
Black-Box Transformations from
Passive to Covert Security with Public

Verifiability

Ivan Damg̊ard, Claudio Orlandi, and Mark Simkin

Aarhus University, Aarhus, Denmark
{ivan, orlandi, simkin}@cs.au.dk

Abstract. In the context of secure computation, protocols with secu-
rity against covert adversaries ensure that any misbehavior by malicious
parties will be detected by the honest parties with some constant prob-
ability. As such, these protocols provide better security guarantees than
passively secure protocols and, moreover, are easier to construct than
protocols with full security against active adversaries. Protocols that,
upon detecting a cheating attempt, allow the honest parties to compute
a certificate that enables third parties to verify whether an accused party
misbehaved or not are called publicly verifiable.
In this work, we present the first generic compilers for constructing two-
party protocols with covert security and public verifiability from proto-
cols with passive security. We present two separate compilers, which are
both fully blackbox in the underlying protocols they use. Both of them
only incur a constant multiplicative factor in terms of bandwidth over-
head and a constant additive factor in terms of round complexity on top
of the passively secure protocols they use.
The first compiler applies to all two-party protocols that have no pri-
vate inputs. This class of protocols covers the important class of prepro-
cessing protocols that are used to setup correlated randomness among
parties. We use our compiler to obtain the first secret-sharing based two-
party protocol with covert security and public verifiability. Notably, the
produced protocol achieves public verifiability essentially for free when
compared with the best known previous solutions based on secret-sharing
that did not provide public verifiability
Our second compiler constructs protocols with covert security and public
verifiability for arbitrary functionalities from passively secure protocols.
It uses our first compiler to perform a setup phase, which is independent
of the parties’ inputs as well as the protocol they would like to execute.
Finally, we show how to extend our techniques to obtain multiparty com-
putation protocols with covert security and public verifiability against
arbitrary constant fractions of corruptions.

1 Introduction

In secure computation two or more parties want to compute a joint function
of their private inputs, while revealing nothing beyond what is already revealed



by the output itself. Privacy of the inputs and correctness of the output should
be maintained, even if some of the parties are corrupted by an adversary. His-
torically, this adversary has mostly been assumed to be either passive or active.
Passive adversaries observe corrupted parties, learn their private inputs, the ran-
dom coins they use, and see all messages that are being sent or received by them.
Active adversaries take full control of the corrupted parties, they can deviate
from the protocol description in an arbitrary fashion, or may just stop sending
messages altogether. Protocols that are secure against active adversaries provide
very strong security guarantees. They ensure that any deviation from the pro-
tocol description by the corrupted parties is detected by the honest parties with
an overwhelming probability. Unfortunately, such strong security guarantees do
not come for free and actively secure protocols are typically much slower than
their passively secure counterparts.

To provide a compromise between efficiency and security, Aumann and Lin-
dell [AL07] introduced the notion of security against covert adversaries1. Loosely
speaking, the adversary still has full control of the corrupted parties, but if any
of them deviates from the protocol description, then this behavior will be de-
tected with some constant probability, say 1/2, by all honest parties. The main
rationale for why such an adversarial model may be sensible in the real world,
is that in certain scenarios the loss of reputation that comes from being caught
cheating outweighs the gain that comes from not being caught. Consider, for ex-
ample, a large company that performs secure computations with its customers
on a regular basis. It is reasonable to assume that the company’s general repu-
tation is more valuable than whatever it could possibly earn by tricking a few
of its customers.

Asharov and Orlandi [AO12] observed that despite being well-motivated in
practice, the original notion of security against covert adversaries may be a bit
too weak. More concretely, the original notion ensures that the honest parties de-
tect cheating with some constant probability, but it does not ensure the existence
of a mechanism for convincing third parties that the adversary really cheated.
For our hypothetical large company from before, this means that no cheated
customer could convince the others of the company’s misbehavior. Asharov and
Orlandi therefore introduce the stronger notion of covert security with public
verifiability, which, in case of detected cheating, ensures that the honest parties
can compute a publicly verifiable certificate, which allows third parties to check
that cheating by some accused party indeed happened.

Although covert security with and without public verifiability seems like a
very natural security notion, comparatively few works focus on this security
model. Goyal, Mohassel, and Smith [GMS08] present covertly secure two and
multiparty protocols without public verifiability based on garbled circuits [Yao82]
and its multiparty extension the BMR protocol [BMR90]. Subsequently, Damg̊ard

1 In the remainder of the paper we will use the terms “covert security” and “security
against covert adversaries” interchangeably to refer to the notion that was defined
by Aumann and Lindell. We note, however, that the term “covert security” has also
been used to denote a different flavor of secure computation as defined in [vHL05].
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et al. [DKL+13] present a preprocessing protocol with covert security without
public verifiability for SPDZ [DPSZ12]. Asharov and Orlandi [AO12] present a
two-party protocol with covert security and public verifiability based on gar-
bled circuits and a flavor of oblivious transfer (OT), which they call signed-OT.
Kolesnikov and Malozemoff [KM15] improve upon the construction of Asharov
and Orlandi by constructing a signed-OT extension protocol based on the OT
extension2 protocol of Ishai et al. [IKNP03]. In a recent work by Hong et
al. [HKK+19], the authors present a new approach for constructing two-party
computation with covert security and public verifiability based on garbled cir-
cuits from plain standard OT.

Apart from the concrete constructions above, one can also use so called pro-
tocol compilers that generically transform protocols with weaker security guar-
antees into protocols with stronger ones. The main advantage of compilers over
concrete protocols is that they allow us to automatically obtain protocols with
the stronger security guarantee from any future insight into protocols with the
weaker one. In case of covert security with and without public verifiability, for
example, most of the existing concrete constructions are based on garbled cir-
cuits. If at some point in the future a new methodology for constructing more
efficient passively secure protocols is discovered, then we may end up in the sit-
uation that the techniques that we used to lift garbled circuits from passive to
covert security may not be applicable. Compilers, on the other hand, will still be
useful as long as the new protocols satisfy the requirements the compiler imposes
on the protocols it transforms.

In terms of generic approaches for efficiently transforming arbitrary pas-
sively secure protocols into covertly secure ones very little is known. Damg̊ard,
Geisler, and Nielsen [DGN10] present a blackbox compiler that transforms pas-
sively secure protocols that are based on secret sharing into covertly secure pro-
tocols. Their compiler only works for the honest majority setting, i.e., it assumes
that the honest parties form a strict majority, and therefore their compiler is
not applicable to the two-party setting. Lindell, Oxman, and Pinkas [LOP11]
present a compiler, based on the work of Ishai, Prabhakaran, and Sahai [IPS08],
that transforms passively secure protocols in the dishonest majority setting into
covertly secure ones. Their compiler makes blackbox use of a passively secure
“inner” and non-blackbox use of an information-theoretic “outer” multiparty
computation protocol with active security. The bandwidth overhead and round
complexity of their compiler depends on the complexity of both the inner and
the outer protocol. Unfortunately this means that the protocols this compiler
produces are either not constant-round protocols or have a large bandwidth over-
head. Using an information-theoretic outer protocol results in a protocol that
is not constant-round, since constructing information-theoretic multiparty com-

2 In general, OT requires the use of public key cryptography. OT extension protocols
allow two parties to perform large numbers of OT protocol executions using only a
small number of public key operations.
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putation with a constant number of rounds is a long standing open problem.3

Alternatively, the authors of [IPS08] show how to combine their compiler with
a variant of a computationally secure protocol of Damg̊ard and Ishai [DI05],
which only makes blackbox use of pseudorandom generators, as the outer pro-
tocol. This approach, however, results in a protocol, which incurs a bandwidth
overhead that is multiplicative in the security parameter and the circuit size on
top of the communication costs of the underlying passively secure protocol.

None of the above compilers is publicly verifiable and, more generally, there
is currently no better approach for constructing covertly secure protocols with
public verifiability in a generic way than just taking a compiler that already
produces actively secure protocols.4 Even without public verifiability, there is
currently no compiler for the dishonest majority setting that is fully blackbox in
the sense that the code of the used secure computation protocols does not need
to be known.

1.1 Our Contribution

In this work, we present the first blackbox compilers for transforming protocols
with passive security into two-party protocols with covert security and public
verifiability. Our compilers are fully blackbox in the underlying primitives they
use, they are conceptually simple, efficient and constant-round.

Our first compiler applies to all two-party protocols with passive security
that have no private inputs. The class of protocols with no inputs covers the
important class of preprocessing protocols which are commonly used to setup
correlated randomness among the parties. For example, one can combine our
compiler with a suitable preprocessing protocol and the SPDZ online phase,
similarly to [DKL+13], to obtain the first protocol with covert security, pub-
lic verifiability. The resulting protocol, somewhat surprisingly, achieves public
verifiability essentially for free. That is, the efficiency of our resulting protocol
is essentially the same as the efficiency of the best known secret-sharing based
protocol for covert security without public verifiability [DKL+13].

Our second compiler uses the first compiler to perform a input and protocol
independent setup phase after which the parties can efficiently transform any
protocol with passive security into one with covert security and publicly ver-
ifiability. We would like to stress that during the setup phase, the parties do
not need to know which standalone passively secure protocol they would like
to use later on.5 When compared to compilers without public verifiability, ours
is the first one that is simultaneously blackbox and constant-round with only
a constant multiplicative factor bandwidth overhead on top of the underlying

3 Note that the existing works on constant round MPC with information theoretic
security [IK00, ABT18, ACGJ19] only apply to circuits that are in NC1.

