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Abstract. We construct a practical lattice-based zero-knowledge argu-
ment for proving multiplicative relations between committed values. The
underlying commitment scheme that we use is the currently most effi-
cient one of Baum et al. (SCN 2018), and the size of our multiplicative
proof (9KB) is only slightly larger than the 7KB required for just proving
knowledge of the committed values. We additionally expand on the work
of Lyubashevsky and Seiler (Eurocrypt 2018) by showing that the above-
mentioned result can also apply when working over rings Zq[X]/(Xd+1)
where Xd+1 splits into low-degree factors, which is a desirable property
for many applications (e.g. range proofs, multiplications over Zq) that
take advantage of packing multiple integers into the NTT coefficients of
the committed polynomial.

1 Introduction

Commitment schemes, and their associated zero-knowledge proofs of knowledge
(ZKPoK) of committed messages, from an important ingredient in the construc-
tion of generalized zero-knowledge proofs and advanced cryptographic primi-
tives. An additional feature that’s often desirable is being able to prove alge-
braic relationships among committed values. Very efficient constructions of such
primitives exist based on the discrete logarithm problem (e.g. [8]), but the state
of affairs is rather different when it comes to quantum-safe assumptions, with
the main difficulty being proving multiplicative relations.

There exist generic PCP-type proof techniques [20, 28, 3, 4], which even
have asymptotically logarithmic-size proofs, but these proofs have a fixed cost of
outputting paths to a Merkle tree in the range of 100− 200KB. One could also
think about using fully-homomorphic encryption, which would allow the verifier
himself to create additive and multiplicative relations of his choice, thus foregoing
the need for a zero-knowledge proof. The main issue with this approach is that
one would need to prove that the initial ciphertexts are well-formed, and these

? This research was supported by the SNSF ERC starting transfer grant FELICITY
and the EU H2020 project No 780701 (PROMETHEUS).



proofs are also currently on the order of a few hundred kilobytes (either using
generic techniques or lattice-based proofs [6, 31]). There have also been some
early lattice-based approaches proposed for this type of problem (e.g. [5, 22]),
but they result in proofs that are orders of magnitude longer.

1.1 Results Overview and Related Work.

The starting point of recent lattice-based constructions that implicitly construct
a multiplicative proof system (c.f. [15, 6, 31, 14, 16]) is the commitment scheme
from [2], which has a ZK proof that is fairly efficient for proving linear relations
among committed polynomials over the ring Rq = Zq[X]/(Xd + 1), where q
is prime. All of the aforementioned schemes require that the challenge set in
the zero-knowledge proof is such that all pairwise differences of elements are
invertible. This restriction imposes a constraint on the underlying Rq (via e.g.
[27]) that the polynomial Xd + 1 does not split into many factors. One of the
improvements in the current work is the removal of this restriction (we will
explain the significance of this below).

Another important improvement in our proofs is of a more technical nature.
The prior aforementioned multiplicative proofs create a polynomial function of
degree δ whose coefficients include the relation we want to be 0 in the δ-degree
term. The goal of the proof is to show by the Schwartz-Zippel lemma that the
polynomial is actually of degree δ − 1 and so the highest-order coefficient is
indeed 0. Prior works performed this proof by sending masked openings of the
committed polynomials and committing to the lower-degree terms of the δ-degree
polynomial function (c.f. [15, 6, 31, 14, 16]). In our work we show additional
properties of the ZK proof in [2] that imply that it is not necessary to send the
masked message openings.

Our construction is very efficient, with the communication complexity of our
multiplicative proof being essentially the same as that in [2] for just proving
knowledge of the message. Furthermore, removing the restriction that Xd + 1
splits into a few high-degree factors is additionally useful because having Xd+ 1
split into distinct linear (or very low-degree) factors allows one to commit to
(and independently operate on) many elements in Zq by packing them into the
NTT coefficients of the committed message. One particular example where this
is handy is range proofs where we commit to a number written in binary and
want to prove that it is in the range [0, 2j). We sketch the (folklore) idea below:

Proving that a vector ~v = v0v1 . . . vd−1 ∈ {0, 1}d is binary and the integer
represented by it is less than 2j is equivalent to the statement

v0
· · ·
vj−1
vj
· · ·
vd−1

 ◦


1− v0
· · ·

1− vj−1
vj
· · ·
vd−1

 = 0 mod q, (1)



where ◦ is the component-wise product. Thus if we create a commitment to ~v
by putting the coefficients of ~v into the NTT coefficients of some polynomial m
and can create the polynomial m′ corresponding to the right multiplicand in
(1), then the proof that mm′ = 0 would be exactly the range proof we would
like since multiplication of NTT slots is component-wise.

Note that the number of NTT slots is the logarithm of the largest integer
that can be committed to. As an example, using our multiplicative proofs, range
proofs for 32-bit numbers are approximately 5.9KB in size (see Section 5.3).
This is about an order of magnitude longer than the discrete logarithm based
proofs (c.f. [8, Table 2]), but is shorter than any quantum-safe proof system (e.g.
[4, 19, 14, 16]). In particular, the proofs implicit in [14, Protocol 2] and [16,
Section 1.3] used a similar approach of putting elements into NTT coefficients,
and had 32-bit proof sizes of around 9KB [30]. For such range proofs, one only
needs to commit to a few polynomials, and so the advantage of our proof system
which saves on not sending masked polynomials doesn’t manifest itself too much.
On the other hand, when applied in the context of proofs of knowledge of a
polynomial vector ~s with 2048 small (integer) coefficients satisfying A~s = ~t,
our proof technique combined with the additional techniques in [13] result in an
order of magnitude reduction in proof size over [6, 31].

It should be pointed out that the proofs in [8, 4] grow logarithmically in the
number of instances, while our proof grows linearly. The results of the current
work are thus best suited for non-batched use cases where one wishes to prove
knowledge about single instances over Rq (which actually could be up to d
instances over Zq when taking advantage of NTT packing.)

1.2 Techniques.

We will now provide a somewhat technical overview of the main results of the
paper. Prior to getting into them, we recall the commitment scheme of [2] and
its zero-knowledge proof.

Overview of [2]. The scheme of [2] commits to a message vector ~m ∈ Rkq by
choosing a vector ~r with small coefficients and then outputting the commitment

B0~r = ~t0 (2)

B1~r + ~m = ~t1. (3)

The intuition is that if the opening proof can show that ~r is short, then (2) binds
the committer to the short ~r (based on the hardness of the SIS problem), and
then the message is uniquely determined from (3). Unfortunately, there do not
exist very efficient proofs allowing a prover to prove knowledge of such a short
~r satisfying (2), but one can instead give a rather efficient ZKPoK of a vector ~̄z
with coefficients somewhat larger than those of ~r, and a polynomial c̄ with very
small coefficients satisfying

B0~̄z = c̄~t0. (4)



The proof is a Σ-protocol where the prover picks a small-coefficient masking
vector ~y and sends ~w = ~B0~y to the verifier in the first step. The verifier then
selects a challenge polynomial c from the challenge set (which should consist
of polynomials with very small coefficients), and the prover responds with ~z =
~y + c~r. Using standard rejection sampling techniques [23, 24], the prover can
make the vector ~z independent of ~r to preserve zero-knowledge. The verifier
checks that B0~z = ~w+c~t0 and that ~z has small coefficients. If both of these are
satisfied (and c comes from a large-enough domain), then a standard rewinding
(where the extractor sends a fresh c′ and receives another valid ~z′) allows the
extractor to obtain ~̄z = ~z − ~z′ and c̄ = c− c′ satisfying (4).

Combining this with the proof that, unless SIS is easy, there can only be a
unique opening (~̄z, ~m, c̄) where c̄ is invertible in Rq satisfying (4) and

B1~̄z + ~mc̄ = c̄~t1, (5)

it implies that the ZKPoK of (4) uniquely determines ~m. It is furthermore shown
in [2] (also see [11]) that one can prove that a commitment is to some ~m satisfying
U ~m = ~v, where U and ~v are an arbitrary public matrix and vector over Rq.
Interestingly, this latter proof does not require any extra communication over
the basic opening proof, and both the proof and commitment are comfortably
under 10KB for some simple lattice relations (see Table 2 of [2]).

Distribution of the NTT Coefficients. To show that c̄ is invertible, it was
proposed in [2] to set the modulus q to a prime such that the polynomial Xd+ 1
does not split too much modulo q – then by the result in [27], it would imply
that all elements in the ring with small coefficients are invertible.

In the current paper we show that one no longer needs such a restriction
on q. In particular, the prime q can be chosen to allow Xd + 1 to fully split
into d linear factors. The observation is that we do not need c̄ to always be
invertible – it suffices to be able to compute the min-entropy of c modulo each
NTT coefficient.

