary operation U when invoked. Notice that this can be assumed
without loss of generality since (i) we can always consider a purification of P ∗,
(ii) all measurements can be performed coherently, and (iii) P ∗ can keep track
of the round of communication in some internal register and U can implicitly
control on this value. Then, the quantum extractor K has oracle access to P ∗

in the sense that it may perform U and U† on the message register and private
register of P ∗, but has no direct access to the latter. We denote the extractor
K with such oracle access to P ∗ by K |P

∗(x,ρ)〉, where ρ is some (quantum) side
information held by P ∗.

Definition 7 (Quantum Proof of (Classical) Knowledge). Let R ⊆ X ×Y
be a relation. A proof system (P, V ) for R is a Quantum Proof of Knowledge for
R with knowledge error κ if there exists a polynomial p > 0 and a quantum
polynomial-time machine K such that for any quantum interactive machine P ∗,
any µ ∈ N, any polynomial l > 0, any instance x ∈ {0, 1}n for n = poly(µ) and
any state ρ: if the execution (P ∗(x, ρ), V (x)) returns 1 with probability ε > κ(µ),
we have

Pr
((
x,K|P

∗(x,ρ)〉(x)
)
∈ R

)
≥ p

(
ε− κ(µ),

1

µ

)
.

Remark 2. In the fully classical case of 6, the extractor could repeat the proce-
dure in sequence polynomially many times in order to increase the probability
of a successful extraction (which, in Definitions 6 and 7, is allowed to be inverse-
polynomially small in the security parameter). This is not known to be possible
for a general quantum P ∗, since the final measurement to extract the witness
could possibly disturb the internal state of P ∗, making it impossible to simulate
the side information that P ∗ had originally in the subsequent simulations.

We finally move on to the full quantum setting, where we want a Proof of
Quantum Knowledge (PoQK). Intuitively, at the end of the protocol, we would
like the verifier to be ‘convinced’ that the prover ‘has’ a quantum witness for
the input x. The main difference from Quantum Proofs of (classical) Knowledge
is that in the case of QMA relations, as defined in section 2.3, the notion of
a witness is not as unambiguous as in the case of NP relations. We introduce
a parameter q which quantifies the probability that the witness returned by
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the extractor makes the verifying circuit accept. We refer to this parameter as
the “quality” of the PoQK. We also allow the extractor K to return a special
symbol “⊥” in a designated portion of the output register, and we require that
either the extractor returns “⊥” or it returns a witness of a certain quality.
Formally, we assume that the output of the extractor is measured according to
{|⊥〉 〈⊥| , I − |⊥〉 〈⊥|}. We ask that the outcome of this measurement be the
latter with at least inverse-polynomial probability, and that, conditioned on the
latter outcome, the post-measurement state be a witness (of a certain quality).

Definition 8 (Proof of Quantum Knowledge). Let (Q,α, β) be a QMA
relation. A proof system (P, V ) is a Proof of Quantum Knowledge for (Q,α, β)
with knowledge error κ and quality q > β, if there exists a polynomial p > 0 and
a quantum polynomial-time machine K such that for any quantum interactive
machine P ∗, any µ ∈ N, any polynomial l > 0, any instance x ∈ {0, 1}n for
n = poly(µ) and any state ρ: if the execution (P ∗(x, ρ), V (x)) returns 1 with

probability ε > κ(µ), we have, letting σ = (I−|⊥〉〈⊥|)K|P
∗(x,ρ)〉(x)(I−|⊥〉〈⊥|)

Tr[(I−|⊥〉〈⊥|)K|P∗(x,ρ)〉(x)] ,

Tr[(I−|⊥〉 〈⊥|)K |P
∗(x,ρ)〉(x)] > p

(
ε− κ(µ),

1

µ

)
−negl(µ), and (x, σ) ∈ RQ,q(|x|,ε) .

The intuition behind the last equation is that we want the probability that
the extractor K does not output ’⊥’ to be at least p, and we want the state
conditioned on not outputting ⊥ to be a good enough witness.