4 Observe that in the two-party case active security implies covert security with public
verifiability, since every attempt to cheat can simply be interpreted as an abort.

5 If the passively secure protocol has a preprocessing phase of its own, then this would
need to be executed after the setup phase of our compiler.
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passively secure protocol. Existing compilers for two-party protocols do not even
achieve these properties separately. It is the first compiler to produce protocols
with public verifiability.

Lastly, we sketch how to extend our compilers to the multiparty setting. The
resulting protocols are secure against an arbitrary constant fraction of corrup-
tions.

1.2 Technical Overview

Before presenting the main ideas behind our compilers, let us first revisit the
main ideas as well as the main technical challenges in existing protocols. Gener-
ally speaking, most covertly secure two-party protocols [AL07, GMS08, AO12,
HKK+19] follow the same blueprint. They all start from a passively secure proto-
col, which they run k times in parallel. They use k−1 randomly chosen executions
to check the behavior of the participating parties and then use the last unopened
protocol execution to actually compute the desired functionality on their private
inputs. The intuition behind these approaches is that, if cheating happened, it
will be detected with a probability of 1−1/k, since the adversary would need to
guess which execution will remain unopened. Importantly, this blueprint relies
on the ability to open k − 1 executions “late enough” to ensure that cheating
in the unopened execution is not possible any more, while at the same time
being able to open the checked executions “early enough” to ensure that no pri-
vate inputs are leaked. Secure two- and multiparty computation protocols based
on garbled circuits are a perfect match for the blueprint described above, since
they consist of an input-independent garbling phase, and an actively secure eval-
uation phase. Checked executions are opened after circuit garbling, but before
circuit evaluation. Unfortunately, however, it is not clear how to generalize this
approach to arbitrary passively secure protocols, since it crucially relies on the
concrete structure of garbled circuit based protocols.

Our first compiler focuses on a restricted class of two-party protocols, namely
those that have no private inputs. Apart from being a good starting point for
explaining some of the technical ideas behind our compiler for arbitrary proto-
cols, this class also covers a large range of important protocols. Specifically, it
includes so called preprocessing protocols that are used for setting up correlated
randomness between the parties.

Not having to deal with private inputs, immediately suggests the following
high-level approach for letting Alice and Bob compute some desired function
with covert security: Both parties first jointly execute a given protocol Π with
passive security k times in parallel. Once these executions are finished, Alice and
Bob independently announce subsets IA ⊂ [k] and IB ⊂ [k] with |IA| = |IB | <
k/2. Alice reveals the randomness used in each execution i ∈ IB and Bob does
the same for all executions with an index in IA. Knowing these random tapes
each party can verify whether the other party behaved honestly in the checked
executions. Since IA ∪ IB ( [k], the parties are guaranteed that there exists an
execution that is not checked by either of the parties. If no cheating in any of
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the checked executions is detected, then both parties agree to accept the output
of one of the unopened executions.

This straightforward approach works for the plain version of covert security,
but fails to achieve public verifiability, since neither of the parties has any way
of convincing a third party of a detected cheating attempt. Even if each party
signs each message it sends, a cheating party might simply stop responding if it
does not like which executions are being checked. To achieve public verifiability,
rather than asking for IA and IB in the clear, both parties use oblivious transfer
to obtain the random tapes that correspond to the executions they would like to
check. As before, we run k copies of the passively secure protocol Π, where Alice
and Bob use the random tapes they input to the OT protocol. At the end of
these executions, both parties sign the complete transcript of the protocol Π as
well as the transcript of the OT. If, e.g., Alice detects cheating by Bob in some
execution, then she can publish the signed transcripts of both the OT protocol
and the protocol in which Bob cheated, together with the randomness she used
in the OT protocol. Any third party can now use Alice’s opened random tape
in combination with the signed transcript of the OT protocol to recover Bob’s
random tape and use it to check whether Bob misbehaved or not in the protocol
Π. The general idea of derandomizing the parties to achieve public verifiability
has previously been used by Hong et al. [HKK+19]. However, as it turns out
there are quite a few subtleties to take care of to make sure that the approach
outlined above actually works and is secure. We will elaborate on these challenges
in the later technical sections.

Using our compiler for protocols with no private inputs, we can obtain effi-
cient protocols with covert security and public verifiability in the preprocessing
model. In this model, protocols are split into a preprocessing protocol ΠOFF and
an online phase ΠON, where ΠOFF generates correlated randomness and ΠON

is a highly efficient protocol for computing a desired function using the corre-
lated randomness and the parties’ private inputs. We can apply our compiler
to a passively secure version of the preprocessing protocol of SPDZ [DPSZ12]
and combine it with an actively secure online protocol ΠON to obtain an overall
protocol with covert security and public verifiability.

Our second compiler for arbitrary protocols follows the player virtualiza-
tion paradigm, which was first introduced by Bracha [Bra87] in the context
of distributed computing and then first applied to secure computation proto-
cols by Maurer and Hirth [HM00]. Very roughly speaking, the idea behind this
paradigm is to let a set of real parties simulate a set of virtual parties, which
execute some given protocol on behalf of the real parties. Despite the conceptual
simplicity of this idea, it has led to many interesting results. Ishai, Prabhakaran,
and Sahai [IPS08], for example, show how to use this paradigm in combina-
tion with OT to obtain actively secure protocols from passively secure ones
in the dishonest majority setting. In another work, Ishai et al. [IKOS07] show
how to transform secure multiparty computation protocols with passive secu-
rity into zero-knowledge proofs. Cohen et al. [CDI+13] show how to transform
three or four-party protocols that tolerate one active corruption into n-party
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protocols for arbitrary n that tolerate a constant fraction of active corruptions.
Damg̊ard, Orlandi, and Simkin [DOS18] show how to transform information-
theoretically secure multiparty protocols that tolerate Ω(t) passive corruptions
into information-theoretically secure ones that tolerate Ω(

√
t) active corruptions.

In this work, we make use of this paradigm as follows: Assume Alice and
Bob have inputs xA and xB , would like to compute some function f , and are
given access to some 2m-party protocol Π with security against m + t passive
corruptions, where m and t are parameters that will determine the probability
with which cheating will be caught. Alice imagines m virtual parties VA1 , . . . ,VAm
in her head and Bob imagines virtual parties VB1 , . . . ,VBm in his. Alice splits her
input xA into an m-out-of-m secret sharing with shares xA1 , . . . , x

A
m and she will

use share xAi as the private input of her virtual party VAi . Bob does the same with
his input. All 2m virtual parties jointly execute Π, which first reconstructs xA

and xB from the given shares and then computes f(xA, xB). During the protocol
execution, Alice and Bob send messages on behalf of the virtual parties they
simulate. If both parties perform their simulations honestly, then the protocol
computes the desired result. If either of the real parties misbehaves, then it will
necessarily misbehave in at least one of its virtual parties. Similarly to before,
our idea here is to let Alice and Bob check subsets of each other’s simulations.
Assuming, for instance, Alice obtains the random tapes and inputs of t uniformly
random virtual parties of Bob, then she can recompute all messages that those
virtual parties should be sending. Since Bob does not know which of his virtual
parties are checked, any attempt to cheat will be caught with a probability of
t/m. Further, observe that as long as t < m, the inputs remain hidden, since the
protocol tolerates m+ t corruptions and each input is m-out-of-m secret shared.

As in the case of the first compiler, the high-level idea of the simulation
strategy above is reasonably simple, yet the details are in fact non-trivial and
several subtle issues arise when trying to turn this idea into a working compiler.

What function to compute? The first question that needs to be addressed
is that of which function exactly the virtual parties should compute. Using Π to
reconstruct xA and xB and then directly compute f(xA, xB) is good enough for
the intuition above, but is actually not secure. The reason is, that security against
covert adversaries requires that the adversary’s decision to cheat is independent
of the honest party’s input and output. A passively secure protocol, however, may
reveal the output bit-by-bit, which would allow the adversary to learn parts of the
output before deciding on whether to cheat or not. Consider for example the case,
where xA and xB are bit-strings and f(xA, xB) = xA ∧ xB . A passively secure
protocol may simply compute and output the AND of each bit sequentially,
which would enable an adversary to make its decision to cheat dependent on the
output bits it has seen so far. To deal with this issue, we will use Π to secret
share the output value among all virtual parties. This ensures that Π will not
leak any information about any of the inputs or the output. At the same time
all virtual parties can still reconstruct the output together by simply publishing
their respective share.
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How to check the behavior of virtual parties? The behavior of any virtual
party is uniquely defined by its input, its random tape, and its current view of
the protocol. Assuming, for example, Alice has access to input, random tape,
and current view of some virtual party VBi of Bob, she can recompute the exact
message this party should be sending. If the virtual party VBi deviates from that
message, then Alice knows that a cheating attempt has happened. Assume for
a second, that Alice somehow already obtained VBi ’s input and random tape.
The question now is how she can keep track of that virtual party’s view. If
VBi is sending a protocol message to or receiving it from any VAj , then Alice
necessarily obtains that message and she can either check its validity or add
it to VBi ’s view. However, what happens when VBi is receiving a message from
another one of Bob’s virtual parties VBj ? In this case things are a little trickier.