An element inRq is invertible if and only if all of its NTT coefficients are non-
zero. To show that c̄ = c−c′ is invertible, it would therefore suffice to show that
the probability that a random c from the challenge set hits a particular NTT
coefficient is smaller than the targeted soundness error.6 If c were uniformly
random in Rq, then this probability would be easy to calculate as each of its
NTT coefficients has a 1/q probability of being any element in Zq. But c is
chosen from a challenge set that has small coefficients and so the distribution of
its NTT coefficients requires different techniques to compute.

As an example, suppose that Xd+1 =
d∏
i=1

(X−ri) mod q and that we choose

an element c =
d−1∑
j=0

ciX
i from Zq[X]/(Xd + 1) where ci ← {−1, 0, 1} with equal

6 We can always amplify the soundness by repetition.



probability. Then

Pr[c is invertible] = Pr[c(r1) 6= 0 ∧ . . . ∧ c(rd) 6= 0].

Observe that for any r, c(r) can be written as

d−1∑
j=0

cjr
j = c0 + r (c1 + r (c2 + . . .+ r (cd−2 + rcd−1)) . . .) ,

and so the distribution of c(r) is equivalent to the distribution of the random
variable Y0 in the stochastic process (Yd, Yd−1, Yd−2, . . . , Y0) where Yd = 0 and
Yi = ci+rYi+1 for i < d. Fourier analysis is often a useful technique for analyzing
certain properties (e.g. min entropy, mixing time, etc.) of stochastic processes,
and we show how to efficiently calculate maxy∈Zq

[Y0 = y].7 Calculating the
exact probability (or putting a very good bound on it) would require computing
sums consisting of q terms, which may be prohibitive when q is on the order of
billions, so we furthermore show how certain algebraic symmetries allow us to
significantly speed up the computation.

In our applications, we will actually be more interested in a more general
case of proving that for a factorization

Xd + 1 =

d/k∏
i=1

(Xk − ri), for ri ∈ Zq, (6)

the value c mod (Xk − ri) is not concentrated on any particular polynomial
c′0+c′1X+. . .+c′k−1X

k−1. But proving this is a simple extension of the above case
where we were computing c(r) = c mod (X−r) because each of the k coefficients
c′iX

i of c mod Xk−ri is only dependent on the coefficients cjk+i for 0 ≤ j < d/k
(i.e. the k coefficients are mutually independent). So the distribution of c′i has
the distribution of the same stochastic process as above, except it consists of
d/k steps rather than d.

Proofs of Multiplicative Relations. We now sketch some of the new ingredi-
ents of our main result – being able to prove multiplicative relations among com-
mitted messages in the commitment scheme defined by (2) and (3). In its most

basic form, this involves proving that m1m2 = m3, where ~m =
[
m1 m2 m3

]T
.

We first make a series of observations that show that one can extract more
than just (4) from the prover that produces valid transcripts ( ~w, c, ~z) following

7 In [9], the same techniques were used to show that the statistical distance of Ring-
LWE errors is statistically-close to uniform modulo the NTT coefficients. The slight
differences are in the distribution of the original polynomial (for our application, it
only makes sense to consider polynomials whose coefficients have various distribu-
tions over {−1, 0, 1}) and that we do not need statistical closeness for our application,
and obtain tight bounds for a different quantity. We provide more details in Section
3.



the protocol of [2]. If we assume, for the moment, that c̄ is invertible, then the
extractor can extract a unique ~r = ~̄z/c̄, not necessarily with small coefficients,
satisfying

B~r = ~t. (7)

The reason for the uniqueness is that for any small-norm
(
~̄z1, c̄1

)
,
(
~̄z2, c̄2

)
sat-

isfying
B~̄z1 = c̄1~t B~̄z2 = c̄2~t, (8)

if ~̄z1/c̄1 6= ~̄z2/c̄2, then (4) implies that

B
(
c̄2~̄z1 − c̄1~̄z2

)
= 0. (9)

where the vector being multiplied byB has small coefficients. By the assumption,
this vector in additionally non-zero, and so it’s a solution to SIS. The next
observation (see Section 4) crucial for keeping our product proof short is that as
soon as the (successful) Prover sends ~w, he has also committed to a ~y satisfying
B~y = ~w. Furthermore, for a challenge c, his response ~z will always be

~z = ~y + c~r. (10)

This is important because of how the product proof works. In previous pro-
tocols the prover sends masked openings

fi = ai + xmi

of the messages with challenge x, sometimes equal to c, and independently uni-
formly random maskings ai. Our core approach entails that the message mask-
ings ai are derived from the randomness masking ~y. Hence, since the prover
is committed to ~y, they are also committed to the ai. Furthermore, the prover
doesn’t send the fi but instead they can be computed by the verifier. We relegate
the details to Section 5.

After we have established masked openings fi with fixed maskings ai, we
proceed as in previous works. One makes the observation that one can write

f1f2 − xf3 = x2(m1m2 −m3) + x(a1m2 + a2m1 − a3) + a1a2, (11)

After additionally committing to the “garbage terms” a1m2 + a2m1 − a3 and
a1a2, the prover proceeds to show that the above equation is linear in x, which
means that the m1m2 −m3 term is 0.

An almost immediate consequence of our work would therefore result in a
significant reduction of the proofs of [6, 31]. We do not discuss this direction
further, because with additional techniques, it is shown in [13] how one can use
the full product proof of commitments from the current paper to produce an
even shorter proof. For this application (and others) we would need to consider
the case where Xd + 1 fully splits into linear terms in Rq, and therefore we can
no longer assume that c̄ is invertible. So we continue to describe the ingredients
needed here.



If c̄ is not invertible, then some NTT coefficient of c̄ is 0. In this case we would
need to run the protocol in parallel to obtain extractions (c̄1, ~̄z1), . . . , (c̄`, ~̄z`)
such that for every NTT coefficient, some c̄i in non-zero in that NTT coefficient.
In this case, we can again prove that a valid prover knows a unique ~r∗ satisfying
(7), and every ~w is similarly a commitment to a ~y∗ satisfying (10). One could
obtain such c̄i by sending several challenges in parallel, but for technical reasons
(described in Section 5) having the challenges ci related via specific algebraic
particular automorphism operations results in smaller proofs. We now explain
how the automorphisms are chosen.

When Xd+1 splits into linear terms, one can also write Xd+1 as in (6) where
the multiplicative terms Xk− ri are not irreducible. In particular, we would like
to consider such a factorization where qk ≈ 2128 to have approximately 128
bits of soundness in the protocol. Then using the results on the distribution
of c mod Xk − ri, we obtain that except with 2−128 probability, two c, c′ will
not be equivalent modulo Xk − ri. Since Xk − ri can be further factored as
Xk− ri =

∏k
j=1(X− rj), this directly implies that one of these NTT coefficients

will be distinct – in particular (c 6= c′ mod X − rj) for some j. Then we define
the automorphisms to be exactly those that cycle through the NTT coefficients
represented by X − rj , for j = 1 to k, and therefore for every NTT coefficient,
one of the k automorphisms will result in c̄ being non-zero there.

The combination of these techniques, along with several key optimizations
that minimize the number of necessary “garbage terms”, results in a proof (de-
scribed in Section 5) that is only two kilobytes longer (see Section 5.3) than just
the opening proof in [2]. Furthermore, if one would like to prove many multi-
plicative relations, the size of the proof even further approaches the size of the
proof from [2] because the extra elements needed in the proof amortize over all
the proofs.

2 Preliminaries

2.1 Notation

As is often the case in ring-based lattice cryptography, computation will be
performed in the ring Rq = Zq[X]/(Xd + 1), which is the quotient ring of the
ring of integers R of the power-of-two 2d-th cyclotomic number field modulo a
rational prime q ∈ Z.

We use bold letters f for polynomials in R or Rq, arrows for integer vectors

~v over Zq, bold letters with arrows ~b for vectors of polynomials over R or Rq
and capital letters A and A for integer and polynomial matrices, respectively.

We write x
$← S when x ∈ S is sampled uniformly at random from the set S

and similarly x
$← D when x is sampled according to the distribution D.

For f , g ∈ R, we have the coefficient norm

‖f‖2 =

(
n∑
i=1

|fi|2
) 1

2

.



The norm is extended to vectors ~v = (v1, . . . ,vk) of polynomials in the natural
way,

‖~v‖2 =

(
k∑
i=1

‖vi‖22

) 1
2

.