Remark 3. Note that quality of the witness returned by the extractor K in
definition 8 may be lower than the quality of the witness used by the prover to
produce the proof. We suspect that this loss is inherent. Consider the following
simple example. Suppose the prover is given a witness ρ that has quality 0 <
c < 1 with respect to some QMA verification procedure. The prover uses ρ in a
protocol that executes one of two tests, each with probability 1/2: (i) an “energy
test” that is designed to check ρ, and (ii) a “structure test” that is designed to
check some property of the prover’s strategy.

Now consider two provers, P1 and P2, each of which succeeds in this protocol
with probability c′ = (1 + c)/2. P1 is given a witness of quality c and plays op-
timally in the structure test. P2 is given a witness of quality 1 and purposefully
succeeds in the structure test with probability c only. Then because of the exis-
tence of P1, it would be unreasonable to expect that the extractor can extract
witnesses of quality > c from provers that succeed with probability ≤ c′. This
means that running P2 on a witness returned by the extractor will succeed with
probability c < c′ only.

We also define arguments of quantum knowledge (with a setup). The main
difference is that the proof system is replaced by an argument system with setup.
Moreover, the extractor is allowed to create the setup as they wish (they can
“impersonate” the setup procedure S).
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Definition 9 (Quantum Argument of (Classical) Knowledge). Let R ⊆
X × Y be a relation. An argument system with setup Π = (S, P, V ) for R is a
Quantum Argument of Knowledge with setup for R with knowledge error κ if
there exists a polynomial p > 0 and a quantum polynomial-time machine K such
that for any quantum polynomial-time interactive machine P ∗, any µ ∈ N, any
polynomial l > 0, any instance x ∈ {0, 1}n for n = poly(µ) and any state ρ: if
the execution (S, P ∗(x, ρ), V (x)) returns 1 with probability ε > κ(µ), we have

Pr
((
x,K|P

∗(x,ρ)〉(x)
)
∈ R

)
≥ p

(
ε− κ(µ),

1

µ

)
− negl(µ) .

Definition 10 (Argument of Quantum Knowledge). Let (Q,α, β) be a
QMA relation. An argument system with setup Π = (S, P, V ) is an Argument of
Quantum Knowledge with setup for (Q,α, β) with knowledge error κ and quality
q > β if there exists a polynomial p > 0 and a quantum polynomial-time interac-
tive machine K such that for any quantum polynomial-time interactive machine
P ∗, any µ ∈ N, any polynomial l > 0, any instance x ∈ {0, 1}n for n = poly(µ)
and any state ρ: if the execution (S, P ∗(x, ρ), V (x)) returns 1 with probability

ε > κ(µ), we have, letting σ = (I−|⊥〉〈⊥|)K|P
∗(x,ρ)〉(x)(I−|⊥〉〈⊥|)

Tr[(I−|⊥〉〈⊥|)K|P∗(x,ρ)〉(x)] ,

Tr[(I−|⊥〉 〈⊥|)K |P
∗(x,ρ)〉(x)] > p

(
ε− κ(µ),

1

µ

)
−negl(µ), and (x, σ) ∈ RQ,q(|x|,ε) .

As for the several possible specializations to the definition of Argument of
Quantum Knowledge with setup based on the properties of the underlying ar-
gument system (NIZK, CRS setup, preprocessing etc.), we naturally apply the
terminology introduced in Section 2.3, and in Section 1.3 of the Supplementary
Material.

Reducing the knowledge error sequentially One of the most natural prop-
erties of Proofs of Knowledge that one investigates in the classical setting is re-
ducing the knowledge error by sequential repetition. Classically, it is well-known
that the knowledge error drops exponentially fast in the number of sequential
repetitions [BG92]. Just like in the classical case, sequential repetition of a proof
of quantum knowledge reduces the knowledge error exponentially fast. This is
an immediate consequence of the proof of a lemma from Unruh [Unr12] for the
case of quantum Proofs of (classical) Knowledge. We refer the reader to the
Supplementary Material for a formal statement.