If Alice is checking VBi , she should be able to read the message, but if she is
not checking this virtual party, then the sent message should remain hidden
from her. To solve this problem, we establish private communication channels
between all virtual parties of Bob and separately also between all the ones of
Alice. More precisely, for 1 ≤ i, j ≤ m, we will pick symmetric keys kB(i,j), which

will be used to encrypt the communication between VBi and VBj . When Alice

initially obtains input and random tape of VBi , she will also obtain all keys that
belong to communication channels that are connected to VBi . Now if during the
protocol execution VBi should send a message to VBj , we let Bob encrypt the
message with the corresponding symmetric key and send it to Alice, who can
decrypt the message only if she is checking the receiver or sender.

In our description here we have assumed that quite a lot of correlated ran-
domness magically fell from the sky. For instance, we assumed that all random
tapes and all symmetric keys were chosen honestly and distributed correctly.
To realize this setup, we will use our first compiler, which we will apply to an
appropriate protocol with passive security.

2 Preliminaries

2.1 Secure Multiparty Computation

All of our security definitions follow the ideal/real simulation paradigm in the
standalone model. In the real protocol execution, all parties jointly execute the
protocol Π. Honest parties always follow the protocol description, whereas cor-
rupted parties are controlled by an adversary A. In the ideal execution all parties
simply send their inputs to a trusted party F , which computes the desired func-
tion and returns the output to the parties. Roughly speaking, we say that Π
securely realizes F , if for every real-world adversary A, there exists an ideal-
world adversary S such that the output distribution of the honest parties and
S in the ideal execution is indistinguishable from the output distribution of the
honest parties and A in the real execution. Different security notions, such as
security against passive, covert, or malicious adversaries, differ in the capabili-
ties the adversary has as well as the ideal functionalities they aim to implement.
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Throughout this paper we will consider synchronous protocols, static, rushing
adversaries, and we assume the existence of secure authenticated point-to-point
channels between the parties.

Let P1, . . . ,Pn be the involved parties and let I ⊂ [n] be the set of in-
dices of the corrupted parties that are controlled by the adversary A. Let Π :
({0, 1}∗)n → ({0, 1}∗)n be an n-party protocol that takes one input from and
returns one output to each party. Π internally may use an auxiliary ideal func-
tionality G. For the sake of simplicity, we assume that parties have inputs of the
same length. Let x̄ = (x1, . . . , xn) be the vector of the parties’ inputs and let z
be an auxiliary input to A. We define REALλ[A(z), I,Π,G, x̄] as the output of
the adversary A and the outputs of the honest parties in an execution of Π.

Passive adversaries. Security against passive adversaries is modelled by con-
sidering an environment Z that, in the real and ideal execution, picks the inputs
of all parties. An adversary A gets access to views of the corrupted parties,
but follows the protocol specification honestly. We consider the following ideal
execution:

Inputs: Environment Z gets as input auxiliary information z and sends the
vector of inputs x̄ = (x1, . . . , xn) to the ideal functionality FPASSIVE.

Ideal functionality reveals inputs: If the ideal world adversary S sends
get inputs to FPASSIVE, then it gets back the inputs of all corrupted parties,
i.e. all xi, where i ∈ I.

Output generation: The ideal functionality computes (y1, . . . , yn) = f(x1,
. . . , xn) and returns back yi to each Pi. All honest parties output whatever
they receive from FPASSIVE. The ideal world adversary S outputs an arbitrary
probabilistic polynomial-time computable function of the initial inputs of the
corrupted parties, the auxiliary input z, and the messages received from the
ideal functionality.

The joint distribution of the outputs of the honest parties and S in an ideal
execution is denoted by IDEALλ[S(z), I,F , x̄].

Definition 1. Protocol Π is said to securely compute F with security against
passive adversaries in the G-hybrid model if for every non-uniform probabilis-
tic polynomial time adversary A in the real world, there exists a probabilistic
polynomial time adversary S in the ideal world such that for all λ ∈ N{

IDEALλ[S(z), I,F , x̄]
}
x̄,z∈{0,1}∗

≡c
{

REALλ[A(z), I,Π,G, x̄]
}
x̄,z∈{0,1}∗

Covert adversaries. We use the security definition of Aumann and Lindell [AL07]
for defining security against covert adversaries. The security notion we consider
here is the strongest one of several and is known as the Strong Explicit Cheat
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Formulation (SECF). Covert adversaries are modelled by considering active ad-
versaries, but relaxing the ideal functionality we aim to implement. The relaxed
ideal functionality FSECF allows the ideal-world adversary S to perform a limited
amount of cheating. That is, the ideal-world adversary, can attempt to cheat by
sending cheat to the ideal functionality, which randomly decides whether the at-
tempt was successful or not. With probability ε, known as the deterrence factor,
FSECF will send back detected and all parties will be informed of at least one
corrupt party that attempted to cheat. With probability 1− ε, the simulator S
will receive undetected. In this case S learns all parties’ inputs and can decide
what the output of the ideal functionality is. The ideal execution proceeds as
follows:

Inputs: Every honest party Pi sends its inputs xi to FSECF. The ideal world
adversary S gets auxiliary input z and sends inputs on behalf of all cor-
rupted parties. Let x̄ = (x1, . . . , xn) be the vector of inputs that the ideal
functionality receives.

Abort options: If a corrupted party sends (abort, i) as its input to the
FSECF, then the ideal functionality sends (abort, i) to all honest parties and
halts. If a corrupted party sends (corrupted, i) as its input, then the function-
ality sends (corrupted, i) to all honest parties and halts. If multiple corrupted
parties send (abort, i), respectively (corrupted, i), then the ideal functionality
only relates to one of them. If both (corrupted, i) and (abort, i) messages are
sent, then the ideal functionality ignores the (corrupted, i) messages.

Attempted cheat: If S sends (cheat, i) as the input of a corrupted Pi, then
FSECF decides randomly whether cheating was detected or not:

- Detected: With probability ε, FSECF sends (detected, i) to the adversary
and all honest parties.

- Undetected: With probability 1− ε, FSECF sends undetected to the adver-
sary. In this case S obtains the inputs (x1, . . . , xn) of all honest parties
from FSECF. It specifies an output yi for each honest Pi and FSECF out-
puts yi to Pi.

The ideal execution ends at this point. If no corrupted party sent (abort, i),
(corrupted, i) or (cheat, i), then the ideal execution continues below.

Ideal functionality answers adversary: The ideal functionality computes
(y1, . . . , yn) = f(x1, . . . , xn) and sends it to S.

Ideal functionality answers honest parties: The adversary S either
sends back continue or (abort, i) for a corrupted Pi. If the adversary sends
continue, then the ideal functionality returns yi to each honest parties Pi. If
the adversary sends (abort, i) for some i, then the ideal functionality sends
back (abort, i) to all honest parties.

Output generation: An honest party always outputs the message it ob-
tained from FSECF. The corrupted parties output nothing. The adversary
outputs an arbitrary probabilistic polynomial-time computable function of
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the initial inputs of the corrupted parties, the auxiliary input z, and the
messages received from the ideal functionality.

The outputs of the honest parties and S in an ideal execution is denoted
by IDEALελ[S(z), I,FSECF, x̄]. Note that the definition requires the adversary to
either cheat or send the corrupted parties’ inputs to the ideal functionality, but
not both.

Definition 2. Protocol Π is said to securely compute F with security against
covert adversaries with ε-deterrent in the G-hybrid model if for every non-uniform
probabilistic polynomial time adversary A in the real world, there exists a prob-
abilistic polynomial time adversary S in the ideal world such that for all λ ∈ N{

IDEALελ[S(z), I,FSECF, x̄]
}
x̄,z∈{0,1}∗

≡c
{

REALλ[A(z), I,Π,G, x̄]
}
x̄,z∈{0,1}∗

Security against covert adversaries with public verifiability. This notion
was first introduced by [AO12] and was later simplified by [HKK+19]. In covert
security with public verifiability, each protocol Π is extended with an additional
algorithm Judge. We assume that whenever a party detects cheating during an
execution of Π, it outputs a special message cert. The verification algorithm,
Judge, takes as input a certificate cert and outputs the identity, which is defined
by the corresponding public key, of the party to blame or ⊥ in the case of an
invalid certificate.

Definition 3 (Covert security with ε-deterrent and public verifiabil-
ity). Let pkA, pkB be the keys of parties Alice and Bob and f be a public
function. We say that (π, Judge) securely computes f in the presence of a covert
adversary with ε-deterrent and public verifiability if the following conditions hold:

Covert Security: The protocol Π (which now might output cert if an honest
party detects cheating) is secure against a covert adversary according to the
strong explicit cheat formulation above with ε-deterrent.
Public Verifiability: If the honest party P ∈ {A,B} outputs cert in an

execution of the protocol, then Judge(pkA, pkB , f, cert) = pk{A,B}\P except
with negligible probability.
Defamation-Freeness: If party P ∈ {A,B} is honest and runs the protocol
with a corrupt party A, then the probability that A outputs cert∗ such that
Judge(pkA, pkB , f, cert∗) = pkP is negligible.