2.2 Prime Splitting and Galois Automorphisms

Let l be a power of two dividing d and suppose q − 1 ≡ 2l (mod 4l). Then, Zq
contains primitive 2l-th roots of unity but no elements with order a higher power
of two, and the polynomial Xd + 1 factors into l irreducible binomials Xd/l − ζ
modulo q where ζ runs over the 2l-th roots of unity in Zq [27, Theorem 2.3].

The ring Rq has a group of automorphisms Aut(Rq) that is isomorphic to
Z×2d,

i 7→ σi : Z×2d → Aut(Rq),

where σi is defined by σi(X) = Xi. In fact, these automorphisms come from the
Galois automorphisms of the 2d-th cyclotomic number field which factor through
Rq.

The group Aut(Rq) acts transitively on the prime ideals (Xd/l − ζ) in Rq
and every σi factors through field isomorphisms

Rq/(Xd/l − ζ)→ Rq/(σi(Xd/l − ζ)).

Concretely, for i ∈ Z×2d it holds that

σi(X
d/l − ζ) = (Xid/l − ζ) = (Xd/l − ζi

−1

)

To see this, observe that the roots of Xd/l − ζi−1

(in an appropriate extension
field of Zq) are also roots of Xid/l − ζ. Then, for f ∈ Rq,

σi

(
f mod (Xd/l − ζ)

)
= σi(f) mod (Xd/l − ζi

−1

).

The cyclic subgroup 〈2l + 1〉 ⊂ Z×2d generated by 2l + 1 has order d/l [27,
Lemma 2.4] and stabilizes every prime ideal (Xd/l− ζ) since ζ has order 2l. The
quotient group Z×2d/〈2l + 1〉 has order l and hence acts simply transitively on
the l prime ideals. Therefore, we can index the prime ideals by i ∈ Z×2d/〈2l + 1〉
and write (

Xd + 1
)

=
∏

i∈Z×2d/〈2l+1〉

(
Xd/l − ζi

)
Now, the product of the k | l prime ideals (Xd/l − ζi) where i runs over

〈2l/k + 1〉/〈2l + 1〉 is given by the ideal (Xkd/l − ζk). So, we can partition the l
prime ideals into l/k groups of k ideals each, and write(
Xd + 1

)
=

∏
j∈Z×2d/〈2l/k+1〉

(
Xkd/l − ζjk

)
=

∏
j∈Z×2d/〈2l/k+1〉

∏
i∈〈2l/k+1〉/〈2l+1〉

(
X

d
l − ζij

)
.



Another way to write this, which we will use in our protocols, is to note that
Z×2d/〈2l/k + 1〉 ∼= Z×2l/k and the powers (2l/k + 1)i for i = 0, . . . , k − 1 form

a complete set of representatives for 〈2l/k + 1〉/〈2l + 1〉. So, if σ = σ2l/k+1 ∈
Aut(Rq), then (

Xd + 1
)

=
∏

j∈Z×
2l/k

k−1∏
i=0

σi
(
X

d
l − ζj

)
,

and the prime ideals are indexed by (i, j) ∈ I = {0, . . . , k − 1} × Z×2l/k.

2.3 Module SIS/LWE

We employ the computationally binding and computationally hiding commit-
ment scheme from [2] in our protocols, and rely on the well-known Module-LWE
(MLWE) and Module-SIS (MSIS) [29, 25, 26, 21] problems to prove the security
of our constructions. Both problems are defined over a ring Rq for a positive
modulus q ∈ Z+.

Definition 2.1 (MSISn,m,βSIS
). The goal in the Module-SIS problem with pa-

rameters n,m > 0 and 0 < βSIS < q is to find, for a given matrix A
$← Rn×mq ,

~x ∈ Rmq such that A~x = ~0 over Rq and 0 < ‖~x‖2 ≤ βSIS. We say that a PPT
adversary A has advantage ε in solving MSISn,m,βSIS

if

Pr
[
0 < ‖~x‖2 ≤ βSIS ∧ A~x = ~0 over Rq

∣∣∣A $← Rn×mq ; ~x← A(A)
]
≥ ε.

Definition 2.2 (MLWEn,m,χ). In the Module-LWE problem with parameters
n,m > 0 and an error distribution χ over R, the PPT adversary A is asked to

distinguish (A, ~t)
$← Rm×nq × Rmq from (A,A~s + ~e) for A

$← Rm×nq , a secret

vector ~s
$← χn and error vector ~e

$← χm. We say that A has advantage ε in
solving MLWEn,m,χ if∣∣∣Pr

[
b = 1

∣∣∣A $← Rm×nq ; ~s
$← χn; ~e

$← χm; b← A(A,A~s+ ~e)
]

(12)

− Pr
[
b = 1

∣∣∣A $← Rm×nq ; ~t
$← Rmq ; b← A(A, ~t)

]∣∣∣ ≥ ε.
For our practical security estimations of these two problems against known

attacks, the parameter m in both of the problems does not play a crucial role.
Therefore, we sometimes simply omit m and use the notations MSISn,B and
MLWEn,χ. The parameters κ and λ denote the module ranks for MSIS and MLWE,
respectively.

2.4 Error Distribution, Discrete Gaussians and Rejection Sampling

For sampling randomness in the commitment scheme that we use, and to define
the particular variant of the Module-LWE problem that we use, we need to



specify the error distribution χd on R. In general any of the standard choices
in the literature is fine. So, for example, χ can be a narrow discrete Gaussian
distribution or the uniform distribution on a small interval. In the numerical
examples in Section 5.3 we assume that χ is the computationally simple centered
binomial distribution on {−1, 0, 1} where ±1 both have probability 5/16 and 0
has probability 6/16. This distribution is chosen (rather than the more “natural”
uniform one) because it is easy to sample given a random bitstring by computing
a1 + a2 − b1 − b2 mod 3 with uniformly random bits ai, bi.

Rejection Sampling. In our zero-knowledge proof, the prover will want to output
a vector ~z whose distribution should be independent of a secret randomness vec-
tor ~r, so that ~z cannot be used to gain any information on the prover’s secret.
During the protocol, the prover computes ~z = ~y+c~r where ~r is the randomness

used to commit to the prover’s secret, c
$← C is a challenge polynomial, and ~y

is a “masking” vector. To remove the dependency of ~z on ~r, we use the rejec-
tion sampling technique by Lyubashevsky [23, 24]. In the two variants of this
technique the masking vector is either sampled uniformly from some bounded
region or using a discrete Gaussian distribution. In the high dimensions we will
encounter, the Gaussian variant is far superior as it gives acceptable rejection
probabilities for much narrower distributions. We first define the discrete Gaus-
sian distribution and then state the rejection sampling algorithm in Figure 1,
which plays a central role in Lemma 2.4.

Definition 2.3. The discrete Gaussian distribution on R` centered around ~v ∈
R` with standard deviation s > 0 is given by

D`d
v,s(~z) =

e−‖~z−~v‖
2
2/2s

2∑
~z′∈R` e−‖~z

′‖22/2s2
.

When it is centered around ~0 ∈ R` we write D`d
s = D`d

~0,s

Lemma 2.4 (Rejection Sampling). Let V ⊆ R` be a set of polynomials with
norm at most T and ρ : V → [0, 1] be a probability distribution. Also, write

s = 11T and M = 3. Now, sample ~v
$← ρ and ~y

$← D`d
s , set ~z = ~y + ~v, and run

b ← Rej (~z, ~v, s) Then, the probability that b = 0 is at least (1 − 2−100)/M and
the distribution of (~v, ~z), conditioned on b = 0, is within statistical distance of
2−100/M of the product distribution ρ×D`d

s .

We will also use the following tail bound, which follows from [1, Lemma
1.5(i)].

Lemma 2.5. Let ~z
$← D`d

s . Then

Pr
[
‖~z‖2 < s

√
2`d
]
> 1− 2− log(e/2)`d/2 > 1− 2−`d/8.



Rej(~z, ~v, s)

01 u
$← [0, 1)

02 If u > 1
M
· exp

(
−2〈~z,~v〉+‖~v‖2

2s2

)
03 return 0
04 Else
05 return 1

Fig. 1. Rejection Sampling [24].

2.5 Commitment Scheme

In our protocol, we use a variant of the commitment scheme from [2] which
commits to a vector of messages in Rq. Our basic proof of knowledge of multi-
plicative relations will prove thatm1m2 = m3, so for simplicity, we just describe
the commitment scheme for three messages.

The public parameters are a uniformly random matrixB0 ∈ Rµ×(λ+µ+3)
q and

uniform vectors ~b1, . . . ,~b3 ∈ Rλ+µ+3
q . To commit to ~m = (m1,m2,m3)T ∈ R3

q,

we choose a random short polynomial vector ~r
$← χ(λ+µ+3)d from the error

distribution and output the commitment

~t0 = B0~r,

t1 = 〈~b1, ~r〉+m1,

t2 = 〈~b2, ~r〉+m2,

t3 = 〈~b3, ~r〉+m3.