3 The protocol

3.1 Notation and predicates

For a circuit Qn, we denote by H(Qn) the local Clifford Hamiltonian obtained by
performing the circuit-to-Clifford-Hamiltonian reduction from [BJSW16, Section
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2]. In the rest of this section, Qn will always be taken from a family Q =
{Qn}n∈N, where Q specifies a QMA relation (Q,α, β), and we will let the r-th
term of the Clifford Hamiltonian H(Qn) be C∗r |0k〉 〈0k|Cr. So,

H(Qn) =

m∑
r=1

C∗r |0k〉 〈0k|Cr , (2)

where each Cr is a k-local Clifford unitary. (Following [BJSW16], we use the
short-hand |0k〉 〈0k| to denote a projector which is |0〉 〈0| on at most k qubits
and identity everywhere else. As shown in [BJSW16], we can take k = 5 without
loss of generality.)

We denote by Hclock ⊗Hinstance ⊗Hwitness the Hilbert space that H(Qn) acts
on. For notational convenience, we assume in the rest of this section thatHinstance

is n qubits, that is, Hinstance = C2n .
For clarity and notational convenience, we define predicates Rr and Q below,

which we will refer to in our description of our protocol.

Remark 4. Predicates Q and Rr are defined with respect to a fixed problem
instance x and a fixed Clifford Hamiltonian H, where

H =

m∑
r=1

C∗r |0k〉 〈0k|Cr

for some m that is polynomial in n.

Definition 11 (Definition of Rr).
As in section 2.2, we write DN to represent the set of all valid (classical)

N -bit codewords of a particular error-correcting code. We will generally refer to
this error-correcting code as ‘the concatenated Steane code’. (This code is the
same concatenated Steane code which is outlined in [BJSW16, Appendix A.6].)
We may write DN = D0

N ∪D1
N , where D0

N is the set of all codewords that encode
0, and D1

N is defined analogously.
We assume that r takes values in [m + 1], where m is the number of terms

in the Clifford Hamiltonian H. Our Rr is defined differently when r ∈ [m] and
when r = m+ 1.

1. If r ∈ [m]: Let ui1 , . . . , uik ∈ {0, 1}2N , π ∈ S2N , and ti1 , . . . , tik ∈ {0,+,+y}N .
For each i ∈ {i1, . . . , ik}, define strings pi, qi in {0, 1}N such that π(pi‖qi) =
ui (alternatively: π−1(ui) = pi‖qi). We define a predicate R̃r(t, π, u) that
takes value 1 if and only if the following two conditions are met:
(a) pi ∈ DN for every i ∈ {i1, . . . , ik}, and pi ∈ D1

N for at least one index
i ∈ {i1, . . . , ik}. (DN = D0

N ∪ D1
N is the set of all valid classical N -bit

codewords of the concatenated Steane code).
(b) 〈qi1 · · · qik |C⊗nr |ti1 · · · tik〉 6= 0.
Here |ti1 · · · tik〉 is the state of kN qubits obtained by tensoring |0〉 , |+〉 and
|+y〉 in the natural way. Then, we define Rr(t, π, u) = R̃r(t, π, u).

2. If r = m+ 1, then we set Rr = Rm+1, where Rm+1 is defined below (Defini-
tion 12).
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Definition 12 (Definition of Rm+1).
Let u = uclock1 , uinstance1 , . . . , uinstancen be a string in {0, 1}2N(n+1).

Remark 5. Each ulabel, for label ∈ {clock1, instance1, . . . , instancen}, is a 2N -bit
string, and intuitively represents the result of measuring the logical qubit with
an index specified by label. (For notational convenience in the exposition below,
we replace the iterator label by the iterator i.) For example, uclock1 is the string
that results from measuring the first logical qubit of the clock register. The logical
clock register consists of many logical qubits, and each logical qubit is encoded in
2N physical qubits as a result of applying the authentication code described in
Figure 1.

For π ∈ S2N , and for each i ∈ {clock1, instance1, . . . , instancen}, define
strings pi, qi in {0, 1}N such that π(pi‖qi) = ui (alternatively: π−1(ui) = pi‖qi).
The predicate Rm+1(t, π, u) takes the value 1 if and only if the following two
conditions (1. and 2.) are met:
1. Either

pclock1 ∈ D1
N (this corresponds to the first qubit of the clock register,

expressed in unary, being in state 1, i.e. the clock register is not at
time 0),

or For every i ∈ {instance1, . . . , instancen}, pi ∈ DxiN .
2. 〈qclock1 qinstance1 · · · qinstancen |tclock1 tinstance1 · · · tinstancen〉 6= 0.