Next-Message Functionality. From time to time it may be convenient to go
through a n-party protocol Π step-by-step. For this purpose we define a next-
message functionality (v1, . . . , vn) ← ΠNEXT(i, x, r, T ), which takes the party’s
index i, its input x, its random tape r and the transcript T of messages the party
has seen so far as input and computes a vector (v1, . . . , vn) of messages, where
party i should be sending message vj to party j next. If vj = ⊥, then party j
does not receive a message from party i in that round. The protocol ends when
ΠNEXT outputs a special value (out, z), where z is then interpreted as the output
of that party.
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2.2 Ideal Functionalities

We recall some basic ideal functionalities which we will make use of in our com-
piler. In the k-out-of-n oblivious transfer functionality FOT (Figure 1) a sender
has a message vector (m0, . . . ,mn) and a receiver has index vector (i1, . . . , ik).
The receiver learns (mi1 , . . . ,mik), but learns nothing about the other messages,
whereas the sender learns nothing about the index vector.

F (n,k)
OT

The functionality interacts with sender S and receiver R.

1. On input (rec, sid, (i1, . . . , ik)) from R, if no message of the form (rec, sid, ∗) was
recorded in memory, then store (rec, sid, (i1, . . . , ik)) and send (rec, sid) to S.

2. On input (snd, sid, (m1, . . . ,mn)), if a message of the form (rec, sid, ∗) is stored in
memory, then send (snd, sid, (mi1 , . . . ,mik )) to R.

Fig. 1. Ideal functionality for oblivious transfer.

The commitment functionality FCom (Figure 2) allows a party to first com-
mit to a message and then later open this commitment to another party. The
commitment should be binding, i.e. the committing party should not be able to
open the commitment to more than one message, and hiding, i.e. the commit-
ment should not reveal any information about the committed messages before
the commitment is opened.

Our compilers requires commitments with non-interactive opening phase.
To ease the notation, we will describe our protocols using commitments where
the commitment phase is non-interactive as well, but our protocols could easily
be extended to commitments with interactive commitment phases as well. To
commit to a message m, we write: (c, d)← Com(m; r) where c is the commitment
and d is the opening information. The values d is then used to compute m′ ←
Open(c, d) with m′ = m or ⊥ in case of incorrect opening.

3 Compiler for Two-Party Protocols with no Inputs

We already provided a high level description of this compiler for protocols with
no inputs in the introduction. The formal compiler is presented in Figure 3.
Before proving the security of our compiler, we discuss some of the subtle issues
we encountered in the design of the protocol and the role they play in the proof.
As the protocol is completely symmetric, and to ease the notation, we will explain
all choices from the point of view of Alice. In the first step of the protocol both
Alice and Bob pick random tapes sAi and sBi for all i ∈ [k], which are in turn
parsed as sPi = (uPi , v

P
i , w

P
i ) for P ∈ {A,B} during the protocol. There are
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FCom

The functionality interacts with parties P1, . . . ,Pn.

1. Upon receiving (commit, sid,Pi,Pj ,m) from party Pi, if no message of the
form (sid,Pi,Pj , ∗) was recorded in memory, then store (sid,Pi,Pj ,m) and send
(receipt, sid,Pi,Pj) to Pj .

2. Upon receiving (open, sid,Pi,Pj) from Pj , if a message of the form (sid,Pi,Pj ,m)
is stored in memory, then send (open, sid,Pi,Pj ,m) to Pj .

Fig. 2. Ideal functionality for multiple commitments.

several reasons for this. Since we want to compile any passively secure protocol,
we can only guarantee security of the unopened execution if both parties use
uniformly random tapes in this execution. Therefore, the actual random tape
rAi which is used by A in the execution of the i-th copy of Π is obtained as
rAi = uAi ⊕ vBi in step 5 of the protocol, thus, if B is honest rAi will indeed be
random. Then, remember that we also use the seeds sBi that A receives from
the OT as a form of commitment to the set of parties IA that she has checked
during the protocol execution, i.e., in Step 9 we let A send those seeds to B
which in turns allows B to reconstruct IB . We of course need to argue that A
cannot lie about her checked set IA by, e.g., sending back to B some sBi with
i 6∈ IA. It might be tempting to believe that this follows from the security of the
OT protocol. However, since B uses the values sBi in the protocol Π we need to
“reserve” a sufficiently long chuck of sBi , which we call wBi , as a “witness” which
is only used for the purpose of committing A to the set IA and nothing else.
Finally, we need to argue for public verifiability and defamation freeness. Public
verifiability is obtained by asking A to sign the transcript of the protocol. Then,
if B detects any cheating by verifying whether the messages sent by A in the
checked executions of Π are consistent with her random tapes, B can output
a certificate consisting of A’s signature together with information which allows
a judge to reconstruct the random tape sAj , where j is the execution in which
B claims the cheating happened, i.e., to let the judge reconstruct A’s random
tape, B includes the random tape he used when acting as the receiver in the
OT protocol. Note that we let B verify for cheating after the execution of Π is
completed. The reason for this is that if B aborts as soon as some cheating is
detected, B would not receive A’s signature on the protocol transcript. Moreover,
it is perfectly safe to run the protocol to the end even if cheating is detected
since B has no private input in the protocol.

This, together with the transcript of the OT protocol, allows the judge to
recompute the output of B in the protocol i.e., the random tape of A and, if we
use an OT which satisfies perfect correctness, a corrupt B cannot lie about the
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output received in the protocol.6 Note that, perhaps counterintuitively, the judge
does not need to check that the messages sent from the accuser to the accused
are correct! This is because whether the messages sent from the accuser to the
accused are correct or not has no influence in whether the messages from the
accused to the accuser are correct or not according to the protocol speficication.
In other words, a corrupt party cannot “trick” an honest party into cheating by
sending ill-formed messages.

We are now ready for the security analysis.

Theorem 1. Let Π be a protocol that implements a two-party functionality F ,
which receives no private inputs, with security against passive adversaries. Let

Π
(k,k/2−1)
OT be a protocol that implements F (k,k/2−1)

OT with active security and
perfect correctness. Then the compiler illustrated in Figure 3 and 4 implements
the two-party functionality F with security and public verifiability against covert
adversaries with deterrence factor ε = 1

2 −
1
k .

Proof. We will proceed by proving security, public verifiability, and defamation-
freeness separately. Without loss of generality we assume that Alice is corrupted
by the adversaryA. The case for Bob being corrupted is symmetrical. For proving
security, we construct a simulator S playing the role of Alice in the ideal world
and using A as a subroutine as follows7:

Simulation part A:

0. Generate (skB , pkB) and send pkB to A.
1. The simulator picks random seeds sBi , for i ∈ [k] ∪ {R}.
2. Do nothing.8

3. The simulator uses SOT to simulate both OT executions. In the one where
it acts as a receiver it extracts A’s input (s′)A1 , . . . , (s

′)Ak . In the one where
it acts as the sender it extracts the vector IA, and sends the corresponding
seeds to the adversary.

4. For i ∈ [k], derive uBi and vBi from seed sBi and send vBi to A. Receive the
vAi from A.

5. The simulator S engages in k honest executions of Π with A, where the
simulator uses random tape rBi = uBi ⊕ vAi in execution i. Let TΠ be the set
of transcripts of those executions.

6 Note that Hong et al. [HKK+19] use a similar derandomization trick in their garbled
circuit construction, but do not mention the need for a perfectly correct OT, nor
formally proves defamation freeness of their protocol. The extra assumption appears
to be necessary to achieve this property in their protocol as well, since OT security
itself does not imply that the receiver cannot “equivocate” its view by finding a
random tape that produces a different output than the one in the real execution.

7 For the sake of clarity, we assume that the adversaryA cheats in at most one location.
Our proof easily generalizes to the case where A cheats in arbitrarily many locations
at the cost of becoming a little less readable.

8 Some steps are left empty on purpose to keep the numbering of steps consistent with
the protocol.
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Alice holds (skA, pkA) and Bob holds (skB , pkB). Both parties have no inputs.

1. For i ∈ [k] ∪ {R}, Alice and Bob pick seeds sAi and sBi uniformly at random of
appropriate length.

2. Party P ∈ {A,B} derives vector IP ⊂ [k] from sPR , with |IA| = |IB | = dk/2e − 1.

3. Alice and Bob run two invocations of Π
(k,k/2−1)
OT , where Alice and Bob each once

act as the receiver and once as the sender. The sender S ∈ {A,B} uses (sS1 , . . . , s
S
k )

as its input to the OT. The receiver R ∈ {A,B} uses input IR and randomness
derived from sRR . Alice receives all sBi with i ∈ IA and Bob receives all sAj with
j ∈ IB . Let TAOT and TBOT be the sets of transcripts of the OT executions, where
Alice and Bob respectively were the receiver.

4. For all i ∈ [k], party P ∈ {A,B} derives (uPi , v
P
i , w

P
i ), from seed sPi . Let V P =

{vPi }i∈[k]. The parties exchange the V P ’s.
5. Alice and Bob engage in k executions of Π, where in the i-th execution Alice uses

random tape rAi = uAi ⊕ vBi and Bob uses random tape rBi = uBi ⊕ vAi . Let TΠ be
the set of transcripts of those executions.