The commitment scheme is computationally hiding under the Module-LWE
assumption and computationally binding under the Module-SIS assumption; see
[2]. Moreover, the scheme is not only binding for the opening (~r, ~m) known by
the prover, but also binding with respect to a relaxed opening (c̄, ~r∗, ~m∗). The
relaxed opening also includes a short polynomial c̄, the randomness vector ~r∗ is
longer than ~r, and the following equations hold,

c̄~t0 = B0~r
∗,

c̄t1 = 〈~b1, ~r∗〉+ c̄m∗1,

c̄t2 = 〈~b2, ~r∗〉+ c̄m∗2,

c̄t3 = 〈~b3, ~r∗〉+ c̄m∗3.

The notion of relaxed opening is important since there is an efficient protocol
for proving knowledge of a relaxed opening. We do not go into details here since
we will define a new notion of a binding relaxed opening and provide a proof of
knowledge protocol.



The utility of the commitment scheme for zero-knowledge proof systems
stems from the fact that one can compute module homomorphisms on com-
mitted messages. For example, let a1 and a2 be from Rq. Then

a1t1 + a2t2 = 〈a1
~b1 + a2

~b2, ~r〉+ a1m1 + a2m2

is a commitment to the message a1m1 + a2m2 with matrix a1
~b1 + a2

~b2. This
module homomorphic property together with a proof that a commitment is
a commitment to the zero polynomial allows to prove linear relations among
committed messages over Rq.

3 Distribution in the NTT

In this section we present a way to construct challenge sets C ⊂ Rq so as to be
able to compute the (almost exact) probability that c − c′ is invertible in Rq,
when c and c′ are sampled from some distribution C over C. Recall that d ≥ l
are powers of 2. Moreover,

Rq = Zq[X]/(Xd + 1) ∼=
∏
i∈Z×2l

Zq[X]/(Xd/l − ζi), (13)

where ζ ∈ Zq is a 2l-th root of unity (in this section, the factors Xd/l − ζi are
not necessarily irreducible as this doesn’t really matter for the results here). The
challenge set is defined as all degree d polynomials with coefficients in {−1, 0, 1},
i.e., C = {−1, 0, 1}d ⊂ Rq. The coefficients of a challenge c ∈ C are independently
and identically distributed, where 0 has probability p and ±1 both have proba-
bility (1− p)/2. For the resulting distribution over C we write C, and sampling
a challenge c from this distribution is written as c← C.

In the remainder of this section we use Fourier analysis to study the distri-
bution of c mod Xd/l − ζi for c ← C and i ∈ Z×q . Lemma 3.1 shows that this
distribution does not depend on i.

In [9] a similar analysis is performed. The main differences with our approach
is that they sample the coefficients from a binomial distribution centered at 0. In
particular, our coefficient distribution with p = 1/2 corresponds to a special case
of the binomial distribution considered in [9]. For our application it makes sense
to consider various distributions over {−1, 0, 1}. The binomial distribution does
allow for the derivation of an elegant upper bound on the maximum probability
of c mod Xd/l−ζi. However, this upper bound is only applicable when

√
q ≤ 2d.

For this reason we derive a less elegant but much tighter upper bound on various
distributions over {−1, 0, 1}, that is also applicable when

√
q > 2d.

Lemma 3.1. Let x ∈ Rq be a random polynomial with coefficients indepen-
dently and identically distributed. Then Rq/(Xd/l − ζi) ∼= Rq/(Xd/l − ζj),
and x mod (Xd/l − ζi) and x mod (Xd/l − ζj) are identically distributed for
all i, j ∈ Z×2l.



Proof. First suppose that Xd/l − ζi is irreducible for all i ∈ Z×2l. Then qi =
(q,Xd/l − ζi) is prime in K = Q[X]/(Xd + 1) and for all i, j ∈ Z×2l there exists
an automorphism σ ∈ Gal (K/Q) such that σ(qi) = qj . Hence, σ induces an
isomorphism between the finite fields Rq/(Xd/l − ζi) and Rq/(Xd/l − ζj).

Since the coefficients of x are i.i.d., it holds that σ(x) follows the same dis-
tribution over Rq as x. Hence, x mod (Xd/l− ζi) follows the same distribution
as σ(x mod (Xd/l − ζi)) = σ(x) mod (Xd/l − ζj) and as x mod (Xd/l − ζj)
which proves the lemma for this case.

Now suppose that Xd/l−ζi is reducible in Zq, then so is Xd/l−ζj . Moreover,
since K is Galois both these polynomials split in the same number irreducible
factors and for every pair f(X), g(X) of irreducible factors there exists an au-
tomorphism σ ∈ Gal(K/Q) such that σ ((q, f(X))) = (q, g(X)). Using these
automorphisms the lemma follows in an analogous manner.

Let us now consider the coefficients of the polynomial c mod (Xd/l − ζ) for
c← C. Clearly all coefficients follow the same distribution over Zq. Let us write
Y for the random variable over Zq that follows this distribution. The following
lemma gives an upper bound on the maximum probability of Y .

Lemma 3.2. Let the random variable Y over Zq be defined as above. Then for
all x ∈ Zq,

Pr(Y = x) ≤M :=
1

q
+

1

q

∑
j∈Z×q

l−1∏
k=0

∣∣p+ (1− p) cos(2πjζk/q)
∣∣ . (14)

The proof of Lemma 3.2 is given in the full version of the paper.

The following lemma shows that, by utilizing certain algebraic symmetries,
we can reduce the number of terms in the summation of Lemma 3.2 by a factor
2l, thereby allowing the maximum probability to be computed more efficiently.

Lemma 3.3. Let the random variable Y over Zq be defined as above. Then for
all x ∈ Zq,

Pr(Y = x) ≤M :=
1

q
+

2l

q

∑
j∈Z×q /〈ζ〉

l−1∏
k=0

∣∣p+ (1− p) cos(2πjyζk/q)
∣∣ . (15)

Proof. Let a, b ∈ Z×q such that ab−1 ∈ 〈ζ〉, i.e., a = bζm for some m. Now note

that {1, ζ, . . . , ζl−1} = 〈ζ〉/ ± 1 = ζm〈ζ〉/ ± 1 for all m ∈ Z. Since cos(x) is

an even function it therefore follows that P̂ (a) = P̂ (b), from which the lemma
immediately follows.

The random variable Y = Yl corresponds to a random walk of length l over
Zq defined as follows

Y0 = 0, Yn = ζYn−1 + bn, (16)



where bn are i.i.d. with distribution µ(0) = p and µ(1) = µ(−1) = (1 − p)/2.
Random walks of this type have been studied extensively [10, 12, 18, 17, 7] and
convergence is expected in time O(log q/H2(µ)) [7], where

H2(µ) := − log

∑
x∈Zq

µ(x)2

 . (17)

However, there exist random walks of this form for which convergence only occurs
in time O(log q log log q) [12, 17].

Let us consider the following example. Let q be the 32-bit prime 4294962689 =
mod 1 mod 512 and d | 256 the dimension of the ring R. Then, for any d, q
splits completely in Z[X]/(Xd + 1), hence in this case l = d. Moreover, suppose
that the coefficients of challenges are sampled from a uniform distribution over
{−1, 0, 1}, i.e., p = 1/3. Table 1 shows a bound M on the maximum probability
maxx∈Zq |Pr(Y = x)|, as defined in Lemma 3.2 and Lemma 3.3.

Table 1. Maximum probability for the coefficients of challenges c← C when reduced
modulo (X − ζ) (q = 4294962689 and p = 1/3).

Dimension d 1 2 4 8 16 32 64

log2(M) −1.06 −2.13 −4.25 −8.50 −17.01 −31.69 ≈ − log2(q)

4 Opening Proof

Suppose the prover knows an opening to the commitment

~t0 = B0~r,

t1 = 〈~b1, ~r〉+m.

The standard protocol for proving this, stemming from [2], works by giving an
approximate proof for the first equation ~t0 = B0~r. So, the prover commits
to a short masking vector ~y from a discrete Gaussian distribution by sending
~w = B0~y. Then the verifier sends a short challenge polynomial c ∈ C ⊂ R and
the prover replies with the short vector ~z = ~y + c~r. Here rejection sampling is
used to make the distribution of ~z independent from ~r. The verifier checks that
~z is short, i.e. ‖~z‖2 ≤ β, and the equation B0~z = ~w + c~t0.