We now define our predicate Q in terms of the Rr defined in Definition 11.

Definition 13 (Definition of Q). Let d = (x1, . . . , x2Np(n), y1, . . . , y2Np(n)) be

a string in {0, 1}4Np(n), for some polynomial p(n) of n. Define

Pm+1 = |0〉 〈0|clock1 ⊗
(
I − |x〉 〈x|

)
instance

⊗ Iwitness
+(I − |0〉 〈0|)clock1 ⊗ Iinstance ⊗ Iwitness

where |x〉 〈x| is a shorthand for the projector onto the standard-basis bitstring
〈x〉, and

Cm+1 = Iclock ⊗ Iinstance ⊗ Iwitness.

For r ∈ [m+ 1], define

Pr =

{
C∗r |0k〉 〈0k|Cr r ∈ [m]

Pm+1 r = m+ 1

Let i1, .., ik be the indices of the qubits on which Pr acts non-trivially. Let

d′ = (a′, b′)

= (a′i1 , . . . , a
′
ik
, b′i1 , . . . , b

′
ik

)

= (x2Ni1+1, . . . , x2Ni1+2N , . . . , x2Nik+1, . . . , x2Nik+2N ,

y2Ni1+1, . . . , y2Ni1+2N , . . . , y2Nik+1, . . . , y2Nik+2N )
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be a string in {0, 1}4Nk. (The example below, wherein k = 2, N = 2, i1 = 1, i2 =
3, and d′ = (a′, b′) = 01001000, may clarify the notation.)

Let ei1 , . . . , eik be the unique strings such that

C⊗2Nr (X(a⊕a′)i1Z(b⊕b′)i1 ⊗ · · · ⊗X(a⊕a′)ikZ(b⊕b′)ik )

= α(Xei1Zfi1 ⊗ · · · ⊗XeikZfik )C⊗2Nr

(3)

for some α ∈ {1, i,−1,−i} and some fi1 , . . . , fik ∈ {0, 1}2N . (It is possible
to efficiently compute e = ei1 , . . . , eik and f = fi1 , . . . , fik given a, b and Cr.)

Predicate Q is defined as follows:

Q(t, π, a, b, r, z, d) = Rr(t, π, z ⊕ ei1 · · · eik).

3.2 The protocol

Parties. The argument system involves
1. A (QPT) verifier V ,
2. A (QPT) prover P , and
3. A (classical PPT) setup machine S.

The verifier sends a single quantum message to the prover in the preprocessing
phase of the protocol, and the prover sends the verifier a single classical message
in the instance-dependent phase of the protocol. S sends an identical classical
message to both the prover and the verifier during the preprocessing phase.

Inputs. (Unless otherwise stated, all inputs are common to all three parties.)
1. Preprocessing stage:

(a) An instance size parameter n and a security parameter µ.
(b) A QMA relation (Q,α, β).
(c) The Clifford Hamiltonian H(Qn) (see equation (2)).
(d) Other parameters:

i. c(n), an upper bound on the number of qubits in a witness state;
ii. p(n), an upper bound on the number of qubits in a history state

corresponding to an execution of Qn on a witness state of length
c(n) and an instance of size n;

iii. m = poly(n), the number of terms in the Clifford Hamiltonian (equa-
tion (2));
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iv. N = poly(n), the number of physical qubits per logical qubit in the
Steane code introduced in section 2.2.

(e) A perfectly binding, quantum computationally concealing (classical) com-
mitment scheme Com = (Com.gen,Com.commit,Com.reveal,Com.verify,
Com.recover), of the form described in Section 1.2 of the Supplementary
Material.

(f) A NIZK argument system with setup for NP, such as the one described
in Section 1.3 of the Supplementary Material. We denote this argument
system by a triple (NIZK.S,NIZK.P,NIZK.V ).

(g) A levelled fully homomorphic encryption scheme with circuit privacy,
FHE = (FHE.Gen,FHE.Enc,FHE.Dec,FHE.Eval,FHE.Refresh).