6. Alice computes σA ← Sign(skA, (TBOT, V
B , TΠ)) and sends σA to Bob. Bob com-

putes σB ← Sign(skB , TAOT, V
A, TΠ)) and sends σB to Alice. If σA or σB does not

verify, then Bob or Alice respectively abort.
7. For i ∈ IA, Alice checks, whether Bob’s messages in step 4 and step 5 are consistent

with the seed sBi she obtained in step 3. Let JA ⊆ IA be the set of indices, where
the seeds did not match the execution. Bob does the same to obtain JB .

8. If JA 6= ∅, Alice picks the least j ∈ JA, outputs a certificate cert =(
σB , TAOT, s

A
R , V

A, TΠ , j
)
, and aborts the execution. Similarly, Bob does the same

with his set JB .
9. Alice reveals wBi for i ∈ IA and Bob reveals wAi for i ∈ IB , allowing the both

parties to reconstruct the sets IA, IB .
10. If no cheating was detected, then the parties agree to use the output of execution

i of Π, where i = min([k] \ (IA ∪ IB)).

Fig. 3. Compiler from security against passive to security with public verifiability
against covert adversaries for two-party protocols with no inputs.

6. The simulator computes σB ← Sign(skB , (TAOT, V
A, TΠ)) and sends it to A.

The adversary sends back σA. If the adversary’s signature does not verify,
then the simulation aborts (similarly, the simulation aborts if at any previous
step A stops sending messages or sends messages wich are blatantly wrong
e.g., they generate an abort in the real world with probability 1).

7. The simulator uses seeds (s′)Ai to check whether A behaved correctly dur-
ing all executions of Π in step 4 and 5 (using the incorrect random tapes
rAi constitutes cheating as well). If A deviated in any of the protocol ex-
ecutions, then the simulator sends (cheat, A) to the ideal functionality F ,
which responds with resp = {detected, undetected}. Store index j∗ of the
execution in which A cheated, along with the exact location loc∗ of where
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Judge has input (pkA, pkB , cert)

1. The judge parses cert =
(
σX , TYOT, s

Y
R , V

Y , TΠ , j
)

with (X,Y ) ∈ {(A,B), (B,A)}.
2. If Verify(pkX , σX , (TYOT, V

Y , TΠ)) = 0, return ⊥.
3. Verify the execution of ΠOT, where the receiver Y uses input IY and random coins

derived from sYR and the sender’s messages are the ones from TYOT. If the recomputed
outgoing messages of Y are not consistent with the transcript TYOT, then return ⊥.
Otherwise let sXi for i ∈ IY be the output of that verified execution.

4. Use sXj and vYj ∈ V Y to derive rXj as done in step 5 of the protocol.
5. Verify the messages from X to Y in the j-th execution of Π using random tapes rXj

and the next message function ΠNEXT. If the transcript matches the j-th transcript
in TΠ , then return ⊥, otherwise return pkX .

Fig. 4. Judge protocol for our compiler in Figure 3.

cheating happened in that execution itself, and then proceeds to part B if
flag = undetected.

8. If flag = detected, the simulator outputs a certificate cert in the following
way: The simulator rewinds the adversary and this time runs the protocol
as an honest party would do, except that it samples sBR under the constraint
that j∗ ∈ IB . The simulator keeps rewinding until it detects cheating again
in (j∗, loc∗), and outputs a certificate as an honest party would do (this
concludes the simulation).

9. If the flag was not set: Reveal (w′)Ai for i ∈ IB and receive (w∗)Bi from the
adversary, and checks that they are equal to the wBi derived from sBi .

10. If the simulation reaches this stage, then S sets flag = all good, requests
output yA from F and moves to part B.

At this point the simulator S rewinds A back to right before step 1 and keeps
rewinding A until the simulation is successful and A repeats the same cheating
pattern as in part A9. In particular the simulator runs the following steps:

Simulation part B:

1. Do nothing.
2. Do nothing.
3. The simulator uses SOT to simulate both OT executions. In the one where

it acts as a receiver it extracts A’s input (s′)A1 , . . . , (s
′)Ak . In the one where

it acts as the sender it extracts the vector IA, picks random seeds sBi for all
i ∈ IA and sends them to the adversary.

4. Depending on flag do the following:

9 Making sure that our simulation runs in expected polynomial time can be achieved
using standard techniques first introduced by Goldreich and Kahan [GK96].
See [HL10, Lin16] for an elaborate discussion of these techniques.
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– If flag = all good, then pick a random i∗ 6∈ IA with the same distribution
as in the protocol. For all i 6∈ IA with i 6= i∗ the simulator picks random
vBi (while letting the wBi still undefined). It computes the tape rAi∗ using
the simulator for the protocol SΠ , and it computes vBi∗ = rAi∗⊕uAi∗ , where
the uAi∗ are derived from the sAi∗ . Send all the the vBi to A and receive
vAi from A.

– If flag = undetected, then the simulator S runs this step as an honest
party.

5. Depending on flag do the following:
– If flag = all good, then run all executions of Π honestly (picking random
uBi and computing the corresponding random tape rBi to be used in the
protocol) except for i∗, which is simulated using SΠ . When SΠ requests
the output, then the simulator provides it with yA.

– If flag = undetected, then the simulator S honestly executes the protocols
based on its random seeds.

6. The simulator computes σB ← Sign(skB , (TAOT, V
A, TΠ)) and sends it to A.

The adversary sends back σA.
7. Depending on flag do the following:

– If flag = all good, then the simulator uses all seeds (s′)Ai to check whether
A behaved correctly during the executions of Π in step 4. If A deviated
from any of the protocols, then it rewinds back to the beginning of part
B, otherwise it terminates the simulation by honestly running the last
two steps of the protocol, by choosing a random sBR and IB (consistent
with the choice of i∗ in step 5) and sends back the corresponding (w′)Ai
derived from (s′)Ai for i ∈ IB .

– If flag = undetected, then the simulator checks whether A deviated from
any of the protocol executions. If A did not deviate, if it deviated some-
where other than execution j∗ in location loc∗, or if j∗ 6∈ IB , then rewind
back to the beginning of part B. Otherwise, terminate the execution and
send output ỹB of execution i∗ to the ideal functionality F .

To conclude the proof, we show that the real and the simulated view of the
adversary is indistinguishable. We defer these hybrids to the full version of the
paper.

Public Verifiability. Without loss of generality assume that Alice is corrupt.
If cheating occurred, then Alice must have deviated from one of the protocol
executions in step 5 of the protocol, i.e., one of the messages in one of the
executions that originates from Alice must be inconsistent with the random
tape she should be using. If an honest Bob publishes a certificate, then cheating
was detected, meaning that Bob obtained Alice’s random tape for the execution
in which she cheated. Since the transcripts of the protocol executions are signed
by Alice, any party can verify that one message is inconsistent with one of Alice’s
random tapes. Importantly, since Alice has no way of knowing whether cheating
will be successful or not before sending the signature in step 6, her decision to
abort the protocol at any point before that has to be independent of Bob’s choice
of IB .
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Defamation-Freeness. Assume that A acting as Alice manages to break the
defamation-freeness of the protocol and blames an honest B. We argue that this
leads to a forgery to the underlying signature scheme, thus reaching a contra-
diction with the assumption of the theorem. In particular, for a Judge to blame
Bob it must hold that in step 5 the judge finds a message from B to A which is
not consistent with the next-message function of Π in execution j∗. Since Bob is
honest, this means that either the transcript of the protocol T ∗ included in the
certificate or the random tape r∗ used by the judge to verify B in this step are
not the ones that Bob used in the protocol (this of course is true for all j ∈ [k]
and therefore independent of which execution j∗ is claimed by A). Since Bob is
honest he will not sign a protocol transcript T ∗ 6= TΠ , e.g., a transcript different
than the one in the protocol executed by the honest Bob. Thus, r∗ must be the
wrong random tape. From step 4 we know that r∗ is computed as the exclusive
OR of a value v∗ included in the certificate and signed by Bob and a value u∗

derived from previous steps in the protocol. Again, since an honest Bob would
not have signed the wrong v∗ 6= vAj if r∗ is not the real randomness used by Bob
in the protocol the it is because of a fault in u∗, which is in turn derived by the
seed s∗ received as the j∗-th output of A in the execution of the OT protocol.
Now, if s∗ 6= sBj∗ (the value used as input by Bob in the real protocol execution),

this must be because either the OT protocol transcript TAOT in the certificate are
incorrect or the randomness s∗ included in the certificate is incorrect. Remember
that both A’s input and randomness in the OT protocol are derived by (s∗)Aj∗

which is included in the certificate. Now it must be that (s∗)Aj∗ leads to an input

set I∗ such that j∗ ∈ I∗, or the judge would not be able to reconstruct sBj∗ . Then,
fixed any input set I∗, the perfect correctness of the OT protocol implies that
given the correct protocol transript TAOT there cannot exist any random tape
such that the output of A in the protocol is incorrect. Thus, the transcript TAOT
included in the certificate must be the wrong one. Once again, since Bob would
not have signed the wrong transcript this implies that A has managed to forge
a signature, thus reaching a contradiction.

ut

In Theorem 1 we have assumed that each party checks less than half of the
executions, which guarantees that there exists an execution that is not checked
by either of the parties, but limits our deterrence factor ε to be less than 1/2.
We can modify our protocol to allow each party to check δk executions for
any constant 1/2 ≤ δ < 1, which allows us to obtain deterrence factors larger
than 1/2. The main observation here is that, as long as each party leaves a a
constant fraction of the executions unchecked, we have a constant probability of
ending up with an execution that is not checked by either of the parties. In our
modified protocol, we run the protocol from Figure 3 as before up to including
step 10. If there exists no execution that is not checked by either party, i.e.,
[k] \ (IA ∪ IB) = ∅, then the parties simply start over the whole protocol run
until the condition is satisfied.
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Lemma 1. The modified protocol described above runs in expected polynomial
time.