For suitable instantiations this proves knowledge of a commitment opening
because it is possible to extract two prover replies ~z and ~z′ for two challenges c
and c′, respectively, and a message m∗ ∈ Rq such that

c̄~t0 = B0(~z − ~z′),

c̄t1 = 〈~b1, ~z − ~z′〉+ c̄m∗,



where c̄ = c−c′ is the difference of the challenges. In fact, it can be shown [2] that
the commitment scheme is binding with respect to the message m∗ under the
Module-SIS assumption if we have the additional property that c̄ is invertible in
the ring Rq. Then, it must be that m∗ = m, unless the prover knows a Module-
SIS solution for B0. The invertibility property is crucial in all previous works
that study zero-knowledge proofs for the commitment scheme. It is enforced by
choosing the set C of challenges such that the difference of every two distinct
elements is invertible. Unfortunately, depending on how much the prime q splits
in the ring R, there will not be sufficiently large sets with this property, and
even less so large sets consisting of short polynomials. For instance, for both
theoretical and practical reasons one often wants q to split completely, but then
there can be at most q polynomials which are pairwise different modulo one of
the degree 1 prime divisors of q. Even if we let q split slightly less, say in degree 4
prime ideals, then we do not know of large sets of short polynomials that do not
collide modulo one of the divisors. This severely restricts the soundness of the
protocol and the protocol has to be repeated several times to boost soundness,
which blows up the proof size. See [27] for more details about this problem.

The results from Section 3 present a way to construct larger challenge sets
with the weaker property that c̄ is non-invertible only with negligible probability.
We generalize the proof further and explain how it is possible to make use of
challenge sets where the difference of two elements is non-invertible with non-
negligible probability.

So, in the extraction, we drop the assumption that for a pair of accepting
transcripts with different challenges c and c′, the difference c̄ = c − c′ is in-
vertible. This essentially means that we can not uniquely interpolate the prover
replies ~z and ~z′, and obtain vectors ~y∗ and ~r∗ such that

~z = ~y∗ + c~r∗ and ~z′ = ~y∗ + c′~r∗. (18)

But we can restore the interpolation by piecing together several transcript pairs
that we interpolate locally modulo the various prime ideals dividing q.

Let Xd+1 ≡ ϕ1 . . .ϕl (mod q) be the factorization of Xd+1 into irreducible
polynomials modulo q. Thus, our ring Rq is the product of the corresponding
residue fields κi = Zq[X]/(ϕi), i.e.

Rq = Zq[X]/(Xd + 1) = Zq[X]/(ϕ1)× · · · × Zq[X]/(ϕl).

Now, what is needed specifically is that for every i there is an accepting
transcript pair with nonzero challenge difference c̄ modulo ϕi. So, concretely,
suppose the extractor E has obtained l pairs (~zi, ~z

′
i), i = 1, . . . , l, of replies from

the prover P for the challenge pairs (ci, c
′
i), respectively, such that

c̄i = ci − c′i 6≡ 0 (mod ϕi).

Some of the pairs can be equal and the extractor does not always need really
need to compute l pairs as long as the above condition is true. We also assume
that all transcripts contain the same prover commitment ~w and are accepting;



that is, in particular, B0~zi = ~w+ ci~t0 and B0~z
′
i = ~w+ c′i~t0 for all i. From this

data E computes the local interpolations

~zi ≡ ~y∗i + ci~r
∗
i and ~z′i ≡ ~y∗i + c′i~r

∗
i (mod ϕi).

Concretely, we set

~r∗i =
~zi − ~z′i
c̄i

mod ϕi, and

~y∗i =
ci~z
′
i − c′i~zi
c̄i

mod ϕi.

Now, let ~r∗ and ~y∗ over Rq be the CRT lifting of the ~r∗i and ~y∗i . We show it
must hold that

~zi = ~y∗ + ci~r
∗ and ~z′i = ~y∗ + c′i~r

∗

for all i. This restores the global interpolations as in Equation 18. In fact, we show
more than this. Namely, that in every accepting transcript with commitment ~w,
the prover reply must be precisely of the form in Equation 18. Also the vectors
~r∗ and ~y∗ are preimages of ~t0 and ~w, respectively, which is what we suspect. So
the prover really is committed to ~r∗ and ~y∗ by ~t0 and ~w.

Lemma 4.1. If we have obtained l pairs of accepting transcripts with commit-
ment ~w as in the preceding paragraph, then every accepting transcript ( ~w, c, ~z)
with commitment ~w must be such that ~z = ~y∗ + c~r∗ where ~y∗ and ~r∗ are the
vectors computed above independently from c, or we obtain an MSISµ,8κβ solu-
tion for B0 where κ is a bound on the `1-norm of the challenges. Moreover, we
have B0~r

∗ = ~t0 and B0~y
∗ = ~w.

Proof. Define ~y∗′ by ~z = ~y∗′+ c~r∗. Fix some i ∈ {1, . . . , l}. Since all transcripts
are accepting we get from subtracting the verification equations,

B0(~zi − ~z′i) = c̄i~t0, and

B0(~z − ~zi) = (c− ci)~t0.

Now, cross-multiplying by c̄i and c − ci and subtracting shows that we either
have an MSISµ,8κβ solution for B0, or

c̄i(~z − ~zi) = (c− ci)(~zi − ~z′i).

Suppose the latter case is true. Then we reduce modulo ϕi and substitute the
local expressions for ~z, ~zi and ~z′i, which shows

c̄i(~y
∗′ − ~y∗i + (c− ci)~r∗i ) ≡ (c− ci)c̄i~r∗i (mod ϕi)

⇔ c̄i(~y
∗′ − ~y∗i ) ≡ 0 (mod ϕi).

Since c̄i mod ϕi 6= 0, ~y∗′ ≡ ~y∗i ≡ ~y∗ modulo ϕi. This holds for all i and hence
it follows that ~y∗′ = ~y∗.



We come to the statementsB0~r
∗ = ~t0 andB0~y

∗ = ~w. From the construction
of ~r∗ and the verification equations it follows that

B0~r
∗ ≡ B0~r

∗
i

≡ B0
~zi − ~z′i
c̄i

≡ ~t0 (mod ϕi)

for all i. Similarly, for ~y∗,

B0~y
∗ ≡ B0~y

∗
i

≡ B0
ci~z
′
i − c′i~zi
c̄i

≡ ~w (mod ϕi).

The statements in the lemma follow from the Chinese remainder theorem. ut

Finally, the extracted vector ~r∗ can be used to define a binding notion of
opening for the commitment scheme where the extracted message m∗ is simply
set to fulfill

t1 = 〈~b1, ~r∗〉+m∗.

Then we have found an instance of the following definition.

Definition 4.2. A weak opening for the commitment ~t = ~t0 ‖ t1 consists of l
polynomials c̄i ∈ Rq, a randomness vector ~r∗ over Rq and a message m∗ ∈ Rq
such that

‖c̄i‖1 ≤ 2κ and c̄i mod ϕi 6= 0 for all 1 ≤ i ≤ l,
‖c̄i~r∗‖2 ≤ 2β for all 1 ≤ i ≤ l,
B0~r

∗ = ~t0,

〈~b1, ~r∗〉+m∗ = t1.

It is easy to show that the commitment scheme is binding with respect to
these weak openings.

Lemma 4.3. The commitment scheme is binding with respect to weak open-
ings if MSISµ,8κβ is hard. More precisely, from two different weak openings
((c̄i), ~r

∗,m∗) and ((c̄′i), ~r
∗′,m∗′) with m∗ 6= m∗′ one can immediately compute

a Module-SIS solution for B0 of length at most 8κβ.