2. Instance-dependent stage:
(a) The instance x.
(b) Auxiliary (private) input to the prover: a witness ρ for the claim that

x ∈ RQ,α.
Protocol.
Refer to Figure 2 for a diagram charting the essential structure of the protocol

below.

3.3 Preprocessing step:

(S) S samples γ ← NIZK.S(1q(n), 1µ), for a sufficiently large polynomial q >
0, in addition to (pkP , skP ), (pkV , skV ) ← Com.gen(1µ) (the two pairs are
sampled independently). S then outputs (γ, pkP , pkV ).

(i) V samples r′
$←− [m + n]. Sets r = r′ if r ≤ m, and r = m + 1 otherwise.

Computes σ ← Com.commit(pkV ; r). Let sV be the randomness used.
(ii) V creates 2Np(n) EPR pairs (2N for each qubit of the history state). The

second qubit of each EPR pair will be sent to P in step (iv). We refer to the
remaining qubits (i.e. the first qubit in each EPR pair) as “V ’s qubits”.

(iii) V interprets her 2Np(n) qubits as the encoding (according to the authenti-
cation code of Fig. 1) of a history state for H(Qn).
– If r ∈ [m]: V applies Cr transversally to the subset of her 2Np(n) qubits

which encode the k logical qubits on which Cr acts. Measures those
qubits in the computational basis, obtaining an outcome string z.

– If r = m+ 1: V measures the subset of the 2Np(n) qubits corresponding
to the first qubit of Hclock and all the qubits of Hinstance in the computa-
tional basis, obtaining an outcome string z.

(iv) V samples (pkE , skE)← FHE.Gen(1n). V sends to P :
– α← FHE.Enc(pkE , (r, sV , z)).
– pkE and σ.

3.4 Instance-dependent step:

– Prover’s message:
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1. P computes the history state corresponding to an evaluation of the cir-
cuit Qn on the input |x〉 ⊗ |ψ〉. This is the state |Ψ〉 =

∑T
t=0 |t〉clock ⊗

Πt
j=1Uj

(
|x〉⊗ |ψ〉⊗ |0〉⊗n

)
for some unitary Uj , which can be computed

efficiently. P computes |Ψ̃〉 ← Auth.Enc(|Ψ〉) according to the authenti-
cation scheme of Fig. 1. Let the sampled authentication keys be:
(a) a = a1, .., ap(n), b = b1, .., bp(n) for a1, .., ap(n), b1, .., bp(n) ∈ {0, 1}2N ,
(b) π ∈ S2N ,
(c) t = t1, .., tp(n) where t1, .., tp(n) ∈ {0,+,+y}N .
P samples commitment randomness sP , and computes
σkeys ← Com.commit(pk, (t, π, a, b), sP ).

2. P teleports the state ρ to V using his halves of the 2Np(n) shared
EPR pairs received in step (iv) of the preprocessing step. Let d =
(x1, . . . , x2Np(n), y1, . . . , y2Np(n)) ∈ {0, 1}4Np(n) be the Bell basis mea-
surement outcomes obtained during the teleportation.

3. P computes β ← FHE.Enc
(
pkE , (d, σ, σkeys, (t, π, a, b), sP )

)
, where σ is

the commitment received in step (iv) of the preprocessing step. P homo-
morphically evaluates the following circuit C using β and the ciphertext
α that it received from the verifier. (Recall that α is an encryption of
(r, sV , z).)

C takes as input d, σ, r, sV , z, σkeys, t, π, a, b, sP . It checks that
(r, sV ) is a valid opening for σ, and that Q(t, π, a, b, r, z, d) =
1, where Q is defined in Definition 13. If its checks pass, us-
ing γ it computes an NIZK argument for the existence of an
opening to σkeys such that the opened value (t, π, a, b) satisfies
Q(t, π, a, b, r, z, d) = 1. If its checks do not pass, it outputs “⊥”.

4. Let π̃ be the encrypted proof that P obtains in step 4. P computes
π̃′ ← FHE.Refresh(π̃). Sends d, σkeys and π̃′ to V .

– Verifier’s check: V decrypts π̃′, and executes NIZK.V to check the de-
crypted proof. It checks that the d received from P is the same d that
appears in the statement being proven.