Proof. To clarify terminology, we will call one execution of the overall protocol
from Figure 3 an outer execution and the executions of Π within will be called
inner executions. Observe that one outer execution runs in polynomial time. Let
good be the event that the outer execution has an unchecked inner execution
and let bad be the opposite event. If we can show that Pr[good] ≥ c, where c is
a constant, then we are done, since this means that, in expectation, we need to
run the outer protocol 1/c times until the event good happens.

Now observe that for any δk inner executions chosen by Alice, Bob would
need to choose the remaining k− δk with his δk choices to trigger the bad event.
We can loosely upper bound the probability of this event by just considering
the Bernoulli trial, where we only ask Bob to pick k− δk inner executions (with
repetitions) that were not chosen by Alice.

Pr[bad] ≤
(

δk

k − δk

)(
k − δk
k

)k−δk (
1− k − δk

k

)δk−(k−δk)

=

(
δk

k − δk

)
(1− δ)k(1−δ)

δk(2δ−1)

Now since both k and δ are constants, this whole expression is also a constant.
Since the probability for bad is upper bounded by a constant, the event good is
lower bounded by a constant too.

ut

The calculation above is very loose and just aims to show that the expected
number of repetitions is constant. To get a better feeling of how often we have
to rerun the protocol for some given deterrence factor, consider for instance
k = 3 with ε = 2/3. The probability of the event good is the probability of
Bob picking the same two executions that Alice picked, that is, the probability
is 2/3 · 1/2 = 1/3, meaning that we need to repeat the protocol three times in
expectation.

4 Efficient Two-Party Computation in the preprocessing
model

In this section, we consider actively secure two-party protocols in the preprocess-
ing model. Such protocols are composed of an input-independent preprocessing
protocol ΠOFF for generating correlated randomness and separate protocol ΠON

for the online phase, which uses the preprocessed correlated randomness to com-
pute some desired function on some given private inputs. The main advantage of
such protocols is that the computational “heavy lifting” can be done in the pre-
processing, such that the online phase can be executed very efficiently, in partic-
ular, much faster than what can be done by a standalone protocol that computes
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the same functionality without correlated randomness from scratch. One of the
most well known protocols in the preprocessing model is the SPDZ [DPSZ12]
protocol for computing arbitrary arithmetic circuits.

A natural question to ask is, whether we can use our results from Section 3
to construct more efficient protocols in the preprocessing model by relaxing the
security guarantees from active to covert. The main idea here is to replace slow
preprocessing protocols with active security by faster preprocessing protocols
with passive security, which are then used in combination with our compiler
from Theorem 1 to generate the correlated randomness. Note, that we do not
need to apply our compiler to the online phase, which is already actively secure.
That is, we can combine a preprocessing protocol with covert security with an
actively secure online phase to obtain an overall protocol which is secure against
covert adversaries as we show in the following Lemma.

Lemma 2. Let (ΠOFF, ΠON) be a protocol implementing Ff with active security,
where the preprocessing protocol ΠOFF implements FOFF and ΠON implements
FON with active security respectively. If Π̃OFF implements FOFF with security
against covert adversaries (and public verifiability), then (Π̃OFF, ΠON) imple-
ments Ff with security against covert adversaries (and public verifiability) with

the same deterrence factor as Π̃OFF.

Proof. To prove the statement above, we need to construct a simulator S that
interacts with the (covert version of) ideal functionality Ff . By assumption, there

exists simulators (SOFF,SON) for (ΠOFF, ΠON) and simulator S̃OFF for Π̃OFF. We

will use (S̃OFF,SON) to simulate the view of the adversary A. If A attempts to
cheat after we finished the preprocessing simulation, then we can simply consider
each attempt as an abort, since the online phase is actively secure. If during the
preprocessing simulation A attempts to cheat and consequently S̃OFF outputs a
cheat command, we will forward it to Ff . If cheating is undetected, then the
ideal functionality returns all inputs and finishing the simulation is trivial. If
cheating is detected, then we inform S̃OFF and finish the simulation accordingly.

Observe that if cheating was detected in the preprocessing, then the simulated
view is indistinguishable from a real one by assumption on the security of S̃OFF.
If no cheating happened, then the actively secure and covertly secure versions of
Ff have identical input/output behaviors and thus the simulated views are also
indistinguishable by assumption.

The resulting protocol is also publicly verifiable, since the preprocessing pro-
tocol is publicly verifiable, and in the (actively secure) online phase only “blatant
cheating” can be performed.

ut
We now consider the concrete case of SPDZ for two-party computation. In

the SPDZ preprocessing, Alice and Bob generate correlated randomness in the
form of secret shared multiplication triples over some field F, i.e. Alice should
obtain a set {(aAi , bAi , cAi )}i∈[`] and Bob should obtain {(aBi , bBi , cBi )}i∈[`] such
that for all i ∈ [`] it holds that

(aAi + aBi ) · (bAi + bBi ) = (cAi + cBi ).
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Current actively secure preprocessing protocols for generating such randomness
use a combination of checks based on message authentication codes and zero-
knowledge proofs. To obtain a passively secure counterpart that we can then
plug into our compiler, we simply take one of those existing protocols and remove
those checks.

For completeness, we sketch how one such preprocessing protocol could look
like. Assume we are given access to a somewhat homomorphic encryption scheme,
i.e., a scheme that allows us to compute additions Enc(pk, a) + Enc(pk, b) =
Enc(pk, a + b) and a limited number of multiplications Enc(pk, a) · Enc(pk, b) =
Enc(pk, a · b). Furthermore, assume that the decryption key sk is shared be-
tween Alice and Bob. For P ∈ {A,B}, each party P separately picks random
values {aPi , bPi , rPi }i∈[`] and sends {Enc(pk, aPi ),Enc(pk, bPi ),Enc(pk, rPi )}i∈[`] to
the other party. Each party P ∈ {A,B} uses the homomorphic properties of
the encryption scheme to compute {Enc(pk, ri)}i∈[`], where ri = rAi + rBi , and

{Enc(ci)}i∈[`], where ci =
(
aAi + aBi

)
·
(
bAi + bBi

)
. Both parties jointly decrypt

each ciphertext in the set {Enc(pk, ci − ri)}. Alice computes {cAi }i∈[`], where
cAi = (ci − ri) + rAi and Bob sets {cBi }i∈[`] := {rBi }i∈[`]. It is easy to see that
this protocol outputs correct multiplication triples and securely hides the value
of each ci, since ri is a uniformly random string.

One more detail that we need to consider here is that actively secure pre-
processing protocols output correlated randomness along with authentication
values. Our preprocessing protocol from above can easily be modified output
these authentication values as well. Without going into too much detail, these
authentication values are essentially the product of the secret shared multipli-
cation triples and some encrypted key. These multiplications can be performed
as above by using the homomorphic properties of the encryption scheme.

Combining the passively secure preprocessing protocol outlined above with
our compiler from Theorem 1 results in a covertly secure preprocessing protocol
with public verifiability that, for a deterrence factor of 1/3, is roughly 3 times
faster than the best known actively secure protocol. Since the total running time
of SPDZ is mostly dominated by the running time of the preprocessing protocol,
we also obtain an overall improvement in the total running time of SPDZ of
roughly the same factor 3.

5 General Compiler for Two-Party Protocols

The first ingredient we need in this section is a two-party protocol Π̃SETUP that

realizes F (m,t)
SETUP (Figure 5) with passive security. Let ΠSETUP be the protocol one

obtains by applying our compiler from Theorem 1 to the protocol Π̃SETUP.
Given the protocol ΠSETUP, we are now ready to present our main compiler in

Figure 6. In the protocol description, we overload notation and identify the i-th
virtual party VPi belonging to real party P with the set containing the random
tapes and symmetric encryption keys used by this party in the protocol. This
set, together with the public ciphertext containing the party’s input encrypted
with its own symmetric encryption key, completely determines the behaviour
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F (m,t)
SETUP

The functionality interacts with Alice and Bob.

Upon receiving (init, sid) from both Alice and Bob, the functionality does the following
for P ∈ {A,B}:

1. For i ∈ [m], pick sPi uniformly at random.
2. For i, j ∈ [m], pick kP(i,j) uniformly at random with kP(i,j) = kP(j,i).
3. For i ∈ [m],

(a) define VPi =
(
sPi , {kP(i,j)}j∈[m]

)
.

(b) compute (cPi , d
P
i )← Com(VPi ).