Proof. Suppose there are two weak openings ((c̄i), ~r
∗,m∗) and ((c̄′i), ~r

∗′,m∗′)

with m∗ 6= m∗′. Then, 〈~b1, ~r∗〉 +m∗ = t1 = 〈~b1, ~r∗′〉 +m∗′ implies ~r∗ 6= ~r∗′.
Therefore, there exists an i ∈ {1, . . . , l} such that ~r∗ 6≡ ~r∗′ (mod ϕi). Conse-
quently, c̄ic̄

′
i(~r
∗ − ~r∗′) = c̄′ic̄i~r

∗ − c̄ic̄′i~r∗′ 6= 0 since the polynomials ci and c′i
are non-zero modulo ϕi. Hence,

B0c̄ic̄
′
i(~r
∗ − ~r∗′) = 0

is a non-trivial Module-SIS solution for B0 of length at most 8κβ. ut



It remains to explain how we make it possible to arrive at the transcript pairs
that we want to piece together. Suppose Rq factors in the following way,

Rq =
∏
i∈Z×2l

Zq[X]/(X
d
l − ζi)

with l irreducible ϕi = Xd/l − ζi and ζ a primitive 2l-th root of unity. Let
C = {−1, 0, 1}d ⊂ R and c ∈ C be a random element from C where each coef-
ficient is independently identically distributed with Pr(0) = 1/2 and Pr(−1) =
Pr(1) = 1/4. Then the d/l coefficients of c mod ϕi for a fixed i are mutually in-
dependent and Lemma 3.3 gives a bound on their maximum probability over Zq.
We will set parameters such that the maximum probability is not much bigger
than 1/q. Then the probability that a cheating prover can get away with only
answering challenges with a particular value modulo ϕi is about q−d/l. If this
probability is negligible, then, although the projections c mod ϕi for varying i
are not independent, we can get several transcript pairs where for each i at least
one c̄ mod ϕi is non-zero. This works by rewinding the prover l times, once for
every i, and sending a challenge that differs from a previous successful challenge
modulo ϕi. If otherwise the probability q−d/l is not negligible we can run sev-
eral, say k, copies of the protocol in parallel and reduce the cheating probability
to q−kd/l. Then there are k prover commitments ~wi in the first flow and there
won’t be l accepting transcript pairs for each of them. Hence this requires a
slightly more general analysis than what we have provided in the overview in
this section. We handle this case in the security proof of our protocol given in
Figure 2. It turns out that it is still possible to extract unique preimages ~yi for
all commitments ~wi.

In the k parallel repetitions we do not sample the challenges independently.
The reason is that when proving relations on the messages and specifically in our
product proof we will need more structure. Let σ = σ2l/k+1 ∈ Aut(Rq) ∼= Z×2d
be the automorphism of order kd/l that stabilizes the ideals(

X
kd
l − ζjk

)
=

∏
i=0,...,k−1

σi
(
X

d
l − ζj

)
=

∏
i∈〈2l/k+1〉/〈2l+1〉

(
X

d
l − ζij

)
for j ∈ 〈−1, 5〉/〈2l/k + 1〉 ∼= Z×2l/k. Now, we let the challenges in the k parallel

executions be the images σi(c), i = 0, . . . , k − 1, of a single polynomial c ∈ C.
If parameters are such that the maximum probability of each of the mutually
independent coefficients of c mod (Xkd/l − ζjk) is essentially 1/q, and thus the
maximum probability of c mod (Xkd/l − ζjk) is essentially q−kd/l, and this is
negligible, then the prover must answer two c, c′ that differ modulo Xkd/l− ζjk.
Hence, c̄ = c−c′ is non-zero modulo at least one of the divisors, say (Xd/l−ζj).
Therefore, for every other divisor σi(Xd/l − ζj) we have

σi(c̄) mod σi
(
X

d
l − ζj

)
= σi

(
c̄ mod

(
X

d
l − ζj

))
6= 0.

So we are in the situation where we have an accepting transcript pair with non-
zero c̄ modulo every prime divisor of (Xkd/l − ζjk). By repeating the argument



Prover P Verifier V

Inputs:

B0 ∈ Rµ×(λ+µ+1)
q ,~b1 ∈ Rλ+µ+1

q B0,~b1

~r ∈ {−1, 0, 1}(λ+µ+1)d ⊂ Rλ+µ+1
q

~t0, t1

m ∈ Rq
~t0 = B0~r

t1 = 〈~b1, ~r〉+m

For i = 0, . . . , k − 1 :

~yi
$← D(λ+µ+1)d

s

~wi = B0~yi

~wi -

c� c
$← C

For i = 0, . . . , k − 1 :

~zi = ~yi + σi(c)~r

If Rej
(

(~zi), (σ
i(c)~r), s

)
= 1, abort ~zi -

For i = 0, . . . , k − 1 :

‖~zi‖2
?

≤ β = s
√

2(λ+ µ+ 1)d

B0~zi
?
= ~wi + σi(c)~t0

Fig. 2. Automorphism opening proof for the commitment scheme. We assume l, k are
powers of two such that k < l ≤ d, q − 1 ≡ 2l (mod 4l), and σ = σ2l/k+1 ∈ Aut(Rq).
Furthermore, C is the challenge distribution over R where each coefficient is inde-
pendently identically distributed with Pr(0) = 1/2 and Pr(−1) = Pr(1) = 1/4, κ is a

bound on the `1-norm of c, i.e. ‖c‖1 ≤ κ with overwhelming probability for c
$← C, and

Ds is the discrete Gaussian distribution on Z with standard deviation s = 11kκ ‖~r‖2.

for every j ∈ Z×2l/k, we see that we can get an extraction with non-vanishing c̄

modulo every prime divisor of (Xd + 1).

The final protocol is given in Figure 2. It’s security is stated in Theorem 4.4.
The proof of Theorem 4.4 is given in the full version of the paper.

Theorem 4.4. The protocol in Figure 2 is complete, statistical honest verifier
zero-knowledge and computational special sound under the Module-SIS assump-
tion. More precisely, let p be the maximum probability over Zq of the coefficients
of c mod Xkd/l − ζk as in Lemma 3.3.

Then, for completeness, unless the honest prover P aborts due to the rejection
sampling, it convinces the honest verifier V with overwhelming probability.

For zero-knowledge, there exists a simulator S, that, without access to secret
information, outputs a simulation of a non-aborting transcript of the protocol



between P and V which has statistical distance at most 2−100 to the actual in-
teraction.

For knowledge-soundness, there is an extractor E with the following prop-
erties. When given rewindable black-box access to a deterministic prover P∗
that convinces V with probability ε > pkd/l, E either outputs a weak opening
for the commitment ~t or a MSISµ,8κβ solution for B0 in expected time at most
1/ε+ (l/k)(ε− pkd/l)−1 when running P∗ once is assumed to take unit time.

Moreover, the weak opening can be extended to also include k vectors ~y∗i ∈
Rλ+µ+1
q such that B0~y

∗
i = ~wi, where ~wi are the prover commitments sent by P∗

in the first flow. Furthermore, for every accepting transcript of an interaction
with P∗, the prover replies are given by ~zi = ~y∗i + σi(c)~r∗.

5 Product Proof

In this section we present an efficient protocol for proving multiplicative rela-
tions between committed messages. Suppose the prover knows an opening to a
commitment ~t to three secret polynomials m1,m2,m3 ∈ Rq,

~t0 = B0~r,

t1 = 〈~b1, ~r〉+m1,

t2 = 〈~b2, ~r〉+m2,

t3 = 〈~b3, ~r〉+m3.

His goal is to prove the multiplicative relation m1m2 = m3 in Rq. We recall
a simple technique for this, which for example was used in [6, 31]. The prover
commits to uniformly random masking polynomials a1,a2,a3 ∈ Rq and two
so-called “garbage polynomials“,

~t′0 = B′0~r
′,

t′1 = 〈~b′1, ~r′〉+ a1,

t′2 = 〈~b′2, ~r′〉+ a2,

t′3 = 〈~b′3, ~r′〉+ a3,

t′4 = 〈~b′4, ~r′〉+ a1m2 + a2m1 + a3,

t′5 = 〈~b′5, ~r′〉+ a1a2.

Then P replies to a challenge polynomial x ∈ Rq with masked openings fi =
ai + xmi of the messages mi. Now P shows that the fi really open to the
committed messages by proving that t′i + xti − fi is a commitment to zero for
i = 1, 2, 3. Concretely, in addition to the standard opening proof for all of the



commitments where the prover sends

~w = B0~y,

~w′ = B′0~y
′,

~z = ~y + c~r,

~z′ = ~y′ + c~r′,

they will also send

v1 = 〈~b′1, ~y′〉+ x〈~b1, ~y〉,

v2 = 〈~b′2, ~y′〉+ x〈~b2, ~y〉,

v3 = 〈~b′3, ~y′〉+ x〈~b3, ~y〉.

The verifier then checks the equations

B0~z = ~w + c~t0,

B′0~z
′ = ~w′ + c~t′0,

〈~b′1, ~z′〉+ x〈~b1, ~z〉 = v1 + c(t′1 + xt1 − f1),

〈~b′2, ~z′〉+ x〈~b2, ~z〉 = v2 + c(t′2 + xt2 − f2),

〈~b′3, ~z′〉+ x〈~b3, ~z〉 = v3 + c(t′3 + xt3 − f3).