Theorem 1. Assuming that LWE is intractable for quantum polynomial-time
(QPT) adversaries, every language in QMA has an adaptively zero-knowledge
non-interactive argument system with CRS setup and preprocessing (where com-
pleteness is according to Definition 4) with negl adaptive soundness. Moreover,
the preprocessing phase consists of a single quantum message from the verifier
to the prover.

We refer to the combination of the protocols of Figures 3.3 and 3.4 as “the
protocol”.

To show Theorem 1 we start with an arbitrary language L ∈ QMA. Using
standard amplification techniques, for any polynomial t there is a family of
polynomial-size verification circuitsQ such that L is the language associated with
the QMA relation (Q, 1−2−t, 2−t) as in Definition 1. We show that the protocol
associated to this relation is an NIZK argument with setup for (Q, 1− 2−t, 2−t).
Completeness is easy to verify, as for any (x, ρ) ∈ RQ,1−2−t the prover described
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in Figure 3.4 is accepted with probability negligibly close to 1, given access to ρ.
In Section 4 we prove soundness inverse polynomially close to 1, and in Section
2.3 of the Supplementary Material we show how soundness can be amplified in
parallel to any 2−p for polynomial p (provided t is taken large enough compared
to p). After parallel amplification, completeness holds only if we allow the prover
to receive polynomially many copies of the witness (as in definition 4). Finally,
in Section 5 we prove the zero-knowledge property.

4 Soundness

In this section we prove soundness of our protocol from Section 3.2. This is
captured by the following lemma.

Lemma 2 Assume that LWE is intractable for quantum polynomial-time (QPT)
adversaries. Let (Q,α, β) be a QMA relation. Then the non-interactive protocol
with setup and preprocessing for (Q,α, β) described in Section 3.2 has negligible
adaptive soundness.

We give an overview of the proof of Lemma 2 in the next subsection.

4.1 Overview

The structure of the proof is as follows. We show through a sequence of hybrids
that it is possible to transform an execution of our protocol on some instance
x, into an execution of the protocol from [BJSW16] on a specific local Clifford
Hamiltonian derived from x. We show that this transformation can at most negli-
gibly decrease the optimal acceptance probability of the prover. Thus, soundness
of our protocol reduces to soundness of the protocol from [BJSW16]. The main
steps in our sequence of hybrids are the following:

– Remove the encryption of V ’s choice of r, randomness sV and measurement
outcomes z sent in step (iv) of the preprocessing step.

– Replace the step where P teleports the encoded witness to V through shared
EPR pairs (step 2 in Fig. 3.4) with one where P directly sends the qubits of
the encoded witness to V .

– Remove the portion of the CRS corresponding to the NIZK argument, and
replace the NIZK argument sent by the prover in step 4 of Fig. 3.4 with a
ZK proof.

In Section 2.3 of the Supplementary Material, we amplify soundness by re-
peating the protocol in parallel. One can check that our proof goes through
unchanged for the case of adaptive soundness as well. In particular, the key
is that the NIZK proof system for NP employed in our protocol is adaptively
sound.
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5 Zero-knowledge property

Lemma 3 Assume that LWE is intractable for quantum polynomial-time (QPT)
adversaries. Let L be a language in QMA, let x ∈ {0, 1}∗ be a problem instance,
and let V ∗ = {V ∗µn} be an arbitrary QPT verifier for the protocol of Section
3. There exists a QPT simulator S = {Sµn} such that, for any µ, n and yes-
instance x ∈ L with |x| = n, and for any auxiliary quantum input Z0 to the
verifier, the distribution of V ∗’s final output after its interaction with the honest
prover P in the protocol is quantum computationally indistinguishable from S’s
output distribution on auxiliary input Z0.

Furthermore, the simulator S only requires knowledge of the instance x after
the preprocessing phase has been executed (simulated) with V ∗. As such, the
zero-knowledge property holds in the adaptive setting.

Fig. 2. Diagram representing the original protocol execution between the honest prover
P and a cheating verifier V ∗. For visual clarity, the prover and the (cheating) verifier
have been split into parts {Pi} and {V ∗i } with i ∈ {1, 2, 3, 4}, respectively, where parts
1 and 2 execute the preprocessing phase of the protocol, and parts 3 and 4 execute
the instance-dependent phase of the protocol. Communications between verifier and
prover are labelled in orange; internal communications on either side are labelled in
grey. In the two subsequent diagrams, we will omit the auxiliary input Z0 that the
cheating verifier receives, as well as the internal communications Z1, Z2, Z3 between
the different parts of the cheating verifier.