4. Pick IP ⊂ [m], uniformly at random with |IP | = t.
5. Output

(
{cBi , cAi , dAi }i∈[m], I

A, {dBj }j∈IA
)

and
(
{cAi , cBi , dBi }i∈[m], I

B , {dAj }j∈IB
)

to
A and B respectively.

Fig. 5. Ideal functionality for our correlated randomness setup.

of that virtual party in the protocol. Let f
(
xA, xB

)
be the function Alice and

Bob would like to compute on their respective inputs xA and xB . Let Π be a
2m-party protocol that implements a related functionality

Fg(xA1 , . . . , xAm, xB1 , . . . , xBm) :=
(
zA1 , . . . , z

A
m, z

B
1 , . . . , z

B
m

)
,

where

f

⊕
i∈[m]

xAi ,
⊕
i∈[m]

xBi

 =
⊕

i∈[m],P∈{A,B}

zPi .

with security againstm+t passive corruptions. That is, the ideal functionality
Fg takes as input an m-out-of-m secret sharing of xA and xB and computes a
2m-out-of-2m secret sharing of f(xA, xB).

Theorem 2. Let f be an arbitrary two-party functionality and let g be the re-
lated functionality as defined above. Let Π be a 2m-party protocol that imple-
ments the ideal functionality Fg with security against m+ t passive corruptions.
Let ΠSETUP be the protocol from Figure 3 realizing ideal functionality FSETUP

from Figure 5 with deterrence factor t
m . Let Com be a commitment scheme

that realizes FCom. Then the compiler illustrated in Figure 6 and 7 implements
the two-party ideal functionality Ff with security and public verifiability against
covert adversaries with deterrence factor ε = t/m.

Proof. We will proceed by proving security, public verifiability, and defamation-
freeness separately. Without loss of generality again we assume that Alice is
corrupted by the adversary A. The case for Bob being corrupted is completely
symmetrical. For proving security, we construct a simulator S playing the role of
Alice in the ideal world and using A as a subroutine. Let SSETUP be the simulator
corresponding to the ideal functionality FSETUP.
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Alice has input xA and key-pair (skA, pkA). Bob has input xB and key-pair (skB , pkB).

0. For each P ∈ {A,B}: abort in any case of blatant cheating e.g., if P receives an
invalid signature or a wrong commitment opening in step 2, 4, or 6.

1. Alice and Bob run ΠSETUP to obtain yA and yB respectively, where

yA =
(
{cBi , cAi , dAi }i∈[m], I

A, {dBj }j∈IA
)

and
yB =

(
{cAi , cBi , dBi }i∈[m], I

B , {dAj }j∈IB
)
.

2. Alice and Bob verify that the outputs they received from ΠSETUP are
well-formed, and if so, each P ∈ {A,B} parses Open(cPi , d

P
i ) as

VPi =
(
sPi = (rPi , u

P
i ), {kP(i,j)}j∈[m]

)
, then computes and sends σPc ←

Sign
(
skP , {cPi }i∈[m]

)
.

3. Each P ∈ {A,B} secret shares its input xP as xP =
⊕m

i=1 x
P
i .

4. For each (S,R) ∈ {(A,B), (B,A)}, for i ∈ [m], the sender S computes eSi ←
Enc(kS(i,i), x

S
i ) and σSi ← Sign(skS , eSi ) and sends (eSi , σ

S
i ) to the receiver R.

5. For each R ∈ {A,B}, for i ∈ IR, party R decrypts xSi ← Deck(i,i)(e
S
i ).

6. Alice and Bob jointly run the 2m-party protocol Π, where each VPi uses input
xPi and randomness rPi . In the following, let T be the transcript of all exchanged
messages so far and (v, j) ← Πnext(i, x

S
i , r

S
i , T ) be the next message computed by

virtual party VSi belonging to real party S given the current protocol transcript T .
Then we have three cases:
(a) VSi sends v to VRj (virtual parties belonging to different real parties): Party

S computes σT‖v ← Sign(skS , T‖v) and sends (v, σT‖v) to R. If i ∈ IR, then
R checks whether the sent message was honestly generated. If not, then R
outputs cert = (type1, i, j, (T, v, σT‖v), ({cSk }k∈[m], σ

S
c , d

S
i )) and aborts.

(b) VSi sends v to VSj (virtual parties belonging to same real party): Party S
sends (e, σT‖e) to R, where e ← Enc(kS(i,j), v) and σT‖e ← Sign(skS , T‖e). If

j ∈ IR, then R decrypts and adds the message to its local view of VSj . If i ∈ IR,
then R decrypts and checks, whether the message is generated correctly. If not,
then R outputs cert = (type2, i, j, (T, e, σT‖e), ({cSk }k∈[m], σ

S
c , d

S
i ))

(c) Output phase: For S ∈ {A,B}, i ∈ [m], VSi obtains zSi . Party VSi sends
(γSi , σ

S
T‖γ) to R, where (γSi , δ

S
i )← Com(zSi ;uSi ) and σSi ← Sign(skS , T‖γSi ). If

i ∈ IR then R recomputes zSi and the commitment γSi . If cheating is detected,
then R outputs cert = (type3, i, 0, (T, γ, σT‖γ), ({cSk }k∈[m], σ

S
c , d

S
i ))

7. Alice and Bob exchange all decommitments δPi , open the output shares zPi and
reconstruct the output f(xA, xB).

Fig. 6. Compiler from security against passive to security with public verifiability
against covert adversaries for arbitrary two-party protocols.

Simulation:
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Judge has input
(
pkA, pkB , cert

)
1. The judge parses cert = (typeb, i, j, (T, v, σT‖v), ({cXk }k∈[m], σ

X
c , d

X
i ))

2. If Verify
(
pkX , σXc , {cXk }k∈[m]

)
= 0, return ⊥.

3. If Verify
(
pkX , σT‖v, T‖v

)
= 0, return ⊥.

4. Let VXi = Open(cXi , d
X
i ), parse VXi =

(
(rXi , u

X
i ), {kX(i,j)}j∈[m]

)
, unless VXi = ⊥ in

which case return ⊥.
5. Compute xXi ← Dec(kX(i,i), e

X
i ) from eXi in T .

6. Compute v∗ = ΠNEXT

(
i, xXi , r

X
i , T

)
.

7. Depending on b do the following:
(a) b = 1: If v∗j 6= v, then return pkX .
(b) b = 2: If v∗j 6= Dec(k(i,j), v), then return pkX .
(c) b = 3: If v∗ = (out, z∗) and v 6= Com(z∗;uXi ), then return pkX .

8. Return 0.

Fig. 7. Judge protocol for our two-party protocol in Figure 6.

0. Generate (skB , pkB) and send pkB to A. Like a real party, the simulator
aborts in any case of blatant cheating.

1. Simulate the functionality FSETUP.

(a) In case A inputs cheat, the simulator forwards cheat to Ff . If Ff outputs
detected, the simulation sets flag = detected and stops.

(b) If Ff outputs undetected, it also provides the simulator with the input
xB of the honest party. The simulator then sets flag = undetected and
allows A to pick the output yB of B in FSETUP and runs the protocol
honestly, finally it has to provide Ff with the output for B in the ideal
world, and he does so by running the protocol as an honest party would
do with A, and using the output zB obtained in this execution.

(c) Finally, if A does not attempt to cheat in FSETUP, the simulator picks the
output of the corrupt party yA in the following way: Pick a random set
IA, and run the simulator SΠ of the 2m-party protocol Π, to produce
the random tapes of all the virtual parties belonging to A for all i ∈ [m]
and of the checked virtual parties belonging to B for i ∈ IA.
The simulator also picks random keys kA(i,j) for i, j ∈ [m] and kB(i,j) for

all i, j ∈ IA at random. Now the simulator can honestly produce com-
mitments (cAi , d

A
i )← Com(VAi ) for all i ∈ [m] and (cBi , d

B
i )← Com(VBi )

for i ∈ IA. Finally, use the simulator SCom to simulate all commitments
cBi with i 6∈ IA.

2. As in the protocol, send the signature σBc to A. Receive σAc (and abort if
invalid).

3. Do nothing.8

4. Receive eAi , σ
A
i for i ∈ [m]. Compute eBi = Enc(kB(i,i), x̃

B
i ) where x̃Bi is uni-

formly random if i ∈ IA or 0 otherwise.
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5. Decrypt xAi ← Dec(kA(i,j), e
A
i ) for all i ∈ [m] and reconstruct xA.

6. Simulate the execution of the 2m-party protocol Π in the following way: Use
the simulator SΠ to simulate the execution of the unchecked virtual parties
belonging to B i.e., VBi for i 6∈ IA, and execute the checked parties belonging
to B as an honest party would do e.g., consistent with the random tapes and
keys from step 1c, and inputs x̃Bi as defined in step 4.

In particular, this means that all messages that are sent from the virtual
parties belonging to B to the virtual parties belonging to A or to the checked
virtual parties belonging to B are generated using the simulator. The former
kind are simply sent to A while the latter kind are first encrypted using
the appropriate keys. To simulate the message exchanged between pairs of
unchecked parties belonging to B, send encryptions of 0 to A. Moreover,
if the simulator gets to step 6c, it produces commitments γBi using the
simulator for the commitment SCom for i ∈ [m] \ IA, and commits honestly
to the shares obtained by the virtual parties for all i ∈ IA.