This convinces the verifier that the fi open to the secret messages mi. Next,
consider the commitment

τ = t′5 + xt′4 − (f1f2 − xf3). (19)

The verifier knows that the fi are of the form fi = a∗i + xm∗i where the poly-
nomials a∗i and m∗i are the (extracted) messages in the commitments t′i, ti.
Therefore, V knows that τ is a commitment to the message

µ = m∗5 + xm∗4 − (a∗1a
∗
2 + x(a∗1m

∗
2 + a∗2m

∗
1) + x2m∗1m

∗
2 − xa∗3 − x2m∗3)

= (m∗5 − a∗1a∗2) + x(m∗4 − a∗1m∗2 − a∗2m∗1 + a∗3) + x2(m∗3 −m∗1m∗2)

where m∗4, m∗5 are the extracted messages from the two garbage commitments.
Now the prover completes the product proof by proving that τ is a commitment
to zero. We explain why this suffices. The message µ can be viewed as a quadratic
polynomial in x with coefficients that are independent from x. If the prover
is able to answer three challenges x such that their pairwise differences are
invertible, then the polynomial must be the zero polynomial. In particular, the
interesting term m∗1m

∗
2 −m∗3, which is separated from the other terms as the

leading coefficient in the challenge x, must be zero.
There are two main problems with the technique:

1. The prover needs to send a large commitment ~t′ to 5 polynomials together
with an opening proof for it, and also the three uniform masked openings
fi.



2. Similarly as in the opening proof, the prover can cheat unless it is forced to
be able to answer several challenges x with invertible differences. Unlike for
the challenge c there is no shortness requirement associated to x. Still, if q
splits completely, the soundness error is restricted to 1/q even for uniformly
random x ∈ Rq. Repetition is particularly expensive in the case of x since
the masking polynomials ai and corresponding commitments t′i can not be
reused. In fact, sending fi = ai + xmi for different x would break zero-
knowledge. This even further increases the cost of the masking and garbage
commitment and its opening proof.

Both problems result in concretely quite large communication sizes. We provide
solutions to both problems and hereby drastically reduce the proof size.

First Problem. Instead of making the prover send the masked openings fi and
prove their well-formedness by committing to the ai, we let the verifier compute
the fi from the commitments ti. Then the proper relation to the messages mi

follows by construction. This is made possible by the results from Section 4.
Recall that the verifier will be convinced that the vector ~z in the opening proof
is of the form ~z = ~y∗ + c~r∗ where ~y∗, ~r∗ are independent from c and ti =
〈~bi, ~r∗〉+m∗i with binded m∗i . Hence, the verifier will be convinced that

fi = 〈~bi, ~z〉 − cti = 〈~bi, ~y∗〉 − cm∗i .

But this exactly is a masked opening of m∗i with challenge c and masking poly-

nomial a∗i = 〈~bi, ~y∗〉.
Now, when we compute the quadratic relation f1f2 + cf3 we need to get rid

of the garbage terms. It seems we need to linear combine garbage commitments
t′4 and t′5 with the challenge c and hereby construct a new commitment with
commitment matrix b′4 + cb′5 depending on c. If we went down this path we
would need to send a second fresh opening proof with new challenge to show
that t′4 +ct′5− (f1f2 +cf3) is a commitment to zero. This would be particularly
bad if the garbage commitments are part of the commitment to the messages as
one wants to have it in applications.

Instead, we use a new proof technique to achieve the same goal without two-
layered opening proof and only one garbage commitment. In a nutshell, we use
the masked opening f ′4 = 〈~b′4, ~z′〉−ct′4 of the garbage term to reduce f1f2 +cf3
to the polynomial f1f2 + cf3 + f ′4 that is constant in c. Then we show that
the prover can just send this polynomial before seeing c without destroying
zero-knowledge. The resulting verification equation, which is quadratic in the
commitments, can be handled in the extraction proof by making repeated use of
the interpolations of ~z, ~z′ and the associated expressions for the commitments.

In our protocol we include the single garbage commitment in the commitment
to the messages. This has the advantage of saving the separate binding part ~t′0
and the associated cost in the opening proof. Effectively this means that the
message commitments become a part of the product proof protocol and this



commitment contains an additional commitment to a garbage term,

t4 = 〈~b4, ~r〉+ 〈~b3, ~y〉 −m1〈~b2, ~y〉 −m2〈~b2, ~y〉.

For usual applications this approach is natural. For example when committing to
an integer one usually knows that one needs to later provide a range proof for it
so one can as well compute the range proof already when doing the commitment.

For concreteness we state the resulting protocol in Figure 3. It has negligible
soundness error when c̄ is invertible with overwhelming probability. Otherwise
the protocol could be repeated to boost the soundness but this would increase
the number of garbage commitments t4 that need to be transmitted. Instead, we
now present a better solution that still only needs a single garbage commitment.

Second Problem. As explained in Section 4, we set up parameters so that,
for some j ∈ Z×2l/k+1, the prover can guess the challenge c modulo each of the

k prime ideals σi(Xd/l − ζj), i = 0, . . . , k − 1, with non-negligible independent
probability of about 1/qd/l. This means with the above method the prover will
prove

m1m2 ≡m3 (mod σi(Xd/l − ζj))

only with non-negligible soundness error. We solve this problem by linear combin-
ing all the permutations σi(m1m2−m3) with independently uniformly random
challenge polynomials αi. So we set out to prove

k−1∑
i=0

αiσ
i(m1m2 −m3) = 0.

Then our proof will show

k−1∑
i=0

αiσ
i(m1m2 −m3) ≡ 0 (mod σi

′
(Xd/l − ζj))

with independent cheating probability for i′ = 0, . . . , k−1. But the last equation
for a single i′ proves

σi(m1m2 −m3) ≡ 0 (mod σi
′
(Xd/l − ζj))

⇒m1m2 −m3 ≡ 0 (mod σi
′−i(Xd/l − ζj))

for all i = 0, . . . , k − 1 with cheating probability 1/qd/l by the Schwartz-Zippel
Lemma. A careful analysis will show the success probability of a cheating prover
will be reduced to essentially at most

ε =

(
3

qd/l

)k
.

Now we derive the corresponding equation for the masked message openings.
Here is where we need the randomness openings ~zi with the permutations σi(c)



of the challenge. The verifier can compute k masked openings for every message
with challenges σi(c) by setting

f
(i)
j = 〈~bj , ~zi〉 − σi(c)tj .

In the extraction we will have the expressions

f
(i)
j = 〈~bj , ~y∗i 〉 − σi(c)m∗j .

Therefore, it follows that

k−1∑
i=0

αiσ
−i
(
f
(i)
1 f

(i)
2 + σi(c)f

(i)
3

)
=

k−1∑
i=0

αiσ
−i
(
〈~b1, ~y∗i 〉〈~b2, ~y∗i 〉

)
+ c

k−1∑
i=0

αiσ
−i
(
〈~b3, ~y∗i 〉 −m∗1〈~b2, ~y∗i 〉 −m∗2〈~b1, ~y∗i 〉

)
+ c2

(
k−1∑
i=0

αiσ
−i (m∗1m

∗
2 −m∗3)

)

We fold the coefficient of c into the constant coefficient by adding f4 = 〈~b4, ~z0〉−
ct4 computed from the garbage commitment

t4 = 〈~b4, ~r〉+

k−1∑
i=0

αiσ
−i
(
〈~b3, ~yi〉 −m1〈~b2, ~yi〉 −m2〈~b1, ~yi〉

)
.

Then we arrive at

k−1∑
i=0

αiσ
−i
(
f
(i)
1 f

(i)
2 + σi(c)f

(i)
3

)
+ f4

= 〈~b4, ~y∗0〉+

k−1∑
i=0

αiσ
−i
(
〈~b1, ~y∗i 〉〈~b2, ~y∗i 〉

)
+ c

(
k−1∑
i=0

αiσ
−i
(
〈~b3, ~y∗i 〉 −m1〈~b2, ~y∗i 〉 −m2〈~b1, ~y∗i 〉

)
−m∗4

)

+ c2

(
k−1∑
i=0

αiσ
−i (m∗1m

∗
2 −m∗3)

)
.

The verifier checks that this is equal to v using the polynomial v that it has
received before sending the challenge.

It is important to note that we have departed from a straight-forward repe-
tition of the protocol in Figure 3. The main advantage being that there is still
only one garbage commitment necessary.



5.1 The Protocol

The final protocol is given in Figure 4. Its security is stated in Theorem 5.1.
The proof of the theorem is given in the full version of the paper

Prover P Verifier V

Inputs:

B0 ∈ Rµ×(λ+µ+4)
q ;~b1 . . . ,~b4 ∈ Rλ+µ+4

q B0;~b1, . . . ,~b4

m1,m2,m3 ∈ Rq

~r
$← χ(λ+µ+4)d

~y
$← D(λ+µ+4)d

s

~t0 = B0~r

t1 = 〈~b1, ~r〉+m1

t2 = 〈~b2, ~r〉+m2

t3 = 〈~b3, ~r〉+m3

t4 = 〈~b4, ~r〉+ 〈~b3, ~y〉 −m1〈~b2, ~y〉 −m2〈~b1, ~y〉
~t = ~t0 ‖ t1 ‖ · · · ‖ t4
~w = B0~y

v = 〈~b4, ~y〉+ 〈~b1, ~y〉〈~b2, ~y〉
~t, ~w,v -

c� c
$← C

~z = ~y + c~r

If Rej (~z, c~r, s) = 1, abort ~z -

‖~z‖2
?