Due to space constraints, we provide the proof of Lemma 3 in Section 3 of
our supplementary material. In order to show that our protocol is (adaptively)
zero-knowledge, we proceed through the following hybrid argument, in which
we make a series of replacements, and show at each stage that the verifier’s
final output after the replacement is made is (computationally or statistically)
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indistinguishable from its output before. Figure 2 is a diagram that numbers the
stages of the prover and the verifier in the original protocol. For convenience, we
use the numbering scheme presented in that figure.

1. In the original protocol, P4 offers an encryption (under a homomorphic en-
cryption scheme FHE) of a non-interactive NP proof π, which has been com-
puted homomorphically, to the last component of the potentially cheating
verifier, V ∗4 . We replace the encryption of the genuine proof π with the en-
cryption of a simulated proof π′. π′ is indistinguishable from π because the
proof system is zero-knowledge. We use the circuit privacy property of FHE
to show that the encryption of π′ is also indistinguishable from the encryp-
tion of π.

2. Step 1 allows us (details of how are provided in supplementary material)
to replace the commitment to encoding keys that P3 sends to V ∗4 with a
commitment to a fixed string, which the verifier could generate by itself.

3. After the replacement in step 2 has been made, we are then able to replace
the genuine witness ρ which the honest P3 receives with a simulated witness
that can be efficiently prepared without knowledge of the real witness. Ar-
guing that the verifier’s final output after this replacement is (statistically)
indistinguishable from its output before is perhaps the most involved step in
the proof, and involves in particular making use of the extractability property
of the commitment scheme (see Section 1.2 of the supplementary material)
that the verifier uses to commit to its challenge r in order to argue that the
simulator can efficiently recover r and then construct a simulated witness
which passes only the challenge determined by r.

6 NIZK argument of quantum knowledge with
preprocessing for QMA

In this section we show that for any QMA relation the NIZK argument system
with CRS setup and preprocessing described in section 3 is also a NIZK Argu-
ment of Quantum Knowledge with CRS setup and preprocessing (as defined in
section 2.4). The intuition for this is simple. From the proof of soundness of the
protocol from [BJSW16], to which soundness of our argument system reduces,
we are able to infer that any prover which is accepted in our protocol with high
probability must be teleporting to the verifier an encoding of a low-energy wit-
ness state for the given instance of the 5-local Clifford Hamiltonian problem.
Then, all that an extractor (given oracle access to such a prover) has to do in
order to output a good witness is:

– Simulate an honest verifier so as to receive (by teleportation) such an encoded
witness from the prover,

– Find a way to recover the committed encoding keys and use them to decode
the received state.

We formalize this sketch in Section 4 of the Supplementary Material.
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7 Proofs of quantum knowledge for QMA

The interactive protocol that we show is a proof of quantum knowledge for
languages in QMA is identical to the protocol from [BJSW16], as recalled in
Section 2.2, except for one modification: at the same time as the prover sends
the encoded state E(ρ) and the commitment σ to the verifier (end of step 1 of
the protocol), the prover also sends a classical zero-knowledge PoK of an opening
to the commitment. More precisely, define a relation R such that R(σ, z) = 1 if z
is a valid opening for the commitment σ. V and P engage in a ZK PoK protocol
for the relation R on common input σ, as defined in Definition 6. If the verifier
rejects in this protocol, then the verifier outputs “reject” for the whole protocol;
otherwise the verifier proceeds to the next phase.

Informally, the extractor K first takes the quantum state ρ∗ sent by P ∗ in the
first message. It then executes an extractor K ′ for an opening to the commitment
sent in the first message, that must exist by the quantum proof of knowledge
property for the sub-protocol. If K ′ succeeds in recovering the committed keys,
K decodes the state received in the first message using these keys and returns
the decoded state. Otherwise, K returns an abort symbol “⊥”. We formalize
this sketch in Section 5 of the Supplementary Material.
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