This concludes the decription of how the simulator simulates outgoing mes-
sages from S to A. We now describe how the simulator racts to incoming
messages from A to S: the simulator performs the checks in steps 6a–6c of
the protocol for all virtual parties belonging to A i.e., ∀i ∈ [m]. If A deviated
in any of its virtual parties i∗, then the simulator sends (cheat, A) to the ideal
functionality Ff , which responds with resp = {detected, undetected}.
(a) If flag = detected, the simulator produces a certificate as an honest party

would do (since the simulator knows the output yA of the FSETUP, the
simulator knows the decommitting information for all i ∈ [m]).

(b) If flag = undetected, the simulator receives the input of the honest party
xB . Now the simulator rewinds A to step 4 where it now generates the
x̃Bi ’s as a secret sharing of xB . The simulator keeps rewinding A until it
again cheats in the same position (e.g., same virtual party and protocol
location), and then completes the execution. The simulator reconstructs
the output z∗ from this execution and provides it to the ideal function-
ality Ff .

7. If no cheating was detected, the simulator sets the flag = all good. Then it
computes the A shares of the output zAi for all i ∈ [m] by executing the
virtual parties belonging to A using their random tapes and inputs which
have been already extracted in steps 1 and 4 of the simulation. Then the
simulator inputs xA (which was reconstructed in step 4 of the simulation)
to Ff and receives the output z. Now the simulator decommits honestly to
the commitments γBi for i ∈ IA but uses the simulator SCom to produce
decommitting information δBi for the commitments γBi with i 6∈ IA such
that the opened values zBi are uniformly random under the constraint that
⊕mi=1z

B
i = z ⊕mi=1 z

A
i . This concludes the simulation.

To conclude the proof, we show that the real and the simulated view of the
adversary is indistinguishable. We defer these hybrids to the full version of the
paper.
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Public Verifiability. Without loss of generality assume that Alice is corrupt. Since
the setup phase is already publicly-verifiable, we only need to worry about public
verifiability in the rest of the protocol. If an honest Bob outputs a certificate it
must be because Alice has cheated during step 6 of the protocol i.e., one of the
messages is not consistent with the input and random tape for that virtual party.
Since Alice signs every outgoing message together with the entire transcript of
the protocol execution, as well as her commitments in step 2 of the protocol, the
judge can verify whether the message is correct or not.

Defamation-Freeness. Assume that A acting as Alice manages to break the
defamation-freeness of the protocol and blames an honest B. We argue that this
leads to a forgery to the underlying signature scheme, thus reaching a contradic-
tion with the assumption of the theorem. In particular, for a Judge to blame Bob
it must hold that in step 7 the judge finds a message from B to A which is not
consistent with the next-message function of Π in execution j∗. Consider e.g.,
step 7a. Since Bob is honest, if the judge blames Bob it must be the case that
that either the transcript of the protocol (T ∗, v∗) included in the certificate, the
random tape r∗ or the input x∗ used by the judge to verify B in this step are
not the ones that Bob used in the protocol (this of course is true for all j ∈ [m]
and therefore independent of which execution j∗ is claimed by A). Since Bob is
honest he will not sign a protocol transcript (T ∗, v∗) 6= (T, v), e.g., a transcript
different than the one in the protocol executed by the honest Bob. Thus, x∗ or
r∗ must be the wrong input or random tape. From step 5 we know that x∗ is
computed by decrypting some ciphertext e∗ included in T ∗ using key k∗. Again,
since Bob is honest the signed e∗ must be the correct one from the protocol
execution, so the fault must be in k∗. This is derived in step 4 as the opening
of some commitment c∗ with decomitting information d∗. As the commitment
c∗ was signed this must be the right commitment cBj∗ that Bob received from
the setup functionality. And, since the commitment is binding, the decommit-
ting information d∗ cannot open c∗ to anything else but the view of the virtual
party used by Bob in the honest execution of the protocol. The judge can also
blame Bob in steps 7b or 7c. The argument for why this is not possible for a
PPT A is very similar to the one for the case 7a with few differences: in case 7b
we also need to argue that A cannot blame Bob making the judge use a wrong
decryption key k∗. This is however taken care of since the key is part of the
view of the virtual party, which is committed (and the committment is signed
by Bob). Similarly, in case 7c, A could also blame an innocent Bob by making
the judge use the wrong randomness u∗ but, this is also taken care of since the
randomness is part of the view of the virtual party, which is committed (and the
committment is signed by Bob).

6 Compiler for Multiparty Computation

It is natural to ask, whether the compilers described in the previous sections
of the paper extend to the multiparty setting. In this section we provide some
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intuition for how the compiler from Section 5 can be extended the multiparty
setting with a constant fraction of corruptions. More concretely, we argue that
any (cn2+n)-party protocol Π with passive security against cn2+cn corruptions,
for some 1/2 < c < 1, can be compiled into a n-party protocol with covert
security and public verifiability against cn corruptions.10

Assume we have n parties P1, . . . ,Pn with private inputs x1, . . . , xn, who
would like to compute f(x1, . . . , xn), and we would like to tolerate cn corruptions,
for some 1/2 < c < 1. Assume that Π implements the following (cn2 + n)-party
functionality, where m = cn+ 1

Fg

x
1
1, . . . , x

1
m,

...
xn1 , . . . , x

n
m

 :=

{z
1
i }i∈[m]

...
{zni }i∈[m]


where

⊕
i∈[m],j∈[n]

zji = f

⊕
i∈[m]

x1
i , . . . ,

⊕
i∈[m]

xni


The compiler for the multiparty setting is very similar to the compiler for

the two-party setting. Each real party Pi will simulate virtual parties Vij for

1 ≤ j ≤ cn+ 1. All virtual parties will jointly run a passively secure (cn2 + n)-
party protocol. For every pair of real parties (Pi,Pj) with i 6= j, we let Pi
check one virtual party of Pj , chosen uniformly at random. Observe that for
any honest Pj , the corrupted parties learn at most cn out of the m = cn + 1
corresponding virtual parties’ views, thus the adversary will not learn enough
shares to reconstruct the input of the honest party Pi. In total, the adversary
learn the views of

corrupted by A︷ ︸︸ ︷
cn(cn+ 1) +

checked by A︷ ︸︸ ︷
(1− c)n · cn = cn2 + cn

virtual parties which is exactly the number of passive corruptions that we have
assumed are tolerated by the protocol Π.

To instantiate the compiler we need a generalized multiparty version of our
two-party setup functionality FSETUP from Figure 5. This generalized function-

ality, called F (n,cn+1)
SETUP , can be found in Figure 8.

Observe that the multiparty functionality generates symmetric keys for all
communication channels, including the ones between virtual parties belonging
to different real parties. The reason is that we could have the case, where a
virtual party of P1 sends a message to a virtual party of P2, which should
be checked by P3. Thus we need to ensure that P3 can decrypt the message

10 c < 1/2 is possible, but here we are specifically interested in the dishonest majority
setting
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F (n,m)
SETUP

The functionality interacts with parties P1, . . . ,Pn.

Upon receiving (init, sid) from each Pi, the functionality performs the following actions
for each ` ∈ [n]:

1. The functionality picks r`1, . . . , r
`
m uniformly at random.

2. For i, j ∈ [m] and any `′ ∈ [n], it picks k
(`,i)

(`′,j) uniformly at random such that

k
(`,i)

(`′,j) = k
(`′,j)
(`,i) .

3. For i ∈ [m]

(a) define V`i =
(
r`i , {k

(`,i)

(`′,j)}j∈[m],`′∈[n]

)
.

(b) compute c`i ← Com(V`i) and d`i ← Open(c`i)
4. For i ∈ [n], pick I`i ∈ [m] uniformly at random.

5. Return
(
{c`
′
i }`′∈[n],i∈[m], {d`i}i∈[m], {I``′ , {d`

′
i }i∈I`

`′
}`′∈[n]

)
to P`.

Fig. 8. Ideal functionality for our correlated randomness setup in the multiparty set-
ting.

if he is indeed checking the corresponding virtual party. Each real party Pi
secret shares its input xi into shares xi1, . . . , x

i
cn+1, encrypts every share xij under

key k
(i,j)
(i,j), and broadcasts the encrypted shares to all real parties. The virtual

parties jointly execute the passively secure protocol Π. Whenever a virtual party
sends a message to any other virtual party, it encrypts the message with the
corresponding communication channel key and broadcasts the message among
all real parties. Once the computation using Π is complete, each party commits
to its output share. Finally all parties open their commitments and compute the
desired output.

Security of this construction can be argued in a very similar fashion to the
compiler from Section 5. The main technical difference between the two proofs
lies in the calculation of the deterrence factor. Assume that the adversary mis-
behaves in some corrupt party P∗i . This means that the adversary misbehaves
in at least one of the cn+ 1 corresponding virtual parties. Let Vij be that party.
Out of those cn + 1 virtual parties, the (1 − c)n honest parties each check one
uniformly random one. The probability that none of the honest parties check Vij
is (

1− 1

cn+ 1

)(1−c)n

≈ 1− (1− c)n
cn+ 1

by binomial approximation. Thus we get a deterrence factor ε ≈ 1−c
c .
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