≤ β = s
√

2(λ+ µ+ 4)d

B0~z
?
= ~w + c~t0

f1 = 〈~b1, ~z〉 − ct1
f2 = 〈~b2, ~z〉 − ct2
f3 = 〈~b3, ~z〉 − ct3
f4 = 〈~b4, ~z〉 − ct4

f1f2 + cf3 + f4
?
= v

Fig. 3. Simple proof of multiplicative relation.

Theorem 5.1. The protocol in Figure 4 is complete, computational honest ver-
ifier zero-knowledge under the Module-LWE assumption and computational spe-
cial sound under the Module-SIS assumption. More precisely, let p be the maxi-
mum probability over Zq of the coefficients of c mod Xkd/l−ζk as in Lemma 3.3.



Prover P Verifier V

Inputs:

B0 ∈ Rµ×(λ+µ+4)
q ;~b1, . . . ,~b4 ∈ Rλ+µ+4

q B0;~b1, . . . ,~b4

m1,m2,m3 ∈ Rq

~r
$← χ(λ+µ+4)d

~t0 = B0~r

t1 = 〈~b1, ~r〉+m1

t2 = 〈~b2, ~r〉+m2

t3 = 〈~b3, ~r〉+m3

For i = 0, . . . , k − 1 :

~yi
$← D(λ+µ+4)d

s

~wi = B0~yi

~t0, t1, t2, t3, ~wi-

α0, . . . ,αk−1� α0, . . . ,αk−1
$←Rq

t4 = 〈~b4, ~r〉+

k−1∑
i=0

αiσ
−i
(
〈~b3, ~yi〉 −m1〈~b2, ~yi〉 −m2〈~b1, ~yi〉

)
v = 〈~b4, ~y0〉+

k−1∑
i=0

αiσ
−i
(
〈~b1, ~yi〉〈~b2, ~yi〉

)
t4,v -

c� c
$← C

For i = 0, . . . , k − 1 :

~zi = ~yi + σi(c)~r

If Rej
(

(~zi), (σ
i(c)~r), s

)
= 1, abort ~zi -

For i = 0, . . . , k − 1 :

‖~zi‖2
?

≤ β = s
√

2(λ+ µ+ 3)d

B0~zi
?
= ~wi + σi(c)~t0

f
(i)
1 = 〈~b1, ~zi〉 − σi(c)t1

f
(i)
2 = 〈~b2, ~zi〉 − σi(c)t2

f
(i)
3 = 〈~b3, ~zi〉 − σi(c)t3

f4 = 〈~b4, ~z0〉 − ct4
k−1∑
i=0

αiσ
−i
(
f

(i)
1 f

(i)
2 + σi(c)f

(i)
3

)
+ f4

?
= v

Fig. 4. Automorphism proof of multiplicative relation for automorphism σ ∈ Aut(Rq)
of order kd/l.



Then, for completeness, in case the honest prover P does not abort due to
rejection sampling, it convinces the honest verifier V with overwhelming proba-
bility.

For zero-knowledge, there exists a simulator S, that, without access to secret
information, outputs a simulation of a non-aborting transcript of the protocol
between P and V. Then for every algorithm A that has advantage ε in distin-
guishing the simulated transcript from an actual transcript, there is an algorithm
A′ with the same running time that has advantage ε − 2−100 in distinguishing
MLWEλ,χ.

For soundness, there is an extractor E with the following properties. When
given rewindable black-box access to a deterministic prover P∗ that convinces V
with probability ε ≥ (3pd/l)k, E either outputs a weak opening for the commitment
~t with messages m∗1, m∗2 and m∗3 such that m∗1m

∗
2 = m∗3, or a MSISµ,8κβ

solution for B0 in expected time at most 1/ε+ (l/k)(ε− pkd/l)−1 when running
P∗ once is assumed to take unit time.

5.2 Amortized Protocol

The protocol from the last section can be extended into a protocol for the case
where the prover wants to prove multiplicative relations between many messages.
In this extension there will still only be one garbage commitment necessary for
proving all of the relations. So the cost for the garbage commitment is amortized
over all relations. Suppose we want to prove n product relations

m
(j)
1 m

(j)
2 = m

(j)
3

for j = 1, . . . , n. Then virtually in the same way in which we linear combine
the automorphic images of a single relation with uniform challenges, we can use
even more challenges and linear combine all the automorphic images of all the
relations. Concretely, we want to prove

k−1∑
i=0

n∑
j=1

αin+jσ
i
(
m

(j)
1 m

(j)
2 −m

(j)
3

)
= 0

with α1, . . . ,αnk
$← Rq. Now a nice feature of the Schwartz-Zippel lemma is that

this does not decrease the soundness. Intuitively, as soon as one of the relations
is false, then the linear combination of all of the relations will be uniformly
random, and this will be detected with overwhelming probability.

5.3 Non-Interactive Protocol and Proof Sizes

In this section we compute the size of a non-interactive proof, where we dis-
tinguish between the size for the commitment ~t = ~t0 ‖ t1 ‖ · · · ‖ t3 to the
messages and the size for the actual product proof. The message commitment
is to be reused in some other protocol. It consists of µ + 3 uniformly random
polynomials so its size is (µ+ 3)ddlog qe bits.



The protocol in Figure 4 is made non-interactive with the help of the standard
Fiat-Shamir technique. This means that the challenges are computed by the
prover by hashing all previous messages and public information, and the hash
function is modeled as a random oracle. To shorten the length of the proof, a
standard technique is to not send the input to the hash function, but rather
send its output (i.e. the challenge) and let the verifier recompute the input from
the later transmitted terms using the verification equation and then test that
the hash of these computed input terms is indeed the challenge. Concretely, in
the non-interactive version of the product proof, the kµ+ 1 full-size polynomials
~wi and v do not have to be transmitted and only t4 remains as a non-short
polynomial. The polynomials in the vectors ~zi are short discrete Gaussian vectors
with standard deviation s. Every coefficient is smaller than 6s in absolute value
with probability 1− 2−24 [24, Lemma 4.4]. So we can assume this is the case for
all coefficients – the non-interactive prover can just restart otherwise. Eventually,
we obtain that one non-interactive proof needs

ddlog(q)e+ k(λ+ µ+ 4)ddlog(12s)e+ 256

bits.

Example I. Suppose we are given 8 secret polynomials in the ring Rq of rank
d = 128 with a prime q ≈ 232 that splits completely. So there are 1024 secret
NTT coefficients in Zq and we need 8 Rq-polynomials to commit to these secret
coefficients, not just 3 as before. For this ring the maximum probability over Zq
of the coefficients of c mod (X4 − ζ4) for c

$← C is p = 2−31.44 according to the
formula in Lemma 3.3 when a coefficient of c is zero with probability 1/2. So
k = 4 permutations of a challenge under the automorphism σ = σ64 are sufficient
to reach negligible soundness error. Further, suppose the commitment scheme
uses MLWE rank λ = 10 and MSIS rank µ = 10. Then, we find ‖c~r‖1 ≤ 77
with probability bigger than 1 − 2−100. If we set the standard deviation of the
discrete Gaussian to s = 5 · 77 ·

√
(λ+ µ+ 9)d = 46913, we need MSISµ,8dβ to

be secure for β = s
√

2(λ+ µ+ 9)d. We found the root Hermite factor to be
approximately 1.0043. Similarly, MLWEλ with ternary noise has hermite Factor
1.0043. With these parameters the size of the commitment is 9 KB and the size
of our product proof is 31.3 KB.

Example II. For a fair comparison to [2, Parameter set I of Table 2], where the
polynomial Xd + 1 does not necessarily split into linear factors, we modify the
previous example and switch to using a prime q that splits into prime ideals of
degree 4 (and so there are 32 NTT slots for each polynomial). Then we have
negligible soundness error already with k = 1 and we don’t need parallel repe-
titions and automorphisms. The protocol is given in Figure 3 and the product
proof size goes down to 8.8 KB.

Example III. In the above comparison to [2], we created a commitment to 256
NTT coefficients each being a polynomial of degree 3. For the 32-bit range proof



example stated in the introduction, we only need 32 coefficients and hence only
commit to one Rq-polynomial. The size of such a commitment is 5.5 KB and
our product proof has size 5.9KB.
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